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SUMMARY 
 

Peroxisome proliferator activated receptors (PPARs) belong to the nuclear receptor 

superfamily of transcription factors. Of the three known PPAR isotypes, PPARβ has been 

shown to regulate proliferation, apoptosis and differentiation in different tissues. Previous 

work from our lab have emphasized its role in cell survival and wound healing. In the 

small intestine, PPARβ is expressed in the intestinal crypts where it is known to regulate 

the differentiation of the Paneth cells by attenuating the expression of Ihh. Despite its 

remarkable potential of rapid self-renewal, small intestinal epithelium is sensitive to 

cytotoxic insults, especially to radiotherapy of cancers in the abdomino-pelvic region. 

Both acute and chronic exposure of the intestine to irradiation thus can lead to radiation-

induced gastrointestinal syndrome. Due to the known protective role of PPARβ in 

inflammatory context, the aim of this thesis was to directly characterize the role of PPARβ 

in the molecular response to gamma-irradiation induced intestinal cell damage in a mouse 

model and in the human HT-29 colon carcinoma cell line. By comparing the effects of 

irradiation on HT-29 cells that were treated with or without PPARβ ligands, there was no 

evidence for a protective role of PPARβ. This contrasts with the situation in-vivo, since 

targeted deletion of PPARβ transiently increased the rate of apoptosis of intestinal stem 

cells 4hrs after irradiation. Furthermore, 8 days post irradiation, cell death was also 

increased in the mesenchyme, followed by impaired adhesion of the epithelia to the 

mesenchyme due to loss of collagen I and III of the extracellular matrix components. 

PPARβ thus appears to affect the crosstalk between the mesenchyme and the epithelium, 

consistent with the observed delay in tissue repair at 3.5 days post-irradiation in the 

PPARβ-/- mice. In cultured HT-29 cells lacking a mesenchymal component, the same 

crosstalk is unlikely to occur explaining perhaps the apparent discrepancy between our in 

vivo and in vitro results, if a protective role of PPARβ relies on the crosstalk between 

epithelia and mesenchyme. Overall, our findings are consistent with a possible 

involvement of PPARβ in attenuating intestinal tissue damage in conditions of 

radiotherapy for cancers. The exact molecular mechanism of PPARβ action still warrants 

further exploration to better understand its physiological role in this regard. 
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RÉSUMÉ 
 

Les récepteurs activés proliférateurs de peroxisomes (PPARs) appartiennent à la 

grande famille des récepteurs nucléaires et ont été impliqué dans plusieurs processus 

physiologiques. Parmi les trois isotypes PPAR, PPARβ est bien connu pour son rôle dans 

les décisions déterminant le destin des cellules, notamment dans les processus de 

prolifération, de différentiation et d’apoptose. Ce rôle a particulièrement été souligné 

comme protecteur dans les contextes de survie cellulaire et de cicatrisation. Il est 

fortement exprimé dans l’intestin grêle. Notre groupe a déjà rapporté sa présence 

importante dans les cryptes duodénales, où se trouvent les cellules souches intestinales. 

Précédemment, nous avons aussi fait remarquer le rôle de PPARβ dans la differentiation 

des cellules de Paneth, par la régulation négative de la signalisation Ihh de l’épithélium 

intestinal. Malgré sa capacité de figurer parmi les tissus du corps qui se régénèrent le plus 

rapidement, l’épithélium intestinal est particulièrement sensible aux attaques cytotoxiques, 

surtout celles dues à la radiothérapie des cancers abdomino-pelviens. Cela peut donner 

lieu à des lésions gastro-intestinal en tant qu’effet indésirable d’une exposition aiguë et 

chronique à l’irradiation. En raison du rôle protecteur de PPARβ le but de cette étude était 

de comprendre les voies de signalisation moléculaires régulées par PPARβ qui sont 

impliquées dans les réponses des cellules intestinales aux dommages causés par 

l'irradiation.  

 

Afin de déchiffrer les mécanismes moléculaires sous-jacents, un modèle in-vitro 

d’une lignée cellulaire - HT-29 a été utilisée. Il n’y a cependant pas de preuve d’un effet 

protecteur de PPARβ dans divers contextes d’endommagement cellulaire testés in-vitro. 

Ceci contraste avec les observations in-vivo  qui indiquent que l’irradiation provoque une 

létalité supérieure dans les souris PPARβ-/- par rapport aux souris PPARβ+/+, entre autre 

correlée avec une apoptose augmentée des cellules souches intestinales à 4h après 

irradiation. En plus, le décès plus important de cellules mésenchymateuses a été observé 

dans les souris PPARβ-/-, 8 jours après irradiation. Moins nombreuses, ces cellules se sont 

également détachées de la matrice extracellulaire reliant l’épithélium et le mésenchyme. 

Nous stipulons qu’in-vivo, PPARβ participe au dialogue entre le mésenchyme et 

l’épithélium, ce qui est concordant avec le délai observé lors de la réparation tissulaire. Ce 
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dialogue entre l’épithélium et le mésenchyme, n’existe pas de la même manière in-vitro. Il 

en résulte donc un défaut de réponse mésenchymale médiée par PPARβ, d’où le paradoxe 

entre les conditions in-vivo et in-vitro. 

Ces observations indiquent l’implication possible de PPARβ dans les lesions 

actiniques, en tant que conséquence naturelle de la radiothérapie de patients avec un 

cancer. Les mécanismes précis de l’action de PPARβ nécessitent une exploration 

approfondie de son rôle physiologique dans ce contexte.  
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1. The Intestine 
 

1.1 General organization of the intestine 
 

 The intestinal tract can be divided into the small intestine composed of the 

duodenum, jejunum and ileum and the large intestine composed of the colon and the 

rectum. The intestinal tract is a tubular structure composed of three different layers. The 

outer layer consists of layers of innervated smooth muscle cells that help in the process of 

peristalsis. The middle layer is composed of the stromal tissue and the inner layer is 

composed of epithelial cells, referred to as the mucosa that processes the nutrients and 

absorbs them. 

The main function of the small intestine is to absorb the nutrients from the ingested 

food. To achieve this goal, the small intestinal mucosal surface area is enormously 

increased by numerous finger-like protrusions, termed villi. Deeply embedded structures 

into the submucosa are the crypts of Lieberkuhn. The functional unit of the small intestine 

is composed of the crypt-villus unit whereas the mucosa of the large intestine is composed 

of only crypts and surface epithelium, with no villi.  

 

1.1.1 Composition of the intestinal epithelium  
 

The intestinal crypts are the structures that contain the intestinal stem cells. The 

intestinal stem cells give rise to all the four different cell types namely enterocytes, goblet, 

enteroendocrine and the Paneth cells that form the crypt-villus unit (Fig.1, Crosnier et al., 

2006). They divide to give rise to the transit-amplifying cells that then differentiate and 

migrate upward to form absorptive cells/ enterocytes, goblet cells and the enteroendocrine 

cells.  

Enterocytes constitute more than 80% of all intestinal epithelial cells and cover 

almost the entire surface of the villi. Enterocytes secrete digestive enzymes and they 

mediate nutrient, ion and water uptake by expressing transporter proteins and by extending 

large numbers of microvilli that increase the total surface area.  

Goblet cells are specialized secretory cells responsible for producing the mucus 

lining that fulfills an essential protective function, especially in the distal intestine where 
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these cells are most abundant. They secrete mucins and trefoil proteins that are necessary 

for proper movement and effective expulsion of gut contents. They also provide protection 

against stress caused by shearing and chemical damage.  

Enteroendocrine cells secrete specific peptide hormones to coordinate important 

gut functions. These gut hormones include catecholamines, serotonin, substance P, and 

secretin (Hocker & Wiedenmann 1998). Based on their morphology and expression of 

these intestinal hormones, one can distinguish 15 different subtypes of enteroendocrine 

cells, which will not be described herein.  

Paneth cells secrete antimicrobial proteins and enzymes like lysozymes, cryptidins 

and defensins (Porter et al. 2002). Along the crypt-villus axis, they are the only 

differentiated cells that migrate downward to occupy the crypt base next to the stem cells.  

Table 1 (Adapted from Sancho et al., 2004) summarizes the markers used to identify the 

different intestinal epithelial cells.  

 

 

 

 
 
 
 
 
 
 
 

Fig. 1 | The distribution of epithelial cells types in the mammalian small intestine. a. A villus with one 
of the crypts that contribute to renewal of its epithelium. Arrows indicate the upwards flow of cells out of the 
crypts. Stem cells lie near the crypt base; it is uncertain whether they are mixed with, or just above, the 
Paneth cells. Above the stem cells are transit-amplifying cells (dividing progenitors, some of them already 
partially differentiated); and above these, in the neck of the crypt and on the villus, lie post-mitotic 
differentiated cells (absorptive cells, goblet cells and enteroendocrine cells; see panel b)(Adapted from 
Crosnier et al., 2006). 
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Table 1: Markers of cell type or compartment in the intestinal epithelium (adapted from Sancho, E et 
al., 2004). 
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1.2 Signaling pathways in intestinal epithelial 
homeostasis 

 
 The intestinal epithelium is one of the most dynamic self-renewing systems of the 

body. The intestinal epithelium has the fastest turnover rate with the absorptive cells being 

replaced every 7 days. The pattern of renewal is quite uniquely organised by 

compartmentalization of the small intestinal crypt-villus unit, with proliferation ongoing at 

the bottom of the crypt and the differentiation at the top of the crypt. This pattern is 

followed by unidirectional migration of the cells starting from the crypt base to the tip of 

the villi, where they finally undergo apoptosis and are eliminated into the intestinal lumen. 

The intestinal stem cells are located at +4 position from the bottom of the crypts (Potten et 

al., 2003) and give rise to the transit-amplifying progenitor cells that migrate upwards 

towards the villi. They further divide and the differentiated cells move up the crypt neck 

and migrate to the villi, the only exception being the Paneth cells that migrate downward 

and remain there. The Paneth cells live longer than the other cells from the epithelium and 

are renewed only every 20 days.  

As the entire small intestine is composed of numerous crypt-villus units with millions 

of cells, this entire mechanism of proliferation, differentiation and migration has to be 

tightly regulated to maintain a proper homeostasis. This is achieved by the 

compartmentalization of the small intestine and the numerous reciprocal signalling within 

the crypt-villus unit. The signaling pathways involved like Wnt, Indian hedgehog (Ihh), 

Bmp, Notch not only act independently but also in crosstalk with each other by expressing 

and regulating different components of the signaling pathway in different zones. Recent 

studies have elucidated the role of the interactions of these signals arising from the 

epithelium and the mesenchyme, as discussed below (reviewed in Crosnier et al., 2006). 

1.2.1 Wnt Signaling  
 

Wnt signaling has been recognized as indispensible in virtually every 

developmental process as all throughout the animal kingdom (Cadigan & Nusse 1997). 

The key player of the signaling pathway is β-catenin, a cytoplasmic protein. According to 

the classical model of Wnt signaling regulation, the tumor suppressor complex Apc 

controls the stability of β-catenin. In the absence of Wnt signal, the axin/GSK-3/Apc/Ck-1 
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destruction complex normally binds to β-catenin and phosphorylates it sequentially. 

Hyperphosphorylated β-catenin is then polyubiquitinated by an E3 ubiquitin ligase 

containing the F-box protein β-TrCP and destroyed by the proteasome, thereby preventing 

its nuclear translocation. This results in the repression of the Wnt responsive genes. In the 

presence of the activated Wnt signal, the secreted Wnt proteins bind to the cell surface 

receptor called frizzled (Frz), which usually interact with the transmembrane protein LRP 

(reviewed in Polakis 1999, Bienz & Clevers 2000, and Giles et al. 2003) and form a 

complex with the Disheveled (Dvl). Dvl is a cytoplasmic protein that functions upstream 

of β-catenin. In the presence of the Wnt signal, Dvl inhibits the Apc-containing 

destruction complex, resulting in hypophosphorylation of β-catenin that enables its 

translocation to the nucleus and further activation of the transcription of the target genes 

by its binding to the TCF/LEF complex. 

Studies by Roberts et al. (2007) have led to the revision of the classical model of 

Wnt signaling. The authors show that Wnt binding to Frizzled triggers the recruitment and 

polymerization of Disheveled (DVL) to the membrane, itself recruiting the axin containing 

complex. This results in an inhibition of the Axin/GSK-3β/CK-1/Apc complex formation, 

allowing the stabilization and accumulation of the cytoplasmic β-catenin. β-catenin then 

translocates to the nucleus where it interacts with the T cell factor/lymphoid-enhancing 

factor (TCF/LEF family). In the absence of β-catenin, the TCF/LEF factors repress 

transcription of their target genes, to which they bind. Upon binding to β-catenin, the 

TCF/LEF factors turn to activators and translate the Wnt signal into transcription of the 

target genes (Fig.2).  

The expression pattern of all the Wnts, as well as that of other proteins belonging 

to this pathway, such as Frizzled, LRPs, and TCFs, are consistent for the presence of an 

active Wnt signaling in the epithelial cells of the crypt base (Gregorieff et al., 2005). 

Indeed, the role of Wnt signaling in the proliferation of the intestinal epithelial precursor 

cells has been reported by multiple in-vivo studies (Bienz & Clevers 2000, Booth et al. 

2002, Kinzler & Vogelstein 1996), pointing Wnt as a master regulator of the intestinal 

epithelial proliferation and differentiation processes (Van de Wetering et al., 2002).  

 

Various mice models have been used to inhibit the Wnt signaling in the small 

intestine (for example, mice lacking TCF4 transcription factor (Korinek et al., 1998); mice 

with a conditional deletion of β-catenin in the intestinal epithelium (Ireland et al., 2004; 
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Tea Fevr et al., 2007); adenoviral or transgenic expression of Dickkopf-1, a natural 

secreted Wnt antagonist (Kuhnert et al., 2004, Pinto et al., 2003)). In all these models, a 

considerable decrease of intestinal epithelial cell proliferation was observed. Further 

analyses demonstrated that indeed the maintenance of the crypt progenitor compartment in 

the intestine requires active Wnt signaling. On the contrary, transgenic expression of R-

Spondin-1, a Wnt agonist, resulted in enormous hyperproliferation of the intestinal crypts 

due to activation of the Wnt pathway (Kim et al., 2005). Apart from regulating the 

proliferation of the transit–amplifying precursor cells, Wnt signaling is also involved in 

the terminal maturation of the Paneth cells via inducing Sox9 (Blache et al., 2004; Van Es 

et al., 2005). 
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Fig. 2 | Models of Wnt signal transduction. (a) Classic model of Wnt signaling. See text for more details. 
(b) Revised model of Wnt signaling. In the absence of Wnt, Dvl remains cytoplasmic, in equilibrium 
between monomers and polymers. The destruction complex is active, and β-catenin is degraded. Wnt 
stimulation triggers Dvl recruitment to the plasma membrane by Frizzled (Fz) receptors, which function with 
LRP5–LRP6 coreceptors (reviewed in Clevers, 2006). Dvl binds the C-terminal tail of Fz using its PDZ 
domain (Wong et al., 2003). Dvl polymers at the membrane serve as a dynamic scaffold for Axin 
recruitment and inactivation (Cliffe et al., 2003). Wnt stimulation also leads to phosphorylation of LRP5–
LRP6 by CKIγ and GSK3 (reviewed in Clevers, 2006). Phosphorylated LRP5–LRP6 can interact with Axin, 
potentially providing another mechanism to recruit and inactivate Axin at the membrane (Tamai et al., 2004; 
Mao et al., 2001; Tolwinski et al., 2003). Several models have been proposed to explain Axin inactivation, 
including a conformational change upon Dvl and/or LRP5–LRP6 binding, and Axin degradation (reviewed 
in Clevers, 2006), (Adapted from Roberts et al., 2007). 
 
 
 
 
 
 



	  
	   	   Chapter	  I:	  Introduction	  

	   16	  

1.2.2 Notch Signaling 
 

Notch signaling has been implicated in cell fate decisions and morphogenesis in 

different species (Artavanis-Tsakonas et al. 1999). The Notch gene was first characterized 

in the fly Drosophila melanogaster, and encodes a 300-kD single-pass transmembrane 

receptor. Notch act as a receptor that is activated by transmembrane ligands known as 

DSL (Delta, Serrate, and Lag 2) proteins (Mumm & Kopan 2000). The interaction 

between Notch ligands and their receptor then occurs between two adjacent cells. This 

interaction enables proteolytic cleavage of the receptor to generate the Notch intracellular 

domain (NICD) that translocates into the nucleus. A key step in the cleavage process 

involves the activity of the gamma-secretase protease complex. In the absence of Notch 

signaling, the cofactor proteins collectively called CSL (CBF1, Su (H), Lag-1) act as 

transcriptional repressors. Their binding to NICD turns the complex into a transcriptional 

activator function that enables transcription of their target genes (e.g., HES, 

Hairy/Enhancer of Split genes)(Baron, 2003). This “core” Notch signaling pathway is 

depicted in Figure 3. 

Notch signal regulates cell fate between adjacent cells in progenitor cell clusters. 

Signaling through Notch takes place when a cell gains levels of the ligand that is higher 

compared to their neighboring cells. This is mediated either through the intrinsic or 

extrinsic regulatory mechanisms, which are not well characterized, or through stochastic 

events that get instantly amplified through feedback regulatory mechanisms (Mumm & 

Kopan 2000). One of the best-characterized target genes of Notch is the hairy/enhancer of 

split (HES) transcriptional repressor, which belongs to the basic helix-loop-helix (bHLH) 

proteins. The HES protein is itself a transcription factor, which further regulates the 

downstream target genes (Artavanis-Tsakonas et al. 1999, Mumm & Kopan 2000, Baron, 

2003). 
 
 
 
 
 
 



	  
	   	   Chapter	  I:	  Introduction	  

	   17	  

 

Fig. 3 | Core Notch signaling pathway. NOTCH1 signalling is initiated by the engagement of extracellular 
portions of NOTCH1 with its ligands, which are members of the Jagged/Delta family. This binding induces 
metalloprotease-dependent cleavage of the NOTCH1 heterodimerization domain (HD) with terminal 
cleavage that is dependent on gamma-secretase activity. This process releases Notch intracellular domain 
(NICD), which translocates to the nucleus to form a multimeric transcriptional factor complex with the 
transcription factor CSL and co-activators of the mastermind-like (MAML) family. These recruit additional 
co-activators, such as p300 and PCAF (CoA), to activate the transcription of target genes such as HES 
(Image adapted from www.google.com). 	  
 

1.2.2.1 The Notch pathway in lineage determination (Secretory vs 
Absorptive) 

 
As discussed previously, the transit amplifying cells differentiate to form the four 

different cell types, of which three are secretory (the goblet cells, the enteroendocrine 

cells, and the paneth cells) while the fourth one (the enterocytes) belong to the absorptive 

lineage. Figure 4 gives a schematic overview of the cell lineage specificity in the intestine.  

Similar to the role played by the Wnt signaling, the Notch pathway is vital to maintain the 

crypt compartment in its undifferentiated and proliferative state. Notch signaling 

deficiency in the intestinal epithelium either through conditional deletion of the CSL gene 

or through pharmacological gamma-secretase inhibitors results in the rapid and complete 

conversion of all epithelial cells into goblet cells (Milano et al., 2004; Wong et al., 2004). 
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Treatment of Apcmin/+ mice induced Math1 expression in adenomas and the conversion of 

proliferative adenoma cells into post-mitotic goblet cells (Van Es et al., 2005). Both the 

Notch1 and Notch2 receptors mediate Notch signals in the intestinal epithelium. These 

receptors work redundantly as evidenced by the complete conversion of the proliferative 

crypt cells into postmitotic goblet cells only upon conditional inactivation of both these 

receptors in the gut (Riccio et al., 2008). An opposite effect in the form of depletion of 

goblet cells and a reduction in enteroendocrine and Paneth cell differentiation are observed 

upon specific overexpression of the constitutively active Notch1 receptor (Fre et al., 2005; 

Stanger et al., 2005). Thus, in the intestinal epithelium, the Notch pathway regulates 

absorptive versus secretory cell fate decisions. There have been no reports of mutational 

alterations in Notch signaling in intestinal tumorigenesis so far. 

 A characteristic feature of Notch signaling is the regulation of the downstream 

effectors of Notch. As mentioned above, the first set of genes activated by Notch belongs 

to the Hairy/Enhancer of Split (Hes) class that encode transcriptional repressors. Hes 

repressors in turn repress transcription of a second set of genes, typically basic helix-loop-

helix (bHLH) transcription factors that, when derepressed, induce differentiation along 

specific lineages. One of these is Math1 (Jensen et al., 2000). The epithelium of Math1 

mutant mice is populated only by enterocytes indicating the fact that intestinal Math1 

expression is required for the commitment towards the secretory lineage (Yang et al., 

2001). The factors that are downstream of Math1 play specific roles in epithelial cell 

differentiation. For example, the zinc-finger transcriptional repressor Gfi1is absent in 

Math1−/− embryonic intestines, implying that it acts downstream of Math1. Gfi1−/− mice 

lack paneth cells and display a clear reduction in the number of goblet cells. There is, 

however, an increase in the number of enteroendocrine cells (Shroyer et al., 2005). Other 

factors include kruppel-like factor 4 (Klf4), a zinc-finger transcription factor whose 

deletion results in the loss of goblet cells (Katz et al., 2002) and Neurogenin3 (Ngn3), a 

bHLH transcription factor that is downstream of the Notch-Hes1-Math1 signaling cascade. 

Ngn3-/- mice do not develop any intestinal endocrine cells (Jenny et al., 2002).  

Interestingly, Math1 expression is reduced in intestinal crypts in mouse models 

with impaired Wnt signaling, setting Math1 as the crossroad between the Wnt and Notch 

signaling. Indeed, as a functional consequence of the impaired Wnt signaling, the 

secretory lineages are depleted, and the villi are lined mainly with enterocytes (Ireland et 

al., 2004; Korinek et al., 1998; Pinto et al., 2003). Beside repressing Math1 activity and 

thereby repressing the secretory lineage, HES exert a positive activity on the 
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differentiation of the absorptive enterocytes, as suggested by the decrease in absorptive 

enterocytes in the Hes1−/− animals (Jensen et al., 2000). These activities are mediated by 

HES acting on E47-like factor 3 (Elf3), a member of the Ets transcription family (Ng et 

al., 2002) and on the expression of transforming growth factor β type II receptor (Tgf-

βRII) (Flentjar et al., 2007). 

A summary of the proposed positioning of each component of the Notch and Wnt 

pathways acting on the epithelial cell lineage commitment is presented in the Figure 4 

(Van der Flier and Clevers, 2009).  
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Fig. 4 | Schematic overview of the genetic hierarchy of epithelial cell lineage commitment in the 
intestine. Intestinal stem cells proliferate under control of both the Wnt and the Notch pathways and can 
differentiate into all four differentiated cell types present in the intestinal epithelium. Math1 is required for 
the commitment to the secretory lineage. Gfi1 and Sox9 are responsible for differentiation into Paneth cells. 
Gfi1, kruppel-like factor 4 (Klf4), and E47-like factor 3 (Elf3) are necessary for goblet cell development. 
Neurogenin3 (Ngn3) is required for endocrine cell fate specification. Downstream of Ngn3, a set of 
transcription factors is responsible for the specification of the various enteroendocrine hormone–expressing 
cell types. Hairy/ Enhancer of Split 1 (Hes1), through Elf3 and the transforming growth factor β type II 
receptor (Tgf-βRII), is responsible for differentiation into enterocytes of the absorptive lineage (Adapted 
from Van der Flier and Clevers, 2009).  
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1.2.3 Hedgehog signaling 
 

 Hedgehog Secretion 
 

The Drosophila Hedgehog mutant was first identified in 1980 (Nüsslein-Volhard 

and Wieschaus 1980), following which three separate groups identified the Drosophila 

hedgehog gene in 1992 (Lee et al., 1992; Mohler and Vani 1992; Tabata et al., 1992). 

Sonic hedgehog (Shh), desert hedgehog (Dhh), and Indian hedgehog (Ihh) are three 

murine homologs, which are highly conserved in mouse and humans (Marigo et al., 1995).  

Hedgehog proteins undergo extensive post-translational modifications before they 

can function as a signaling molecule. Autocatalytic cleavage of a 45-kDa precursor protein 

results in a 19-kDa NH2-terminal fragment that carries out the signaling function and a 

26-kDa COOH-terminal fragment that acts as a cholesterol transferase apart from 

catalyzing the cleavage itself (Bumcrot et al., 1995; Lee et al., 1994; Porter et al., 1996; 

Porter et al., 1995). One characteristic feature of hedgehog proteins is that they are poorly 

soluble owing to dual lipid modification of the mature NH2-terminal fragment that is 

linked covalently to a palmitate and a cholesterol group (Mann and Beachy, 2004). These 

modifications enable the hedgehog protein to fuse to the cell membrane and thus play a 

key role in directing the range of the hedgehog signaling in a tissue (Chen et al., 2004). In 

addition, both the above-mentioned modifications are necessary for the formation of 

multimers of NH2-terminal hedgehog protein, required for the long range signaling (Chen 

et al., 2004; Zeng et al., 2001). Studies in Drosophila suggest that the lipid moieties of the 

hedgehog multimers associate with the outer phospholipid layer of lipoprotein particles 

and that this association is necessary for hedgehog signaling activity (Panakova et al., 

2005).  

The release of mature hedgehog protein from the hedgehog-producing cell requires 

Dispatched (Disp), a 12-pass transmembrane protein with a sterol-sensing domain. The 

significant role of Disp1 for hedgehog signaling activity was evident from Disp1/!mutant 

mice that showed phenotype similar to mice that lack hedgehog signaling receptor (Smo) 

(Caspary et al., 2002; Kawakami et al., 2002; Ma et al., 2002).  
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1.2.3.2 The hedgehog-mediated transduction cascade 
 
 Smoothened (Smo) is a seven-span transmembrane receptor that mediates the 

transmission of the Hedgehog signal. It binds to the cell membrane and intracellular 

vesicles (when overexpressed in cell lines) (Chen et al., 2002; Corbit et al., 2005; 

Incardona et al., 2002). Hedgehogs regulate the activity of Smo indirectly by binding to a 

second receptor Patched (PTCH1). In vertebrates, there exist two PTCH1 genes, PTCH1 

(Goodrich, et al., 1996) and PTCH2 (Motoyama et al., 1998). PTCH is a 12-span 

transmembrane receptor with two large hydrophilic extracellular loops that mediate 

Hedgehog binding. Binding of Hedgehog to PTCH1 releases the inhibitory action of 

PTCH1 on Smo, which is now active (Fig. 5). Another component of this signaling 

cascade is Hedgehog-interacting protein (Hhip), which binds and somehow captures 

Hedgehog on receiving cells. It thus acts as a negative regulator of Hedgehog signaling 

(Chuang et al., 1999). Interestingly, PTCH1 and Hhip are transcriptional targets of 

Hedgehog signaling and function in a negative feedback loop thereby restricting the range 

of Hedgehog signaling in a tissue.  
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Fig. 5 | The current model of the mode of action of the Hedgehog receptor system.  
Two key receptors involved in the Hedgehog pathway in normal adult cells are Smoothened (Smo), which 
initiates a signaling cascade, and Patched-1 (PTCH1), which inhibits this signaling mechanism potentially 
by preventing Smoothened from reaching the cell surface. A: In the absence of ligand, PTCH1 inhibits 
Smoothened (Smo), a downstream protein in the pathway. It has been suggested that Smo is regulated by a 
small molecule, the cellular localization of which is controlled by PTCH. PTCH1 has a sterol-sensing 
domain (SSD), which has been shown to be essential for suppression of Smo activity. B: Upon binding of 
Hedgehog to Patched-1 (PTCH1) receptor, it regulates Smo by removing oxysterols from Smo. PTCH acts 
like a sterol pump and removes oxysterols that have been created by 7-dehydrocholesterol reductase. Upon 
binding of an Hh protein or a mutation in the SSD of PTCH the pump is turned off allowing oxysterols to 
accumulate around Smo. This accumulation of sterols allows Smo to become active or stay on the membrane 
for a longer period of time. The binding of Shh relieves Smo inhibition, leading to activation of the Gli 
transcription factors (Image adapted from www.google.com). 	  
 

 Understanding of the vertebrate signal transduction operating downstream of Smo 

is far from complete, in part due to the relative lack of conservation of downstream targets 

of the Hedgehog signaling between Drosophila and vertebrates (Huangfu and Anderson, 

2006; Osterlund and Kogerman, 2006). However, in both cases, the end-point target are 

transcription factors: Ci in Drosophila, and the glioblastoma (Gli) transcription factors in 

vertebrate –Gli1, Gli2, and Gli3– which mediate all aspects of Hedgehog signaling in 
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vertebrates (Hui et al., 1994). The major Glis to transduce the Hedgehog signal in the gut 

are Gli2 and Gli3. 

1.2.3.3 Identifying Hedgehog Target Cells 
 
 It is essential to identify Hedgehog receiving cells to elucidate the role of 

Hedgehog signaling in any organ. Irrespective of the number of different target genes that 

have been identified, their regulation often differs in time or per organ. The expression 

pattern of two target genes – PTCH1 and Gli1 seems to be conserved particularly well 

throughout vertebrates. This expression pattern reflects the fact that Hedgehog signaling 

activity is seen in most if not all situations in vertebrates. However, a difference may exist 

for the sensitivity of the expression of PTCH1 and Gli1 for the range of the Hedgehog 

signal in the developing vertebrate gut. Both Shh and Ihh are expressed in the epithelium 

of the developing stomach and colon at E18.5. Expression of PTCH1 is high in a small 

zone very close to the Hedgehog expressing cells, whereas Gli1 is also expressed intensely 

in the smooth muscle layer at much greater distance (Ramalho-Santos et al., 2000). 

