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ABSTRACT 

Background: Lower ambulatory performance with aging may be related to a reduced oxidative 

capacity within skeletal muscle. We examined the associations between skeletal muscle 

mitochondrial capacity and efficiency with walking performance of the elderly. Methods:  

Thirty-seven older adults (mean age 78yrs; 21 male and 16 female) completed an aerobic 

capacity (VO2 peak) test and measurement of preferred walking speed over 400 meters.  

Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution 

respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus 

lateralis (n=22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined 

in vivo by 31P magnetic resonance spectroscopy (n=30). Quadriceps contractile volume was 

determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/ 

max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). 

Results: In vitro St3 respiration was significantly correlated with in vivo ATPmax (r2=0.47, 

P=0.004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a 

determinant of VO2 peak (r2=0.33, P=0.006). ATPmax (r2=0.158, P=0.03) and VO2 peak 

(r2=0.475, P<0.0001) were correlated with preferred walking speed. Inclusion of both 

ATPmax/St3 and VO2 peak in a multiple linear regression improved the prediction of preferred 

walking speed (r2=0.647, P<0.0001), suggesting that mitochondrial efficiency is an important 

determinant for preferred walking speed. Conclusions: Lower mitochondrial capacity and 

efficiency were both associated with slower walking speed within a group of older participants 

with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and 

efficiency likely play roles in slowing gait speed with age. 
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INTRODUCTION  

Aging is associated with reduced mitochondrial capacity (1, 2) and the loss of muscle 

mass and strength (3, 4), which could potentially predispose individuals to frailty and a slower 

preferential walking speed (5, 6). Preferred walking speed is lower in older adults (7, 8), and 

slower gait speed is a strong, independent predictor of disability, healthcare utilization, nursing 

home admission and mortality (9-11). A number of studies have found a close relationship 

between VO2peak and walking speed in the elderly (12, 13), which suggests that the decline in 

aerobic capacity contributes to, and may be predictive of, slower walking speed with age. A 

reduced efficiency of locomotion is also apparent in the elderly, which leads to an increased 

metabolic cost of walking (14). 

Aging is also associated with declines in both the capacity and efficiency of energy 

supply in muscle. Several studies using a variety of techniques have reported reduced capacity to 

generate ATP with age (1, 15, 16). The age-related changes in skeletal muscle mitochondrial 

function apparent in these studies are consistent with their likely role in the parallel loss of 

aerobic capacity (1, 16). In addition, reduced mitochondrial efficiency (energy conversion of O2 

uptake into ATP generation) has been reported in a variety of tissues in vitro and in vivo (17-19). 

The importance of mitochondrial efficiency is that it could impact the ability to generate ATP 

during ambulation (16) as well as movement efficiency (20-22). One study found that walking 

speed in patients with peripheral arterial disease was related to their capacity for ATP generation 

assessed by phosphorus magnetic resonance spectroscopy (31P MRS) (23). While the loss of 

muscle mitochondrial function has been widely hypothesized to contribute to the decline in VO2 

max and slowing of locomotion with age, there currently is insufficient published evidence to 

show that reductions in available energy results in a decline in customary walking speed with 
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aging and disease (11). Furthermore, the potential role of mitochondrial efficiencey in energy 

availablity for walking has not been examined. 

The goal of this study was to test the hypothesis that reduced mitochondrial capacity and 

efficiency are associated with slower walking speed in older adults. We combined in vitro 

(respirometry) and in vivo (31P MRS) measurements of mitochondrial function and related them 

to whole body aerobic capacity (VO2 peak) and preferred walking speed in a group of older men 

and women. High resolution respirometry of permeabilized fibers isolated from muscle biopsy 

specimens yielded mitochondrial oxidative capacity (State 3 or St3 respiration). These measures 

of mitochondrial capacity at cellular level were extended to the muscle tissue level by assessing 

quadriceps muscle volume with magnetic resonance imaging. 31P MRS was used to determine 

the maximum mitochondrial ATP production (ATPmax) in vivo, which was combined with St3 

respiration to yield an index of mitochondrial efficiency (ATPmax/St3). Our study tested the 

paradigm that muscle mitochondrial properties impact walking speed and that the mitochondria 

capacity and efficiency may be associated with the decline in mobility with age.  
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METHODS 

Recruitment: Participants were community dwelling, ambulatory men and women aged 

70-89 years from the Pittsburgh, PA area. A telephone interview was initially conducted to 

determine eligibility. The inclusion criteria were: age 70-89 years; body weight ≤ 285 lbs for 

men, ≤ 250 lbs for women; body mass index (BMI) 20-32 kg/m2; ability to walk without the 

assistance of a device or another person; free of basic activities of daily living (ADL) disability, 

defined as no difficulty getting in and out of bed or chairs, and no difficulty walking across a 

small room; no history of hip fracture; no heart attack, angioplasty, or heart surgery within the 

past 3 months, no cerebral hemorrhage within the past 6 months, stroke within the past 12 

months, or chest pain during walking in the past 30 days; no symptomatic cardiovascular or 

pulmonary disease; no regular pain, aching, or stiffness in the legs, hips, knees, feet, or ankles 

when walking; no bilateral difficulty bending or straightening fully the knees; not regularly 

taking Coumadin, Plavix, Aggrenox, Ticlid, or Agrylin/Xagrid. All participants provided written 

informed consent. The study was approved by the University of Pittsburgh Institutional Review 

Board. 