1.2.3.4 Hedgehog signaling and homeostasis of the adult gut 
 
 There is very little information on the role of Hedgehog signaling in the adult small 

intestine. Low levels of Shh mRNA can be detected just above the Paneth cell position in 

the crypt. However when using gastric specimens as a positive control, expression levels 

are too low to be detected by immunohistochemistry (Van den Brink et al., 2002). Other 

reports confirmed, by quantitative PCR, this low expression of Shh in the small intestine 

and colon compared with the stomach (Suzuki et al., 2005). Batts et al., 2006 showed by 

in situ hybridization that Ihh is expressed at the crypt-villus junction with gradually 

diminishing expression towards the tip of the villus, and PTCH1 is expressed at low levels 

in the mesenchyme. Enterocytes on the upper half of the villus mainly express the Ihh 

protein (Jung et al., 1999). This partially overlapping expression pattern of mRNA and 

protein is typical for many enterocyte genes. An explanation for this is cells that have 

moved to the top of the villus often no longer transcribe mRNA from a given gene but still 

express the translated protein. The overall activity of the hedgehog pathway in intestinal 

homeostasis seems however modest as treatment of mice with cyclopamine, a potent 

inhibitor of Hh signaling, resulted in a modest 10% reduction of proliferation in the 

duodenum (Van den Brink et al., 2007). 
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While studying the role of PPARβ in the small intestinal homeostasis, our 

laboratory showed that Indian Hedgehog (Ihh) is important for Paneth cell differentiation. 

PPARβ-/- mice displayed approximately threefold induction of Ihh mRNA and protein. 

Treatment of wild-type mice with a PPARβ specific agonist strongly reduced Ihh mRNA 

levels, showing that PPARβ negatively regulates Ihh expression. Moreover, administration 

of the hedgehog pathway inhibitor cyclopamine increased the number of Paneth cells in 

the duodenum in both PPARβ-/- and wild-type mice, consistent with a role for Ihh in 

mediating inhibition of Paneth cell differentiation by PPARβ. In HT-29 colon cancer cells, 

upon treatment with recombinant Shh, expression of lysozyme, a Paneth cell marker was 

reduced, whereas treatment with cyclopamine increased lysozyme expression, thus 

recapitulating the effects of PPARβ in-vitro. These results agree with and corroborate the 

in vivo data and its interpretation that PPARβ inhibits Paneth cell differentiation at least in 

part by repressing Ihh expression. This is mediated by inhibiting the negative feed back 

loop operating between the mature paneth cells and the paneth cell precursors (Varnat et 

al., 2006). Figure 6 recapitulates the various signals at work in the small intestine and their 

cross talk. 

 

Fig. 6 | Signaling pathways in the small intestine. a | Components of the hedgehog (HH), platelet-derived 
growth factor (PDGF), bone morphogenetic protein (BMP), Wnt, Eph/ephrin and Notch pathways are 
expressed in different regions along the crypt–villus axis — some in the epithelium and some in the 
mesenchyme. b | A model of how the HH, BMP and Wnt signalling pathways combine to organize the 
pattern of villi and crypts or intervillus pockets. Epithelial cells in each crypt or intervillus pocket form a 
signalling centre, which functions as a source of long-range inhibition through the HH–BMP relay, and of 
short-range auto-activation through Wnt signalling. HH signalling activates the expression of BMP in the 
mesenchyme. BMP feeds back on the intestinal epithelium to repress Wnt signalling. The expression of the 
BMP inhibitor noggin in the neighbourhood of the crypts counteracts the effect of BMP so that Wnt activity 
is maintained in the crypt epithelium (Adapted from Crosnier et al., 2006). 
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2. The nuclear receptor superfamily 
 

 Nuclear receptors are transcription factors that are activated upon ligand binding. 

All nuclear receptors share some common features that include a DNA binding domain 

(DBD) and a ligand-binding domain (LBD). Upon ligand binding, the receptors are 

activated and these activated receptors then bind to specific response elements at the 

promoter of the target genes. 

 The nuclear receptors can bind DNA either as homodimers or heterodimers with 

RXR (retinoid X receptor) as the partner. A dual mode of action has been reported for 

these receptors: by default, they bind co-repressors that inhibit transcription of target 

genes, whereas in the presence of a ligand, they exchange co-repressor for co-activators to 

mediate transcriptional activation. 

 

2.1. Classification 
 
Nuclear receptors can be broadly classified into three categories: 

 

1. Classical hormone receptors: these receptors recognise only few specific ligands 

and bind to them with a very high-affinity. Most of these are hormone binding 

receptors like thyroid hormone reeptors (THR), glucocorticoid receptors, retinoic 

acid receptors (RAR), estrogen receptors (ERs), vitamin-D receptor (VDR), 

progesterone receptors (PR), mineralocorticoid and androgen receptors (AR). 

2. Orphan receptors: these are the class of receptors which have a ligand binding 

domain but for which a specific ligand has not been identified so far. Some of the 

members of this group include SF-1, LRH-1, SHP, TLX, ROR-α, β, γ, GCNF, etc. 

3. Adopted orphan receptors: these are receptors that have the ability to bind to a 

wide variety of molecules but with a relatively poor affinity. These receptors 

usually bind to molecules involved in metabolic pathways as substrates, 

intermediates or end products. Some examples are the pregnane X receptor (PXR), 

constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liverX 

receptor (LXR) and peroxisome proliferator activated receptors (PPARs). 
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The latter group of receptors have gained importance due to their involvement as 

sensors in various metabolic pathways like fatty acid and cholesterol metabolism 

(reviewed in Desvergne et al., 2009). Many recent studies from various groups have 

elucidated their role in metabolism, cell proliferation and differentiation, cell survival and 

also tissue repair. 

2.2  The PPARs subfamily: a brief overview 
 

PPARs belong to the nuclear receptor family and can be classified into three isotypes: 

PPARα, β/δ and γ. They were the first nuclear receptors identified as “sensors” rather than 

classic hormone receptors. They are nuclear, lipid-activable molecules that control a 

variety of genes in several pathways of lipid metabolism (Desvergne and Wahli, 1999). 

PPARα (NR1C1) is highly expressed in tissue with high activity levels of lipid 

catabolism, e.g. liver, brown adipose tissue, skeletal and heart muscle. PPARβ (also called 

PPARδ) is ubiquitously expressed. The PPARγ gene gives rise to two isoforms, PPARγ1 

and PPARγ2, the latter differing only by an additional stretch of 30 aminoacids in the N 

terminus. The expression of PPARγ2 remains restricted to adipose tissues whereas 

PPARγ1 is also detected in the colon, spleen, retina, hematopoietic cells and skeletal 

muscle.  

All the three PPARs share a common modular structure containing the four major 

domains (Fig. 7) as follows: 

a. The A/B domain is the N-terminal region. This poorly structured N-terminal 

domain encompasses a weak ligand–independent transactivation domain in 

PPARα and PPARγ. 

b. The C-domain, which is the DNA binding domain, with its two zinc fingers is 

extremely well conserved and is the hallmark of the nuclear receptor family. It 

consists of 60-70 aminoacids and is responsible for the binding to the PPRE in the 

promoter region of the target genes. 

c. The D-domain or the hinge region connects the DBD to the LBD and is a poorly 

conserved region. 

d. The E/F domain is the ligand-binding domain and also helps in the dimerization. It 

carries the AF-2 site that is responsible for ligand dependent transcriptional 

activation. This ligand-binding cavity of PPAR is particularly large, a feature that 

likely explains the promiscuous behaviour of PPAR with respect to ligand binding. 



	  
	   	   Chapter	  I:	  Introduction	  

	   28	  

 

In addition to the diverse substances grouped under their ability to provoke 

peroxisome proliferation, various fatty acids more particularly unsaturated fatty acids, and 

some eicosanoids mainly derived from arachidonic acid and linoleic acid, bind to the three 

PPARs with varying affinities. However, all the physiological ligands that could activate 

PPARs in vivo have most likely not been found yet. 

 

 

 

 

Fig. 7 | 
Schematic representation of the structure of PPARs. PPAR proteins are organized in distinct domains 
that display specific function. The domain A/B contains the activating function 1 which is independent of 
the presence of ligand, the domain C is implicated in the DNA binding, the domain D is a hinge region and 
the domain E/F is implicated in the heterodimerization and ligand recognition, contains an activating 
function 2 which is dependent of the presence of ligand and is necessary for the heterodimerization with 
RXR.  
 
 

PPARs bind to DNA as heterodimers with the retinoid X receptor (RXR), on 

PPAR response elements (PPRE) comprising direct repeats of two hexamers closely 

related to the sequence AGGTCA and separated by one nucleotide (DR-1 sequence). The 

classical model of PPAR-dependent transactivation proposes a two-step process (Fig. 8). 

In the absence of the ligand, the nuclear receptor dimer binds to a co-repressor protein, 

such as NCoR, that inhibits its transactivation properties. In the presence of the ligand, or 

due to an alternative pathway of activation such as phosphorylation, the co-repressor is 

released and PPAR recruits co-activators, most likely organized in large complexes 

(Surapureddi et al., 2002). The co-activators that can physically interact with PPARs 

include CBP, p300, and PGC-1. 
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Fig. 8 
| 

Mechanisms of transcriptional activation and repression by heterodimeric nuclear receptors. (A) 
Ligand-dependent transactivation. The binding of natural or synthetic agonists causes the recruitment of 
coactivator complexes to the ligand-binding domain. In general, ligand-dependent transcription of nuclear 
receptor target genes is associated with the recruitment of numerous coactivator complexes that act in a 
combinatorial or sequential manner. These complexes are associated with a number of enzymatic activities, 
including histone acetyltransferase (HAT), histone methyltransferase (HMT), and nucleosome remodeling 
(NRM) activities. Structurally distinct ligands may alter the pattern of recruitment of these factors, resulting 
in altered patterns of gene activation. (B) Active repression. A subset of heterodimeric nuclear receptors, 
including PPAR/RXR and LXR/RXR heterodimers, are capable of binding to REs in the absence of ligand 
and recruiting corepressor complexes that actively repress transcription. A number of corepressor complexes 
are associated with histone deacetylase (HDAC) activities, as well as histone methyltransferase and 
nucleosome remodeling activities that are generally distinct from those associated with coactivator 
complexes. HDM, histone demethylase (Adapted from Glass, 2006). 
 

 
 Concerning the functional activities, PPARα and PPARγ perform opposing 

functions with respect to lipid metabolism. Most of PPARα activity is linked to its ability 

to promote fatty acid oxidation, a vital process during fasting, and to govern many aspects 

of lipoprotein metabolism (Duval et al., 2007). In contrast, PPARγ was first identified as a 

key regulator of adipogenesis, and necessary for intra-cellular lipid storage. Fibrates on the 

one hand and thiazolinediones on the other hand are hypolipidemic and hypoglycemic 

drugs that act through their binding to PPARα and PPARγ respectively, making these two 

subtypes highly attractive as targets of drugs designed for metabolic disorders such as the 

type 2 diabetes. However, their therapeutic potentials go beyond the lipid and glucose 

metabolism as many research groups are now exploring their efficacious activity as anti-

inflammatory regulators, particularly in the context of atherosclerosis and cardiovascular 

diseases (Zandbergen and Plutzky 2007; Széles et al., 2007). Due to the lack of 

appropriate tools and guided hypothesis for its functions, PPARβ was getting much less 

attention than the two other isotypes. However, identification of anti-obesity properties of 

PPARβ and conflicting reports so far on the role of PPARβ in the progression or 

attenuation of colon cancers has quite stimulated the field. 



	  
	   	   Chapter	  I:	  Introduction	  

	   30	  

 

2.2.1 PPARβ/δ 
	  

2.2.1.1 Structural properties 
 
 Several structures have been determined for the ligand-binding domain of the 

human PPARβ (Reviewed in Zoete et al., 2007). The overall structure is common to other 

nuclear receptors, with a bundle of 13 helices and a small four-stranded β-sheet. PPARs 

accommodate an extra helix (H2’) and are characterized by a very large Y-shaped cavity. 

A particularity of the PPARβ pocket is the narrowness of one of the Y arm, which thus 

cannot accommodate bulky polar heads (Xu et al., 2001). Interestingly, the structure of the 

PPARβ ligand-binding domain in the absence of ligand is not well defined and rather 

corresponds to equilibrium of different conformations, among which those favoring co-

activator recruitment. 

 
2.2.1.2 Ligand specificity 

 
 
Natural ligands: Many unsaturated fatty acids can bind to PPARβ in a pattern closely 

resembling the binding to PPARα (Desvergne and Wahli, 1999). The very large density 

lipoproteins (VLDL), through release of their triglycerides, are proposed to specifically 

deliver ligands to PPARβ in the macrophages (Chawla et al., 2003; Ziouzenkova and 

Plutzky, 2004). Arachidonic acid derivatives, and more particularly prostacyclin (PGI2) 

formed upon cyclooxygenase 2 (COX-2) activation are strong candidates (Lim et al., 

1999), and the stable synthetic analog carbaprostacyclin exhibits some binding properties 

(Forman et al., 1997). However, this activation seems to be tissue and/or context 

dependent. Other prostaglandins have also been diversely proposed as PPARβ ligands (Yu 

et al., 1995). Metabolites derivatives obtained through the 12/15-lipoxygenase activity, 

such as 9-HODE, 13-HODE, 12-HETE and 15-HETE, are low affinity PPARγ activators 

(Nagy et al., 1998). They also activated PPARβ however with some intriguing results 

since 13-s HODE is reported to be an inhibitor of PPARβ in colon epithelial cells 

(Shureiqi et al., 2003), but an agonist in preadipocytes (Coleman et al., 2007). Finally, a 

recent report suggests that retinoic acid (RA) would be a ligand destined for either PPARβ 
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or RARs, depending on the relative expression of CRABPII (delivering RA to RARs) and 

FABP5 (delivering RA to PPARβ) (Schug et al., 2007). 

Synthetic ligands: Following the very first synthetic compound called L165041, which 

can give some PPARγ activation at high doses, the most often used ligand in fundamental 

research is the glaxo compound GW501516. Presently, PPARβ specific antagonist– 

GSK0660 is also available commercially (Shearer et al., 2008).  

 

2.2.1.3 PPARβ: Functional properties 
 

2.2.1.3.1 PPARβ in metabolism 
 

The most significant outcome of PPARβ activation concerns its anti-obesity effect. 

Indeed, PPARβ is implicated in energy consumption in peripheral tissue by controlling β-

oxidation and energy uncoupling. The skeletal muscle is considered to be the prime site 

where PPARβ regulates genes mainly involved in β-oxidation and uncoupling such as 

FABP3, lipoprotein lipase, carnitine-o-palmitoyl transferase (CPT-1), or UCP-3, among 

others (Bedu et al., 2005). Consistently, in-vivo over-expression of PPARβ in skeletal 

muscle provokes a shift toward more oxidative fibres and promotes a general decrease of 

body fat content (Luquet et al., 2003). Quite similar results were obtained using a 

constitutively active PPARβ-VP16 fusion protein expressed under the control of the α-

actin promoter, which increased the oxidative type I fibres in the muscle of PPARβ-VP16 

transgenic mice. Importantly, these mice remained lean and insulin-sensitive on a high fat 

diet (Wang et al., 2004). A mirror image was obtained when specifically deleting PPARβ 

in skeletal muscles, with lower oxidative activity of the muscle fibres and an increased 

body fat mass leading to insulin resistance (Schuler et al., 2006). The fact that PPARβ 

expression increases upon exercise (Rusell et al., 2005) suggests that PPARβ could be 

implicated in adaptive response of skeletal muscle to physical exercise (Reviewed in 

Grimaldi, 2007). 

In parallel to acting on lipid metabolism, a role for PPARβ in regulating systemic 

lipid transport through lipoproteins adds to its potential therapeutic effects. In obese rhesus 

monkeys, an animal model for human obesity and associated metabolic disorders, as well 
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as in diabetic db/db mice, a selective PPARβ agonist caused a beneficial increase in serum 

HDL cholesterol and a decrease in small-dense LDL (Leibowitz et al., 2000; Oliver et al., 

2001). Conversly, PPARβ deficient mice exhibit LDL hypertriglyceremia, due to 

increased hepatic production of VLDL and decreased LPL-mediated catabolism (Akiyama 

et al., 2004). One important mechanism for these effects is an increase in reverse 

cholesterol transport via increased expression of ABCA1 (Oliver et al., 2001), as well as a 

reduced cholesterol absorption in mutant intestine that is asscociated with a decrease in 

Niemann-Pick C1 like 1 (NPC1L1) protein (Van der Veen et al., 2005).  

In the context of atherosclerosis, the role of PPARβ in macrophages remains 

difficult to explore as the three PPAR isotypes are coexpressed and have significant 

overlapping activities, particularly with respect to anti-inflammation properties. In 

macrophages, a direct interaction of PPARβ with BCL6 or p65 negatively regulates NF-

κB driven promoters. However, this mechanism is likely tissue- or context-dependent 

(Trifilieff et al., 2003; Kharroubi et al., 2006). Other studies of PPARβ in macrophages 

have focused on its capacity to act as a VLDL sensor, to which it responds by increasing 

carnitine synthesis and lipase activation.  

 

2.2.1.3.2 PPARβ in cell fate 
 

2.2.1.3.2.1 The anti-apoptotic activity of PPARβ 
 
 Apoptotic cell death can take place by two major mechanisms: either through the 

activation of the death receptor pathways by the binding of TNF-or Fas-Ligand (Fas-L), or 

through activation of the mitochondrial pathway through the Bcl-2 family of proteins. Cell 

death through both of these major apoptotic mechanisms can be prevented by the 

activation of the Akt1 pathway. Phosphorylation of Akt1 at threonine 308 (T308) by the 3-

phosphoinositide-dependent kinase-1 (PDK1) and of serine 473 (S473) by the integrin-

linked kinase (ILK) (Nicholson and Anderson, 2002) or other kinases is necessary for the 

maximal Akt 1 activity. 

In skin wound healing, PPARβ protects keratinocytes from anoikis and growth 

factor deprivation-induced apoptosis through the activation of Akt1 pathway (Di-poï et al, 

2002). In this context, the Akt1 phosphorylates Bad, the proapoptotic member of the Bcl-2 
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family, thus preventing cytochrome c release which can trigger the activation of the 

initiator caspase-9.  PPARβ exerts regulation of Akt1 phosphorylation through 

transcriptional upregulation of ILK and PDK1, and repression of PTEN (phosphatase and 

tensin homolog deleted on chromosome 10). Keratinocytes derived from PPARβ+/+ or 

PPARβ-/- showed no difference in the expression of Akt1. However, the expression of ILK 

and PDK1 was reduced in the PPARβ-/- cells as compared to their wt counterparts whereas 

the expression of PTEN was 2-fold higher in PPARβ-/- cells. Consistent with this 

decreased PDK1/ILK protein levels in PPARβ-/- cells, is the reduced phosphorylation of 

Akt1 at T308 and S473 in PPARβ-/- cells. Further, treatment of PPARβ+/+ keratinocytes 

with the PPARβ ligand L-165041 resulted in an increase of both PDK1 and ILK and a 

decrease in PTEN expression, indicating that it is a direct PPARβ target that is further 

strengthened by the fact that it was unaffected by protein synthesis inhibitor 

cycloheximide (CH). However, in the case of PTEN regulation it turned out to be an 

indirect regulation by PPARβ. These results clearly show that in keratinocytes, PPARβ 

controls cell fate decision by directly controlling apoptosis through the Akt1 pathway (Fig. 

9). 
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Fig. 9 | Model for the anti-apoptotic role of PPARβ  in keratinocytes. Following stimulation by TNF-α, 
PPARβ directly upregulates ILK and PDK1 and downregulates PTEN, leading to the activation of Akt1 in a 
PI3K-dependent manner. In response to this activation, the activity of several of its targets, including Bad, 
FKHR, and NF-κB, is modified, leading to the inhibition of apoptosis and changes in cell adhesion/ 
migration. Dotted lines represent a modification at the transcriptional level, and continuous lines represent a 
modification of the protein activity. Inhibitors of PI3K (LY294002) and NF-κB (PDTC) are indicated 
(Adapted from Di-Poi et al., 2002). 
 
 

2.2.1.3.2.2 PPARβ in cell differentiation 
	  

2.2.1.3.2.2.1 In the placenta: Giant cell differentiation 
 

Early evidence for the role of PPARβ in development came from the observation 

that null mutation of PPARβ showed embryonic lethality at E9.5 to E10.5, with the 

trophoblast giant cell layer being the most affected. Interestingly, treatment of a rat 

trophoblast cell line (RCHO cells) with PPARβ ligand markedly accelerated giant cell 
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differentiation via increased expression of PDK1 and ILK, subsequent phosphorylation of 

Akt, and Id2 inhibition of expression. The links between PPARβ activity in giant cells and 

its role on Akt activity is further strengthened by the remarkable pattern of phospho-Akt 

expression in-vivo at E 9.5, specifically in the nucleus of the giant cells. In addition to this 

main pathway, PPARβ also induced giant cell differentiation via increased expression of 

I-mfa, an inhibitor of Mash-2 activity. Thus, PPARβ is a major regulator of secondary 

giant cell differentiation, which plays a major role in the establishment of the placental 

structure and has important endocrine function (Nadra et al., 2006). 

2.2.1.3.2.2.2 In the skin: Keratinocyte differentiation 
 
 Inflammatory signals from skin wounding results in generation of TNF-α and IFN-

γ. These inflammatory signals activate the stress-associated signaling pathway and also 

further stimulate PPARβ expression via an AP-1 site in its promoter. These signals also 

promote the synthesis of a PPARβ ligand that is so far unidentified. The resulting increase 

in PPARβ transcriptional activity strongly accelerates the differentiation of keratinocytes 

that increases their resistance to apoptotic signals. (Tan et al., 2001). Also PPARβ 

promotes hair follicle morphogenesis by regulating the balance between the proliferation 

and apoptosis required for this process by the anti-apoptotic action mediated via the 

Akt/PKB pathway (Di-poi et al., 2005). 

2.2.1.3.2.2.3 In the Central nervous system: neuronal and 
oligodendrocyte differentiation 

  
A role for PPARβ in neuronal differentiation is suggested due to the high level of 

expression of PPARβ in the CNS (Woods et al., 2003; Moreno et al., 2004; Cullingford et 

al., 1998) and in neurons in culture (Di Loreto et al., 2006; Cimini et al., 2005). In the 

primary glial culture as well as in enriched oligodendrocyte culture, PPARβ agonist 

strongly accelerates the differentiation of the oligodendrocytes, increasing both the 

number of oligodendrocytes and the size of the membrane sheets they produce (Saluja et 

al., 2001). 
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2.2.1.3.2.2.4 In adipocyte differentiation  
 

The implication of PPARβ in adipocyte differentiation is more complex. PPARβ is 

highly expressed in the preadipocytes where it mediates long-chain fatty acid effects on 

the expression of adipose-related genes. The reduced fat mass observed in some PPARβ 

null mice is consistent with a role in adipogenesis (Barak et al., 2002; Peters et al., 2000). 

In contrast, the adipose tissue specific deletion of PPARβ at a later stage did not affect 

adiposity of the mice (Barak et al., 2002). Taking into account some contradictory 

observations in cell in culture (Brun R et al., 1996; Holst et al., 2003; Matsusue et al., 

2004), as well as in-vivo (Akiyama et al., 2004; Wang et al., 2003), the role of PPARβ in 

adipogenesis seems strongly intertwined with its general metabolic activity rather than 

specifically acting on the differentiation program. 

2.2.1.3.2.3 PPARβ in cell proliferation 
  

The influence of PPARβ on proliferation is complex. As mentioned above, PPARβ 

promotes terminal differentiation and inhibits proliferation of keratinocytes, at least in part 

through down-regulation of cyclin A (Tan et al, 2001) or through increased ubiquitination 

of PKCa (Kim et al, 2005). Assays performed in a variety of cell lines did not demonstrate 

any pro-proliferation activity of a PPARβ agonist (Hollingshead et al., 2007). In contrast, 

PPARβ can promote proliferation of hepatic stellate cells (Hellemans et al., 2003) and 

vascular smooth muscle cells (Zhang et al., 2002). Thus a direct anti- or pro- proliferative 

activity of PPARβ agonist has yet to be further studied. Attention must be paid to the fact 

that a higher degree of cell survival rather than a direct proliferation activity may account 

for an increased cell population. Thus, the anti-apoptotic role of PPARβ might be essential 

to be taken into consideration in some experimental settings aimed at evaluating cell 

proliferation. 
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2.2.1.4 PPARβ in the intestine 
 

2.2.1.4.1 Expression 
 
 PPARβ is ubiquitously expressed in the body. It has been reported that of the three 

PPAR isotypes, PPARβ is the major isotype expressed in the gastrointestinal tract (Fig.10; 

Escher et al., 2001). Also it has been shown that PPARβ is highly expressed at the bottom 

of the crypt and the expression reduces towards the tip of the villi (Varnat et al., 2006).  

 

Fig. 10 | Comparative analysis of PPARα , PPARβ , and PPARγ expression in the gastrointestinal 
tract. Histograms show quantifications (in relative values) of PPAR mRNA levels ± SD, normalized to L27 
mRNA expression, derived from RNase protection assays, [n=3](Adapted from Escher et al., 2001).  
 

2.2.1.4.2 PPARβ and paneth cell differentiation 
 

In the gut, PPARβ is involved in the differentiation of the Paneth cells, but does 

not significantly affect the three other cell types. Mature Paneth cells signal to their 

precursors through the Ihh to negatively regulate their differentiation. PPARβ acts by 

inhibiting the negative feed back loop operating between the mature Paneth cells and the 

paneth cell precursors (Varnat et al., 2006). The intensity of the Ihh signal received by the 

precursor cells determines the number of mature Paneth cells in the crypt. High levels of 

Ihh lead to the suprression of the maturation of the PATCH-1–positive cells, limiting them 

in their precursor state. On the contrary, weak Ihh signal inhibits the positive feedback 

loop on PATCH-1 expression stimulating the terminal differentiation of precursor cells to 

fully mature Paneth cells. Although the total number of mature Paneth cells is reduced in 
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the PPARβ-null mice, the levels of Ihh are particularly high, thus falsely signaling the 

precursor cells to delay differentiation (Fig. 11).  

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 11 | Model for PPARβ  action on the level of Ihh, resulting in the alteration of Paneth cell 
homeostasis. PPARβ controls the number of Paneth cells by regulating the differentiation of their 
precursors; for details see text (Adapted from Varnat et al., 2006). 
 
 

2.2.1.4.3 A role for PPARβ in colorectal cancer  
 

PPARβ is a target of Wnt signaling and is also involved in the progression of 

colorectal cancer (He et al., 1999). There are conflicting reports so far on the role of 

PPARβ in the progression or attenuation of colon cancers. Inactivation of Apc gene or 

treatment with azoxymethane has been shown to increase the levels of PPARβ in 

colorectal tumors (He et al., 1999; Gupta et al., 2000). This increased levels of PPARβ in 

colorectal tumors compared to the normal mucosa is consistent with the hypothesis that 

Apc suppresses activity of β-catenin /TCF-4 transcription of target genes including 

PPARβ, cyclin D1 (He et al., 1999). A decrease in tumor formation was observed when 

the PPARβ-null HCT cells were xenografted in nude mice (Park et al., 2001). In addition, 

it has been shown that treatment of Apcmin/+mice with PPARβ-specific ligand 

(GW501516) leads to the increase in the number and size of the small intestinal adenomas 
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(Gupta et al., 2004). In summary, these studies suggest that loss of Apc leads to the 

increase in expression of PPARβ through β-catenin /TCF-4 transcriptional pathway, thus 

promoting tumorigenesis. On the other hand, several studies show conflicting results. 

Comparative studies on the normal colonic mucosa and adenomas from Apcmin/+ mice as 

well as in humans between normal and cancer tissue show decrease in the expression of 

PPARβ (Chen et al., 2004). This is consistent with the observations in mice with targeted 

deletion of Apc in intestine, that show decrease in PPARβ mRNA and protein levels and 

increase in c-myc levels along with accumulation of β-catenin (Reed et al., 2004). Since 

then, a certain numbers of papers have continued to feed the controversy but do not give 

clues on the reasons for such discrepancies.  

However, a particular attention has recently been brought on the angiogenesis that 

accompanies tumor formation. In addition to the role of Akt signaling in regulating 

angiogenesis (Shiojima and Walsh, 2002), PPARβ upregulates VEGF expression (Wang 

et al., 2006; Piqueras et al., 2007). It is now further proposed that PPARβ plays an 

essential role for the formation of functional tumor microvessels (Müller-Brüsselbach et 

al., 2007). 
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3.  Irradiation: a medical concern and a tool 
for exploring cell and tissue repair 

 

 After surgery, radiotherapy is one of the most used therapeutic actions for cancers, 

especially for those that are localized and have not metastasized yet. Ionizing radiations 

have variable success rates depending on the type of solid tumor involved. For e.g., 

lymphomas and seminomas are quite responsive to low doses of irradiation where as some 

like melanoma and glioblastoma are very radioresistant and show higher resistance even 

after high doses (Jung and Dritschilo, 1996). Failures in patients treated with ionizing 

radiation have been correlated to various features attributed to distant metastases as well 

as to the primary site. Indeed, precise localisation, size, and inadequate vascular supply 

(hypoxia) of the tumor can all play a role in the non-responsiveness to ionizing radiation. 

However, the most important factors that contribute to radiation resistance are cellular and 

genetic factors such as differential tissue-specific gene expression (e.g., p53, ataxia 

telangiectasia mutated (ATM) status (Peters et al., 1982; Deacon et al., 1984). These 

observations emphasize the need to well understand the molecular responses to radiation 

and their modulation, as discussed below.  

 

3.1 Signal transduction and cellular radiation responses 
	  
 Numerous radiobiological studies have proven the activation of existing cellular 

response pathways of the mammalian cells in response to ionizing radiation over a wide 

dose ranges. These pathways can either activate the cytoprotective or the cytotoxic 

responses thereby mediating the cell survival or the cell death, respectively. The mitogen-

activated protein kinase (MAPK) and the phosphatidyl inositol-3 phosphate kinase (PI3 

kinase) mediate the cytoprotective responses. They activate the cellular biosynthetic 

machinery and may also act by stimulating the cellular proliferation if the cell is able to 

repair the radiation-induced damage. The most direct cytotoxic response involves Jun N-

terminal kinase (JNK no known as MAPK8) and results in cellular death due to apoptosis 

and/or some other form of cell death (reviewed in Schmidt-Ullrich et al., 2000). 

 The production of radiation-induced radicals forms the primary ionizing events and 

is the immediate response of cells to irradiation. The primary radical generated •OH is 
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short lived with diffusion range about 4nm before reacting (Roots and Okada, 1972). 

Cellular Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) play a 

role in the cytoplasmic amplification mechanisms that are responsive to relatively low 

radiation doses. Figure 12 summarizes the potential sources and sensors of these 

ROS/RNS. O2
- and H2O2 form the secondary ROS molecules and H2O2 can react with 

cellular metal ions to produce additional •OH.  

 

 

 

 

 

 

 

 

 

Fig. 12 | Radiation-induced cellular reactive oxygen/ nitrogen species (ROS/ NOS), sources and 
targets. Targets and sensors of radiation-induced ROS/RNS are localized in subcellular compartments 
including membranes, mitochondria and the nucleus. In each of these compartments, sensors and amplifiers 
of primary and secondary radicals are in proximity. While the cellular amplification systems enhance signal 
transduction responses, the effector molecules of these pathways feed into nuclear DNA damage recognition 
and repair functions (Adapted from Schmidt-Ullrich et al., 2000). 
 
 

Some of these ROS/RNS remain sufficiently stable to diffuse significant distances 

within cells, e.g H2O2, nitric oxide and peroxynitrite, and contribute to the subsequent 

cellular damages. First, they are membrane permeant and can also change the membrane 

structure via lipid peroxidation (Berroud et al., 1996; Ritov et al., 1996). Second, they can 

interact with protein. A particularly interesting example is the interconversion of reduced 

and oxidized Cys, which change a protein conformation and therefore its activity, as it has 

been shown for Tyr phosphatase 1B, whose inhibition could lead to enhanced 

phosphorylation and activation of target proteins, such as EGFR (Bae et al., 1997; Lee et 

al., 1998).  

Finally, exposure to ionizing radiation induces the formation of DNA double-

strand breaks, which can provoke a P53-mediated response. The tumor suppressor TP53 
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and the protein mutated in ataxia telangiectasia cells, ATM, were identified to function as 

sensors of DNA damage (Morgan and Kastan, 1997; Giaccia and Kastan, 1998). They 

regulate cell cycle checkpoints, apoptosis and DNA repair (Reviewed in Schmidt-Ullrich, 

et al., 2000). They are known to activate signaling systems, to initiate damage repair or 

responses of cell death or apoptosis. In general, the cells deficient in TP53 or carrying a 

TP53 mutation are more radioresistant than cells expressing wild-type TP53 (Lee and 

Bernstein, 1993). However, the effect of mutant TP53 on radiosensitivity depends on the 

specific mutant and the cell type involved. In cells expressing wild-type TP53, irradiation 

results in cell cycle arrest mainly at the G1-phase checkpoint via transcriptional activation 

of CDKN1A, a potent inhibitor of CDKs, (Fig. 13; Canman et al., 1994; Kuerbitz et al., 

1992). This cell cycle regulation is thus significantly linked to the vital cellular processes 

of biosynthesis, such as DNA repair, transcriptional regulation, the initiation of cell 

proliferation, or cell death and apoptosis. The complex interplay between such response 

systems reflects the extent of surveillance mechanism cells possess to maintain the 

integrity of the nuclear material against genotoxic stress. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 | ATM/ TP53 and cellular radiation responses. The nuclear sensor proteins of DNA damage, 
TP53 and ATM, play a central role in modulating cellular responses that may directly or indirectly affect 
apoptosis or DNA repair and survival. Radiation may activate TP53 directly through DNA-PK or indirectly 
through ATM. In addition, ATM may directly affect repair through ABL and RAD51/52. Alternatively, 
ATM may regulate transcription through the cytoplasmic IKB and NFKB. The modulation of cell cycle 
progression at the G1/S-phase checkpoint by TP53 is mediated by a complex network of positive and 
negative regulators including MDM2, CDKN1A, GADD45 and PCNA. Arrows and blocks represent 
stimulatory and inhibitory signals, respectively (Adapted from Schmidt-Ullrich et al., 2000). 
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3.2 Irradiation and the intestine 
	  

 Treatment for abdominal and pelvic cancers by radiotherapy is one of the main 

source for patients to get exposed to irradiation and may induce adverse effects on the 

intestine, first described by Walsh, 1897. Walsh concluded that radiation caused a direct 

inflammation of the gastrointestinal mucous membranes. In studies on domestic animals, 

X-ray irradiation induced injuries of the small intestine were dose-dependent as reported 

by Krause and Ziegler (1906-1907). Proliferation of the intestinal bacteria was believed to 

be the cause of the observed harmful effects. Contrary to this, delayed changes caused by 

X-irradiation was observed by Regaud et al., 1912 in dog small intestine. A mode of acute 

radiation death, the so-called GI-syndrome was described in 1956 by Quastler, which had 

a well-defined time course using dose ranging from 10 to100 Gy of X-ray irradiation. The 

high sensitivity of the GI tract to X-irradiation makes it a target for complications in 

accidentally exposed persons and during the course of treatments for cancers by 

radiotherapy. Indeed, as abdomino-pelvic cancers increase with the aging of the 

population and lead to increased utilization of radiotherapy, the requirement of a better 

and thorough knowledge of the effects of radiation on the cells and organism as a whole 

has to be emphasized.  

 On clinical levels, radiation-induced intestinal damages are well documented and 

can be caused by various types of irradiation (X-ray, neutron, gamma). Ionizing radiation 

effects on the GI tract can be categorized into two main groups: early effects that occur at 

relatively low doses equivalent to 1 Gy and the GI syndrome that occur at high doses of 

radiation doses (more than 10Gy). The effects of ionizing radiation on the gut can be 

followed in a time dependent manner and can be categorized as initial phase (1-3 days 

after exposure) followed by the acute, subacute and the late phases of the illness 

(Berthrong and Fajardo 1981; Anno et al., 1989; Rubio and Jalnas, 1996).  

The acute phase is the early response of the radiation-induced stress and is 

characterized by the damage to the intestinal epithelium (depletion of epithelium or 

complete denuding of epithelial layer). This loss of integrity of the intestinal epithelium is 

the usual major effect on the intestine followed by the symptoms of nausea, vomiting, 

diarrhoea, loss of electrolytes and fluids, haemorrhage, anorexia, bacterial infection and 

endotoxemia. Alteration in the balance of electrolytes and fluids may be responsible 

directly for the effect on changes in cellular transport processes (Young, 1987). Ionizing 
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radiation mediated loss of intestinal epithelia leads to bacterial infection and endotoxemia 

and the bacterial products released thereafter can result in altered cellular communications. 

Subacute and late responses of the ionizing radiation-induced GI damage result in 

radiation enteritis or radiation-induced enteropathy. Abdominal pain, gut perforation, 

haemorrhage, gut obstruction, diarrhea, malabsorption and dysmotility are the most 

frequent clinical consequences. The late effects of ionizing radiation are seen after almost 

2 months after treatment and can be seen to last until a year later. Severe collagen 

accumulation results from aggregation of scattered thin fibrils in the submucosa from the 

second month after exposure to irradiation. In addition, the other compartments like the 

connective tissue and vascular tissue respond slowly to these radiation effects and 

contribute to the appearance of fibrosis (Langberg et al., 1996).  

However, the cause of fibrosis remains poorly understood. The possible mechanisms may 

include direct effects of radiation on collagen or other constituents of the extracellular 

matrix, modified production or degradation of extracellular materials, direct or indirect 

effects of radiation to the vascular and/or parenchymal cell constituents, consequences of 

non-specific inflammatory or autoimmune processes, as reviewed by (Hauer-Jensen, 

1990) and (Followill et al., 1993; Somosy et al., 2002). 

 

3.2.1. Effects of radiation on the small intestinal cell types 
 

 Experimentally, radiation can be a very useful tool to induce damage to the tissues 

(Potten, 2004), thus allowing studying how the cells and tissues recognize the occurrence 

of damages and thus their repair response. Thus, radiation is an ideal cytotoxic agent for 

such studies. Using mouse models of total body irradiation, it was shown that in the first 

three to six hours after a moderate irradiation, the low levels of spontaneous p53-

dependent apoptosis in the intestinal crypt dramatically increase. This cell death associated 

to a cell cycle arrest lead to shrinkage of the villi and loss of protective barrier observed 18 

to 24 hours post-irradiation. Release from mitotic arrest occurs at about 36 hours and is 

associated with a rapid increase in the proliferative activity. At doses < 15Gy, surviving 

progenitor cells lead to crypt recovery identified at 3.5 days post-irradiation as typical 

hyperplastic regenerative crypts that exceed the size of control crypts by more than 2 

folds. Large regenerating crypts split or bud to generate new crypts, until the intestinal 

mucosa regains a normal architecture at about 2 weeks after irradiation (Potten, 2004). 
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3.2.1.1 The role of the instestinal adult epithelial stem cells 
 

Tissue homeostasis and regeneration upon injury are the key processes presumed 

to be under the control of adult tissue stem cells. Several studies in mice showed that Lgr5 

(Barker et al., 2007), CD133/Prominin 1 (Zhu et al., 2009) and Bmi-1 (Sangiorgi and 

Capecchi, 2008) expressing cells at or near crypt base are intestinal stem cells (ISCs). The 

cells that exhibit the properties of ISCs are seen to be located in two different positions: 

the columnar cells at the crypt base called Crypt Base Columnar cells (CBCs) and some 

+4 position cells just above the Paneth cells. Work from several groups has identified that 

apoptosis in these cells is mainly responsible for the acute intestinal damage and rapid 

onset of gastrointestinal (GI) syndrome and death using a whole body radiation model 

(Potten, 2004; Ch’ang et al., 2005; Qiu et al., 2008).  

 

3.2.1.2 Radiation-induced apoptosis 
	  

Many early reports show that damages to stem cells are an early response to 

irradiation (Potten et al., 1983, 1994). These damages to stem cells provoke apoptosis and 

mitotic inhibition (G2 block) (Potten et al., 1983; Carr et al., 1996). Mitotic inhibition is 

observed as early as 30min post irradiation, and lasts for the next 8-20 h (Potten et al., 

1983). Soon after irradiation, there is initiation of apoptotic processes, and apoptotic cells 

appear after 2-3 h post irradiation that are visible by morphological analysis of the fine 

ultra structural features (Ijiri and Potten, 1984; Potten, 1992; Merritt et al., 1995; Arai et 

al., 1996).  

Radiation induced apoptosis is one of the key events responsible for the acute 

intestinal damage and rapid onset of gastrointestinal syndrome (Potten 2004). Studies on 

mice have shown that as early as within 3- 6 h after gamma-irradiation, numerous 

apoptotic cells are observed in the region towards the bottom of the small intestinal crypts 

where the putative stem cells reside. The highest levels of apoptosis are seen following 

radiation doses >1Gy. Similarly in the proliferative zone of the murine colonic crypts, 

apoptosis can be observed within a few hours of gamma-irradiation. Nevertheless, the 

colonic epithelium is more resistant when compared to the small intestinal epithelium in 
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the context of radiation induced apoptosis as evidenced by maximal apoptosis occurring 

only above doses of 8Gy (Potten and Grant, 1998).  

Using transgenic mice studies, two broad types of apoptosis has been characterized 

in the mouse intestine. In the normal, unstressed intestine, spontaneous apoptosis occurs 

constantly at low levels and the stress-induced apoptosis occurs as a result of genotoxic 

insult like exposure to gamma rays or DNA damaging drugs. Spontaneous apoptosis 

occurs at the base of the crypts at or near the position of the epithelial stem cells. Studies 

using p-53 and Bcl2 knockout mice have shown that in both the small and the large 

intestine, spontaneous apoptosis is independent of p53 and Bax, but Bcl2 only regulates 

spontaneous apoptosis in the colon. On the contrary, studies using p-53 knockout mice 

have shown that both p53 and Bcl2 are important regulators of stress-induced apoptosis. 

Bax only plays a minor role in the regulation of stress-induced apoptosis (Watson and 

Pritchard, 2000).  

Studies on radiation induced apoptosis by Potten et al., 2004 indicate that there 

were about six apoptosis-susceptible cells per crypt located at around cell positions 4–5. 

These cells lacked repair capacity and instead initiated a TP53-dependent cell suicide to 

delete the damaged cell. This occurred fairly rapidly within a period of 3–6 h. This 

apoptotic response may be part of the mechanism operating in the stem cells of the small 

intestine to protect their genome. Interestingly, the response of the large intestine is 

strikingly different owing to two factors. First, apoptosis in the large intestine occurs 

randomly throughout the crypt and is not limited specifically to the stem cell position, 

which is at the base of the crypt. Second, the apoptosis-susceptible cells are more resistant 

to radiation since higher doses are required to induce similar total yields. Lastly, the stem 

cells of the large intestine express the protein associated with the cell survival gene Bcl2 

that prevents them from undergoing apoptosis. In contrast, the small intestinal stem cells 

do not express this gene as determined by immunohistochemistry and confirmed by 

studies of the yield of apoptotic cells in the small and large intestines of Bcl2 knockout 

mice (Merritt et al., 1995).  

The Bcl-2 family of proteins is evolutionarily conserved regulators of apoptosis 

and the BH3-only subgroup of proteins appears to initiate and promote apoptosis in a cell 

type and stimulus specific manner (Yu and Zhang, 2004; Labi et al., 2006). Several groups 

have shown that the p53 upregulated modulator of apoptosis (PUMA) is a BH3-only 

protein and is a transcriptional target of p53 that has an essential role in p-53 dependent 

and independent apoptosis through the mitochondrial pathway (Han et al., 2001; Nakano 
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and Vousden, 2001; Yu et al., 2001). Recent studies by Qiu et al., 2008 indicate that 

PUMA deficiency protects the ISCs (both CBCs and +4 position cells) and progenitors 

from radiation induced apoptosis and improve crypt regeneration. 

 

3.2.1.3 The regenerative capacity of the epithelium after irradiation 
 

The regenerative capacity of the crypts upon radiation-induced damage is initiated 

by the survival of one or more clonogenic cells by a process referred to as clonal 

regeneration. The clonal regeneration process was studied in detail by Rod Withers in the 

late 1960s and published as the crypt microcolony assay (Withers and Elkind, 1969; 

1970). The assay involves counting the number of regenerating crypt-like foci between 3–

4 days after different doses of radiation to generate crypt radiation survival curves. This is 

achieved by routine staining of paraffin-embedded tissue sections on day 3- 4.  

Several studies indicate that the estimates of the number of clonogenic cells in a 

crypt depends somewhat on the intensity of the dose that one uses to investigate them. 

Small doses tend to give lower estimates, whereas high doses, or more severe stress, tend 

to give higher estimates. These conclusions are well accepted and have been seen to be 

consistent with the data obtained by other cell kinetic, lineage-tracking and mathematical 

modeling exercises.  

 According to Potten et al., 2004, at low doses of radiation damage, the crypt contains 

a relatively small number (about six per crypt) of clonogenic regenerators of the crypt, 

where as at higher doses the number is greater (up to about 30–40 potential clonal 

regenerators that can be recruited into action). This suggests that the crypt may be 

composed of a small number of lineage ancestor stem cells (four to six per crypt) that 

function as the day-to-day actual stem cells and a larger population of cells (from six to 

30–40) that have not lost the potential to function as stem cells if the tissue is severely 

damaged, i.e. potential stem cells (Cai et al., 1997). However, there is still quite a lot of 

debate about what could determine the overall gastrointestinal damage.  

 

3.2.1.4 Mechanisms of Radioprotection  
	  

It has been shown by Booth and Potten, 2001 that growth factors protect against 

radiation or chemotherapy induced mucosal injury. For example, the various growth 
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factors like the insulin-like growth factor 1 (IGF-1), keratinocyte growth factor and 

fibroblast growth factor-2 (or basic fibroblast growth factor-2 (bFGF-2)) have been shown 

to protect the +4 position cells and increase animal survival after whole body radiation 

(Booth and Potten, 2001; Paris et al., 2001; Wilkins et al., 2002). But what is not well 

understood are the targets and the mechanism of intestinal protection provided by these 

growth factors. Recently, Qui et al., 2010 have shown that the suppression of PUMA has a 

critical role in IGF-1 and bFGF- mediated radioprotection in the gastrointestinal system 

through a PI3K/AKT/p53- dependent mechanism. More recently, it has been shown by 

Jones et al., 2011 that Flagellin pretreatment protected mice from radiation-induced 

intestinal mucosal injury and apoptosis via a toll-like receptor 5 (TLR5)- dependent 

mechanism. 

It is noteworthy that apart from growth factors, prostaglandin E2 (PGE2), a 

prostaglandin produced by the intestinal epithelial cells in response to gamma-irradiation 

(Murmu et al., 2004) has a remarkable radioprotective effect on ISC (Tessner et al., 2004). 

It has been shown that PGE2 can activate PI3K/ Akt signaling through PPARβ activation 

in colon cancer cell line model (Gupta et al., 2004; Wang et al., 2004). It then could be 

speculated that PGE2 exert its radioprotective effect through the activation of PPARβ. 

 While many studies concerned the intestinal epithelium responses to ionizing 

radiation, many different cell types besides the epithelial cell layer of the GI tract are also 

affected. Some studies have shown that stromal pericryptal fibroblasts are highly sensitive 

to irradiation (Potten et al., 1983). Finally, there is strong evidence for the vital role of 

fibroblasts in radiation-induced late inflammation and altered composition of the 

extracellular matrix (Barcellos-Hoff, 1998; Hauer-Jensen et al., 1998). 
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AIM OF THE WORK 
 

Of the known three PPAR isotypes, PPARβ remains the least known. Works in our 

laboratory has revealed the importance of this particular isotype in apoptosis, cell survival 

and proliferation. Furthermore, previous work from our group has shown that PPARβ 

plays a role in the differentiation of Paneth cells of the intestine by inhibiting the Ihh 

pathway. Considering the previous works from our laboratory on the role of PPARβ in cell 

survival and tissue repair (Di-Poi et al., 2002; and Letavernier et al., 2005), it was 

important to disturb the intestinal epithelial cell homeostasis and assess whether PPARβ 

might affect the healing process. Reports in the literature substantiate that gamma-

irradiation is a very powerful tool that can be used to induce intestinal epithelial cell death, 

and follow the regenerative process of the gut (Potten, 2004). Thus PPARβ+/+ and PPARβ-

/- mice were exposed to 10Gy irradiation and the animals were sacrificed at 4h and at 3.5 

days post-irradiation. At 4h post-irradiation, PPARβ-/- mice showed significantly higher 

apoptosis of the epithelial cells when compared to the control animals, more particularly at 

the level of the proposed location of the stem cell niche within the duodenal crypts 

(position +4 or +5 from the crypt bottom). Indeed, a BrdU staining protocol that allows the 

identification of stem cells in forms of “label retaining cells” further suggested that stem 

cells that were particularly damaged as an effect of irradiation. This correlated then with a 

significant reduction of epithelial cell proliferation at 3.5 days post-irradiation in the 

PPARβ-/- animals accompanied with a strong reduction of crypt survival. 

 The aim of my thesis work was thus to elucidate the molecular signalling 

mechanism mediated by PPARβ in the intestine upon gamma irradiation and more broadly 

to explore the possible role of PPARβ in intestinal epithelium repair.   

More specifically, our goals and corresponding strategies were to answer the 

following questions:  

a. Is the poor recovery state of the PPARβ-/- small intestine at 3.5d post 

irradiation a permanent damage or does it only reflect a delay in the healing 

process?  

With that respect, we will explore the phenotype at 8 day post-irradiation, by 

classical histological and immunohistological analyses, focusing on the two 

different compartments: epithelial and the intra-villus mesenchyme. 
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b. Which cell population is primarily affected by PPARβ deletion? 

The intestinal homeostasis is maintained as a result of interplay of signals 

arising from two main compartments - the epithelial and the mesenchymal 

compartments. Using PPARβ conditional KO mice (PPARβ L2/L2) crossed 

with mice carrying the villin-Cre-ERT2 transgene, we planned to obtain mice 

where deletion of PPARβ in the intestinal epithelial cells can be provoked by 

Tamoxifen injection. The comparison of the phenotype provoked by the 

gamma-irradiation in PPARβ L2/L2 Cre+ treated vs PPARβ L2/L2 Cre- treated 

with tamoxifen will tell us how much of the phenotype is due to the epithelial 

compartment vs the mesenchymal response. 

c. Which PPARβ-dependent pathways are solicited in the irradiated intestine? 

Starting from the previous demonstration that PPARβ is downstream of Wnt, 

as one of its target gene, and upstream of Ihh as one negative regulator of Ihh 

expression (Varnat et al., 2006), we wanted to pursue our quest for the 

molecular mechanisms utilized by the epithelial cells wounded by gamma-

irradiation and the role played by PPARβ in the cell survival and repair 

process. For that purpose, primary enterocytes in culture represent an ideal 

tool. For ease of manipulation, we also considered to use the HT-29 cells, 

which are intestinal colon adenocarcinoma cells of human origin. 
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1. Consequences of PPARβ  deletion at 8d post 
irradiation 

 

The apparent poor proliferation responses observed in the small intestine of 

PPARβ-/- at 3.5d post irradiation prompted us to explore further the repair mechanism of 

the PPARβ-/- mice at 8d post irradiation. For that purpose, we irradiated five 12- week old 

male mice with two rounds of 5Gy each. Mice were sacrificed at 8 days post-irradiation 

and we made histological analysis of the duodenal tissue sections of these mice. 

 

1.1 Reduction of the number of mesenchymal cells in the 
lamina propria 

	  
Analyses by haemotoxylin-eosin (HE) of the duodenum from PPARβ+/+ and the 

PPARβ-/- mice at 8 d post-irradiation revealed that at that late time, the epithelial layer 

seems equally restored in both genotypes, the height of the villi are also of similar size 

(Fig. 14). Intriguingly, the mesenchymal compartment in the PPARβ-/- mice appeared less 

dense compared to that of the PPARβ+/+ mice. This result in a thinning of each villi, as can 

be seen in Figure 14. This loosening of the lamina propria might be better seen on 

longitudinal section of the villi, shown in inserts within figure 14b. To document this 

subtle phenotype, we quantified the number of epithelial and mesenchymal cells within 

each crypt-villi unit from both the genotypes. The calculation was made as follows: the 

HE stained sections from both the PPARβ+/+ and the PPARβ-/- mice were used to take 

images of full length crypt- villi unit. These images were then processed using the Image J 

software and we counted the number of epithelial and the mesenchymal cells within 200 

crypt-villi unit from each animal totalling 1000 villi from five different animals for each 

genotype (five different fields of each section, and two different sections from four 

different slides from each animal).  

To overcome the difficulties bound to the fact that small intestinal sections cannot 

be easily positioned such as the sections run by the central crypt-villus axis, we also 

calculated the ratio of epithelial cells to the mesenchymal cells in the transversal section of 

each villus unit. As shown in the Fig. 15, this ratio was significantly higher in the PPARβ-
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/- mice when compared to the PPARβ+/+ mice, confirming the relative low density of 

mesenchymal cells in the lamina propria.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 14a and b | Haematoxylin-eosin staining of a. PPARβ+/+ and PPARβ-/- control samples. b. 
PPARβ+/+ and PPARβ-/- at 8 days post-irradiation. Panel a: PPARβ+/+ and PPARβ-/- (n=5 for each 
genotype) samples do not show any difference in length of the villi and arrangement of cells in the intra-
villus mesenchyme but in Panel b: After 8 days post-irradiation, PPARβ-/- show thin and long villus with 
fewer cells and loosely organised mesenchyme in the intra-villus region. Black arrows point to regions 
where there are mesenchymal cells. (Scale bar = 100µm). 

 

 

b.	  	  	  	  PPARβ+/+	  8	  d	  post	  irradiation	  	  	  	  PPARβ-/-	  8	  d	  post	  irradiation	  
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Fig. 15 | Epithelia/ mesenchyme ratio as calculated by counting the epithelial and mesenchymal cells 
within 1000 crypt-villi unit using the Image J software. A total of 5 PPARβ+/+ and PPARβ-/- mice were 
analysed at 8 days post-irradiation and the epithelia/ mesenchyme ratio is presented for (a) each individual of 
both genotypes and (b) the average for 5 mice of both genotypes. Images of HE stained sections from both 
the PPARβ+/+ and the PPARβ-/- mice were processed using the Image J software. Data represented was 
obtained by taking a count of the number of epithelial and the mesenchymal cells within 200 crypt-villi unit 
of each animal totalling 1000 villi for five different animals of each genotype. Statistical analysis was 
performed by paired t-test. *** Statistically significant at p< 0.001 when PPARβ+/+ is compared with the 
PPARβ-/-. 
 

 

These differences observed at 8 days post irradiation might reflect differences in 

the rate of proliferation and/or apoptosis of these two cell types in the previous stages of 

recovery. Hence, we performed an immunostaining on paraffin sections of the duodenal 

samples at 3.5 d post irradiation from PPARβ+/+ and PPARβ-/- mice, using an antibody 

against Ki-67, a marker for proliferation. As seen in Fig. 16, there are rather few cells 

labelled in the mesenchymal compartment when compared to highly proliferative crypts. 

The number of Ki-67 positive cells is even lower in the mesenchyme of PPARβ-/- mice 

when compared to PPARβ+/+ mice, confirming that the mesenchyme cells of the PPARβ-/- 

mice underwent lower proliferation. 
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Fig. 16 | Evaluation of proliferation in the PPARβ+/+ and PPARβ -/- samples at 3.5 days post 
irradiation.	   Immunostaining of the proliferation marker Ki-67 on paraffin sections from PPARβ+/+ and 
PPARβ-/- samples at 3.5 days post-irradiation (n=3 for each genotype). PPARβ-/- show less number of 
mesenchymal cells as evident by the DAPI staining in the intravillus mesenchyme and also less number of 
proliferative cells in this region as evident by co-staining of Ki-67 (red) and Dapi(blue) in comparison to 
PPARβ+/+. (Scale bar = 100µm). 
 
 

In parallel, we performed a TUNEL assay on paraffin sections of the duodenal 

samples from PPARβ+/+ and PPARβ-/- mice, to evaluate the number of apoptotic cells at 

3.5 d post irradiation in the epithelial and the mesenchymal compartments (Fig. 17). As 

expected, TUNEL staining is mainly found along the epithelial sheet, with reinforcement 

at the top of the villi. Interestingly, PPARβ-/- mice showed a higher number of Tunel 

positive cells in the mesenchyme compared to the epithelia confirming that the 

mesenchymal cells underwent higher apoptosis. Intriguingly, there were fewer apoptotic 

events in the epithelial sheet of PPARβ-/- intestine. 

Altogether these results suggest that the low mesenchymal cell density in PPARβ-/- 

mice after irradiation is in part caused by a decreased proliferation and increased apoptosis 

rate in the mesenchymal compartment.  This also emphasizes a differential response to 

gamma irradiation of the cell types constituting these two compartments. 
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Fig. 17 | Evaluation of apoptosis in the PPARβ+/+ and PPARβ -/- samples at 3.5 days post irradiation. 
Immunostaining using Tunel assay on the paraffin sections from PPARβ+/+ and PPARβ-/- samples at 3.5 days 
post-irradiation (n=3 for each genotype). PPARβ-/- show positive staining for Tunel mainly in the intra-villus 
mesenchyme, indicating death of mesenchymal cells in this region where as PPARβ+/+ stain positive for 
Tunel mainly in the villi tip where apoptosis of epithelial cells takes place normally as a result of 
homeostasis. (Scale bar = 100µm). 
	  
 

1.2 Decrease of ECM components resulting in adhesion 
defect at 8d post-irradiation 

	  

The looseness of the structure of the lamina propria at day 8 post-irradiation in 

PPARβ-/- mice is also exemplified by a particular phenotype shown in Figure 18. On HE 

staining, the mesenchymal cells in the PPARβ-/- mice appeared to be contracted from the 

epithelial basement membrane and concentrated towards the centre of the lamina propria 

leaving an empty space between the epithelia and the mesenchyme.   

While quite unlikely, we first check whether this empty space might be due to an 

inappropriate secretion of mucus towards the baso-lateral side of the gut epithelial cells, 

hence pushing the mesenchymal cells towards the centre of the lamina propria. To 

evaluate this, we performed alcian blue staining of the duodenal sections from both the 

PPARβ+/+ and PPARβ-/- mice at 8d post irradiation to detect the mucopolysaccharides and 

glucosaminoglycans of the mucus secreted by Goblet cells. However, we did not observe 

any mucus staining in this empty space (Fig. 19). 
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Fig. 18 | Haematoxylin-eosin staining of PPARβ+/+ and PPARβ-/- at 8 days post-irradiation. At 8 days 
post-irradiation (n=5 for each genotype) PPARβ-/- show detachment of the epithelial layer from the basal 
mesenchmal layer as seen by gaps between the two layers. Black arrows show regions in the PPARβ-/- where 
detachment is clearly seen. (Scale bar = 20µm). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 19 | Alcian blue staining of the PPARβ+/+ and PPARβ -/- samples at 8d post irradiation. 
Immunohistochemistry on paraffin sections from PPARβ+/+ and PPARβ-/- samples at 8 days post-irradiation 
(n=3 for each genotype). Alcian blue stains the mucopolysaccharides in the mucus. The PPARβ-/- does not 
show any staining for alcian blue (blue in colour) in the intra-villus mesenchyme as compared to the 
PPARβ+/+ (Scale bar= 50µm). 
	  