 

 Testing Schedule:  The clinic examination involved three visits. During the first visit 

potential participants were asked to read and sign an informed consent document. Measurements 

included height, weight, blood pressure and resting pulse. A physical examination was also 

conducted along with a review of clinical information including self-reported physical function, 

medical history, and medication inventory. A physical activity scale for the elderly (PASE) 

questionairre was completed and a final summary score was calculated (24). A short physical 

performance battery (SPPB) was conducted and an overall score was calculated (25). A 400-
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meter walk test was conducted to determine self-selected walking speed. Participants were also 

given a 5-minute practice session on the treadmill to become acquainted with treadmill walking 

prior to the VO2 peak test conducted in a subsequent visit. The second visit involved 31P 

magnetic resonance spectroscopy (MRS) and imaging and a graded exercise test to determine 

VO2 peak. The third visit involved muscle tissue collection. 

 

 400 meter walk test: The 400 meter walk test assessed the participant’s ability to complete 

a 400 meter walking course in 15 minutes or less without sitting down or stopping, without help 

or the use of any assistive device. Participants were instructed to complete the distance at their 

usual pace and without overexerting themselves. Participants were remined to walk at their usual 

pace every lap. Seated blood pressure and pulse were reviewed for safety before the walk. 

Prefered walking speed was calculated as total meters walked/total time in seconds. 

 

 VO2 peak test: Maximal whole body oxygen consumption (VO2 peak) was determined by a 

graded treadmill exercise test (26). A resting 12-lead electrocardiogram (ECG) was conducted 

prior to the VO2 peak test to screen for cardiac arrhythmias. To ensure participant safety, 

continuous ECG monitoring was also performed during the VO2 peak test. During the test, the 

participant’s self-selected usual walking speed was used and the treadmill grade was increased 

by 2% every 2 minutes until attainment of peak VO2. The test was terminated as per the criteria 

outlined in the American College of Sports Medicine (ACSM) guidelines (26).  

 

Muscle Biopsy procedure and preparation of permeabilized muscle fiber bundle: 

Percutaneous biopsies were obtained at the University of Pittsburgh’s Clinical Translational 
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Research Center (CTRC) on a morning after an overnight fast. Participants were instructed not to 

perform physical exercise 48 h prior to the muscle biopsy procedure. Muscle biopsy samples 

were obtained from the middle region of the musculus vastus lateralis as described previously 

(27). Following the procedure, the biopsy specimen was immediately blotted dry of blood and 

interstitial fluid and dissected free of any connective tissue and intermuscular fat. A portion of 

the biopsy specimen (~10 mg) was immediately placed in ice-cold BIOPS solution (10 mM Ca- 

EGTA buffer, 0.1 M free calcium, 20 mM imidazole, 20 mM taurine, 50 mM potassium 2-(n-

morpholino)-enthanosulfonic acid, 0.5 mM dithio- threitol, 6.56 mM MgCl2, 5.77 mM ATP and 

15 mM phosphocreatine, pH 7.1). The individual muscle fibers in the sample were then gently 

teased apart in a petri dish containing ice cold BIOPS solution using fine-nosed forceps and a 

dissecting microscope (Leica Microsystems, Heerbrugg, Switzerland). The fiber bundles were 

then permeabilized with saponin (2 ml of 50 ug/ml saponin in BIOPS solution) for 20 min at 4oC 

on an orbital shaker, and then washed twice for 10 min at 4oC with Mir05 respiration medium 

(0.5 mM EGTA, 3 mM MgCl2.6H2O, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 

20 mM HEPES, 110 mM sucrose, and 1 g/L BSA, pH 7.1) on an orbital shaker (28). The 

permeabilized muscle fiber bundles were then placed into the respiration chambers of an 

Oxygraph 2K (Oroboros Inc, Innsbruck, Aus). 

 

 Mitochondrial respiration protocol: Measurement of oxygen consumption in permeablized 

fibers was conducted over a ~1hr 40 min period, at 37oC and in the oxygen concentration range 

220-150 nmol O2/ml (see supplemental method for full protocol). Following the assay, the fiber 

bundles were recovered and dried. A dry weight was then determined with an analytical balance 

(Mettler Toledo, XS105). Steady state O2 flux for each respiratory state was determined and 
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normalized to fiber bundle weight using Datlab 4 software (Oroboros Inc., Innsbruck, Aus).  