 

We thus explored whether the deposition of the extra-cellular matrix and the 

contact with the basal membrane of the epithelium was affected. To evaluate the collagen 

fibres of the extra cellular matrix, we performed Sirius red staining of the sections of the 

duodenal samples from both the PPARβ+/+ and PPARβ-/- mice at 8d post irradiation. We 

observed that PPARβ-/- showed a less intense staining for the collagen fibres I and III 
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when compared to the PPARβ+/+ that had a very intense staining (Fig. 20). This indicates a 

relative loss of collagen fibres in the lamina propria of PPARβ-/- mice after irradiation. It is 

thus possible that the empty space observed between the epithelial basement membrane 

and the collagen fibres attached to the mesenchymal layer in these mice is an outcome of 

the loss of the collagen fibres resulting in a gap between the two layers. Hence, these 

observations hint to the possible defect in components of the extracellular matrix in the 

PPARβ-/- mice due to irradiation. Alternately, the decreased amount of extra-cellular 

matrix in the lamina propria might mainly reflect the low cellular density present in this 

compartment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 20 | Sirius red staining of the PPARβ+/+ and PPARβ -/- samples at 8 days post-irradiation 
[PPARβ+/+ (left lane) and PPARβ-/- (right lane)]. Sirius red stains collagen I and III fibres red in colour. At 
8 days post-irradiation PPARβ-/- show detachment of the epithelial layer from the basal mesenchymal layer 
as seen by detachment of collagen fibres stained in red between the two layers as compared to the PPARβ+/+. 
Black arrows show regions in PPARβ-/- where detachment of collagen is clearly seen. (n=3 for each 
genotype);(Scale bar for top lane: 100µm and for bottom lane: 50µm). 
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2.  In vivo analyses of the epithelia-
mesenchyme crosstalk after irradiation. 

 

Intestinal homeostasis is maintained through a coordination of signals arising from 

two different compartments (see introduction). To analyse the respective role of PPARβ in 

the epithelial sheet versus the mesenchymal compartment, we used the villin-Cre-Lox 

system, to knockdown PPARβ in the epithelial cells of the intestine.  

El Marjou, et al. (2004) have reported generation of two complementary systems 

for Cre-mediated recombination of target genes in the mouse digestive epithelium. 

Accordingly, we crossed the PPARβ L2/L2 floxed mice with the villin Cre-ERT2 to obtain 

the PPARβ L2/L2 villin Cre+ and the PPARβ L2/L2 villin Cre-. The PPARβ L2/L2 Villin 

Cre+ mice bear a tamoxifen-dependent Cre recombinase expressed under the control of the 

villin promoter. Upon tamoxifen treatment, the Cre expressing cells undergo a somatic 

recombination of the PPARβ L2/L2 alleles. This recombination was detectable throughout 

the digestive epithelium and persisted for 60 days.  

For our experimental purpose, we had three groups of 12 weeks old mice: PPARβ 

L2/L2 (n=4), which served as wild type controls, PPARβ L2/L2 Villin Cre+ (n=5) and the 

PPARβ L2/L2 villin Cre- (n=4). Each of the three groups was treated with tamoxifen and 

vehicle. Tamoxifen was administered intraperitonally at a dose of 1mg/ml/kg per day for 5 

consecutive days. For the vehicle treated group, equal volume of sunflower oil was 

administered. The tamoxifen-mediated deletion was allowed for one week and after one 

week the animals were irradiated and then sacrificed at 3.5 and 8 days post irradiation. 

We performed a histological analysis to evaluate the phenotype at 8 days post 

irradiation. Histological analysis by haematoxylin-eosin staining showed that the Villin 

Cre+ mice (n=5) have the similar kind of defect like that of the PPARβ-/- mice with 

reduction in the number of mesenchymal cells and also detachment of mesenchyme from 

the basement membrane and separation from the epithelia (Fig. 21).  
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Fig. 21 | Haematoxylin-eosin staining of PPARβ L2/L2, PPARβ Villin cre- and PPARβ villin cre+ 
conditional KO at 8 days post irradiation. Tissue specific knockdown of PPARβ was brought about by 
the Cre-Lox system as explained in the text. The figure shows normal architecture of the villus in the PPARβ 
L2/L2 mice and the PPARβ villin cre- which served as controls where as the PPARβ villin cre+ KO shows 
thinner villi with reduced number of mesenchymal cells. (Scale bar for top lane: 100µm and bottom lane: 
50µm; n=5). 
	  
 

On the other hand, the PPARβ L2/L2 control group (n=3) does not show any 

defect. Thus, these set of experiments suggest a possible role of PPARβ in initiating the 

signal from the epithelia to the mesenchyme in response to damage upon irradiation. Thus, 

this model of the epithelial specific PPARβ conditional KO may be a good model to 

confirm the signaling crosstalk between the epithelia and the mesenchyme during the 

recovery from irradiation mediated damage. However, high variability in the results 

prevented us to pursue along this experimental line. 
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3.  Exploring the molecular pathways controlled by 
PPARβ  upon irradiation 

 

3.1 Microarray analyses at 4 hours post-irradiation 
 

In the course of his thesis work, Frederic Varnat had prepared a microarray 

analysis, performed on scraped intestinal mucosa before and at 4 hours post-irradiation, 

comparing PPARβ+/+ and PPARβ-/- mice.  

To help in identifying the first molecular event along the irradiation, we first 

analysed the results obtained from this study. A global view of the results is shown in 

Figure 22. A total of 2527 genes were observed to be differentially modulated between the 

PPARβ-/- and the PPARβ+/+ mice in non-irradiated condition (i.e, at 0h) whereas 1994 

genes were found to be altered between the PPARβ-/- and the PPARβ+/+ at 4h post-

irradiation. Of these, 587 genes were found to be modulated at both time-points.  

We also observed that as an effect of irradiation, 2561 genes were modulated in the 

PPARβ+/+ when compared to non-irradiated condition. The same comparison give 1783 

modulated genes in PPARβ-/-, i.e. around 800 genes less than in PPARβ+/+. Finally, 2907 

genes were found that were commonly modulated between the strains (PPARβ+/+ 4h vs 

PPARβ+/+ 0h and PPARβ-/- 4h vs PPARβ-/- 0h). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 22 | Venn diagrams showing results from microarray done on scraped intestinal mucosa from 
PPARβ+/+ (WT) and PPARβ -/- (KO) mice at 0h and 4h post-irradiation showing number of genes 
that were modulated in each group. A comparison between PPARβ+/+ (WT) and PPARβ -/- (KO) at 
the two different timepoints and between non-irradiated (0h) and irradiated at 4h in the two 
different genotypes is represented. 
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We then used a powerful analytical method called Gene Set Enrichment Analysis 

(GSEA) for interpreting gene expression data. The purpose of Gene Set Enrichment 

Analysis (GSEA) is to determine whether the members of a gene set S distributes 

randomly throughout the whole reference gene list L or is just primarily found at the top or 

bottom. The GSEA has the relative robustness to noise and outliers in the data, which is a 

big advantage.  

The analysis shows that the cholesterol biosynthesis pathway was remarkably 

affected upon irradiation (Fig. 23 and 24). As seen in these figures, the genes of the 

cholesterol biosynthesis pathway (Fig. 25) were significantly (Geneset Rank-6) 

upregulated in the group PPARβ+/+ 4h when compared to PPARβ+/+ 0h. This same 

pathway was found to be significantly (Geneset rank-2) down-regulated in the PPARβ-/- 

4h when compared to PPARβ+/+ 4h. Thus, this clearly indicates that irradiation affects 

transcription of the genes involved in the cholesterol biosynthesis pathway. The analysis is 

summarised in Fig. 26. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 23 | Heat map from Gene Set Enrichment Analysis (GSEA) showing cholesterol biosynthesis 
pathway geneset that is upregulated in PPARβ+/+ mice as a result of irradiation. 
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Fig. 24 | Heat map from Gene Set Enrichment Analysis (GSEA) showing cholesterol biosynthesis 
pathway geneset that is downregulated in PPARβ -/- mice when compared to PPARβ+/+ mice at 4hr 
post- irradiation.  
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Fig. 25 | Overview of the various enzymes involved in cholesterol biosynthesis pathway (adapted from 
GENMAPP2.0). The boxes in blue indicate the various products formed in the pathway brought about by the 
specific enzymes of the pathway (highlighted in black). All the genes encoding for all theses enzymes of the 
pathway were found to be modulated in the microarray data. The rate-limiting enzyme of the pathway- 
HMG-CoA reductase (HMGCR) is highlighted in red and the genes coding for the enzymes highlighted in 
green were selected based on their p-value significance for further validation of the microarray results. 
 
 
 
 
 

 

 

 
 
Fig. 26 | Summary of the results of the microarray data showing the modulation of cholesterol 
biosynthetic pathway genes when comparison is made between the genotypes PPARβ+/+ and PPARβ -/- 
at the two different the timepoints- 0h (non-irradiated) and 4h post irradiation [N. d= no difference]. 
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3.2 Studies on cholesterol biosynthesis pathway using in 
vivo model 
 

 To validate the observations from the microarray experiment, we performed qPCR 

analysis of the selected set of genes, namely- Farnesyl-diphosphate farnesyl transferase 1 

(FDFT1), Mevalonate (diphospho) decarboxylase (MVD), Lanosterol synthase (LSS), 3-

hydroxy-3methylglutaryl-Coenzyme A reductase (HMGCR), and 3-hydroxy-3-

methylglutaryl-Coenzyme A synthase1 (HMGCS1), involved in the cholesterol 

biosynthesis pathway that was found to be significantly modulated in PPARβ+/+ and 

PPARβ-/- mice in response to irradiation. These control analyses were performed on a new 

preparation of samples. A remarkable up-regulation was observed in all the above-

mentioned genes in the PPARβ+/+ upon irradiation (Fig. 27). Interestingly, the response 

was attenuated in PPARβ-/- mice but not absent.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 27 | Gene expression analysis by QPCR on scraped mucosa samples from the intestine of 
PPARβ+/+(WT) and PPARβ -/-(KO) control (non-irradiated) and 4h post-irradiated samples. Gene 
expression analysis was performed by SYBR green assay on the following genes of the cholesterol 
biosynthesis pathway that were found to be significantly modulated by 10Gy irradiation in PPARβ+/+(WT) 
and PPARβ-/-(KO) mice: Farnesyl-diphosphate farnesyl transferase 1 (FDFT1), Mevalonate (diphospho) 
decarboxylase (MVD), Lanosterol synthase (LSS), 3-hydroxy-3methylglutaryl-Coenzyme A reductase 
(HMGCR), and 3-hydroxy-3-methylglutaryl-Coenzyme A synthase1 (HMGCS1), Peroxisome proliferator-
activated receptorβ (PPARβ). All samples were normalized using two housekeeping genes namely 
Glycerladehye-3-phosphate dehydrogenase (GAPDH) and Tata-box binding protein (TBP). Data expressed 
are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls 
multiple comparison test. (* Statistically significant at p<0.05, ** p<0.01, and *** p< 0.001 in comparison 
to control). 
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Finally, it is also of interest to note that the levels of PPARβ expression was 

significantly reduced upon irradiation in the PPARβ+/+ mice when compared to the 

PPARβ+/+ non-irradiated mice. These results emphasize the importance of the cholesterol 

metabolism pathway in the early response to irradiation. It also suggests that PPARβ might 

be an important contributor to this response, albeit we have not been able to observe the 

dramatic differences obtained in the microarray analyses. 

 

3.3 Validation of an in-vitro intestinal cell line model: 
HT-29 

 
The difficulties in obtaining a solid and reproducible molecular phenotype led us to 

consider a simplified model system to validate our in-vivo data. With that in mind, we 

decided to use an intestinal colon adenocarcinoma cell line – HT-29.  

 

3.3.1 Estimation of basal levels of PPARβ and its activity in 
HT-29 cell model 

	  

Estimations with qPCR were performed to identify the basal levels of expression 

of PPARβ in HT-29 cells. The Ct values averaging to ~24 indicates that PPARβ has a high 

expression level in HT-29 cell line. The levels of PPARβ activity were then estimated 

with Luciferase assay. The HT-29 cells were transfected with PPRE 3XTk luc 

(peroxisome proliferator response element with luciferase construct driven by thymidine 

kinase promoter). 6h after transfection, the cells were treated with PPARβ specific agonist 

(500nM GW501516) and/or antagonist (900nM GSK0660). 24h after the administration of 

the ligands, luciferase reporter assays were performed (Fig. 28).  
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Fig. 28 | Luciferase assay showing PPARβ  activity levels in HT-29 cells. Cells were transfected with 
luciferase construct carrying 3X PPRE and treated with different doses of the agonist GW501516 and the 
antagonist GSK0660. 24h after initiating the treatment, cells were lysed and luminescence was measured. 
Data expressed a mean + SEM. Statistical analysis was performed by one-way ANOVA followed by 
Newman-Keuls multiple comparison test. *** Statistically significant at p< 0.001 and when lane 3 compared 
with lane 2observed and ### statistically significant at p< 0.001 when lane 7 compared with lane 6.  

 

 

Basal activity of PPARβ was moderate as evident from the control group (lane1), 

and its over-expression in absence of exogenous ligand did not significantly up-regulate its 

activity (lane5). In response to the agonist, PPARβ activity was significantly induced in 

cells, both at basal levels of PPARβ (lane3) as well with over-expression of PPARβ using 

the plasmid pSG5 PPARβ (lane7). The antagonist GSK0660 was not able to down-

regulate the activity levels of PPARβ significantly, in both basal and over-expressed states 

of PPARβ in these cells. This observation indicates that GW501516 at a dose of 500nM 

can activate PPARβ in HT29 cells. This ligand and dose was thus used for further tests.  

 

 

 

 

 



	  
	   	   Chapter	  II:	  Results	  

	   67	  

 

3.3.2. Evaluation of PPARβ agonist and antagonist activities 
in HT-29 cell model  
 

In order to confirm the efficiency of the treatment with PPARβ specific ligands, 

their effects on endogenous PPARβ target genes were estimated (Fig. 29). After treating 

HT-29 cells with two different doses (100nM and 500nM) of PPARβ specific agonist 

(GW501516), we tested by qRT-PCR six known target genes of PPARβ namely Adipose 

Differentiation Related Protein (ADRP), Angiopoietin-like 4 (ANGPTL4), Indian 

hedgehog (Ihh), Transforming growth factorβ (TGFβ), Pyruvate dehydrogenase kinase, 

isozyme 1 (PDK1), and Pyruvate dehydrogenase kinase, isozyme 4 (PDK4).  

 

 

Fig. 29 | Effects of PPARβ  specific agonist (GW501516) on gene expression in HT-29 cells. Gene 
expression analysis was performed by SYBR green assay on the following genes - Adipose Differentiation 
Related Protein (ADRP), Angiopoietin-like 4 (ANGPTL4), Indian hedgehog (Ihh), Transforming growth 
factorβ (TGFβ), Pyruvate dehydrogenase kinase, isozyme 1 (PDK1), and Pyruvate dehydrogenase kinase, 
isozyme 4 (PDK4). All samples were normalized using two housekeeping genes namely human eukaryotic 
translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Data expressed 
are mean + SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls 
multiple comparison tests. (**Statistically significant at p<0.01 and *** at p< 0.001 in comparison to DMSO 
treatment). NT= no treatment. 
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Only PDK4 and ADRP were significantly up regulated in a dose-dependent 

manner when the cells were challenged with both 100nM and 500nM of GW501516. As 

the levels of up-regulation of PDK4 were more significant than that of ADRP, we thus 

considered PDK4 as our choice to validate PPARβ activity in HT-29 cells. 

 Alongside using already available PPARβ antagonist in the lab (GSK0660), we 

decided to test a newly identified molecule VP80 (provided by Rolf Müller) that is 

considered to be a more specific antagonist of PPARβ. We used luciferase assay system to 

evaluate its efficacy in our cell system and compared it with the existing potent antagonist 

GSK0660. In order to compare the antagonizing effects of the two anatgonists, we 

performed an experiment using both VP80 and GSK0660 at a dose range of 1-10 µM and 

tested its efficacy against GW501516-induced PPARβ activity at a constant dose of 100 

nM, so that we can observe the maximum antagonizing effect of these antagonists at a 

lower effective dose of the agonist (Fig. 30). 

 

 
Fig. 30 | Comparison of PPARβ  antagonists - GSK0660 and VP80 activity in HT-29 cells. Cells were 
transfected with luciferase construct carrying 3X PPRE and treated with 100-1000nM of GW501516 without 
or with the addition of various concentrations of GSK0660 and VP80. GSK0660 and VP80 can compete 
with GW501516 and decrease the efficacy of the agonist GW501516. 24h after initiating the treatment, cells 
were lysed and luminescence was measured. Data expressed are mean + SEM. Statistical analysis was 
performed by one-way ANOVA followed by Newman-Keuls multiple comparison tests. (*= p<0.05, ##= 
p<0.01; *** statistically significant at p< 0.001). 
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GW501516 was able to induce significant PPARβ activity dose dependently (100, 

500 and 1000 nM) at basal conditions as observed in the Fig.30. Neither VP80 nor 

GSK0660 were able to inhibit the basal levels of PPARβ activity. GSK0660 at a dose of 

10 µM could significantly down-regulate GW501516-induced PPARβ activation by 73 %. 

Furthermore, GSK0660 had no significant cytotoxic effects in comparison to VP80, which 

showed significant cytotoxic effect at doses of both 5 and 10µM, as evident by the MTT 

assay (Fig. 31).  Significant cytotoxic effects were also observed at higher concentrations 

of GW501516 at 500 and 1000 nM but not at a concentration of 100 nM. 

 

Fig. 31 | MTT assay to assess cytotoxicity due to the PPARβ  antagonists GSK0660 and VP80 at 
different doses in HT-29 cells. Cells were transfected with luciferase construct carrying 3X PPRE and 
treated with 100-1000nM of GW501516 without or with the addition of various concentrations of GSK0660 
and VP80. An MTT assay was performed on cells 24h after initiating the treatment. MTT assay is a 
colorimetric assay for measuring the activity of enzymes that reduce MTT to formazan dye, giving a purple 
color in living cells as against dead cells. Thus, MTT assay gives a measure of the cytotoxicity due to the 
treatment with the ligands. The absorbance at O.D 550nm is inversely proportional to the cytotoxicity. The 
higher the absorbance the lesser the cytotoxicity and vice-versa. Data expressed are mean + SEM. Statistical 
analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison test 
(*Statistically significant at p<0.05; **= p<0.01; *** at p< 0.001 and ## at p<0.01). 
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These observations suggest that GSK0660 had higher inhibitory effect with lesser 

cytotoxicity. It was chosen as the best candidate to antagonize PPARβ mediated effects 

and was used at a concentration of 10µM for further studies. 

 

3.3.3. Generating lentivirus to mediate PPARβ silencing 

 
In the framework of identifying the irradiation effects mediated by PPARβ in the 

in-vitro conditions, we decided to use the lentivirus-based approach to knock down 

PPARβ in HT-29 cells. Although we had in the lab a lentivirus based vector construct 

carrying silencing sequence for PPARβ (pLVTHsi PPARβ) that recognize human and 

mouse PPARβ [Nadra et al., 2006], we had to spend considerable time standardizing the 

various steps in the production of the lentivirus. For this, we collaborated with the 

Transgenesis Core Facility (TCF) at EPFL to learn to produce and titrate the lentivirus 

efficiently. The pLVTH vector carries a marker gene (GFP) downstream of an internal 

EF1-α promoter allowing an easy detection (or selection by FACS) of infected cells. The 

vectors can be readily generated at quite high titers (more than a million particles per ml) 

by cotransfection into 293T cells together with the relevant packaging vectors, pCMV-

∆R8.74 and pMD2G-VSVG, encoding for the envelop and the packaging genes 

respectively. 

We first amplified the vector pLVTHsi PPARβ (for PPARβ knockdown), the 

control vector- pLVTHsi PPARβ ctrl along with pCMV-ΔR8.74 and pMD2G-VSVG. 

These vectors were used further to produce the lentivirus by transfecting cell lines having 

good transfection efficiency - 293T cells. In order to verify the efficiency of the pLVTHsi 

PPARβ lentivirus produced, the pSuper-siRNA vectors were initially transfected in 293T 

cells, along with vectors expressing our target gene (PPARβ) fused to green fluorescent 

protein (GFP). The biological titer of the lentivirus produced was then estimated by FACS 

analysis. Further, this lentivirus was tested in different concentrations in the HT-29 cell 

system in order to identify the appropriate Multiplicity of infection (MOI) of virus 

required to obtain the maximal silencing of our target gene. The knockdown efficiency 

was also tested at different time-points post infection to ascertain the desired silencing of 

our gene of interest.  
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Thus in collaboration with the Transgenesis Core Facility (TCF) at EPFL, we 

generated the first batch of the lentivirus pLVTHsi PPARβ (S) containing the sequence to 

silence PPARβ and its control pLVTHsi PPARβ ctrl (SC) with a titer of 1.85 x 106 TU/µl 

and 2.6 x 106 TU/µl respectively (Fig. 32).  

 

 

Fig. 32 | Flow cytometric analysis of Green fluorescent protein (GFP) in 293T cells.  

293T cells were infected with various dilutions (101, 10-1 to 10-4) of either lentivirus construct carrying si 
PPARβ(S) or si PPARβ ctrl (SC) with a GFP tag. 72h post-infection cells were fixed and analysed by Flow 
cytometry. Non-infected cells were used for gating. The cells were separated into two populations- the GFP 
positive and GFP negative cells. The percentage of GFP positive cells in each dilution was used to calculate 
the titer of the virus. Note that only dilutions yielding 1% to 20% GFP positives were used for titer 
calculations. 

 

 

We first determined the appropriate MOI of both S and SC in HT-29 cells by 

infecting the cells with different MOI (MOI 1, MOI 25, MOI 50, MOI 75 and MOI 100). 

The efficiency of infection was observed both by fluorescence microscopy (Fig. 33) and 

FACS for the reporter gene-green fluorescent protein (GFP), which is tagged with our 

gene of interest PPARβ (Fig. 34 a, b). The results are as summarized in Table-2.  
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MOI si PPARβ  (S) si PPARβ  Ctrl (SC) 

MOI 25 88 % 85.6% 

MOI 50 90.2% 89.9% 

MOI 75 93.6% 92.1% 

MOI 100 94.7% 93.4% 

 
Table- 2 | Multiplicity of infection (MOI) analysis by FACS. HT-29 cells were infected with various 
concentrations of either lentivirus construct carrying si PPARβ(S) or si PPARβ  ctrl (SC) with a GFP 
tag. 48h post-infection cells were fixed and analysed by Flow cytometry. Non-infected cells were used for 
gating. The cells were separated into two populations- the GFP positive and GFP negative cells. The 
percentage of GFP positive cells in each concentration was used to calculate the percentage infection.  
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Fig. 33 | Fluorescence microscopy pictures of HT-29 cells infected with lentivirus for either lentivirus 
construct carrying si PPARβ(S) or si PPARβ  ctrl (SC) with a GFP tag. Concentrations ranging from 
MOI 25 to MOI 100 of each type of virus were used to infect the cells and 48h post-infection cells were 
analysed by fluorescence microscopy. Non-infected cells were used as negative control. Scale bar: 100µm. 

 

 

 

 

 

 

 

 

 

 

 

 

siPPARβ siPPARβ ctrlMOI 50

siPPARβ siPPARβ ctrlMOI 75 siPPARβ siPPARβ CtrlMOI 100

siPPARβ siPPARβ ctrlMOI 25



	  
	   	   Chapter	  II:	  Results	  

	   74	  

 

 

Fig. 34 a | Multiplicity of infection (MOI) analysis by FACS. HT-29 cells were infected with various 
concentrations of lentivirus construct carrying si PPARβ  ctrl (SC) with a GFP tag [SC25, SC50, SC75, 
SC100]. 48h post-infection cells were fixed and analysed by Flow cytometry. Non-infected cells were used 
for gating. The cells were separated into two populations- the GFP positive and GFP negative cells. The 
percentage of GFP positive cells in each concentration was used to calculate the percentage infection.  
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Fig. 34 b | Multiplicity of infection (MOI) analysis by FACS. HT-29 cells were infected with various 
concentrations of lentivirus construct carrying SiPPARβ(S) with a GFP tag [S25, S50, S75, S100]. 48h 
post-infection cells were fixed and analysed by Flow cytometry. Non-infected cells were used for gating. 
The cells were separated into two populations- the GFP positive and GFP negative cells. The percentage of 
GFP positive cells in each concentration was used to calculate the percentage infection.  
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From the observations it was evident that both MOI 50 and 75 can effectively 

infect about 90% of the cells. Further, in order to confirm whether this MOI can efficiently 

inhibit PPARβ and its activity, we evaluated the relative levels of expression of PPARβ 

and PDK4 by qPCR analysis in response to MOI 50 (Fig. 35 a, b) and MOI 75 (Fig. 36 a, 

b) at 24, 36 and 48 hrs after infection.  

 

 

 

Fig. 35 a, b | Relative expression of (a) PPARβ  and (b) PDK4 after infection with S (si PPARβ) and SC 
(si PPARβ  ctrl) at MOI 50 and at three different timepoints - 24, 36, 48h post infection. HT-29 cells 
were infected with S (si PPARβ) and SC (si PPARβ ctrl) at MOI 50 and at 24, 36, and 48h post-infection, 
RNA was extracted from cells. Gene expression analysis was performed by SYBR green assay on PPARβ 
and PDK4. All samples were normalized using two housekeeping genes namely human eukaryotic 
translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Note that 
infection with S was compared with SC and infection with SC compared to non-infected (NI) to determine 
percentage significance. Data expressed are mean+/- SEM. Statistical analysis was performed by one-way 
ANOVA followed by Newman-Keuls multiple comparison test. (*Statistically significant at p<0.05, ** 
p<0.01 and *** p< 0.001 when compared to SC; ## Statistically significant at p<0.01and ### at p< 0.001 
when compared to NI. 

 

a. b.
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Fig. 36 a, b | Relative expression of (a) PPARβ  and (b) PDK4 after infection with S (si PPARβ) and SC 
(si PPARβ  ctrl) at MOI 75 and at 48 and 72h post infection. HT-29 cells were infected with S (si 
PPARβ) and SC (si PPARβ ctrl) at MOI 75 and at 48h and 72h post-infection, RNA was extracted from 
cells. Gene expression analysis was performed by SYBR green assay on PPARβ and PDK4. All samples 
were normalized using two housekeeping genes namely human eukaryotic translation elongation factor 1 
alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Note that infection with S was compared with 
SC and infection with SC compared to non-infected (NI) to determine percentage significance. Data 
expressed are mean+/- SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-
Keuls multiple comparison test. (**Statistically significant at p<0.01 and *** at p< 0.001 when compared to 
SC; # Statistically significant at p<0.05, ## at p<0.01 and ### at p< 0.001 when compared to NI). 

 

 

We also tested the effect of MOI 100 at 72 hrs post infection (Fig. 37) in order to 

check whether further better inhibition could be attained in comparison to MOI 75. But 

there was not much difference in the levels of inhibition of PPARβ by MOI 100 in 

comparison to MOI 75 at 72 h post-infection. 
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Fig. 37 | 

Relative 
expression of PPARβ  and PDK4 after infection with S (si PPARβ) and SC (si PPARβ  ctrl) at MOI 100 
and at - 72h post infection. HT-29 cells were infected with S (si PPARβ) and SC (si PPARβ ctrl) at MOI 
100 and at 72h post-infection, RNA was extracted from cells. Gene expression analysis was performed by 
SYBR green assay on PPARβ and PDK4. All samples were normalized using two housekeeping genes 
namely human eukaryotic translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta 
(hGusB). Note that infection with S was compared with SC and infection with SC compared to non-infected 
(NI) to determine percentage significance. Data expressed are mean+/- SEM. Statistical analysis was 
performed by one-way ANOVA followed by Newman-Keuls multiple comparison test. (***Statistically 
significant at p< 0.001 when compared to SC; ### Statistically significant at p< 0.001 when compared to 
NI). 

 
 

Of all the different MOI and different time-points post-infection, MOI 75 at 48 hrs 

post-infection was the most effective condition to silence PPARβ by 83% and was thus 

considered for further microarray studies. Paradoxically, PDK4 that we used a target gene 

of PPARβ and for which we expected a down-regulation parallel to that of PPARβ 

remained stably expressed, if not induced, upon lentivirus infection. This effect is likely 

due to the fact that PDK4 is an important enzyme in metabolism and is regulated by many 

other factors than PPARβ. The condition of lentivirus infection might therefore perturb the 

pathway to which PDK4 belongs, overriding a possible response generated by the lack of 

PPARβ. 

 

3.3.4. Irradiation experiments: fine-tuning the condition of cell 
irradiation 

 

To observe irradiation-mediated cell damage in HT-29, we performed a study to 

evaluate the effect of different doses of irradiation (ranging from 0-30 Gy) at different 

timepoints post-irradiation.  In order to confirm cell damage, we assessed apoptosis using 

Casapse- 3/7 as a marker for early apoptosis using the Caspase-Glo® 3/7 Assay kit 

(Promega). 
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The Caspase-Glo® 3/7 Assay kit provides a homogeneous luminescent assay that 

measures caspase-3/7 activities (see materials and methods). We used this Caspase assay 

at different time-points, i.e. 4h, 6h, and 24h post irradiation. As there were no signs of 

apoptosis at 4h post irradiation (data not shown), we decided to keep 6h and 24h time-

point post irradiation. 

We observed that at 6h post-irradiation (Fig. 38), there was significant increase in 

the Caspase-3/7 activity at doses starting from 10Gy till 30Gy, whereas at 6Gy it remained 

unaltered. As Caspase-3/7 is a marker of early apoptosis, this indicates that a dose of 10Gy 

could damage the cells sufficiently enough to initiate apoptosis as early as 6h post-

irradiation. 

 

Fig. 38 | Caspase-3/7 assay at 6h post-irradiation with different doses of irradiation. HT-29 cells were 
irradiated with different doses of irradiation ranging from 0-30Gy and sham-irradiated (ShIR) cells served as 
control. At 6h post-irradiation, all sets of cells were lysed and analysed using the Caspase- 3/7 assay kit. 
Luminescence emitted due to caspase-3/7 cleavage of the luminogenic substrate was measured for each dose 
at 6h post irradiation. Luminescence measured was proportional to the caspase activity present and the signal 
from no cell control was subtracted from the signal from the treated and untreated controls. The fold change 
values were calculated with Sham irradiated cells (ShIR) as control group for statistical calculations. Data 
expressed are mean + SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-
Keuls multiple comparison tests. (*Statistically significant at p<0.05 and ** p<0.01 when compared to sham 
ShIR). 