 

 Determination of ATPmax by 31P MRS: Maximal mitochondrial ATP production in vivo 

(ATPmax) following an acute bout of knee extensor exercise was determined using phosphorus 

magnetic resonance spectroscopy (31P MRS). Recovery of phosphocreatine (PCr) levels after 

exercise is used to characterize rates of mitochondrial ATP resynthesis (production). The validity 

of this method is confirmed by animal and human studies showing that ATPmax varies in direct 

proportion to the oxidative enzyme activity of healthy muscle (29, 30) and corresponds with 

mitochondrial content in human muscle (16). Repeat measurements of muscle ATPmax have been 

shown to agree to within about 7% (31). 

 

 Exercise Protocol: The exercise protocol was designed to deplete [PCr] of the quadriceps 

muscles with minimal acidification to achieve a high [ADP] and thus maximize oxidative 

phosphorylation [30]. Participants lay supine in the scanner’s bore with the knee supported in 

about 30o of flexion. Sandbags and padding were placed on both sides of the ankle and knee for 

support and straps placed across the distal leg, thigh and hips restricted limb movement. 

Participants performed strong, fast contractions of the quadriceps muscle at the highest rate 

possible for 24 - 36 s, followed by 6 min of rest. Most participants repeated this protocol twice, 

with 2 different exercise times, to assure that in at least one bout [PCr] was reduced by 33 – 66% 

of basal and that muscle pH did not fall <6.80 during recovery. Participants were trained to 

perform the exercise before entering the magnet. 

 31P MRS: We collected phosphorus spectra using a 3T TIM Trio magnetic resonance 

scanner (Siemen's Medical System, Erlanger, Germany) (see supplemental method). A standard 
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one pulse experiment was used to determine the levels of PCr, ATP, Pi, and pH throughout 

exercise and recovery.  

 PCr, Pi, and ATP peak areas in the fully relaxed spectra were measured by integration 

using Varian VNMR 6.1C software (Varian Medical Systems, Palo Alto, CA). Areas of the PCr 

and Pi peaks were expressed relative to the ATP peak and quantified using a resting PCr value of 

27 mM as determined from biopsies of human vastus lateralis muscle (16). Changes in PCr and 

Pi peak areas during the experiments were analyzed as previously described (32, 33).  

 Determination of Muscle size: We used MR imaging to determine quadriceps cross-

sectional area and volume according to a previously described method (see supplemental 

method) (35).  Using a 3T TIM Trio magnetic resonance scanner (Siemen's Medical System, 

Erlanger, Germany), we collected images every 3 cm from the hip to the thigh (15-25 slices per 

subject). The patient lay supine for imaging. Standard stereologic techniques were used to 

determine the largest muscle CSA for the quadriceps (35). Subcutaneous and intramuscular fat 

and other non-contractile tissues were excluded from the calculation of muscle contractile CSA.  

Statistical Analysis: All data are presented as mean ± standard deviation unless otherwise 

stated. Pearson correlation coefficients were used to examine relationships between variables. A 

multiple linear regression model was used to predict preferred walking speed from VO2 peak and 

mitochondrial efficiency (ATPmax/State 3 respiration).  
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RESULTS 

Participant Characteristics: A total of 179 potential participants were screened by 

telephone interview. Of those interviewed, 99 individuals were ineligible and 43 were not 

interested inparticipating. A total of 37 older adults (21 men, 16 women); who were normal 

weight to slightly overweight were studied (Table 1). The group had on average a relatively low 

and widely ranging level of aerobic fitness defined by VO2 peak (Table 1). This group of older 

subjects also had a fairly wide range of preferred walking speed, and the SPPB scores were 

indicative of low to moderate lower extremity function (Table 1).  

Muscle Magnetic Resonance Measurements:  Due to exclusions from MRI, e.g., history 

of metal work or claustrophobia, a subsample of individuals (n = 30; 16 men, 14 women) had 

ATPmax determined by 31P MRS. The average ATP resynthesis rate (ATPmax) was 0.52 mM 

ATP/sec and covered a >2.5-fold range (0.32-0.83) in agreement with reports on older adults 

(16).  The quadriceps contractile muscle size determined from MRI was also consistent with 

values previously reported for older participants (36). The coefficient of variation for repeat 

determinations on 8 participants was 7.2% for ATPmax, and 3% for quadriceps volume. 

Respirometry Measurements: A subsample of individuals (n = 22; 12 men, 10 women) 

had muscle biopsies that were studied by high-resolution respirometry. The maximal coupled 

respiratory capacity (State 3 respiration) of vastus lateralis permeabilized fiber bundles ranged 

>5-fold (Table 1). The non-phosphorylating rate of respiration (State 4 respiration) displayed a 

similar wide range as State 3. A respiratory control ratio (state 3/state 4) of 11.8 indicated good 

preparation of permeabilized muscle fiber bundles (37). These data are in agreement with 

previous respirometry measurements on permeabilized fibers from elderly subjects (75 yrs old) 

with State 3 and State 4 respiration averaging 199 and 24 pmol s-1 mg DW-1, respectively, based 
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on Figure 1 from ref. (38) and wet/dry weight conversion from ref. (39). The coefficient of 

variation of the respirometry assay for this study was determined to be 16.9 % (State 3 

respiration, determined from 6 participants). A representitive oxygraph is presented in the 

supplemental section (Figure S1) 

 Associations among in vitro and in vivo muscle and whole-body oxidative capacity: 

Maximal coupled, State 3 respiration (r2=0.47, P=0.004).  and maximal uncoupled respiration 

(r2=0.47, P=0.002) (table S1) measured in intact muscle fibers from the biopsy was significantly 

correlated with whole muscle ATPmax, indicating a close relationship between the measurements 

of oxidative capacity of permeabilized fibers and phosphorylation capacity of intact muscle.   

The relationship of muscle respiratory and oxidative capacity to whole body aerobic capacity 

was evaluated by combining respirometry data and MRI measurements of quadriceps contractile 

volume. A measure of muscle oxidative capacity was derived from the product of state 3 

respiration and the volume of quadriceps muscle (St3•VQ). Figure 3 shows that variation in VO2 

peak is significantly correlated with the quadriceps’ oxidative capacity (r2=0.33, P<0.0061). 

These associations were consistent for both men and women. This finding is also consistent with 

a prior study in elderly subjects (36).  

The Impact of Energetics on Walking Speed:  The range of VO2 peak among participants 

accounted for 48% of the variation in preferred walking speed over 400m (Figure 4, Panel A: 

r2=0.48, P<0.0001), in agreement with previous studies of energetics in older adults (12, 13). It 

was also found that ATPmax accounted for 15.8% of the variation in preferred walking speed 

(Figure 4, Panel B: r2 = 0.158, P = 0.03). The impact of mitochondrial efficiency (ATPmax/St3) on 

the relationship between aerobic capacity (VO2peak) and walking performance was tested using 

a multiple linear regression. Table 2 shows that independent of VO2peak, mitochondrial 
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efficiency was borderline associated with preferred walking speed (ATPmax/St3; P = 0.057). 

Together, however, VO2peak and ATPmax/St3, predicted ~65% of the variation in preferred 

walking speed (Figure 5, r2 = 0.647, P<0.0001) as compared to 47.5% of the variation by VO2 

peak alone. Adding gender to the model did not significantly affect these associations. The 

correlations between all respirometry states, MRS, VO2 peak and walking speed are presented in 

the supplemental section (Table S1). 
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DISCUSSION  

This study provides novel evidence obtained at the cellular, tissue and whole-body level 

that skeletal muscle mitochondrial capacity and efficiency are associated with preferred walking 

speed in older men and women. First, we found that muscle oxidative and phosphorylation 

capacities, whole body aerobic capacity, and walking speed all varied many fold among older 

adults in accordance with their fairly broad range in function. Second, muscle mitochondrial 

capacity and efficiency along with whole body aerobic capacity were directly associated with 

walking speed. Aerobic capacity (VO2 peak) varied in proportion to muscle respiratory capacity 

as measured by State 3 respiration (oxidative capacity) of permeabilized fibers combined with 

quadriceps volume (Fig. 3). Aerobic capacity and mitochondrial capacity were also strongly 

correlated with walking speed (Fig. 4). Our third key finding was that muscle mitochondrial 

efficiency (ATPmax/St3) provided independent explanatory power to predict walkng speed, 

additional to that provided by VO2 peak alone. These data indicate that muscle mitochondrial 

capacity and efficiency are associated with ambulatory performance of older adults.  

Mitochondrial capacity of muscle fibers: We first compared mitochondrial respiratory 

capacity determined from permeabilized muscle fibers against phosphorylation capacity of whole 

muscle. We found that State 3 respiration was directly proportional to ATPmax over the many-

fold range of properties found among these participants. Thus, a higher oxidative capacity of the 

muscle fiber is reflected in a higher oxidative phosphorylation capacity in whole muscle. This 

finding is in agreement with studies correlating mitochondrial content and enzymatic activity of 

muscle biopsies with ATPmax (16, 29). Thus, for the first time we compare two separate measures 

of mitochondrial energetics, determined in vitro by respirometry and in vivo by 31P-MRS, in 
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older adults and find a correspondence between mitochondrial respiratory capacity and whole 

muscle phosphorylation capacity.    