 

We also observed the effects of irradiation till 24h post-irradiation (Fig. 39). We 

could see significant apoptosis in cells irradiated with 10Gy and 30Gy, but the basal levels 
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of Caspase-3/7 activation in the control group was too low suggesting that a repair process 

might be already in progress to rescue the cells from the damage. 

 

 

Fig. 39 | Caspase-3/7 assay at 24h post-irradiation with different doses of irradiation. HT-29 cells were 
irradiated with different doses of irradiation ranging from 0-30Gy and sham-irradiated (ShIR) cells served as 
control. At 6h post-irradiation, all sets of cells were lysed and analysed using the Caspase- 3/7 assay kit. 
Luminescence emitted due to caspase-3/7 cleavage of the luminogenic substrate was measured for each dose 
at 24h post irradiation. Luminescence measured was proportional to the caspase activity present and the 
signal from no cell control was subtracted from the signal from the treated and untreated controls. The fold 
change values were calculated with Sham irradiated cells (Sh.I) as control group for statistical calculations. 
Data expressed are mean+/- SEM. Statistical analysis was performed by one-way ANOVA followed by 
Newman-Keuls multiple comparison test. (*Statistically significant at p<0.05 when compared to sham 
ShIR). 

 

 

3.3.5. Studies on cholesterol biosynthesis pathway using HT-
29 cell culture model 

 

In order to reconfirm our in-vivo observations and to decipher the molecular 

mechanism by which PPARβ contributes to the cell response to irradiation, and along the 

setup based on the results discussed above, we irradiated HT-29 cells at a dose of 10Gy. 

qPCR analyses of a set of genes of interest were then performed in samples retrieved at 

different time points, 4h, 24h, 48h and 72h. Sham-irradiated HT-29 cells served as control. 

The genes to be tested were selected based on their p-value from the microarray data of 

Federic Varnat. 
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We observed an upregulation at 24h post-irradiation of PDK1, a target gene of 

PPARβ, indicating that PPARβ is activated in this condition (Fig. 40). While FDFT1, LSS 

and MVD were found to be upregulated significantly in the scraped mucosa samples from 

PPARβ+/+ mouse intestine at 4hr post-irradiation, this response was delayed in HT-29 at 

24hr post irradiation, with increased expression of FDFT1 and LSS of the cholesterol 

biosynthetic pathway whereas MVD remained unaltered. At this time point also, the 

expression levels of PPARβ remain unaltered but the levels of caspase-8 (the effector 

caspase for apoptosis) were significantly upregulated.  

 

 
 
Fig. 40 | Effect of 10Gy irradiation on gene expression in HT-29 cells at different time-points (4, 24, 48 
and 72h) post- irradiation. HT-29 cells were irradiated with a dose of 10Gy and sham-irradiated (ShIR) 
cells served as control. At 4, 24, 48, and 72h post-irradiation, RNA was extracted from cells. Gene 
expression analysis was performed by SYBR green assay on the following genes - Farnesyl-diphosphate 
farnesyl transferase 1 (FDFT1), Lanosterol synthase (LSS), Mevalonate (diphospho) decarboxylase (MVD), 
Peroxisome proliferator-activated receptorβ (PPARβ), Pyruvate dehydrogenase kinase isozyme 1 (PDK1), 
Caspase8 (Casp8- effector capsase). All samples were normalized using two housekeeping genes namely 
human eukaryotic translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta 
(hGusB). Data expressed are mean + SEM. Statistical analysis was performed by one-way ANOVA 
followed by Newman-Keuls multiple comparison tests. (*Statistically significant at p<0.05, **at p<0.01 and 
*** at p< 0.001 in comparison to sham-irradiated (ShIR) cells). 
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3.4 Global gene expression analysis using microarray to 
identify the effect of irradiation at 10Gy. 
 

Microarray studies have been the method of choice in the recent years to evaluate 

the large-scale gene expression changes in tissues or cells in response to physical or 

chemical stimuli (DeRisi 1997; Axelson et al., 2007). A global gene expression analysis 

using microarray was thus performed to identify the effect of irradiation at 10Gy in an in-

vitro intestinal cell line model of HT-29. The experimental design was as follows. 

 

 

 

 

 

 

Fig. 41: Experimental design for microarray. Seven groups (A-G) were planned to evaluate the effect of 
10Gy irradiation on HT-29 cells at two different timepoints post-irradiation (6h and 24h) and also to explore 
the role of PPARβ by either silencing it using lentivirus or with PPARβ specific agonist (500nM 
GW501516) and antagonist (10µM GSK0660) treatment. Sham-irradiated group-A (Sh.ird) without any 
other treatment would serve as control for all six groups (B-G) of 10Gy-irradiation (10Gy) with various 
other treatments. Infection with si PPARβctrl (B) would serve as control for si PPARβ infection(C). Non-
infected group (D) would serve as control for infection with si PPARβctrl and si PPARβ(B, C). DMSO ctrl 
(G) would serve as control for both group-E: agonist (GW501516) and group-F: antagonist (GSK0660) 
treatment. 

 

 

According to the above-mentioned set-up, we performed the RNA extraction for 

each sample, followed by some qPCRs to assess the quality of the experiment and 

evaluate PPARβ silencing. Unfortunately, the results showed that PPARβ silencing was 

extremely mild, with an expression levels remaining at around 70% of the control infected 

cells. This led us to perform a series of tests to identify the cause of this problem. We 

finally could demonstrate that the quality of the virus preparation was responsible of this 

failure. Therefore, the following microarrays analyses were only performed on the set of 

conditions with no viral infection. 

 

 

 



	  
	   	   Chapter	  II:	  Results	  

	   83	  

	  

Fig. 42: Final modified experimental design used for the microarray analyses. Originally seven groups 
(Fig. 41, A-G) were planned to evaluate the effect of 10Gy irradiation on HT-29 cells at two different 
timepoints post-irradiation (6h and 24h). Of these two groups that were designed to explore the role of 
PPARβ by silencing it using lentivirus were eliminated due to mild silencing effects. Instead, we evaluated 
the role of PPARβ with PPARβ specific agonist (500nM GW501516) and antagonist (10µM GSK0660) 
treatment. Sham-irradiated group-A (Sh.ird) without any other treatment would serve as control for all four 
groups (D-G) of 10Gy-irradiation (10Gy) with various other treatments. DMSO ctrl (G) would serve as 
control for both group-E: agonist (GW501516) and group-F: antagonist (GSK0660) treatment. 

 

Using the microarray data, we first analyzed the expression profiles of HT-29 cells 

treated with 10Gy irradiation at 6h and 24h post irradiation, in comparison with that of 

control sham-irradiated cells, at the same time points post irradiation. It was observed that 

most genes that were differentially expressed show low fold-change. Hence, in the data 

shown below, we have not made any fold-change cut-offs, but have only kept those for 

which the p-value was significant. 

Clustering analysis of the microarray results was performed using ‘R’ for quality 

control (Fig. 43). The cluster analysis for all the 33,297 probesets on the chip groups the 

biological replicates together as expected. The timepoint effect, i.e. gene expression 

changes during the course of time from 6h to 24h were found to be the highest as observed 

by longer distance in the cluster map. The effect of irradiation i.e, gene expression 

modulated between the irradiated and the sham-irradiated group is seen to be prominent at 

24h post-irradiation as compared to the 6h post-irradiation, as observed by longer distance 

in the cluster map. This same pattern was observed for both the timepoint effect and 

irradiation effect when the cluster analysis was done for a small subset of 1000 most 

differentially expressed genes. As an effect of the irradiation upon treatment with the 

ligands, we see very few changes during the course of time from 6h to 24h but the effect is 

higher at 6h upon treatment with ligands in comparison to untreated group. 
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Fig. 43 | Cluster analysis of the gene expression datasets from microarray experiments showing 
clustering of the most differentially regulated genes with the different number of probesets (26890, 
5000) on the chip. Gene expression analysis was carried out on cRNA samples obtained from the various 
groups outlined in figure- 42 using Affymetrix Human Gene 1.0 ST arrays (Affymetrix, SC, USA). Gene 
expression was analysed using the software Expression Console and the data was submitted to one-way 
ANOVA with p< 0.05 considered significant. Clustering analysis of the data was performed using ‘R’ for 
quality control. Legends: Shird_6h and Shird_24h (Sham-irradiated at 6 and 24h post sham-irradiation; 
group- A), NI_6h and NI_24h (No treatment except 10Gy at 6 and 24h post- irradiation), GW_6h and 
GW_24h (PPARβ agonist GW501516 treatment at 6 and 24h post 10Gy irradiation), GSK_6h and GSK_24h 
(PPARβ antagonist GSK0660 treatment at 6 and 24h post 10Gy irradiation), DMSO_6h and DMSO_24h 
(DMSO vehicle control for agonist and antagonist treatment at 6 and 24h post 10Gy irradiation), A1, A2, A3 
were the three biological replicates for each group of sample. 
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2.4.4 Gene expression changes as an effect of 10Gy 
Irradiation in HT-29 cells  
 

From the analysis of the microarray data, as an effect of irradiation, we observed a 

total of 418 genes modulated at 6h and 1168 genes at 24h with a p-value cut-off of 0.05 

(Fig. 44). Of these, 144 genes were common to both time points.  

In our experiments, 10 Gy irradiation induced increase in expression levels of 

NFκB2, decrease of Cyclin B1 prominently and several other genes were regulated 

moderately at 6h post-irradiation (Table 3). We observed increase in the expression of the 

cyclin dependent kinase inhibitor CDKN2B/ p15, that forms a complex with CDK4/CDK6 

and inhibits the activation of the CDK kinases. This protein thus functions as a cell growth 

regulator that controls cell cycle G1 progression. It is believed to play a role in TGF-β 

induced growth inhibition. We did not observe the modulation of the most commonly 

upregulated p53 target gene – CDKN1A (p21/WAF1/Cip1), that acts as an inhibitor of the 

CDK2/CDK4 complex and thus regulates the cell cycle G1 progression in a p53 

dependent manner. Also, we did not observe the modulation of any other p53 dependent 

DNA damage response target genes like MDM2, Gadd45. Thus, this indicates a p53-

independent activation of the process of cellular repair.  

 

 

 

 

 

 

 

 

Fig. 44 | Venn diagram showing the most differentially regulated genes obtained in the microarray 
experiments between 10Gy irradiated and sham-irradiated groups at two different timepoints post 
irradiation. This comparison gives us information on expression of genes as an effect of irradiation. [Irr.6h= 
10Gy irradiated at 6h, sham.6h= sham-irradiated at 6h, Irr.24h= 10Gy irradiated at 24h, sham.24h= sham-
irradiated at 24h].  
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Table - 3 | The list of top 50 genes regulated as an effect of 10Gy irradiation in HT-29 cells at 6h post-
irradiation.  
 

Interestingly, the irradiation effects at 24h post irradiation were mainly targeted at 

the histone proteins (Table 4). This correlates with previous reports by Meador et al. 

ID FoldChange adj.p.val Gene.Symbol 
7930074 2.51 1.62E-06 NFKB2 
8125512 2.26 8.38E-05 TAP1 
8178867 2.26 8.38E-05 TAP1 
8180061 2.26 8.38E-05 TAP1 
8124650 2.95 8.38E-05 UBD 
8178295 2.82 9.27E-05 UBD 
7992828 2.36 0.000145999 IL32 
8101126 2.68 0.000182832 CXCL10 
8161610 2.09 0.000246076 C9orf71 
8029580 2.36 0.000246076 RELB 
7958895 1.61 0.000320707 OAS3 
7900699 -1.74 0.000444479 CDC20 
8046861 1.55 0.000444479 ITGAV 
7957850 -2.05 0.000444479 GAS2L3 
8056361 -1.62 0.000467284 --- 
8082100 1.62 0.000589789 PARP14 
8112139 1.40 0.000700155 IL6ST 
7926239 1.53 0.000748975 OPTN 
8041170 -2.06 0.000883865 --- 
8178977 1.41 0.000883865 TAPBP 
8004167 -1.75 0.000883865 FAM64A 
8006531 1.60 0.000943684 SLFN5 
8115147 1.42 0.00096581 CD74 
8122265 1.80 0.001056807 TNFAIP3 
8084524 -1.52 0.001056807 EPHB3 
8086125 1.58 0.001056807 TRANK1 
8180166 1.40 0.001056807 TAPBP 
8173444 1.69 0.001301434 IL2RG 
8150889 1.52 0.001301434 SDR16C5 
8112260 -1.45 0.001343433 DEPDC1B 
8105828 -1.69 0.00138559 CCNB1 
8143327 1.42 0.001402071 PARP12 
7983969 -1.46 0.001413742 CCNB2 
8021653 1.41 0.001466214 SERPINB8 
8125713 1.40 0.001471355 TAPBP 
7977046 2.63 0.001482346 TNFAIP2 
8040712 -1.55 0.00148968 CENPA 
8095680 1.94 0.001497825 IL8 
8077786 1.41 0.001509738 IRAK2 
8108301 -2.28 0.001509738 KIF20A 
8160452 1.39 0.001509738 CDKN2B 
8152719 -1.64 0.00164887 ANXA13 
8140967 1.47 0.001935472 SAMD9 
8066247 -1.36 0.001980552 LOC388796 
7952601 1.53 0.001983989 ETS1 
8096635 1.34 0.002025303 NFKB1 
8010260 -1.30 0.002200225 BIRC5 
8038725 1.42 0.002200225 KLK10 
7909146 -1.80 0.002200225 FAM72D 
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(2011) where they confirm that both high- and low-Linear energy transfer (LET) radiation 

exposure negatively regulate histone gene expression in human lymphoblastoid and colon 

cancer cell lines independent of p53 status. 

 

 

 

 

 

 

 

 

 
Table- 4 | The list of top 20 genes regulated as an effect of 10Gy irradiation in HT-29 cells at 24h post-
irradiation. Genes highlighted indicate key genes coding for various histone proteins and cell cycle 
regulatory proteins (For details, see text). 

 

 

3.4.2. GeneGo pathway analysis of the microarray data 

 

Analysis of the microarray data was also done using the GeneGO Metacore 

pathway analysis software to determine the cellular pathways affected upon Irradiation. 

MetaCore™ is an integrated knowledge database and software suite for pathway analysis 

of experimental data and gene lists generated by various studies like microarray, sequence 

based gene expression studies, etc. It is based on a proprietary manually curated database 

of human protein-protein, protein-DNA and protein compound interactions, metabolic and 

signaling pathways for human, mouse and rat, supported by proprietary ontologies and 

controlled vocabulary (http://www.genego.com/metacore.php). 

The GeneGO analysis of the top-10 modulated canonical pathways throughout the 

entire dataset indicates that the most modulated probe sets belong to cell cycle (metaphase 

ID FoldChange adj.p.val Gene.Symbol 
8117580 -1.67 0.0038 HIST1H2AI  
8124510 -1.68 0.0038 HIST1H2BL  
8085350 -1.37 0.0038 C3orf31  
8096335 2.04 0.0038 HERC6  
8140967 1.96 0.0038 SAMD9  
7929052 3.08 0.0038 IFIT3  
8124430 -1.68 0.0038 HIST1H1D  
8124524 -2.00 0.0038 HIST1H2AK  
8050537 1.72 0.0038 MATN3  
8117589 -1.49 0.0040 HIST1H3H  
8096301 -1.72 0.0040 SPP1  
8103601 2.11 0.0040 DDX60L  
7929047 3.55 0.0041 IFIT2  
8124397 -1.52 0.0044 HIST1H1C  
7961413 1.57 0.0044 C12orf36  
7927710 1.52 0.0044 CDK1  
8103563 2.91 0.0045 DDX60  
8001133 1.46 0.0045 SHCBP1  
8048926 1.88 0.0046 SP140L  
8161892 -1.60 0.0046 GNA14  
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checkpoint, role of APC in cell cycle regulation), apoptosis and survival (anti-apoptotic 

TNFs/NF-κB/Bcl-2 pathway, APRIL and BAFF signaling), immune response (IL-2 

activation and signaling pathway, signaling pathway mediated by IL-6 and IL-1) (Fig. 45). 

Thus, it gives us a clear picture that the irradiation effects are mainly targeting important 

cellular processes such as cell cycle checkpoint regulation, immune response and 

apoptosis and survival pathways.  
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Fig. 45 | GeneGo analysis of the top 10 modulated canonical pathways throughout the entire dataset 
across two different timepoints - 6h and 24h post irradiation. The first 10 Canonical pathways generating 
significant score are displayed as a bar chart along the Y-axis. The X-axis represents the score; the taller the 
bar, the better the score for the indicated pathway. 

 

 

3.4.3. Gene expression changes as an effect of treatment with 
agonist of PPARβ 

 

To identify the role of PPARβ in irradiation-mediated effects, we pre-treated the 

cells with PPARβ agonist (GW) and antagonist (GSK) at the previously determined dose 

at which they showed optimal activity in this cell type. As an effect of the agonist (GW) 

treatment, we observed a total of 3 genes modulated at 6h and 13 genes at 24h with a p-

value cut-off of 0.05 (Fig. 46A).  
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Fig. 46 | Venn diagram showing the most differentially regulated genes between 10Gy-irradiated 
pretreated with PPARβ  ligands - agonist (GW), antagonist (GSK), and 10Gy-irradiated DMSO 
treated control group. A: With a false discovery rate (FDR) of 5% and B: with a FDR of 10%. This 
comparison gives us information on expression pattern of genes upon ligand treatment and irradiation. 

 

 

The genes that were modulated at 6h are PDK4, SLC25A20, and ACADVL. PDK4 

showed three fold increase at 6h post-irradiation. This upregulation of PDK4 (pyruvate 

dehydrogenase kinase, isoenzyme 4) - a known PPARβ target gene indicates that the 

ligand treatment in this cell type and experiment is functional. SLC25A20 - solute carrier 

family 25 (carnitine/acylcarnitine translocase), member 20 is a mitochondrial-membrane 

carrier protein that mediates the transport of acylcarnitines into mitochondrial matrix for 

their oxidation by the mitochondrial fatty acid-oxidation pathway. ACADVL (acyl-CoA 

dehydrogenase, very long chain) is transported to the inner mitochondrial membrane 
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where it catalyzes the first step of the mitochondrial fatty acid beta-oxidation pathway. It 

is specific to long-chain and very-long-chain fatty acids.  

At 24h, we observed an increase in the expression of known PPARβ target genes 

such as PDK4 and ANGPTL4, PLIN2/ADRP and HMGCS2 (Table-5). PDK4 and 

ANGPTL4 increased to five and three fold respectively at 24h post-irradiation. The 

expression of ADRP/PLIN2 and HMGCS2 were increased 2.5 and 2 fold respectively at 

24h post-irradiation. The top modulated genes at both 6h and 24h post irradiation 

belonged to various metabolic pathways like lipid metabolism, mitochondrial long chain 

fatty acid beta-oxidation, mitochondrial unsaturated fatty acid beta-oxidation, ketone 

bodies biosynthesis and metabolism (Fig. 47). 

 

 

 

 

 
 

 
 
 
 

Table-5 | The list of top 15 genes regulated as an effect of agonist pre-treatment followed by 10Gy 
irradiation in HT-29 cells at 24h post-irradiation. The genes have been selected based on the cut-off of 
p-value at p < 0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ID FoldChange adj.P.Val Gene.Symbol 
8141094 5.07 2.16E-08 PDK4  
7949971 1.88 4.61E-06 CPT1A  
8160297 2.73 0.000194207 PLIN2  
8025402 2.70 0.000194207 ANGPTL4  
8087224 1.88 0.000194207 SLC25A20  
7939298 1.29 0.008564907 CAT  
7919055 1.86 0.009225528 HMGCS2  
8004271 1.40 0.009225528 ACADVL  
8103951 1.28 0.013944265 ACSL1  
8160284 1.32 0.035157544 HAUS6  
7940341 1.25 0.035157544 MS4A10  
8023261 1.29 0.039168928 ACAA2  
8092021 1.47 0.039168928 LRRC31  
7960730 1.21 0.050480634 LPCAT3  
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Fig. 47 | GeneGo analysis of the top 10 modulated canonical pathways upon agonist (GW) treatment 
throughout the entire dataset across two different timepoints - 6h and 24h post irradiation. The first 10 
Canonical pathways generating significant score are displayed as a bar chart along the Y-axis. The X-axis 
represents the score; the taller the bar, the better the score for the indicated pathway. 
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3.4.4. Gene expression changes as an effect of treatment with 
antagonist of PPARβ  

 

As an effect of the antagonist (GSK) treatment, with a p-value cutoff of 0.05, only 

2 genes were modulated at 6h. At 24h, 23 genes were modulated (Fig. 48A), among which 

the 2 genes [(LRRRC31-Leucine rich repeat containing 31) and (AKR1B10-Aldo-keto 

reductase family 1, member B10)] found in the 6h time-point. The LRRC31-Leucine rich 

repeat containing 31 belongs to the family of proteins containinf the LRR motif. LRR is a 

20-29 residue sequence motif present in many proteins that participate in protein-protein 

interactions and have different functions and cellular locations. LRRs correspond to 

structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an 

alpha helix. AKR1B10 (aldo-keto reductase family 1, member B10 (aldose reductase) is a 

member of the aldo/keto reductase superfamily and can efficiently reduce aliphatic and 

aromatic aldehydes. There is data from literature that suggest that AKR1B10 affects cell 

survival through modulating lipid synthesis, mitochondrial function, and oxidative status, 

as well as carbonyl levels, thereby being an important cell survival protein. 

At 24h post irradiation, we found the androstenedione and testosterone 

metabolism, estradiol metabolism and cortisone biosynthesis and metabolism, tyrosine 

metabolism pathways being modulated (Fig. 48). With a very strict p-value cut-off of 

0.05, we found only 23 genes modulated (Table-6) and thus we tested with a higher p-

value cut-off of 0.1 (Fig. 48B) and still we found very few genes modulated upon 

antagonist treatments. The GeneGo pathway analysis of the microarray data gave us a 

clear picture that the antagonist treatments mainly targeted the important metabolic 

pathways at 6h and at 24h post irradiation. 
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Table - 6 | The list of top genes regulated as an effect of antagonist pre-treatment followed by 10Gy 
irradiation in HT-29 cells at 24h post-irradiation. The genes have been selected based on the cut-off of 
p-value at p < 0.05. 

 

 

 

 

 

 

 

 

ID FoldChange adj.P.Val Gene.Symbol 
8136336 1.55 0.002 AKR1B10 
8096116 1.45 0.004 AGPAT9 
8124707 1.42 0.007 TRIM31 
7925929 1.33 0.008 AKR1C3 
8115397 -1.34 0.008 C5orf4 
8179617 1.41 0.008 TRIM31 
8005475 1.28 0.008 TRIM16L 
8178330 1.41 0.010 TRIM31 
7958174 1.23 0.015 TXNRD1 
8172204 1.33 0.015 MAOB 
7931832 1.58 0.015 AKR1C2 
8171435 1.34 0.015 PIR 
7955297 -1.32 0.017 AQP5 
8127158 1.37 0.017 GCLC 
8049349 1.39 0.017 UGT1A1 
7987565 -1.35 0.019 PPP1R14D 
8098246 1.48 0.023 ANXA10 
8013384 1.45 0.023 ALDH3A1 
8021584 1.31 0.026 SERPINB5 
7929388 1.41 0.030 PLCE1 
8140984 -1.53 0.030 HEPACAM2 
8101675 1.37 0.034 ABCG2 
8138466 -1.24 0.040 MACC1 
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Fig. 48 | GeneGo analysis of the top 10 modulated canonical pathways upon antagonist (GSK) 
treatment throughout the entire dataset across two different timepoints - 6h and 24h post irradiation. 
The first 10 Canonical pathways generating significant score are displayed as a bar chart along the Y-axis. 
The X-axis represents the score; the taller the bar, the better the score for the indicated pathway. 
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3.4.5. Validation of the genes of the microarray data by Q-
PCR 

 

We performed Q-PCR on RNA samples from HT-29 cells irradiated at 10Gy with 

control non-irradiated cells and we observed increase in the expression of the 

inflammatory marker NFκB2 at 6h post irradiation and decrease at 24h post irradiation 

(Fig. 49). On the other hand, we observed decrease in the expression of the CCNB1 at 6h 

post irradiation and increase at 24h post irradiation. This data correlates with the data 

obtained by microarray experiments.  

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 49 | Relative expression levels of NFκB2 and CCNB1 as analysed by Q-PCR at two different 
timepoints - 6h and 24h post 10Gy irradiation compared with sham-irradiated controls. HT-29 cells 
were irradiated with a dose of 10Gy and sham-irradiated (Sh.ird) cells served as control. At 6 and 24h post-
irradiation, RNA was extracted from cells. Gene expression analysis was performed by SYBR green assay 
on the following genes - nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (NFκB2) and 
cyclin B1 (CCNB1). All samples were normalized using two housekeeping genes namely human eukaryotic 
translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Data expressed 
are mean + SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls 
multiple comparison tests. (*** Statistically significant at p< 0.001 in comparison to sham-irradiated (Sh.ird) 
cells). 
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3.5 Clonogenic survival assay in intestinal cell lines 
 

The little effect of PPARβ ligands in modifying the cellular responses to 

irradiation was quite unexpected and in contradiction with the severe damages seen in 

PPARβ-/- mice at 3.5 days post-irradiation. We thus looked for more sensitive means to 

assess the possible activity of PPARβ ligand in shaping cell radiosensitivity. In the field of 

radiobiology, clonogenic assays are considered gold standards to determine the cytotoxic 

effect of radiotherapy using ionizing radiations and chemotherapy using several chemical 

agents and also the latest intervention of dual treatments of chemo-radiotherapy. Thus 

determining the clone forming ability of these cells upon irradiation and subsequently 

attempting to modulate this clonogenic capacity and thus a modulation of their intrinsic 

radiosensitivities using pretreatments with drugs (ligands for PPARβ in this case) would 

be a promising technique for searching new therapeutic interventions involving chemo-

radiotherapy. 

The intrinsic radiosensitivity of the two colorectal cell lines, HT-29 and HCT-116 

was determined by the colony-forming assay. The two cell lines mentioned above have 

differences in their p53 status and hence considered to have different radioresistance. HT-

29 with null p53 has previously been shown to be more radioresistant than HCT-116 with 

a functional p53 (Williams et al., 2008). 

 We tested the survival capacity of these two intestinal cell lines on exposure to 

different doses of gamma-irradiation ranging from 0-10Gy. In order to determine proper 

plating efficiency two different protocols were initially tested. In the first, cells were first 

irradiated and then seeded for the colony-forming assay. The second protocol involved 

irradiation of the cells after they were seeded and continued for survival assay (Williams 

et al., 2008). The cells responded better in terms of plating efficiency when they were 

irradiated after being seeded (data not shown). Hence, this protocol was used for further 

set of experiments (Pomp et al., 1996; Franken et al., 2006). 

 On exposure to different doses of gamma-irradiation ranging from 0-10 Gy, it was 

evident that HCT 116 was a sensitive cell line showing a survival fraction of only 50% at 

a dose level of 2Gy, whereas HT-29 showed 70% survival at the same dose (Fig. 50). At 

4Gy, HCT116 showed very low survivability (15%) in comparison to HT29 that had close 

to 40% survival fraction at this dose. More importantly HT29 cells could survive 

maximally till 6Gy though with a very low survival fraction (14%) whereas, HCT-116 
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cells were unable to survive at all at this high dose indicating their sensitivity towards 

irradiation. These results are in accordance with previous findings reporting enhanced 

radiosensitivity in HCT in comparison to HT-29 (Williams et al., 2008). 

We then tested if pretreatment with PPARβ agonist or antagonist could promote 

survival of HT-29 and HCT cell types upon challenge with irradiation and thus a 

modulation of their intrinsic radiosensitivities. 

To test this hypothesis, we pretreated the two cell types with the previously validated 

doses of the agonist and the antagonist and then exposed them to different doses of 

gamma-irradiation ranging from 0-10 Gy. 

  It was clearly evident that the ligand treatments (both agonist and the antagonist) 

did not bring much expected differences in the radiosensitivity of HCT 116, a sensitive 

cell line that showed a survival fraction of only 58% at a dose level of 2Gy (Fig. 51), 

which is very similar to the DMSO control group. On the other hand HT-29 showed a 

74% survival at a dose level of 2Gy that is quite comparable to the DMSO control group. 

This similar pattern was observed in the two cell types at the several different 

doses tested suggesting clearly that the ligands for PPARβ had little effects in modulating 

the radiosensitivity of the two cell types. In addition, no conclusion can be drawn from 

their p53 status as they likely diverge in many different aspects apart from their p53 status. 
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Fig. 50 | Survival curves for HT-29 (dashed line) and HCT-116 (continuous line) cells irradiated with 
graded doses (0- 10Gy) of gamma rays. The letters R (resistant), S (Sensitive) refers to the radiosensitivity 
group to which these cell lines belong as defined by Williams et al. (2007). HT-29 and HCT-116 single cell 
suspensions were seeded at very low densities and cells were irradiated with graded doses (0-10Gy) after 
overnight incubation. After irradiation, HCT-116 cells were cultured for 8 days and HT-29 for 12 days to 
form colonies. At the end of this period, cells were fixed and stained and the colonies formed were counted. 
Colonies with less than 50 cells were not counted. Colonies counted were used to arrive at percentage 
survival using formula described. (See Materials and Methods). Data expressed are mean + SEM. Means at 
each point represent 6 replicates from two independent experiments and the error bars represent the standard 
error of the mean when they are larger than the symbol.  
 