Impact of metabolic capacity and efficiency on mobility: Our key question was whether 

or not – and the extent to which - metabolic capacity and efficiency are related to walking 

performance. We tested the hypothesis that walking speed is not only affected by whole body 

aerobic capacity (VO2 peak) but also by muscle mitochondrial efficiency (ATPmax/St3). The 

contribution of both aerobic capacity and mitochondrial efficiency on walking speed is apparent 

in a multiple linear regression model shown in Table 2. In this model, the positive coefficient for 

VO2 peak implies that a higher aerobic capacity is associated with a faster preferred walking 

speed. Similarly, the positive coefficient for ATPmax/St3 implies that greater mitochondrial 

efficiency has a beneficial effect on walking speed. Together, aerobic capacity and mitochondria 

efficiency accounted for 64.7% of the variation in walking speed, whereas VO2 peak alone 

accounted for only 47.5% of the variation. The contribution of mitochondrial efficiency, 

independent of VO2 peak, can be further highlighted by examining data from individual subjects. 

For example, for two subjects with similar VO2peaks, one subject had a higher walking speed 

(1.5 m/sec) and high mitochondrial efficiency (7.9 x 103 (mM ATP/sec)/(pmol O2 /sec*mg 

DW)), while the second had a lower walking speed (0.74 m/sec) and low mitochondrial 

efficiency (2.3 x 103 (mM ATP/sec)/(pmol O2 /sec*mg DW)). Alterations in mitochondrial 

efficiency of ATP production may be caused by reduced inner mitochondrial membrane leak, or 

by reduced electron leak from the electron transport chain. Further studies are warranted to 

determine the causal factors mediating mitochondrial efficiency in the elderly. This is the first 

study, to our knowledge, to demonstrate that greater muscle mitochondrial efficiency may play a 

direct role in gait speed in the elderly.  
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Muscle impact on metabolic capacity: Here, we combine mitochondrial respiratory 

capacity (St 3) with quadriceps contractile volume (VQ) to extend the oxidative capacity of the 

muscle fibers to that of the whole quadriceps. We found that the oxidative capacity of the 

quadriceps accounted for 33% of the variation in VO2 peak (Fig. 3), a finding that is in 

agreement with a prior study of individuals 20-80 yrs old (36). This agreement suggests that 

mitochondria play an important role in determining cardiorespiratory fitness in older individuals.   

In contrast, a study of young and master endurance-trained athletes concluded that cardiac output 

and O2 delivery to the muscle likely sets the limits to the aerobic capacity (40). These highly 

active older adults may well have reached the limits to oxygen delivery, as found in younger 

athletes (average age: 26.1 years old) (41). However, direct measurements demonstrating an O2 

delivery limit in athletic individuals (41) fail to find a similar limitation in more sedentary people 

(42). The lack of O2 delivery limitation in less active older participants is evident in the scaling 

of maximum O2 uptake in proportion to the muscle’s capacity for O2 consumption in the older 

adults that is apparent in Figure 3 and reported previously (36). These data indicate that in non-

athletic older participants with a wide variation in physical function, muscle mitochondrial 

capacity is an important factor in addition to the cardiovascular system in determining VO2 peak 

across age. Thus these data suggest that interventions to enhance muscle mitochondria could 

have important effects to improve exercise tolerance and function in relatively sedentary older 

adults.  

There are some potential limitations and caveats to this study. Firstly, the strong 

relationship between VO2 peak and quadriceps oxidative capacity (Fig. 3) is dependent on one or 

two data points. A larger study with more participants would provide a more definitive view of 

this relationship. Secondly, although the range of functional performance of the older adult 
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participants was fairly broad, we studied few very low functioning people. Inclusion of more 

very low functioning older adults may have further strengthened the observed relationships 

between muscle mitochondrial capacity/efficiency and gait speed. Nevertheless, we believe that 

these findings may be clinically relevant, since walking speed has recently been identified as an 

important determinant of health and mortality in older men and women (9, 10). Thirdly, despite 

the lack of significant gender effect on these associations, our study was not adequately powered 

to examine gender-specific associations. Thus larger studies are warranted to determine whether 

or not mitochondrial energetics are more or less strongly associated with function in men and 

women specifically.  

In conclusion, muscle mitochondrial capacity and efficiency are related to walking speed 

in older adults, and that the loss of mitochondrial capacity and efficiency with age may be 

important contributors to the reduction in mobility and increase in disability. Future prospective 

longitudinal studies should determine whether mitochondrial energetics predicts the decline in 

walking speed and function as well as incident mobility limitations.  
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TABLE 1: Descriptive, metabolic and physiological data for study participants.  

n 37 (M=21, F=16) 
Age (yrs) 78.3 ± 4.9 (60-89)  
Weight (Kg) 72.0 ± 12 (53-97)  
BMI (Kg/m2) 25.7 ± 2.6 (21.4-31.2) 
Quadriceps contractile volume (ml) 1159 ± 324 (589-1886), n=30 
ATPmax (mM ATP/s) 0.52 ± 0.1 (0.32-0.83), n=30 
State 3 respiration (pmol/(s*mg DW) 174 ± 68 (52-303), n=22 
State 4 respiration (pmol/(s*mg DW) 16.4 ± 7.1 (4.0-30.8), n=22 
Respiratory control ratio 11.8 ± 5.1 (6.1-26), n=22 
Mitochondrial efficiency; ATPmax/state 3 resp. 