 

 
Fig. 51 | Comparison of changes in percentage survival as an effect of pretreatment with ligands for 
PPARβ  in HCT-116 and HT-29 cells after irradiation with graded doses of gamma rays. HT-29 and 
HCT-116 single cell suspensions were seeded at very low densities in media with agonist (GW) and 
antagonist (GSK) for PPARβ, with DMSO treated and untreated cells serving as control. Cells were 
irradiated with graded doses (0-10Gy) after overnight incubation. After irradiation, HCT-116 cells were 
cultured for 8 days and HT-29 for 12 days with or without GW, GSK, and DMSO to form colonies. At the 
end of this period, cells were fixed and stained and the colonies formed were counted. Colonies with less 
than 50 cells were not counted. Colonies counted were used to arrive at percentage survival using formula 
described. (See Materials and Methods). Data expressed are mean + SEM.The slopes represent the 
treatments with irradiation and either the PPARβ agonist (GW), antagonist (GSK) or the vehicle control 
(DMSO). Each data point represents the mean of two independent experiments and the error bars represent 
the standard error of the mean when they are larger than the symbol. 
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3.6 Role of PPARβ in H2O2 mediated damage in 
intestinal cell lines 

 

The lack of activity of PPARβ in radiosensitization was unexpected for two main 

reasons. First, the observations in vivo clearly showed that PPARβ null mice are more 

severely affected by irradiation than their WT counterpart. Second, our group had 

previously demonstrated in two different models the important role of PPARβ in cell 

survival. In a first instance, PPARβ promotes keratinocyte survival in the context of 

inflammation (Di-Poï, et al., 2002). Even more dramatic is the protection conferred by 

PPARβ to kidney epithelial cells in the context of acute ischemic renal failure. This was 

demonstrated in vivo, by performing acute renal ischemia in PPARβ null mice and 

PPARβ+/+ mice, pretreated or not with a PPARβ agonist (Letavernier et al., 2005). Along 

this study, in vitro tests demonstrated again the pro-survival activity of PPARβ agonist on 

kidney epithelial cells exposed to high doses of H2O2.  

Previously, it has been reported that irradiation results in an oxidative stress by the 

generation of reactive oxygen metabolites, which have been implicated in causing 

epithelial cell injury.  Watson et al., 1994 have generated a model of oxidant injury using 

the intestinal epithelial cells HT-29 and treating them with graded concentrations of H2O2. 

Therefore we tested the role of PPARβ in this model of oxidant injury induced by the 

production of reactive oxygen metabolites by administration of H2O2 to in the two 

intestinal cell lines, HT-29 and HCT-116.  

Graded concentrations of hydrogen peroxide (0.1mM-5mM) were administered to 

both these cell lines and the extent of damage was characterized by MTT test. The MTT 

test is a validated assay for cytotoxicity. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, a yellow tetrazole) measures the mitochondrial 

dehydogenase activity as it is reduced to purple formazan in living cells. The amount of 

purple formazan produced by cells treated with an agent (in this case H2O2) is compared 

with the amount of formazan produced by untreated control cells, thus giving an index of 

the effectiveness of the agent in causing death, or changing metabolism of cells, that can 

be deduced through the production of a dose-response curve. In our experiments, we 

measured the O.D of the purple formazon product formed and normalized it with the 

untreated cells and correlated it to the cell survivability upon treatment with H2O2. 
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In HT-29 cells, we observed that H2O2 dose dependently decreased the 

survivability of the cells, with 5mM H2O2 showing approximately 50% survivability (Fig. 

52a). However, on pre-treatment with PPARβ agonist (GW), we did not observe any 

significant change in the survivability percentage of the cells (Fig. 52b).  

Interestingly, HCT cells had a survivability of only around 25% at the highest dose, 

much less than that observed in HT-29 at the same concentration of H2O2 (Fig. 53a). We 

also observed a significant increase, ~ 50% in the percentage of survivability of these HCT 

cells on pre-treatment with PPARβ agonist (GW), when compared to the H2O2 treated 

cells (Fig. 53b).  

 

 
Fig. 52 | Assay of cell survivability with MTT test after treatment of HT-29 cells with H2O2.  
HT-29 cells untreated or pretreated with PPARβ agonist (GW501516) for 24h were treated with graded 
doses of H2O2 (100µM- 5mM) for 1h after which an MTT assay was performed. The absorbance at O.D 
550nm is inversely proportional to the cytotoxicity. The absorbance values obtained for untreated cells (φ) 
were used as control and all data were normalised to control to obtain percentage survival. 52a: Cell 
survivability upon different doses of H2O2 in comparison to untreated cells. 52b: Cell survivability upon 
treatment with PPARβ agonist (GW) or the vehicle control DMSO. Data presented represent data from three 
independent experiments. Data expressed are mean + SEM. Statistical analysis was performed by one-way 
ANOVA followed by Dunnett’s multiple comparison tests. (* Statistically significant at p< 0.05, ** p< 0.01 
and *** p<0.001 when compared to untreated cells). 
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Fig. 53 | Assay of cell survivability with MTT test after treatment of HCT cells with H2O2. HCT-116 
cells untreated or pretreated with PPARβ agonist (GW501516) for 24h were treated with graded doses of 
H2O2 (100µM- 5mM) for 1h after which an MTT assay was performed. The absorbance at O.D 550nm is 
inversely proportional to the cytotoxicity. The absorbance values obtained for untreated cells (φ) were used 
as control and all data were normalised to control to obtain percentage survival. 53a: Cell survivability upon 
different doses of H2O2 in comparison to no treatment (φ). 53b: Cell survivability upon treatment with 
PPARβ agonist (GW) or the vehicle control DMSO. Data expressed are mean + SEM. Statistical analysis 
was performed by one-way ANOVA followed by Dunnett’s multiple comparison tests. (* Statistically 
significant at p< 0.05, and ** p< 0.01 when compared to untreated cells). 
 

 
In the protective function of PPARβ in the skin wound healing model (Di Poi et 

al., 2003), PPARβ acts in response to inflammatory signals by activation of Akt1 pathway 

that increases the survival of keratinocytes. Also, it has been shown that PPARβ plays a 

protective role in a renal ischemia/reperfusion model by activating the Akt pathway 

(Letavernier et al., 2005). 

In order to test if HT-29 cells are resistant to oxidative stress induced by H2O2 and 

hence to radiotherapy as well, we checked the levels of activation of PI3kinase/Akt 

signaling pathway. We tested for p-Akt levels and found that upon 5mM H2O2 treatment, 

Akt was phosphorylated at Ser473 and this phosphorylation was reduced upon GW pre-

treatment (Fig. 54 a, b).  
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Fig. 54 | Akt1 phosphorylation and the role of PPARβ  in H2O2 mediated stress response. HT-29 cells 
untreated or pretreated with PPARβ agonist (GW501516) for 24h were then treated with 5mM H2O2 for 1h 
after which total cellular proteins were isolated from these cells. PPARβ agonist (GW) or DMSO as vehicle 
for GW treatment was diluted in serum free media (SFM) and hence there were two sets of control cells. 
One set consisting of cells treated without 10% serum in media that served as control for treatment with GW 
and cells treated with serum media as control for SFM. (a) Equal concentration (20µg) of cellular proteins 
from various groups was analysed for Akt1 and phospho-Akt1 expression by western blot. (b) Bands 
obtained by Western blot for Phospho- Akt1 normalized to Akt-1 [Quantity One 1-D software analysis (Bio-
Rad)]. Data represent the mean ± SEM of two independent experiments. 
 
 

Thus in our hands, we do not see phosphorylation of Akt1 in untreated HT-29 cells 

but we see phosphorylation of Akt1 upon H2O2 treatment. 
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DISCUSSION 
 

 Radiotherapy for cancers can affect organs in the vicinity of the tissue affected. 

Small intestine has the highest turnover rate in terms of cell proliferation and 

differentiation and thus is one of the key radiosensitive organs of the abdomen. Studies 

have highlighted the importance of PPARβ as therapeutic target for gastrointestinal 

complications (He et al., 1999). However, the role of PPARβ in intestinal damage after 

radiation exposure has not been deciphered so far. In the present study, we tried to 

elucidate the mechanism through which PPARβ might influence events post irradiation. 

Both, in vitro and in vivo approaches were utilized to confirm the potential effects of 

PPARβ activation in intestinal cells in response to irradiation. When PPARβ-/- mice were 

exposed to whole-body irradiation, we observed that irradiation aggravated mesenchymal 

cell death in duodenum of PPARβ-/- compared to the PPARβ+/+ mice and also defect in the 

adhesion between epithelia and mesenchyme indicating the involvement of PPARβ in 

irradiation-mediated intestinal damage. Microarray analysis of PPARβ+/+ and PPARβ-/- 

mice showed downregulation of the entire set of genes involved in the cholesterol 

biosynthesis pathway after irradiation in PPARβ-/- mice when compared to the PPARβ+/+. 

 To confirm these observations, we established an in vitro model system in HT-29 

cell lines to evaluate the effect of PPARβ specific ligand post irradiation. Upon irradiation, 

we observed changes in the expression levels of genes involved in the cell cycle regulation 

through microarray analysis, but with ligand treatment we failed to observe any 

differences between the agonist treated and the vehicle treated cells post irradiation. On 

treatment with PPARβ agonist, we observed upregulation of its target genes and genes 

involved in lipid metabolism and fatty acid oxidation for which the role of PPARβ has 

already been established.  

 We also tested if PPARβ activation can alter the radiosensitivity of the intestinal 

cells in both radioresistant and radiosensitive cell lines, but did not observe any significant 

difference with PPARβ activation indicating that it is not involved in the radiosensitization 

mechanism.  
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1. The late effects observed in gamma-irradiated 
PPARβ -/- mice 
 

1.1 Alteration of the mesenchymal compartment  
 

Previous observations from our lab has revealed a delay in the regenerative 

proliferation in the small intestine and the colon of the PPARβ-/- mice on exposure to 

irradiation when compared to the wild type counterpart at 3.5d post-irradiation. This was 

attributed, at least in part, to a significant increase in the apoptotic bodies observed in the 

crypts of the PPARβ-/- mice in comparison to the PPARβ+/+ at 4h post-irradiation. This 

increased apoptosis was observed in the cell position 4 (position of intestinal stem cells) 

from the bottom of the crypts that indicate that the delay in the regenerative proliferation 

observed at 3.5 d post-irradiation might be partly due to an increased apoptosis in the stem 

cell compartment (i.e, immediate effects).  

At 8d post-irradiation, the observed phenotype was a reduction in the 

mesenchymal cells in PPARβ-/- mice. This could arise from a differential rate of cell death 

or cell renewal in the two compartments of epithelia and the mesenchyme that occurred at 

an early time point after irradiation, i.e., 3.5d. Observations from our in-vivo studies 

indicate increased apoptosis of not only the epithelial cells but also the mesenchymal cells 

occupying the intra-villus region of the small intestines of PPARβ-/- mice at 3.5 and 8 days 

post-irradiation respectively. The mesenchymal cells in PPARβ-/- mice are more sensitive 

to irradiation than the epithelia as evident from Tunel assay and thus responds stronger to 

the damaging effects of irradiation than the epithelia.  
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1.2 Alteration of the extra-cellular matrix of the 
mesenchymal compartment 
 
We also observed detachment of the mesenchymal layer from the epithelial layer 

in the PPARβ-/- mice, indicative of weak ECM. Literature supports the role of Ihh and 

Foxf genes as critical regulators of epithelial-mesenchymal interactions and extracellular 

matrix production respectively (Ormestad et al., 2005; Van Dop et al., 2010). Deletion of 

the intestinal epithelial Ihh has been shown to result in the loss of the muscularis mucosae, 

deterioration of the ECM, and reductions in numbers of the crypt myofibroblasts hence 

leading to the disruption of the intestinal mesenchymal architecture (Kosinski et al., 2010).  

Further, Foxf2 mutants result in striking deficiency of fibrillar (type I) as well as 

sheet-forming (type IV) collagens throughout the intestine (Ormestad et al., 2005). They 

also reported that in these mutants the basal laminae surrounding smooth muscle cells as 

well as the basement membrane underneath the epithelium were indistinct and frequently 

replaced by gaps of extracellular space and mesodermal cells of the colon had poorly 

developed endoplasmic reticulum (Kosinski et al., 2010).  

Earlier from our group a role of PPARβ in the proper organization of the secretory 

pathway of the paneth cells has been shown as the PPARβ-/- mice had less compact 

endoplasmic reticulum in the intestinal cells, suggesting a role in the differentiation of the 

paneth cells (Varnat et al, 2006). In that study it was identified that Ihh is negatively 

controlled by PPARβ in the small intestine as its expression was significantly higher in the 

PPARβ-/- than the PPARβ+/+ mice with a corresponding increase in the expression of 

BMP-4, a well established target of the hedgehog signaling. But these observations were 

made without any irradiation challenge to the mice and hence, it will be difficult to 

speculate the role of any of these genes, if any, in our present context. Thus the 

mechanism behind the phenotype observed in PPARβ-/- mice showing damage in the 

mesenchymal ECM on irradiation exposure needs further elucidation. 
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1.3 The epithelial-mesenchymal cross-talk   
 

One of the key question raised for the delayed effects seen in the mesenchymal 

compartment in irradiated PPARβ-/- mice is whether this was a cell autonomous effect or 

was it due to a defective crosstalk between epithelia – mesenchyme. In other words, what 

is the source of the signals that cause these delayed effects? 

Analysis of the results from the PPARβ villin-cre conditional KO mice at 8 days 

post-irradiation show that the villin Cre+ mice, i.e. with a deletion of PPARβ alleles 

restricted to the epithelial cells, have the similar kind of defect like that of the PPARβ-/- 

mice with detachment of the mesenchyme from the basement membrane and separation 

from epithelia and reduction in the number of mesenchymal cells. The PPARβ L2/L2 

control group does not show any defect. Albeit the Villin Cre- group also shows some 

damages, it was not seen in all animals and thus is not fully penetrant unlike the Villin 

Cre+. Thus we can speculate that PPARβ in the epithelia is essential for the process of 

healing in the absence of which is there is a defect. It is therefore interesting to understand 

the mechanisms by which PPARβ in the epithelia mediates survival signal for the recovery 

of both the epithelia and the mesenchyme.  

 

1.4 The unexplored role of the endothelial 
microvasculature 

 

The intra-villus region is made up of mesenchymal cells as well as endothelial 

microvasculature. According to a previous report (Paris et al., 2001) endothelial vascular 

damage precedes the epithelial damage and it is the earliest event even prior to the crypt 

damage at 4-6h post irradiation. This signifies endothelial dysfunctions to be one of the 

important factors contributing to epithelial lethality. Moreover, microvascular function 

regulates expression of radiation-induced crypt stem cell clonogenic alteration (Maj, et al., 

2003). The mechanism for this involves the inhibition of radiation-induced crypt shrinkage 

but not the enhancement of crypt regeneration. These studies provide evidence that 

microvascular endothelial apoptosis is ordered upstream of the mitotic dysfunction of the 

clonogenic compartment that occurs during the early phase of radiation-induced damage 

to the intestines. As the microvascular endothelium and the mesenchymal cells are placed 

spatially in the same intravillus mesenchymal compartment, thus we could speculate that 
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the mesenchymal damage like the microvascular endothelium damage could be 

responsible for the radiation induced crypt stem cell clonogen damage in the PPARβ-/- 

mice as evidenced by the observed defects at 4h post-irradiation in comparison to the 

PPARβ+/+. 

 

2. New information gained from microarray data 
 

2.1 Irradiation induces the cholesterol biosynthetic 
pathway 

 

Microarray experiment comparing the PPARβ+/+ and PPARβ-/- in response to 4 hrs 

post irradiation showed modulation of large number of genes of which the most significant 

being those involved in the cholesterol biosynthesis pathway which were also validated 

through qPCR. These observations were further tested in in-vitro conditions using 

adenocarcinoma cell line, HT-29, on exposure to irradiation. In HT-29, at 24hr post 

irradiation we observed significant upregulation of two of the genes involved in 

cholesterol biosynthesis, FDFT1 and LSS, that were also upregulated in PPARβ+/+ mouse 

intestine at 4h post-irradiation. A previous report on elucidating the mechanism involved 

in the regulation of cholesterol synthesis in human intestinal cells (Caco-2), has shown 

that levels of HMG-CoA reductase mRNA were increased under conditions of cholesterol 

efflux (Field et al., 1991). Furthermore, it has also been shown that ionizing radiation 

induces cholesterogenesis in different cells of mammalian organism as an early reaction to 

the harmful effect necessary for restoration of biomembranes (Kolomiĭtseva, 1986). 

We also observed similar induction of genes including the one encoding for the 

rate-limiting enzyme, HMGCR, in the PPARβ+/+ mice on irradiation. Also, up- regulation 

of several genes encoding the key enzymes in the cholesterol biosynthesis pathway in the 

HT29 cell line in response to irradiation was observed, thus allowing us to speculate for a 

possible increment in the cellular cholesterol efflux in response to irradiation. This is 

presumably because of the increase in the requirement of cholesterol for synthesis of new 

membranes in response to the injury to radiosensitive cells in order to make them recover 

and compensate for their functions.  

 Since we observed a decrease in the levels of gene expression of these enzymes 

involved in cholesterol biosynthesis pathway in PPARβ-/- mice post-irradiation in 



	  
	   	   Chapter	  III:	  Discussion	  and	  Perspectives	  

	   110	  

comparison to the PPARβ+/+, this might attenuate cellular cholesterol increase indicating 

to the involvement of PPARβ in irradiation mediated intestinal damage.  

 

2.2 PPARβ-independent responses of HT29 to 
irradiation 

 

Our global analyses of the microarrays obtained form HT29 cells, pretreated or not 

with agonist and antagonist of PPARβ, revealed little interference if any of PPARβ 

activity in the radiation-induced responses.  

Following exposure to 10Gy irradiation, as an effect of irradiation, we observed a 

total of 418 genes modulated at 6h and 1168 genes at 24h. This is in accordance with 

previous reports (Rødningen et al., 2005; Tachiiri et al., 2006) where they observe a higher 

number of genes modulated at a later timepoint post exposure than an early timepoint.  

Genotoxic stress can activate or suppress a variety of genes and pathways. In our 

experiments, 10 Gy irradiation induced increase in the expression levels of NFκB2, 

CDKN2B and several other genes at 6h post-irradiation (Table 3). We observed that the 

upregulation of the cyclin dependent kinase inhibitors (CDKN2B) lead to the 

downregulation of cyclin dependent kinases (Cyclin B1 and B2) thereby regulating the 

cell cycle in the G2/M phase. This data correlates with the previously reported studies that 

cells respond to irradiation by modulation of the cell cycle regulators (Schmidt-Ullrich et 

al., 2000; Pawlik et al., 2004). We also observed increase in the expression of NFκB2 – a 

known marker of inflammation at 6h post irradiation and decrease at 24h post irradiation. 

This fits well with previously reported observation in human KG-I myeloid leukemia 

cells, that as an effect of 20Gy, there was a detectable increase in NFKB expression at 3 

and 6h post irradiation. This effect was transient and levels of NF-KB transcripts returned 

to that in control cells by 15h. These findings indicated that ionizing radiation regulates 

NF-KB expression at the mRNA level (Brach et al., 1991).  

At the same time at 24h post irradiation, we see decrease in various histone 

proteins (Table 4) that suggests that the cell cycle is in the G2 phase as reported by Heintz 

1991; Osley 1991. Thus, these above results clearly indicate that the cell cycle has been 
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stalled at the G2/M phase as a protective response mechanism of the cells against 

irradiation mediated damage (Pawlik et al., 2004). 

 

2.3 PPARβ dependent responses of HT-29 to 
irradiation 

 

In our experiments, the effect of irradiation upon the treatment with the agonist for 

PPARβ clearly show an increase in the expression of some known PPARβ target genes, 

e.g. PDK4 and ANGPTL4, in a time dependent manner. However, these genes modulated 

in response to the agonist treatment upon irradiation belong to the various lipid metabolic 

processes that are one of the main well-known functions of PPARβ in the cells (Bedu et 

al., 2005; Desvergne et al., 2009). This clearly indicates that the agonist treatment is 

functional in this set of experiments. However, we did not see modulation of any other 

genes relevant to cell cycle regulation, apoptosis and survival. This was unexpected but 

consistent with the caspase assays and clonogenic assays which revealed that PPARβ 

activity did not modify the radiation-induced response of HT29 and HCT116 cells.  

Intriguingly, pre-treatment with an antagonist for PPARβ provoked an increase in 

few genes that are not found down-regulated in the presence of an agonist as could have 

been expected. The AKR1B10 was regulated at both 6hr and 24 hrs. It is a aldose 

reductase and data from literature suggest that AKR1B10 affects cell survival through 

modulating lipid synthesis, mitochondrial function, and oxidative status, as well as 

carbonyl levels, thereby being an important cell survival protein in colorectal cancers 

(Tammali et al., 2007; Wang et al., 2009). However, in the absence of any other genes of 

AKR1B10 mediated survival pathway being modulated it is hard to confirm the above 

mechanism in this cell model. Thus, from the present set of experiments, it is hard to 

decipher the function of PPARβ on irradiation-mediated damage. 

 

3. How to reconcile in vivo and in vitro data? 
 

It has been shown by Bonnaud et al., 2010 that despite an enhancement of crypt 

survival and an inhibition of crypt epithelial cell mitotic catastrophy by S1P (Sphigosine-1 
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phosphate), direct protection of irradiated epithelial cells by S1P seems to be excluded in 

in-vitro studies using IEC-6 cells, as well as in transformed intestinal T84, colonic tumor 

Caco2, and HCT116 epithelial cell lines. Thus, S1P enhances crypt radioprotection but not 

in-vitro epithelial cell radioresistance. It is very similar to what we see in our in-vivo data 

where PPARβ is seen to bring about a crypt radioprotection in the PPARβ+/+ mice but we 

do not see any enhancement of radioresistance in in-vitro studies using HCT-116 cells.  

Edwards et al., 2002 have shown that phospho-AKT staining was untraceable in 

small intestine sections from untreated mice and AKTi (inhibitor) treatment did not 

modulate death of 15 Gy–irradiated mice. From their studies, they considered this as a first 

proof of the specificity of the AKT inhibition strategy in tumor but not in normal tissue 

endothelium. This correlates with our data where we do not see phosphorylation of AKT1 

in untreated HT-29 cells but we see phosphohorylation of AKT1 upon H2O2 treatment. 

As a summary, experiments in in-vitro cell lines did not show any response to pre-

treatment of PPARβ agonist in modulating the expression levels of radiation induced 

genes or radiosensitivity or H2O2 induced oxidative stress. Thus there is no clear evidence 

for a protective effect of PPARβ in various contexts of cell damages tested in-vitro. Of 

quite significance is the fact that the crosstalk between the epithelia and the mesenchyme 

is necessary for the proper development of the crypt-villus unit (reviewed in Crosnier et 

al., 2006). Thus, this could probably explain why we do not see any defects in in-vitro 

model where we have only the intestinal crypt phenotype and lack the crosstalk with the 

mesenchyme. 

We propose that in-vivo PPARβ affects the crosstalk between the mesenchyme and 

the epithelium consistent with the observed delay in tissue repair in the PPARβ-/- mice. 

These observations indicate the possible involvement of PPARβ in radiation-induced 

injury. The exact molecular mechanism of PPARβ action still demands further exploration 

to better understand its physiological role in this regard. Particularly, a better 

understanding of the mechanism by which PPARβ controls epithelial and mesenchymal 

crosstalk in normal and tumor tissue responses to radiation need further development such 

as elaborating an in-vitro model of a co-culture of epithelia and mesenchyme to better 

mimic in-vivo conditions. 

. 
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1. Animal experiments  
 

All animals had free access to a standard laboratory chow diet with a 12hour light 

and dark cycle. PPARβ-/- and their control PPARβ+/+ were bred on a mixed genetic 

background (Sv129 and C57BL/6) and were used at 12 weeks of age unless otherwise 

mentioned. All animal procedures were performed with authorization from the cantonal 

veterinary service of the Canton of Vaud. 

 

1.1 Generation of PPARβ-/- mice 
 
 (i) Construction of a replacement vector for PPAR! . Nine overlapping mouse 

PPAR! genomic clones were isolated from an Sv129 mouse embryonic stem (ES) cell 

genomic library (gift from F. Conquet), and their restriction maps were established (Fig. 

55). A targeting vector was designed to delete the two exons encoding the DNA binding 

domain (i.e., exons 4 and 5), according to the organization of the Xenopus PPARβ/δ gene. 

The targeting vector (derived from TK-NEO-UMS, a vector comprised of the thymidine 

kinase gene, neomycin resistance sequence, and upstream mouse sequence; a gift from 

Charles Weissman) contained 1.7 kb of homologous sequence at the 5’ end, 7 kb of 

homologous sequence at the 3’ end, and a phosphoglycerate kinase-neomycin (PGK-neo) 

cassette (Fig. 55A). 

 (ii) ES cell transfection. D3 ES cells were cultured as previously described 

(Guillemot et al., 1993), and electroporation was performed as previously reported (Van 

der Hoeven et al., 1996). Twenty- four hours after electroporation, positive selection by 

G418 at 350 µg/ml (geneticin) was performed for 9 days. Resistant clones were then 

transferred onto 48-well plates (Costar) and subsequently grown to confluence on 

duplicate 24- well plates for either genomic analysis or storage of master plates at -80°C. 

 (iii) Genotyping. Genomic DNA was prepared from ES cells, yolk sacs of embryos, 

or tail samples following the classical procedures. A first round of genotyping was 

performed by two independent PCRs. Primers b19 (5’-ATCCA GAGTGTTCGTATGAC-

3’) and UMS1 (5’-TCTTATGCTCCTGAAGTCCAC-3’) amplified a 2.2- kb fragment 

from the recombinant allele, whereas the primers b3 (5’-

AGCCTCAACATGGAATGTCG-3’) and b4 (5’-GATCGCAC TTCTCATACTCG-3’) 
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amplified a 1.6-kb product from the wild-type (wt) allele. Five percent of the neomycin-

resistant ES cell clones were positive for homologous recombination. All mutant clones 

and/or embryos or mice were subsequently confirmed by Southern analyses using a 

digoxigenin-labeled probe (CDP-Star protocol; Boehringer Mannheim), located 160 bp 

upstream of the 5’ homology region. Digested genomic DNA samples were blotted on a 

Zetaprobe GT membrane and processed following the manufacturer’s protocol (Bio-Rad). 

Probes, restriction digestion, and hybridized fragments from wt and recombinant alleles 

are indicated in Fig. 55. 

(iv) Generation of chimeric mice and germ line transmission. Positive D3 

clones were microinjected into the blastocoel of 3.5-day-old embryos at the blastocyst 

stage and isolated from C57BL/6 females (10 to 15 ES cells per blastocyst). Between five 

and seven injected blastocysts were reimplanted into each uterine horn of pseudopregnant 

foster mothers. Male chimeric animals were mated for germ line transmission with Sv129 

mice. One chimeric male transmitted the mutation from which the colony of mice has 

been obtained. 
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Fig. 55 | Targeted disruption of the PPARβ  gene in mouse. The PPARβ gene was disrupted in ES cells 
by homologous recombination with a replacement-type vector, using an approach based on positive-negative 
selection (A). In this vector, PPARβ genomic sequences containing the exons encoding the DNA-binding 
domain of the receptor (exon 4 and part of exon 5) were replaced with a PGK-neo cassette. Homologous 
recombination at the PPARβ locus in ES cells led to the deletion of both exon 4 and part of exon 5 encoding 
the two zinc fingers of the DNA-binding domain. ES cells carrying the mutant allele were confirmed by 
Southern blot analysis (B). Two independent positive ES cell clones were injected into blastocysts to 
generate chimeras, and heterozygous mice were obtained from a germ line transmitter chimera. Panel A 
shows the structure of the wt PPARβ allele, targeting vector, and recombinant PPARβ allele. The exons as 
well as locations of restriction sites and probes for PCR and southern blot are indicated. B, BamHI; E, 
EcoRI; K, KpnI; N, NotI; X, XhoI. Panel B shows a Southern blot analysis of genomic DNA digested with 
BamHI and KpnI from E9.5 embryos produced by a PPARβ heterozygous intercross. (C) PCR analysis of 
yolk sac DNA derived from E9.5 embryos. (D) Western blot analysis performed on nuclear extracts with a 
specific PPARβ antibody. The nuclear protein c-Jun was used as an internal control. In order to obtain a 
sufficient amount of material, the control at the protein level was performed on pups obtained from 
homozygous matings. 

(From Nadra et al., 2006). 
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1.2 Gamma-irradiation model 

 

In the gamma-irradiation protocol, the PPARβ+/+ and PPARβ-/- mice were exposed 

to whole body irradiation at a dose of 10Gy (two doses of 5Gy) and the animals were 

sacrificed at different time-points: 4hr, 3.5d and 8d post irradiation (Fig. 56). After death 

by cervical dislocation, the abdomen was opened and the duodenum, jejunum, ileum and 

colon were dissected out and flushed with cold phosphate buffered saline (PBS). Tissue 

samples were frozen in liquid nitrogen for subsequent RNA and protein analysis or 

processed for histological analyses after fixing in 4% paraformaldehyde (PFA)-PBS for 

2hours at 4°C.  

 

 

 

 

 

 

 

 

Fig. 56 | Schematic representation of gamma-irradiation model (adapted from Somosy et al.2002; 

Potten 2004). 

 

1.3 Histological analysis 

 

Intestines were fixed in 4% paraformaldehyde- in phosphate buffer saline (PFA-

PBS), dehydrated and embedded in paraffin according to standard procedures. Sections of 

4µm were processed for staining or immunohistological analysis. For 

immunohistochemistry, paraffin sections were hydrated and boiled for 15 minutes in 

0.01M sodium citrate, pH=6. Sections were subsequently washed in PBS. Sections were 
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incubated in 1% bovine serum albumin (BSA) before incubation with the primary 

antibody. For immunofluorescence, sections were further incubated with a fluorescein 

isothiocyanate (FITC)- coupled secondary antibody. Sections were then counterstained 

with DAPI to stain the nuclei. Primary anti-Ki-67 was purchased from Abcam (ab 15580). 

 

1.4 Detection of apoptosis 

  

Apoptosis detection was performed using TUNEL assay. This assay was 

performed on paraffin sections as described by the manufacturers instructions (In situ cell 

death detection kit, Fluorescein, Roche). 