3.5 ± 1.7 x103 (1.8 x103-7.9 x103), n=18 
((mM ATP/sec)/(pmol O2 /sec*mg DW)) 
Quad. oxidative capacity; state 3 resp. x muscle vol. 

209 ± 89.4x103 (78x103- 488x103), n=22 
((pmol O2 /sec*mg DW)* ml muscle) 
VO2 Peak (ml/min) 1551.5 ± 408 (750-2724) 
VO2 Peak (ml/KgBW/min) 22.0 ± 5.5 (7.8-33.4) 
Preferred walking speed over 400m (m/sec) 1.2 ± 0.2 (0.74 -1.58) 
SPPB Score  10.9 ± 1.3 (7-12) 
PASE Score 133 ± 55 (15-274) 

 

 Values are average ± standard deviation (Min-Max). DW, dry weight of tissue; BW, body 

weight; SPPB, short performance physical battery; PASE, physical activity scale for the elderly. 
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TABLE 2: Multiple linear regression results for the model of preferred walking speed as a 

function of aerobic capacity per body mass (VO2peak; ml/kgBW/min) and mitochondrial  

efficiency (ATPmax/St3).  

Analysis of Variance 
	 	 	

Variable Coefficient Standard 
Error F value P value  

Intercept 0.4561 0.143 10.11 0.0062 
ATPmax/St3 37.786 18.3 4.26 0.0567 
VO2peak 0.0272 0.005 24.18 0.0002 

 

Summary of Stepwise Selection 
	

Step Variable 
Entered 

Partial R-
Squared 

Model R-
Squared 

1 VO2peak 0.4753 0.4753 
2 ATPmax/St3 0.1714 0.6467 
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FIGURE LEGENDS 

FIGURE 1: Concept map illustrating age related changes in muscle physiology and how 

they contribute to reduced walking speed in the elderly. This study examined the 

relationships between muscle mitochondrial capacity/efficiency, aerobic capacity and walking 

speed in the elderly. VO2 peak = maximal oxygen consumption during maximal dynamic 

exercise. This is an index of whole body aerobic capacity. 

FIGURE 2: Pearson correlation of maximum respiratory capacity with maximum 

oxidative phosphorylation in muscle. State 3 respiration in permeabilized fiber bundles was 

determined by high resolution respirometry. Maximum oxidative phosphorylation (ATPmax) 

elicited by exercise was determined by 31P MRS. DW: Dry Weight. 

FIGURE 3: Pearson correlation of whole body aerobic capacity with muscle oxidative 

capacity. Aerobic capacity (VO2 peak) was determined by a graded exercise test. Muscle 

oxidative capacity was defined as the product of state 3 respiration and quadriceps contractile 

volume (State 3 respiration * Quad Contractile Vol.). DW: Dry Weight. 

FIGURE 4: Pearson correlation of preferred walking speed with whole body aerobic 

capacity and muscle mitochondrial capacity. Panel A; preferred walking speed versus VO2 

peak. Panel B; preffered waslking speed versus ATPmax. Aerobic capacity normalized to body 

weight (ml/kgBW/min) was determined by a graded exercise test. Preferred walking speed was 

determined over a 400m walk test. ATPmax was determiend by 31P magnetic resonance 

spectroscopy (MRS). 
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FIGURE 5: Pearson correlation of predicted preferred walking speed versus measured 

preferred walking speed. Walking speed was predicted from aerobic capacity (VO2 peak) and 

muscle mitochondrial efficiency (ATPmax/St3) by multiple linear regression (Table 2). Measured 

preferred walking speed was determined over a 400m walk test.  
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FIGURE 1:  
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FIGURE 2 
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 FIGURE 3 
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FIGURE 4: 
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 FIGURE 5:  
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SUPPLEMENTAL: 

Methods: 

Mitochondrial respiration protocol: Measurement of oxygen consumption in permeablized 

fibers was conducted over a ~1hr 40 min period, at 37oC and in the oxygen concentration range 

220-150 nmol O2/ml. State 4 respiration (non-phosphorylating inner membrane proton leak) was 

measured following the addition of saturating concentrations of malate (2 mM), pyruvate (5 mM) 

and glutamate (10 mM). Maximal respiration supported by electron flux through complex I was 

measured with the addition of ADP (5 mM). The integrity of the outer mitochondrial membrane 

was assessed by the addition of cytochrome C (10 mM). State 3 respiration (maximal coupled 

respiration) with convergent electron flux through complex I and complex II was achieved by 

adding saturating concentrations of succinate (10 mM). Maximal uncoupled respiration was 

achieved with the addition of FCCP (1 µM). The complex I inhibitor rotenone (2 µM) was then 

added to measure the rate of respiration through complex II alone. Finally, antimycin A (5 µM) 

was added to inhibit complex III and thus total ETC respiration. Following the assay, the fiber 

bundles were recovered and dried. A dry weight was then determined with an analytical balance 

(Mettler Toledo, XS105). Steady state O2 flux for each respiratory state was determined and 

normalized to fiber bundle weight using Datlab 4 software (Oroboros Inc., Innsbruck, Aus).  