 

1.5 Generation of PPARβ villin- Cre conditional KO 
mice 

 
The Cre protein is a site-specific DNA recombinase that recognizes a 34-bp loxP 

sequence and, in the presence of two directly repeating loxP sites, excises the intervening 

DNA sequence (Abremski and Hoess, 1984). The use of the Cre/ lox system involves both 

mice expressing Cre enzyme (villin-‐	  Cre-‐	  ERT2) and mice with loxP sites (PPARβ	  L2/L2)	  

inserted at a selected transgenic locus of interest. The mating of the two strains generates 

progeny in which Cre is expressed and excises the sequences between the loxP sites.  

To specifically inactivate PPARβ in intestinal epithelia in-vivo, we combined this 

powerful site-specific recombination system with the tissue specificity of the murine villin 

promoter. A 9-kb regulatory region of the villin gene has been shown to target stable and 

homogeneous expression of transgenes in small and large intestine along the crypt- villus 

axis, in differentiated enterocytes, as well as in the immature, undifferentiated cells of the 

crypt (Janssen et al., 2002; Pinto et al., 1999; Robine et al., 1997). The approach used here 

allowed recombination of target genes in the intestinal epithelia, at any time during 

postnatal life. We have generated transgenes containing a tamoxifen-dependent 

recombinase (vil-Cre-ERT2), shown schematically in Figure 57. The vil-Cre-ERT2 

construct is based on a fusion of the Cre recombinase with a mutated ligand-binding 
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domain of the human estrogen receptor, resulting in a tamoxifen- dependent Cre 

recombinase (Feil et al., 1996; Metzger and Chambon, 2001, Metzger et al., 2003).  

 

 

 

Fig. 57: | Generation of villin-Cre-ERT2 transgene. A 9-kb region of the villin promoter drives the 
expression of the tamoxifen-dependent Cre-ERT2. BamHI sites and the expected sizes of the resulting DNA 
fragments are indicated. The villin probe obtained by PCR is indicated (Adapted from El Marjou et al., 
2004). 
 

 

To generate PPARβ villin- Cre conditional KO, we crossed the PPARβ L2/L2 with 

the villin- Cre- ERT2.The Cre-mediated deletion is obtained by induction through 

tamoxifen. For experimental purpose, we had three groups: PPARβ L2/L2, which served 

as wild type controls, PPARβ L2/L2 villin- Cre+ and the PPARβ L2/L2 villin- Cre-. Each 

of the three groups was treated with tamoxifen and vehicle. Chemical treatments were 

administered to 12 weeks old mice. Tamoxifen (Sigma) solubilized in sunflower oil was 

administered intraperitonally at a dose of 1mg/ml/kg per day for 5 consecutive days. For 

the vehicle treated group, equal volume of sunflower oil was administered. The tamoxifen-

mediated deletion was allowed for one week and after one week the animals were 

irradiated and then sacrificed at 3.5days post irradiation. RNA, protein and tissue samples 

for histology were collected as described in later sections. 
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2. Experiments with Cell cultures  
 

2.1 Cell cultures (HT-29 and HCT-116) 

 

The HT-29 cells are human colon adenocarcinoma cells that were originally 

isolated from carcinoma of the human colon and hence have retained some characteristics, 

including expression of hormone receptors (Jan Mester et al., 1989). There is a G-> A 

mutation in codon 273 of the p53 gene resulting in an Arg-> His substitution. The p53 

antigen is thus overproduced in these cell lines. The line is also positive for expression of 

c-myc, K-ras, H-ras, N-ras, Myb, Sis and fos oncogenes. They have the ability to grow as 

monolayers and under special culture conditions, they can differentiate to form mucus 

secreting and/or absorptive cells. When cultured in high glucose media and 10%FCS, the 

cells remain undifferentiated and grow as multilayers but when glucose is absent or 

replaced they undergo differentiation after confluence.  

For our experiments, HT-29 cells were cultured in DMEM + Glutamax I (Gibco) 

containing 4.5mg/L glucose supplemented with 10% fetal bovine serum (FBS). HCT-116 

cells are also human colon adenocarcinoma cells and were cultured in DMEM + Glutamax 

I (Gibco) containing 4.5mg/L glucose supplemented with 10% FBS. 

 

2.2 Transfections 

 

HT-29 cells were cultured in DMEM + Glutamax I (Gibco) containing 4.5mg/L 

glucose supplemented with 10% FBS. The cells were seeded at a density of 0.5million/ml 

per well of a 12 well plate and allowed to grow to 30% confluency before transfection. 

Transfections were carried out using Lipofectamine LTX (Invitrogen) in low serum media 

using OptiMEM 1X (GIBCO) and allowed to incubate at 37°C for 4h. At this point, the 

cells were incubated with serum media for a period of 4 hours followed by serum free 

media for those requiring agonist or antagonist treatment. Appropriate doses of specific 

agonist/antagonist of PPARβ were given in DMEM + Glutamax I without serum and 

incubated at 37°C for 24hrs. The cells were then washed once with PBS and processed 

further for luciferase assay.  
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2.3 Luciferase assays  
 

After cells were transfected with the luciferase constructs, cells were either 

untreated or treated with agonist and/ or antagonist for 24h. The cells were washed with 

PBS before lysis using 1X passive lysis buffer (Dual luciferase assay Kit, promega) and 

samples were further processed according to the manufacturer’s instructions and analysed 

using a luminometer (Promega corporation). 

 

2.4 Agonist/ Antagonist treatments  
 

 PPARβ specific agonist GW501516 was used at a concentration ranging from 100-

1000nM in DMSO. Two types of antagonist were used – GSK0660 (shearer et al., 2008) 

and a new candidate VP80. Both were used at concentrations ranging from 1-10µM in 

DMSO. For transfection experiments, agonist or antagonist treatment were given in serum 

free media but for microarray experiment, it was given in normal serum media to avoid 

variations arising from serum free treatment. 

 

3. Gamma-irradiation experiments 

 

For our in-vivo studies, we used a Caesium-137 (Cs-137) gamma-irradiator under 

the guidance of Prof. Werner Held at the Ludwig Institute of Cancer Research (LICR), 

Lausanne. The PPARβ+/+ and PPARβ-/- mice were exposed to whole body irradiation at a 

dose of 10Gy (two doses of 5Gy) at room temperature and the animals were sacrificed at 

different time-points: 4hr, 3.5d and 8d post irradiation.  

For our in-vitro studies, we used an irradiator (RS2000, Rad Source Technologies 

Inc.) that is specially designed for cell and small animal studies with the irradiation source 

being non-isotope, an alternative to traditional radioactive isotope based irradiators but 

with the capacity to produce a dose, equivalent to gamma-irradiators. Dose-dependent 

studies using different doses, ranging from 0-30 Gy (in accordance to informations from 

literature) were performed to identify the effective dose. Furthermore, different timepoints 
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post-irradiation were also assessed with the effective dose, at which the cell death could be 

observed indicating the levels of injury mediated by irradiation. 

For irradiation of HT-29 cells, we cultured them on six or twelve well plates to 

confluence and had two groups: one that was irradiated with a dose of 10Gy and the other 

was a sham-irradiated control group. The sham-irradiated group received all treatments 

similar to the irradiated group in terms of culture media and transport from the incubators 

to irradiators but with the exception of not receiving gamma-irradiation. We isolated the 

RNA samples at different timepoints post irradiation- 4hr, 24hr, 48hr and 72hr and 

checked for the alterations in the gene expression levels of various genes by Q-PCR at 

these time-points and compared them to the sham irradiated control group. 

4. Extraction of Total RNA 

 
Total RNA from tissues was extracted using TRIzol LS reagent (Invitrogen). 

Tissues were homogenized at medium speed with a polytron apparatus for 30 sec on ice in 

TRIzol reagent (800ul/100mg of tissue). After 10 minutes of incubation on ice, the 

samples were centrifuged at 4°C and 13,000 rpm. The supernatants were then subjected to 

choloform extraction and incubated 5 minutes on ice and centrifuged at 13,000 rpm for 20 

minutes at 4°C. Total RNA was precipitated using isopropanol during 20 minutes at 4°C 

followed by a centrifugation at 13,000 rpm at 4°C. The pellets were washed twice in cold 

70% ethanol-DEPC treated and resuspended in DEPC treated water. OD measurements 

were done using a Nanodrop (Nanodrop®) and the integrity of RNA was assessed by 

capillary electrophoresis (Bio-analyzer, Agilent Biotechnology). For extraction of total 

RNA from cells in culture, we used the RNeasy plus mini kit from Qiagen and followed 

the manufacturers instructions. 

 

5. RT and Q-PCR 
 

One microgram of the total RNA was reverse transcribed with random hexamer 

primers (Promega) using SuperscriptTM II reverse transcriptase (Invitrogen). Real-time 

PCR was performed with SYBR Green PCR matermix (Applied Biosystems) using ABI 

PRISM 7900 PCR machine (Applied Biosystems). Primers were designed to generate a 

PCR amplification product of 100- 200 bp. Expression was related to the control 
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housekeeping genes: mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

Tata-box binding protein (TBP) for mouse tissue samples and human eukaryotic 

translation elongation factor α1 (EEF1A1) and Glucuronidase β (GusB) for HT-29 

samples. The expression of the housekeeping genes- EEF1A1 and GusB did not change 

under the experimental conditions studied. The primers for NFκB2, CCNB1, PDK4, 

ANGPTL4, PLIN2/ADRP were obtained from Qiagen’s QuantiTech primer assay. The 

other primer sequences are as follows: 

 

Human primer sequences 

EEF1A1_Hs: 
Hs_EEF1A1-1039F: CTGAACCATCCAGGCCAAAT 
Hs_EEF1A1-1097R: GCCGTGTGGCAATCCAAT 
 
GusB_Hs: 
Hs_GusB-544F: CCACCAGGGACCATCCAAT 
Hs_GusB-622R: AGTCAAAATATGTGTTCTGGACAAAGTAA 
 
FDFT1_Hs: 
H_FDFT1_F: CCCTTGAGTTTAGAAATCTGGCT 
H_FDFT1_R: CCACTCCTGTTCAGAGGTCAC 
 
LSS_Hs: 
H_LSS_F: CTGCCAGCCGGATACAGAG 
H_LSS_R: TCCCAAACACGGTGGACTTAT 
 
MVD_Hs: 
H_MVD_F: GCTGACAGGCAGTACCGTG 
H_MVD_R: GCATTGAGGTAAGAGATGGGC 
 
PPARβ_Hs: 
H_ PPARβ_F: GCATGAAGCTGGAGTACGAGAAG 
H_ PPARβ_R: GCATCCGACCAAAACGGATA 
 
PDK1_Hs: 
H_PDK1_F: TGTAACCAGAGAGCGGGATGT 
H_PDK1_R: TTTTGGCATAACTAAGGCCGAA 
 
CASP8_Hs: 
H_CASP8_F: GGCTTTGACCACGACCTTTGA 
H_CASP8_R: AGTGAACTGAGATGTCAGCTCAT 
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Mouse primer sequences 
 
Ms_Fdft1: 
Ms_F_Fdft1: TCC CAC TGC TGT GTA ACT TCC 
Ms_R_Fdft1: TGT CTA CAA ATT CTG CCA TCC C 
 
Ms_Lss: 
Ms_F_Lss: TCG TGG GGG ACC CTA TAA AAC 
Ms_R_Lss: CGT CCT CCG CTT GAT AAT AAG TC 
 
Ms_Mvd :  
Ms_F_Mvd: ACC AGC TAA AAA CGA CCA CAA 
Ms_R_Mvd: CTG AGG GGT AGA GTG TCC C 
 
Ms_HMGCR: 
Ms_HMGCR_F: TCGTCATTCATTTCCTCGACAAA 
Ms_HMGCR_R: GATTGCCATTCCACGAGCTAT 
 
Ms_HMGCS1: 
Ms_HMGCS1_F: AACTGGTGCAGAAATCTCTAGC 
Ms_HMGCS1_R: GGTTGAATAGCTCAGAACTAGCC 
 
Ms_PPARβ: 
Ms_ PPARβ_F: CGGCAGCCTCAACATGG 
Ms_ PPARβ_R: AGATCCGATCGCACTTCTCATAC 
 
 

6. Microarray experiments 
 

A global gene expression analysis using microarray was performed to identify the 

effect of irradiation at 10Gy in an in-vitro intestinal cell line model of HT-29. The 

experimental design is as described in Fig. 42. For all the five groups of samples, total 

RNA was extracted from quadruplicate experiments using RNeasy Plus mini Kit (Qiagen, 

USA) according to manufacturer’s instructions. cDNA was synthesized from 1µg total 

RNA using the WT expression kit Ambion (Applied biosystems). After fragmentation, 

10µg cRNA was hybridized with the Human Gene 1.0 ST arrays (Affymetrix,SC,USA). 

Gene chips were then scanned in an Affymetrix Scanner, and gene expression was 

analyzed using the Software Expression Console. The data was submitted to one-way 

ANOVA (a value of p<0.05 was considered significant). Clustering analysis of the 

microarray results was performed using ‘R’ for quality control. Analysis of the microarray 

data was done using the GeneGO Metacore pathway analysis software to determine the 

cellular pathways affected upon Irradiation. 



	  
	   	   Chapter	  IV:	  Materials	  and	  Methods	  

	   124	  

 

7. Extraction of proteins from cells 

 
Cells were first washed gently with ice-cold PBS (1X). Cells were then lysed by 

scraping and pipetting in ice-cold RIPA lysis buffer (50 mM Tris pH=7.4, 150 mM NaCl, 

0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS) supplemented with proteases and 

phosphatases inhibitors (1mM Na3VO4, 1mM PMSF, 10µg/ml Aprotinin, 10µg/ml 

Leupeptin) just before use. Cell lysis was continued by agitation on the spin wheel at 4°C 

for 40 minutes. The samples were then centrifuged for 15min, 14,000rpm at 4°C. The 

supernatants were collected and stored at -80°C for further protein analysis.  

 

8. Western blot 
 

Proteins extracted from cells using RIPA lysis buffer were denatured for 5 min at 

95°C. Equal amounts of protein extracts were then resolved by 10% SDS-PAGE gel. 

Electrotransfer of proteins onto nitrocellulose membrane was done in 10 min using the 

iBlot device (Invitrogen). Membranes were then blocked for 1h at room temperature 

(RT) with 5% of milk powder in Tris buffered saline (TBS) with 0.1% Tween-20 and 

incubated at 4°C overnight with the primary antibodies diluted (1:1000 for all antibodies) 

in primary antibody dilution buffer (1X TBS, 0.1% Tween-20 with 5% Bovine serum 

albumin (BSA). The membranes were then washed in 1X TBST (TBS with 0.1% Tween-

20) thrice and incubated for 1 h at RT with anti- IgG, HRP-conjugated secondary antibody 

in 1X TBST with 5% milk powder and detected by chemiluminescence (GE Healthcare). 

Blots were then analysed using the Quantity-1 software from BIORAD.  Primary anti-

Akt and anti-Phospho-Akt (Ser473) (from Cell signaling) and Anti-GAPDH antibodies 

were purchased from Sigma.  

9. PPARβ silencing using lentivirus 
 

A lentivirus based vector construct carrying silencing sequence for PPARβ 

(pLVTHSi PPARβ) [Nadra et al., 2006], was available in the lab. We first amplified the 

vector pLVTHSi PPARβ, the control vector- pLVTHSi PPARβ ctrl along with pCMV-

ΔR8.74 and pMD2G-VSVG that encode for the viral envelope and the packaging genes 

respectively. These vectors were used further to transfect 293-T cells to produce the 
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lentivirus.  The biological titer of the lentivirus produced was then estimated by FACS 

analysis. Further, this lentivirus was tested in different concentrations in the HT-29 cell 

system in order to identify the appropriate Multiplicity of infection (MOI) of virus 

required to obtain the maximal silencing of our target gene. The knockdown efficiency 

was also tested at different time-points post infection to ascertain the desired silencing of 

our gene of interest.  

9.1 Lentivirus production 
 
 All recombinant lentiviruses were produced by transient transfection of 293T cells 

according to standard protocols. Briefly, subconfluent 293T cells were cotransfected with 

112.5 µg of the control vector pLV-THsiPPARβ ctrl or the PPARβ-targeted vector pLV-

THsiPPARβ, 73 µg of pCMV-ΔR8.4, and 39.55 µg of pMD2G-VSVG (where CMV is 

cytomegalovirus and VSVG is vesicular stomatitis virus protein G) by calcium phosphate 

precipitation. The medium was changed after 16 h, and recombinant lentiviruses in the 

supernatant were harvested two or three times every 8-12h. The Supernatant were stored at 

4°C until used for ultracentrifugation. The pooled supernatant was filtered using a 0.22-

µm filter unit. Ultracentrifuge 120 min at 50,000 × g, 16°C. Resuspend the pellet (not 

always visible) with PBS1X. Clear the final concentrate by a brief centrifugation (around 

5 seconds) at maximum speed on a bench top centrifuge. Aliquot the supernatant and store 

at 80°C. 

 

10. MTT assay 
 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow 

tetrazole), is a dye that is reduced to purple formazan in living cells. MTT assay is a 

colorimetric assay for measuring the activity of enzymes that reduce MTT to formazan 

dye, giving a purple color. A main application allows assessing the viability (cell 

counting) and the proliferation of cells (cell culture assays). It can also be used to 

determine cytotoxicity of potential drugs, since those agents would stimulate or inhibit cell 

viability and growth. MTT assay is based on the inverse relation between the absorbance 

and the cytotoxicity. The higher the absorbance the lesser the cytotoxicity and vice-versa. 
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We used the MTT assay to assess cytotoxicity in response to PPARβ agonist and 

antagonist treatment at different doses in HT-29 and HCT-116 cells.  

MTT (Sigma) stock solution was prepared at a concentration of 5mg/ml. After the 

treatment with the agonist or antagonist for appropriate time, the medium was removed 

and the diluted MTT working solution (0.5mg/ml) was added. The cells were incubated at 

37°C for 3 hrs and were observed by phase contrast microscopy for color development at 

regular intervals. At that point, the MTT working solution was eliminated and the 

solubilization solution (90% isopropanol + 10% DMSO) was added and incubated at 37°C 

for 20 min. After this, 100ul of the colored solution was transferred to a 96well plate and 

the absorbance was read at 550nm. 

 

11. Caspase- 3/7 assay 

 
The Caspase-3/7 assay Kit (Promega) provides a proluminescent caspase-3/7 

DEVD-aminoluciferin substrate and a thermostable luciferase in a reagent optimized for 

caspase-3/7 activity, luciferase activity and cell lysis. To assay Caspase activity, an equal 

volume of Caspase-Glo® 3/7 reagent is added to the sample in the assay well and after 

mixing well, results in cell lysis. This is followed by caspase cleavage of the substrate that 

liberates free aminoluciferin, which is consumed by the luciferase, generating a "glow-

type" luminescent signal. And this light generated is measured with a luminometer 

(Promega corp.). The signal is proportional to caspase-3/7 activity. 

 HT-29 cells were seeded in 96 well plates and cultured overnight at 37°C, 5% CO2. 

They were irradiated with different doses ranging from 0-30Gy and samples were 

prepared according to the manufacturer’s instructions in Caspase–Glo 3/7 assay kit 

(Promega). Luminescence emitted due to caspase-3/7 cleavage of the luminogenic 

substrate was measured for each dose at 6h and 24h post irradiation. Luminescence 

measured was proportional to the caspase activity present and the signal from no cell 

control was subtracted from the signal from the treated and untreated controls. The fold 

change values were calculated with Sham irradiated cells (Sh.I) as control group for 

statistical calculations. 
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12. Clonogenic assay 

 
 Clonogenic assays are considered gold standards to determine the cytotoxic effect 

of radiotherapy using ionizing radiations and chemotherapy using several chemical agents 

and also the latest intervention of dual treatments of chemo-radiotherapy. The intrinsic 

radiosensitivity of the two colorectal cell lines, HT-29 and HCT-116 was determined by 

this colony-forming assay. We tested two different protocols as outlined below and found 

that the seeding before irradiation protocol gave better results and thus used it for all our 

experiments. 

12.1 Seeding after irradiation protocol:  

 
Seed several T-25cm2 flasks with appropriate number of cells and incubate them at 

37°C in the incubator so as to have cells in the logarithmic growth phase after 2 days in 

culture. Irradiate these cells at the appropriate doses. Remove media from these flasks and 

wash them with PBS. Trypsinize each flask with 1 ml of 0.05% Trypsin-EDTA. Observe 

under microscope and make a single cell suspension in warm culture media (DMEM-10 + 

10% FCS). Serially dilute and seed appropriate dilutions onto six well plates. Mix well for 

uniform distribution of cells and incubate at 37°C, 5% CO2. For HCT-116 cells, we 

allowed them to grow for 8days post-irradiation and for HT-29 cells we allowed them to 

grow for 12 days post-irradiation. 

12.2 Seeding before irradiation protocol:  
 

Label all the six-well plates (TPP) appropriately and add 2ml of media (DMEM-10 

+ 10% FCS) with or without the ligands for PPARβ and let it warm at 37°C in the 

incubator. Trypsinize a T-25cm2 flask with 1ml of Trypsin and make a single cell 

suspension. Serially dilute in media with or without PPARβ ligands and seed appropriate 

dilutions on respective plates so as to have 100, 200, 400, 800 cells per well. Incubate 

overnight at 37°C, 5% CO2 and four hours before irradiation add fresh media. Irradiate at 

the desired doses and culture at 37°C, 5% CO2 for the desired time post-irradiation to 

allow colony formation. For HCT-116 cells, we allowed them to grow for 8days post-

irradiation and for HT-29 cells we allowed them to grow for 12 days post-irradiation. 
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12.3 Counting of colonies 
 

We followed the standard procedure to count the colonies using the 

stereobinocular microscope. The number of colonies in each set of treatment for the 

different grades of irradiation doses was counted, with untreated and non-irradiated group 

serving as control. The plating efficiency (PE) is the ratio of the number of colonies to the 

number of cells seeded and was calculated as follows: 

 

PE = Number of colonies counted x 100 

              Number of cells plated 

 

The number of colonies that arise after treatment of cells, expressed in terms of PE, 

is called the surviving fraction (SF): 

 

SF = no. of colonies formed after treatment 

                  no. of cells seeded x PE 

 

We determined the PE of control cells, that is, the fraction of colonies from cells 

not exposed to irradiation and ligand treatments. The surviving fraction of cells after any 

treatment was always calculated taking into account the PE of control cells (For details, 

see Franken et al., 2006). 

 

13. H2O2 assays  
 

We tested the role of PPARβ in a model of oxidant injury induced by the 

production of reactive oxygen metabolites by administration of H2O2 to intestinal cell 

lines, HT-29 and HCT-116.  

HT-29 cells were seeded at a density of 0.01 X 106 cells per well of a 96 well plate 

in media containing DMEM-10 with 10% FBS. HCT-116 cells were seeded at a density of 

0.05 X 106 cells per well of a 24 well plate in media containing DMEM-10 with 10% FBS. 

Both the cell types were incubated for 24h at 37°C, 5% CO2 in an incubator. Further they 

were pre-treated with the PPARβ ligands for 24h in serum free media. The liganded media 

was then replaced with different concentrations of H2O2 (500µM – 5mM) prepared in 

serum free media and allowed to incubate at 37°C, 5% CO2 for 1 hour. The media was 
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then removed and an MTT assay was performed as mentioned previously. The O.D 

reading at 550 nm was directly linked to the used to calculate the surviving fraction with 

cells without H2O2 serving as controls. 

	  

14. Statistical analysis 
 

Data are expressed as mean + S.E.M. All analysis was performed with Graphpad 

Prism version 5.0 software using one-way analysis of variance (ANOVA) followed by 

Newman–Keul’s multiple comparison tests, and paired two-tailed t-test where applicable. 

p<0.05 was considered to be statistically significant. 
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Crohn’s disease (CD), a major form of human inflammatory bowel
disease, is characterizedbyprimary immunodeficiencies. The nuclear
receptor peroxisomeproliferator-activated receptor gamma (PPARγ)
is essential for intestinal homeostasis in response to both dietary-
and microbiota-derived signals. Its role in host defense remains un-
known, however.We show that PPARγ functions as an antimicrobial
factor by maintaining constitutive epithelial expression of a subset
of β-defensin in the colon, which includes mDefB10 in mice and
DEFB1 in humans. Colonic mucosa of Pparγ mutant animals shows
defective killing of severalmajor components of the intestinalmicro-
biota, including Candida albicans, Bacteroides fragilis, Enterococcus
faecalis, and Escherichia coli. Neutralization of the colicidal activity
using an anti-mDefB10 blocking antibody was effective in a PPARγ-
dependent manner. A functional promoter variant that is required
for DEFB1 expression confers strong protection against Crohn’s co-
litis and ileocolitis (odds ratio, 0.559; P = 0.018). Consistently, colonic
involvement in CD is specifically linked to reduced expression of
DEFB1 independent of inflammation. These findings support the de-
velopment of PPARγ-targeting therapeutic and/or nutritional
approaches to prevent colonic inflammation by restoring antimicro-
bial immunity in CD.

β-defensin 1 | Crohn’s disease | microbiota | nutrition | PPAR-γ

Crohn’s disease (CD) and ulcerative colitis (UC) are chronic
inflammatory disorders of the gastrointestinal tract that are

influenced by both genetic and environmental factors. As many as
1.4 million persons in the United States may suffer from these
forms of inflammatory bowel disease (IBD) (1). No curative
treatment is available for these lifelong and disabling disorders.
Although UC lesions are limited to the colon and the rectum, CD
lesions can affect any portion of the gastrointestinal tract. Anti-
microbial peptides, including α- and β-defensins, are key effectors
of the gastrointestinal innate immune response. Ileal CD is
specifically characterized by reduced expression of Paneth cell–
derived α-defensins, which is independently linked to the CD-
associated NOD2 and TCF7L2 mutations (2, 3). Reduced anti-
microbial activity against certain bacterial groups of the intestinal
microbiota has been reported in the colonic mucosa of patients
with CD compared with patients with UC and controls (4). The
mechanisms underlying this phenomenon of reduced colonic an-
timicrobial immunity in CD remain poorly understood, however.
Thenuclear receptorperoxisomeproliferator-activated receptor-

gamma (PPARγ) is expressed primarily in colonocytes. On recog-
nition of either natural or synthetic ligands, a heterodimer of reti-

noid X receptor alpha (RXRα) and PPARγ is formed that allows
the regulation of a specific set of genes involved in intestinal ho-
meostasis through its binding to PPARγ-response elements
(PPREs) (5). Genetic ablation of PPARγ was found to result in in-
creased susceptibility to experimental colitis in rodents (5). Con-
versely, engagement of PPARγ-mediated signaling by its cognate
agonists, such as rosiglitazone, attenuated the severity of in-
flammatory lesions in both experimental and spontaneous models
of colitis (5) and might be effective in UC (6). Consequently, we
evaluated the role of PPARγ in host defense through regulation of
antimicrobial peptides in the intestinalmucosaofpatientswith IBD.

Results
PPARγ Directly Regulates DEFB1 Expression in Human Colonocytes.
We first searched for potential binding sites of PPARγ within the
promoter of human β-defensins expressed primarily in the colon,
namely the β-defensin 1–4 (DEFB1-4) (3, 7). In silico approaches
were performed within the 5′ vicinity to the starting codon of the
DEFB1-4–encoding genes. We failed to detect putative PPRE
within the 0.3-kb downstream untranslated region of DEFB2-4. In
contrast, the promoter region of DEFB1 had four sites with a po-
tential binding affinity to PPARγ (Fig. 1A). Next, by combining two
in silico approaches, we identified five additional putative PPREs
within the promoter region ofDEFB1 (Fig. 1A).Among the total of
nine potential PPREs, three were of DR1 motif and six were of
DR2 motif (Table S1). We then systematically and formally
assessed the binding activity ofRXRα/PPARγ heterodimer to each
of these potential PPREs through an electrophoretic mobility shift
assay. Four potential sites bound avidly to recombinant RXRα and
PPARγ protein (Fig. 1B). Up to a 2-fold increase in luciferase
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activity of theDEFB1 promoter was consistently observed in Caco-
2 cells after cotransfection with a DEFB1 reporter plasmid vector
and a pSG5-PPARγ1 or pSG5-PPARγ2 expression construct (Fig.
1C). Treatment of Caco-2 cells with the synthetic thiazolidinedione
rosiglitazone caused a significant increase in mRNA levels in both
DEFB1 and ADRP, a known PPARγ target gene, compared with
mock-stimulated cells. In contrast, IL-8 and TNF-α expression was
unaffected by PPARγ activation in vitro (Fig. 1D). Collectively,
these in vitro results suggest that certain exogenous and endoge-
nous signals might be involved in the regulation of epithelial ex-
pression of DEFB1 through PPARγ activation.

PPARγ Is Essential for Colonic Expression of a Subset of β-Defensins in
Mice. To further assess the regulatory role of PPARγ in β-defensin
expression in vivo, we used twomice models of PPARγ deficiency.
Among the 21 mouse β-defensins encoded in the Mus musculus
C57BL6/J genome reference assembly (build 37.1), the colonic
mucosa of both Pparγ+/− and Pparγ−/− mice showed significantly
reduced expression of certain β-defensins, including mDefB10

(Fig. 2 A and B), compared with WT littermates. The in silico
analyses consistently revealed seven putative PPREs within the
promoter region of mDefB10 (Fig. 2C and Table S2). The
mDefB10 gene expression pattern remained broadly unchanged
along the colon (Fig. 2B). In contrast, we found that the colonic
expression of other β-defensins, includingmDefB1, was regulated
independently of PPARγ (Fig. 2B). Rosiglitazone given orally or
rectally for 14 days induced a 6- to 12-fold induction of mDefB10
mRNAexpression throughout the colon compared with untreated
mice, whereas mDefB1 mRNA expression was unaffected by
rosiglitazone treatment (Fig. 2D). Taken together, these findings
indicate that PPARγ activation by both exogenous and endoge-
nous signals may be required to maintain the constitutive physi-
ological expression of certain β-defensins in the colon.