 

31P MRS: We collected phosphorus spectra using a 3T TIM Trio magnetic resonance scanner 

(Siemen's Medical System, Erlanger, Germany).  A 2.5” surface RF coil tuned to 31P was placed 

over the vastus lateralis muscle. After shimming on water proton to optimize B0 field 

homogeneity and determining the optimal pulse power, we collected a fully-relaxed, high 

resolution 31P spectrum of the resting muscle (16 free-induction decays [FID] with a 16 s 

interpulse delay, spectral width of  ± 5000 Hz, and 2048 data points).  Following this, a standard 
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one pulse experiment under partially saturated conditions (1.5 s interpulse delay) was used to 

determine the levels of PCr, ATP, Pi, and pH throughout exercise and recovery.  Four FIDs were 

averaged per spectrum, resulting in a time resolution of 6 s.  

 The FIDs were line-broadened with the half-height width of the resting PCr peak and 

Fourier-transformed into spectra. PCr, Pi, and ATP peak areas in the fully relaxed spectra were 

measured by integration using Varian VNMR 6.1C software (Varian Medical Systems, Palo 

Alto, CA). Areas of the PCr and Pi peaks were expressed relative to the ATP peak and quantified 

using a resting PCr value of 27 mM as determined from biopsies of human vastus lateralis 

muscle (16). Changes in PCr and Pi peak areas during the experiments were analyzed as 

previously described (32, 33). A monoexponential fit of [PCr] recovery following exercise 

yielded the recovery time constant (τ) for use in calculating ATPmax: ATPmax = [PCr]rest/ τ PCr 

(34).  Finally, we determined pH from the chemical shift of the Pi peak relative to the PCr peak 

[33]. 

Determination of Muscle size: We used MR imaging to determine quadriceps cross-sectional 

area and volume according to a previously described method (35).  Using a 3T TIM Trio 

magnetic resonance scanner (Siemen's Medical System, Erlanger, Germany), we collected axial 

plane T1-weighted, 2D spin echo images every 3 cm from the hip to the thigh (15-25 slices per 

subject).  Our collection parameters were: TR/TE = 600/10, 5 mm slice thickness, 25 mm 

interslice interval, 320 x 320, and 2 NEX.  The patient lay supine for imaging. Standard 

stereologic techniques were used to determine the largest muscle CSA for the quadriceps (35). 

Quadriceps volume was calculated as: Σ(CSAslice x slice thickness). Subcutaneous and 

intramuscular fat and other non-contractile tissues were excluded from the calculation of muscle 

contractile CSA.  
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FIGURE S1. Representitative oxygraph generated from the substrate/inhibitor/uncoupler titration 
protocol employed in this study. The red line represents O2 flux and the blue line represents O2 
concentration within the respiration chamber. Additions during the protocol included; P: Pyruvate, 
M:Malate, G: Glutamate, D: ADP, c: Cytochrome C, S: Succinate, FCCP: carbonyl cyanide p- 
trifluoromethoxy-phenylhydrazone, Rot: Rotenone, Ama: Antimycin A. The protocol was typically run 
over 1hr 40min. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE S1: Pearson Correlation Coefficient Matrix including respirometry, MRS, VO2peak and 400m walking speed data. 

Pearson(Correlation(Coefficient
VO2$Peak VO2$Peak 400$M$walk$speed$ ATPmax ATPmax/State3$ Quadriceps$Vol.$ State$3*Quad$Vol.$ (State$4)$PMG$ PMGD$ PMGDC (State$3)$PMGSD F$ ROT$ AMA$

VO2$Peak$(ml/min) Pearson$Correlation 1 .763** .462** 0.12 L0.04 .446* .578** 0.364 0.19 0.197 0.317 0.346 .427* L0.065
Sig.$(2Ltailed) 0 0.005 0.536 0.873 0.011 0.006 0.095 0.396 0.379 0.151 0.114 0.047 0.774

VO2$Peak$(ml/min/kgBW) Pearson$Correlation .763** 1 .693** .369* L0.052 0.042 0.354 .487* 0.416 0.399 0.408 .487* 0.401 L0.082
Sig.$(2Ltailed) 0 0 0.049 0.838 0.817 0.115 0.022 0.054 0.066 0.06 0.022 0.064 0.717

400$M$walk$speed$(m/sec) Pearson$Correlation .462** .693** 1 .398* 0.278 L0.077 L0.005 0.263 0.291 0.275 0.249 0.313 0.104 L0.241
Sig.$(2Ltailed) 0.005 0 0.03 0.264 0.664 0.984 0.225 0.178 0.204 0.252 0.145 0.637 0.269

ATPmax$(mM$ATP/s) Pearson$Correlation 0.12 .369* .398* 1 L0.22 L0.205 0.34 0.255 .756** .763** .687** .689** .484* 0.066
Sig.$(2Ltailed) 0.536 0.049 0.03 0.38 0.277 0.168 0.307 0 0 0.004 0.002 0.042 0.793

ATPmax/State3$respiration$ Pearson$Correlation L0.04 L0.052 0.278 L0.22 1 .496* L.616** L.665** L.540* L.558* L.784** L.702** L.781** L.571*
(mM$ATP/s)/(pmol/(s*mg$DW) Sig.$(2Ltailed) 0.873 0.838 0.264 0.38 0.036 0.006 0.003 0.021 0.016 0 0.001 0 0.013
Quadriceps$Vol.$(ml) Pearson$Correlation .446* 0.042 L0.077 L0.205 .496* 1 0.192 L0.318 L.461* L.452* L.450* L0.378 L0.227 L0.126

Sig.$(2Ltailed) 0.011 0.817 0.664 0.277 0.036 0.392 0.149 0.031 0.035 0.036 0.083 0.31 0.575
State$3*Quad$Vol. Pearson$Correlation .578** 0.354 L0.005 0.34 L.616** 0.192 1 .572** .571** .589** .759** .755** .825** 0.393
$(pmol/(s*mg$DW)*ml Sig.$(2Ltailed) 0.006 0.115 0.984 0.168 0.006 0.392 0.005 0.006 0.004 0 0 0 0.071
(State$4)$PMG$ Pearson$Correlation 0.364 .487* 0.263 0.255 L.665** L0.318 .572** 1 .656** .642** .688** .720** .691** .501*
(pmol/(s*mg$DW) Sig.$(2Ltailed) 0.095 0.022 0.225 0.307 0.003 0.149 0.005 0.001 0.001 0 0 0 0.015
PMGD$(pmol/(s*mg$DW) Pearson$Correlation 0.19 0.416 0.291 .756** L.540* L.461* .571** .656** 1 .994** .809** .848** .679** 0.33

Sig.$(2Ltailed) 0.396 0.054 0.178 0 0.021 0.031 0.006 0.001 0 0 0 0 0.125
PMGDC$(pmol/(s*mg$DW) Pearson$Correlation 0.197 0.399 0.275 .763** L.558* L.452* .589** .642** .994** 1 .823** .863** .709** 0.337

Sig.$(2Ltailed) 0.379 0.066 0.204 0 0.016 0.035 0.004 0.001 0 0 0 0 0.116
(State$3)$PMGSD$ Pearson$Correlation 0.317 0.408 0.249 .687** L.784** L.450* .759** .688** .809** .823** 1 .963** .863** 0.346
(pmol/(s*mg$DW) Sig.$(2Ltailed) 0.151 0.06 0.252 0.004 0 0.036 0 0 0 0 0 0 0.106
F$(pmol/(s*mg$DW) Pearson$Correlation 0.346 .487* 0.313 .689** L.702** L0.378 .755** .720** .848** .863** .963** 1 .899** 0.339

Sig.$(2Ltailed) 0.114 0.022 0.145 0.002 0.001 0.083 0 0 0 0 0 0 0.113
ROT$(pmol/(s*mg$DW) Pearson$Correlation .427* 0.401 0.104 .484* L.781** L0.227 .825** .691** .679** .709** .863** .899** 1 .484*

Sig.$(2Ltailed) 0.047 0.064 0.637 0.042 0 0.31 0 0 0 0 0 0 0.019
AMA$(pmol/(s*mg$DW) Pearson$Correlation L0.065 L0.082 L0.241 0.066 L.571* L0.126 0.393 .501* 0.33 0.337 0.346 0.339 .484* 1

Sig.$(2Ltailed) 0.774 0.717 0.269 0.793 0.013 0.575 0.071 0.015 0.125 0.116 0.106 0.113 0.019
**$Correlation$is$significant$at$the$0.01$level$(2Ltailed).
*$Correlation$is$significant$at$the$0.05$level$(2Ltailed).
P=Pyruvate,$M=Malate,$G=Glutamate,$D=ADP,$C=Cytochrome$C,$S=Succinate,$F=FCCP,$ROT=Rotenone,$AMA=Antimycin$A,$DW=Dry$Weight,$BW=Body$Weight
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