PPARγ Deficiency Impairs Innate Antimicrobial Immunity in the Mouse
Colon. Human colon coexists in intimate contact with up to 100
trillion microorganisms (8). Imbalance in the gut microbiome has
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Fig. 1. PPARγ binds to the human DEFB1 promoter and transactivatesDEFB1
expression in human colonic epithelial cells. (A) Potential PPARγ-binding sites
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RXRα/PPARγ within the DEFB1 gene promoter. Complexes of recombinant
proteins with radiolabeled oligonucleotide are indicated by arrow. (C) Rela-
tive luciferase activity for the empty control vector (white bar), PPARγ-1 (gray
bar), and PPARγ-2 (black bar) isoforms expressing vectors (23). P values were
determined by the unpaired Student t test. (D) Relative expression of DEFB1,
ADRP, IL-8, and TNF-α in rosiglitazone-treated Caco-2 cells (100 nM) compared
withmock-treated cells. Values represent themeanof normalizeddata± SEM,
as measured by real-time qPCR. P values were determined by the Mann-
Whitney test. NS, not significant. All experimentswere performed in triplicate
and repeated independently at least three times.
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been implicated in the pathogenesis of CD. PPARγ is thought to
be involved in the innate immune response to microbial in-
fection, but the mechanisms remain poorly understood (9, 10).
Thus, we investigated the antimicrobial activity of PPARγ against
microbes linked to IBD pathogenesis (8). Interestingly, cationic
peptides extracted from colonic mucosa ofPparγ+/−mice exhibited
defective killing of cultured Bacteroides fragilis, Enterococcus fae-
calis, and Candida albicans compared with WT animals (Fig. 3A).
The viability of a clinical isolate of Escherichia coli also was signif-
icantly decreased after a 90-min exposure to colonic biopsy extracts
of controls comparedwithPparγmutant animals (Fig. 3A).We then
evaluated the regulatory role of PPARγ on themDefB10-mediated
mucosal antibacterial activity. Most of the colicidal activity of co-
lonic cationic extracts isolated fromWTmice was blocked using an
anti-mDefB10 antibody (Fig. 3B). Conversely, the blocking activity
of anti-mDefb10 on colonic biopsy extracts isolated from Pparγ+/−

mice was decreased significantly (Fig. 3B), providing a link between
the mDefB10 expression deficiency and impaired antimicrobial
immunity in the colon of Pparγ mutant mice.

PPARγ Is Dispensable for Innate Antimicrobial Immunity in the Mouse
Ileum. Given our previous results and the fact that PPARβ regu-
lates Paneth cell differentiation (10), we next explored the hy-
pothesis that reduced expression of PPARγ might be linked to
Crohn’s ileitis by failing to regulate antimicrobial immunity in
the ileum. In contrast to the expression of DefB10 in the colon, the
expression of Paneth cell–derived antimicrobial peptides remained

unaffected in Pparγ+/− mice (Fig. S1). Moreover, no significant
difference in small intestine antimicrobial activity was seen be-
tween the WT and Pparγ mutant mice (Fig. S2). Similarly, the di-
versity of the fecal-associated microbiota was similar in Pparγ+/−

and control littermates (Fig. S3), as determined by real-time
quantitative PCR (qPCR) on bacterial 16S rDNA of the major
bacterial phyla of the fecal flora (9). Collectively, these results
demonstrate that PPARγ is essential for maintaining optimal ex-
pression of a subset of β-defensins in the mouse colon, providing
a possiblemechanism for the impairedmicrobial killing of the colon
in Pparγ-deficient mice and mucosal adherence of certain micro-
organisms in CD (11).

DEFB1 Expression Is Reduced in CD with Colonic Involvement. We
next measured the mucosal level of DEFB1 in patients with CD,
patients with UC, and controls. DEFB1 expression was specifically
reduced at themRNA level in themacroscopically and histologically
noninflamed colonic mucosa of patients with colonic involvement
(L2 and L3) (P < 0.001 by one-way ANOVA) (Fig. 4A), resulting in
decreased protein expression of DEFB1 (Fig. 4C). The colonic ex-
pression of DEFB1 in colonic biopsy specimens from patients with
pure ileal CD (L1) or UC did not differ significantly from that in
controls (Fig. 4A). No correlation between DEFB1 and IL-8 tran-
script levels was observed in colonic biopsy specimens from control
and CD subjects (Fig. 4B), suggesting that impaired DEFB1 ex-
pression in colonic CD is not linked to inflammation-associated tis-
sue damage. In contrast, and as reported previously (3), constitutive
DEFB1 expressionwas unchanged in noninflamed colonicmucosa of
UC patients expressing low transcript levels of PPARγ (5). These
results indicate PPARγ-independent regulatory mechanisms of co-
lonic DEFB1 expression in UC that remain to be identified.

Colonic Involvement in CD Is Associated with a Functional Variant
of DEFB1 Promoter. To test the hypothesis that the reduced DEFB1
expression in L2 and L3 patients may be related to the CD-
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ileocolonic (n = 21) CD patients compared with UC patients (n = 8) and
controls (n = 17) who underwent colonoscopy. Values represent the mean of
normalized data ± SEM, as measured by real-time qPCR. NS, not significant.
P values were determined by the nonparametric Kruskall-Wallis and Mann-
Whitney tests. (B) Correlation between DEFB1 and IL-8 transcript levels in CD.
P values were determined by the nonparametric Spearman test. (C) Immu-
nohistochemical localization of DEFB1 in control (Left) and Crohn’s colitis
patients (Right). (Scale bar: 10 μm.)
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associated variants within the promoter of DEFB1 (12), we next
performed a genotype-phenotype analysis in CD. No significant
differences were observed between the allele frequencies in the
Hungarian cohort (13) and our French cohort of CD patients
(Table 1). Consistently, we confirmed that the genetic promoter
variation in DEFB1, namely rs1800972, was solely associated with
colonic involvement in CD (13) (Table 1). Notably, the rs1800972
G allele had a significantly lower frequency in patients with pure
colonic disease (L2) compared with L1 patients [odds ratio (OR),
0.524; 95% confidence interval (CI), 0.286–0.961; P = 0.035], as
well as in patients with colonic involvement (L2+L3) (OR, 0.559;
95% CI, 0.344–0.909; P = 0.018). Unlike rs1800972, the SNP
rs11362 G allele was found with a lower frequency in patients with
colonic involvement, but this effect was not statistically significant
(OR, 0.710; 95% CI, 0.473–1.064; P = 0.096).

Discussion
Taken together, our findings suggest a key role of PPARγ in the
maintenance of DEFB1 expression, thus contributing to the bac-
tericidal and candidacidal activity of the colonic mucosa (4). In CD
with colonic involvement, constitutive deficiency of DEFB1 ex-
pression might contribute to diminished microbial killing by the
colonic mucosa that subsequently results in increased mucosal
adherence of certainmicroorganisms (11), excessive inflammation,
and enhanced antibody response to microbial antigens in CD (14)
(Fig. 5). Finally, in line with previous in vitro findings (15–17),
DEFB1 expression was inversely correlated with the carriage of C.
albicans (18) and thehumoral response tomannan, amajor epitope
for anti-Saccharomyces cerevisiae antibody (ASCA) production
(17). C. albicans colonization was significantly increased in CD
patients and was identified as an immunogen for ASCA (19), a se-
rologic marker associated mainly with colonic involvement in CD
(23). In line with the findings of a recent study (20), we provide
a mechanism whereby the rs1800972 G allele might be linked to
transactivationofDEFB1expression throughPPARγ. It alsomight
account for the inefficacity of PPARγ-based therapy, such as 5-
aminosalicylates, in the colon of CD patients with colonic in-
volvement compared with UC patients. Whether a maintained
DEFB1 expression level might be necessary to account for the
protective effect of PPARγ on the development of colorectal
cancer will require additional investigation (21, 22). In summary,
we believe that restoring PPARγ-dependent antimicrobial barrier
function might prevent and/or cure inflammatory lesions in the
colon of patients with CD.

Materials and Methods
Patients. Through colonoscopy, human colonic biopsy specimens were
obtained from macroscopically noninflamed colonic mucosa of healthy indi-
viduals (controls, n = 17), CD patients with pure ileal disease (L1 according to
the Montreal classification; n = 21) (Table S4), CD patients with solely colonic

disease (L2; n = 16) (Table S5), CD patients with ileocolitis (L3; n = 21) (Table
S6), and UC patients (n = 8). The diagnoses of CD and UC were based on
standard criteria using clinical, radiologic, endoscopic, and histopathologic
findings. All clinical investigations were conducted according to the principles
expressed in the Declaration of Helsinki.

Animals. Animal experiments were performed in accredited establishments
(B59-108 and B67-218-5) according to European guidelines 86/609/CEE. Age-
and sex-matched animals were housed five per cages and had free access to
a standard laboratory chow diet in a temperature-controlled specific patho-
gen-free environment and a half-day light cycle exposure. To avoid estrus
variation, 8-week-old PPARγ mutant males and their WT littermates were
bred in a specific pathogen-free environment as reported previously (23). The
Pparγ-null mouse strain was provided by Prof. Béatrice Desvergne. The
proximal colon and terminal ileum were dissected out, flushed with cold PBS,
and kept frozen in liquid nitrogen until further gene expression analysis.
Rosiglitazonewas administered orally or rectally to 8-week-old C57BL/6J mice
at a dose of 10 mg/kg for 14 days once or twice daily. All animal studies were
approved by the local institutional review board.

Plasmids. The DEFB1 promoter–containing luciferase reporter constructs
DEFB1-1140 (started from translation codon ATG) were kindly provided by Dr.
John A. Petros (Emory University). The human PPARγ-expressing plasmids
pSG5-h-PPARγ-1 and pSG5-h-PPARγ-2 contain the cDNAof the human PPARγ-1
and PPARγ-2 genes, respectively (23). The pCDNA3.1-RXRαwas kindly provided
by Dr. Oliver Burk (Dr. Margarete Fischer-Bosch-Institute of Clinical Pharma-
cology and University of Tübingen).

Promoter Analysis. To screen for potential PPRE within the human DEFB1-4
promoter region, we analyzed the nucleotide sequence using two different
software types designed to predict transcription factor binding in silico. The
1,140 bp upstream of the DEFB1 promoter region was screened using Mat-

Table 1. Genotype and allele frequencies of DEFB1 rs1800972 and rs11362 in CD

SNP
Crohn´s disease,

n (%)
Ileal (L1),
n (%)

Colonic
(L2), n (%)

Ileocolonic
(L3), n (%)

rs1800972 L1 vs. L2 L1 vs. L2 + L3
CC 170 (68.27) 40 (58.82) 53 (72.60) 77 (71.30)
CG 70 (28.11) 23 (33.82) 19 (26.03) 28 (25.93)
GG 9 (3.61) 5 (7.35) 1 (1.37) 3 (2.78)
C 410 (82.33) 103 (75.74) 125 (85.62) 182 (84.26) C vs. G C vs. G
G 88 (17.67) 33 (24.26) 21 (14.38) 34 (15.74) P = 0.035; OR = 0.524 P = 0.018; OR = 0.559

rs11362
GG 82 (33.06) 27 (40.30) 24 (32.88) 31 (28.70)
GA 113 (45.56) 29 (43.28) 34 (46.58) 50 (46.30)
AA 53 (21.37) 11 (16.42) 15 (20.55) 27 (25.00)
G 277 (55.85) 83 (61.94) 82 (56.16) 112 (51.85) G vs. A G vs. A
A 219 (44.15) 51 (38.06) 64 (43.84) 104 (48.15) P = 0.326; OR = 1.270 P = 0.096; OR = 1.409

Healthy
colonocyte

Crohn’s colitis
colonocyte

DEFB1
deficiency

Chronic
inflammation

DEFB1

PPAR PPARγ γ

Dysbiosis
Microbial attachment

Fig. 5. Model of PPARγ-mediated antimicrobial immunity in the colon.
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Inspector (http://www.genomatix.de/products/MatInspector/index.html) and
NUBIScan (http://www.nubiscan.unibas.ch/).

Electrophoretic Mobility Shift Assay. Gel mobility shift assays were performed
as described previously (24). In brief, human PPARγ and RXRα protein were
synthesized using pSG5-h-PPARγ-1, pSG5-h-PPARγ-2, and pCDNA3.1-RXRα
according to the protocol of the TNT T7 Quick-Coupled Transcription/
Translation System (Promega). Nuclear response elements were prepared by
annealing 10 μL each of two complementary oligonucleotide stocks (100 μM)
in 180 μL of 25 mM NaCl, 25 mM Tris-HCl (pH 7.5), and 5 mM MgCl2. For
radioactive labeling, 2 μL of the annealed oligonucleotides; 5 μL of 10×
buffer [500 mM NaCl, 500 mM Tris-Cl (pH 7.5), and 100 mM MgCl2]; 25 μCi of
(α-32P)dCTP; 5 μL of 2 mM dATP, dGTP, and dTTP; 2 U of Klenow fragment;
and water to a final volume of 50 μL were incubated at 37 °C for 1 h and
purified through Sephadex columns (MicroSpin G-25; GE Healthcare). The
binding reaction contained 10 mM Hepes (pH 7.8), 60 mM KCl, 0.2% Nonidet
P-40, 6% glycerol, 2 mM DTT, 0.25 μg of poly(dI-dC), 2 μL of 10 μM non-
specific oligonucleotides (5′-AGC TTG CGA AAA TTG TCA CTT CCT GTG TAC
ACC CA-3′), 50,000 cpm labeled probe, and 2 μL of full-length synthesized
PPARγ and/or RXRα in a final volume of 20 μL. Samples were incubated on ice
for 20 min after addition of the labeled probe. Protein–DNA complexes were
resolved on a pre-electrophoresed 5% polyacrylamide gel in 44.5 mM boric
acid and 1 mM EDTA (pH 8.3) at 200 V at 4 °C. Gels were dried and auto-
radiographed overnight at room temperature and analyzed with a Fuji BAS-
1800 II phosphor-storage scanner and AIDA software (Raytest).

Cell Culture and Transient Transfection Assay. Human intestinal epithelium cell
line Caco-2 (German Collection of Microorganisms and Cell Cultures, ACC
169), were grown in Dulbecco’s modified Eagle’s medium containing 25 mM
Hepes and 2 mM glutamine supplemented with 10% FCS, 50 μg of genta-
micin/mL, and 5% of nonessential amino acids. Caco-2 cells were stimulated
for 24 h with a synthetic activator of the RXRα/PPARγ heterodimer, rosigli-
tazone, at 100 nM.

TransienttransfectionswereperformedusingFuGENE6(RocheDiagnostics)
according to the manufacturer’s protocol. In brief, 1 day before transfection,
Caco-2 cells were seeded into the 24-well plates (1.0 × 105 cells/well). Twenty-
four hous later, Caco-2 cells (80% confluence) cells were cotransfected with
0.2 μg of the indicated reporter plasmids plus 0.2 μg of pSG5-h-PPARγ-1 or
pSG5-h-PPARγ-2 and 50 ng of Renilla luciferase expression plasmid as an in-
ternal control. Total amounts of plasmids were kept constant by adding the
empty DNA vectorwhen necessary. The cells were incubated for 48 h and then
washed, lysed, and harvested using 100 μL of passive lysis buffer (Promega)
per well. Firefly luciferase and Renilla luciferase activity were analyzed with
the Promega Dual-Luciferase reporter assay system using a Berthold lumin-
ometer. All experiments were performed in triplicate and repeated in-
dependently at least three times by two independent investigators.

Gene Expression Analysis. For gene expression analyses, colonic biopsy
specimens were immediately frozen in liquid nitrogen and stored at −80 °C.
Total RNA from cells and colonic specimens was extracted using the Nucle-
ospin II tissue extraction kit (Macherey Nagel) and reverse-transcribed with
the High-Capacity cDNA archive kit (Applied Biosystems), according to the
manufacturer’s instructions. The resulting cDNA (equivalent to 25 ng of total
RNA) was amplified using the SYBR Green real-time PCR kit and detected
using the Prism 7300 system (Applied Biosystems). Real-time qPCR was per-
formed with forward and reverse primers (Table S3) designed using Primer
Express version 1.0 (Applied Biosystems). On completion of the PCR ampli-
fication, a DNA melting curve analysis was carried out to confirm the pres-
ence of a single amplicon. β-actin was used as an internal reference gene to
normalize the transcript levels. Relative mRNA levels (2-ΔΔCt) were de-
termined by comparing (i) the PCR cycle thresholds (Ct) for the gene of in-
terest and Actb (ΔCt) and (ii) ΔCt values for the treated and control
groups (ΔΔCt).

Immunohistochemistry. DEFB1 immunostaining was performed using a rabbit
polyclonal antibody as described previously (15). The specific anti-DEFB1 an-
tibody was kindly provided by Dr. T. Ganz (UCLA, Los Angeles, CA). Colonic
biopsy specimens were fixed in 4% paraformaldehyde/phosphate-buffered
formalin and embedded in paraffin. In brief, sections were first deparaffi-
nized and rehydrated. Human colonic sections were preincubated in 3%H2O2

methanol for 20 min to quench the endogenous peroxidase activity and with
a blocking solution containing avidin D and biotin (Blocking Kit SP2001;
Vector Laboratories). Then sectionswere blocked for 15minwith 5%milk and
1% BSA in PBS and exposed for 30 min to the primary rabbit polyclonal an-
tibody directed against DEFB1 (1:300 dilution) at room temperature. Sections

were incubated for 30 min at room temperature with goat anti-rabbit IgG
(Dako), and then under the same conditions with an avidin–biotinylated
peroxidase complex that was prepared at least 30 min before use.

For mDefB10 immunostaining, we generated an immune affinity–purified
rabbit polyclonal F(ab′)2 fragment against the mDefB10-derived synthetic
peptide Ser-Arg-Phe-Met-Ser-Asn-Cys-His-Pro-Glu-Asn-Leu-Arg. Sections were
processed for peroxidase immunostainingusing theDako system following the
manufacturer’s recommendations. Immunohistochemistry was performed on
formalin-fixed, paraffin-embedded tissue sections using the streptavidin-bi-
otin-peroxydasemethod in a DakoCytomationAutoStainer. Sectionswerefirst
deparaffinized and rehydrated. Antigen retrieval was performed by in-
cubating the slides in Tris-citrate buffer (pH 6.0) for 20 min at 97 °C (PT Link;
DakoCytomation). Endogenous peroxydase activity was blocked by incubation
in 3% hydrogen peroxide for 10 min. The newly generated polyclonal rabbit
anti-mDefB10 (2mg/L)was incubatedon slides for 12h at 4 °C. Thebiotinylated
secondary antibody was a polyclonal swine anti-rabbit (DakoCytomation).

Sections were incubated with 3,3′-diaminobenzidine substrate (Dako) for
1 min, after which the reaction was stopped in distilled water and the sec-
tions were counterstained with hematoxylin. Withdrawal of the primary
antibody and replacement with a nonspecific antibody were used as neg-
ative controls.

Flow Cytometric Antimicrobial Assay. Extraction of cationic proteins from
colonic and ileal tissue of Pparγ+/− (n = 6) and Pparγ+/+ (n = 5) mice was per-
formed as described previously (24). C. albicans (clinical isolate 526; Institute
of Laboratory Medicine, Klinik am Eichert), E. faecalis (clinical isolate 404),
and E. coli (clinical isolate 304446) were grown aerobically at 37 °C, whereas
B. fragilis (ATCC 25285) was cultured anaerobically (Anaero Gen; Oxoid). All
clinical isolates were kindly provided by the Institute of Laboratory Medicine,
Klinik am Eichert. Then cell suspensions in Schaedler broth bouillion (1:6 di-
lution) were incubated at a concentration of 1.5 × 106 cells/mL with cationic
proteins isolated from 10 μg total extract at 37 °C. After 90 min, 1 μg/mL of
the membrane potential–sensitive dye bis-(1,3-dibutylbarbituric acid) trime-
thine oxonol [DiBAC4(3)] (Invitrogen) was added. After 10 min, the suspen-
sions were centrifuged for 10 min at 4,500× g, and then the bacterial or
fungal pellets were resuspended in 300 μL of PBS (pH 7.4). For blocking
experiments with anti-mDefB10 antibody, cationic extracts of colonic tissue
from WT and PPARγ+/− mice (35 μg/mL) were incubated for 1 h at 37 °C with
or without anti-mDefB10 antibody resuspended in 0.1 M K phosphate buffer
at a concentration of 10 mg/L. Subsequently, E. coli (clinical isolate 304446)
was added in a concentration of 1.5 × 106 cells/mL in Schaedler broth bouillon
(1:6) with aqua dest. A total of 10,000 events were analyzed with a FACSCa-
libur flow cytometer and Cell Quest software (BD) for light scattering and
green fluorescence. Antimicrobial activity was determined as percentage of
depolarized fluorescent cells with respect to the bacterial control incubated
with solvent.

Genotyping. Genotyping for the DEFB1 promoter polymorphisms rs11362 and
rs1800972 was performed using TaqMan SNP Genotyping Assays (assay
c_11636793_20[rs11362]andassayc_11636794_10[rs1800972])onaPrism7900
System(AppliedBiosystems), according to the supplier’s instructions. Initial and
postassay analyses were performed using the Sequence Detection System
version 2.3 (Applied Biosystems). One-third of the samples were analyzed in
duplicates as an internal control, and DNase-free water was used as a non-
template control.

Statistics. Data were analyzed using Prism 4.0 (GraphPad Software). The un-
paired Student t test was used to test for significant differences between ac-
tivities of different promoter constructs. Statistical analysis was performed
using (i) the Spearman test for nonparametric correlation analysis and (ii) the
Mann-Whitney test for normalized gene expression in mice and antimicrobial
assays, and (iii) Kruskall-Wallis test for normalized gene expression in humans.
Differences were considered significant at P < 0.05. Values represent themean
of normalized data ± SEM.
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Evolutionarily Conserved, Growth Plate Zone-Specific Regulation of
the Matrilin-1 Promoter: L-Sox5/Sox6 and Nfi Factors Bound

near TATA Finely Tune Activation by Sox9�
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To help uncover the mechanisms underlying the staggered expression of cartilage-specific genes in the
growth plate, we dissected the transcriptional mechanisms driving expression of the matrilin-1 gene (Matn1).
We show that a unique assembly of evolutionarily conserved cis-acting elements in the Matn1 proximal
promoter restricts expression to the proliferative and prehypertrophic zones of the growth plate. These
elements functionally interact with distal elements and likewise are capable of restricting the domain of activity
of a pancartilaginous Col2a1 enhancer. The proximal elements include a Pe1 element binding the chondrogenic
L-Sox5, Sox6, and Sox9 proteins, a SI element binding Nfi proteins, and an initiator Ine element binding the
Sox trio and other factors. Sox9 binding to Pe1 is indispensable for functional interaction with the distal
promoter. Binding of L-Sox5/Sox6 to Ine and Nfib to SI modulates Sox9 transactivation in a protein dose-
dependent manner, possibly to enhance Sox9 activity in early stages of chondrogenesis and repress it at later
stages. Hence, our data suggest a novel model whereby Sox and Nfi proteins bind to conserved Matn1 proximal
elements and functionally interact with each other to finely tune gene expression in specific zones of the
cartilage growth plate.

Sox proteins play critical roles in lineage specification during
development (18, 21, 25). They have an Sry-related high-mo-
bility-group (HMG) box domain, which binds the minor groove
of DNA with low affinity. They may act as architectural pro-
teins to organize transcriptional complexes (25). Three Sox
proteins direct chondrocyte specification and differentiation,
but it is still unclear how they orchestrate the sequential in-
duction of cartilage-specific genes in developing endochondral
bones.

Endochondral bones form through tightly intertwined mor-
phogenetic and differentiation events (11, 20, 24, 37). First,
mesenchymal cells condense, commit to the chondrocyte lin-
eage, and undergo chondrocyte early differentiation to form
cartilage primordia of future bones. They then sequentially
differentiate into proliferating, prehypertrophic, hypertrophic,
and terminal cells and ultimately die to allow replacement of
cartilage by bone. Importantly, the multiple layers of cells that

comprise cartilage primordia proceed through the multiple
steps of differentiation in a staggered manner. They thereby
establish growth plates (GP), i.e., a series of adjacent tissue
zones comprising cells at progressively more advanced stages
of maturation. The process is tightly regulated both spatially
and temporally to allow GP to continue to grow in one end and
to be progressively replaced by bone in the other end through-
out fetal and postnatal growth (24). Bone growth is determined
by the number of cells proliferating in the columnar zone and
progressing toward hypertrophy. It involves complex functional
interactions between fibroblast growth factor (FGF), Ihh, para-
thyroid hormone-related protein (PTHrP), and other factors
and signaling pathways that allow chondrocytes to constantly
modify their gene expression profile (11, 20, 37). Mutations in
these factors and pathways cause severe forms of dwarfism and
skeletal malformation diseases (20, 33). Elucidating the tran-
scriptional mechanisms involved in specifying gene expression
in specific GP zones has thus special importance to allow
development of suitable therapies for such diseases.

The composition of the cartilage extracellular matrix (ECM)
progressively changes from one GP zone to the next. This is
largely due to staggered expression of the genes encoding the
specific components of this matrix (8, 24, 39). Col2a1 (colla-
gen-2 gene) is activated as soon as prechondrocytes differen-
tiate, whereas Agc1 (aggrecan gene) and most other cartilage
ECM genes are turned on in early chondroblasts (24). In con-
trast, Matn1 (matrilin-1 gene) exhibits a narrower spatiotem-
poral activity (30, 31, 39, 42). It has the unique feature of being
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expressed exclusively in the overtly differentiated chondro-
blasts of the columnar and prehypertrophic GP zones (4, 5,
19). Chondrocytes turn all these genes off as they undergo
hypertrophy and then activate Col10a1 (collagen-10 gene).

Sox9, L-Sox5, and Sox6 form a trio of transcription factors
that are both required and sufficient to induce chondrogenesis
(2, 7, 14, 38). Their main functions are to bind and thereby
directly induce activation of Col2a1, Agc1, and several other
cartilage ECM genes (1, 13, 23–26). Sox9 features a family-
specific HMG box DNA-binding domain and a homodimeriza-
tion domain, which mediate its binding to pairs of inverted Sox
motifs (13, 26). It also features a potent transactivation do-
main. L-Sox5 and Sox6 are highly related to each other but
only distantly related to Sox9 through their HMG box domain.
They feature a dimerization domain, distinct from that of Sox9,
and lack a transactivation domain. They bind more-variable
Sox motifs on cartilage-specific enhancers and cooperate with
Sox9 in transactivation by increasing the efficiency of Sox9
binding to its own sites on DNA (13). It remains unknown,
however, whether and how the activity of this Sox trio is con-
trolled to confer markedly different expression patterns on the
various cartilage ECM genes. We used here the Matn1 pro-
moter as a model to reach deeper insight into gene regulation
orchestrated by the Sox trio.

Matrilin-1 (also called cartilage matrix protein [CMP]) be-
longs to a family of multidomain adaptor proteins (10, 22, 44).
It facilitates assembly of the cartilage ECM by forming colla-
gen-dependent and -independent filaments and interacting
with aggrecan. It also forms complexes with biglycan, and
decorin, linking collagen-6 microfibrils to aggrecan and colla-
gen-2 (45). We previously showed that the Matn1 promoter
features several blocks of sequences highly conserved in am-
niotes (34). A 334-bp short promoter is insufficient to direct
reporter gene activity in cartilage in transgenic mice (34) but
can be activated at a low level in the Matn1-specific GP zones
upon addition of an intronic enhancer (19). Stronger activity is
obtained by using a 2-kb promoter with or without the intronic
enhancer (19). These data suggest that the proximal promoter
may contain the cis-acting elements driving Matn1 expression
in the growth plate but requires distal and intronic enhancers
to be activated. This short promoter features highly conserved
promoter element 1 (Pe1), recognized by the Sox trio, and two
silencer elements (SI and SII) binding Nfi proteins (34, 41).

Here we demonstrate that the short promoter has a central
role in conferring on Matn1 its restricted spatiotemporal ex-
pression pattern. We show the respective roles of the Sox-
binding sites in the Pe1 and the Ine elements and Nfi-binding
sites in the SI element. We show that L-Sox5/Sox6 and Nfi
differentially modulate promoter activation by Sox9, according
to the relative levels of the proteins. Our data thereby provide
new insights into the transcriptional mechanisms that underlie
staggered gene expression in the cartilage GP.

MATERIALS AND METHODS

Cell culture. Chicken embryo chondroblasts (CEC) and fibroblasts (CEF) and
mesenchymes were prepared and cultured as described previously (41). Low-
density mesenchyme (LDM) and high-density mesenchyme (HDM) cultures
were made similarly, by plating 1 � 106 cells and 5 � 106 cells, respectively, in
35-mm plates containing F-12 medium–Dulbecco’s modified Eagle medium
(DMEM) (1:1; HyClone Laboratories) supplemented with 10% fetal bovine

serum (FBS; Sigma and Gibco Laboratories). COS-7 cells were cultured under
standard conditions. HDM cultures consisting of early proliferative (stage Ia)
chondroblasts and CEC cultures rich in late proliferative (stage Ib) chondro-
blasts express Matn1 at low and high levels, respectively (31, 41, 42). LDM, CEF,
and COS-7 cultures served as Matn1-nonexpressing controls.

Oligonucleotides and plasmid constructions. Nucleotide sequences for wild-
type and mutant versions of Pe1 and SI and consensus HMG and SOX9 com-
petitors were described previously (34, 41). Sequences of oligonucleotides for
wild-type Ine, Ine derivatives, and mutant versions of Ine are depicted in Fig. 3B.

All positions are given in bp from the first T of the chicken Matn1 TATA
motif. The TR70 (�2011/�67) and NAD1 (�334/�67) Matn1-LacZ constructs
were reported previously (19, 34). PS-NAD1 was produced by inserting the
�2011/�948 Matn1 sequence upstream of NAD1. Eight tandem copies of a
48-bp Col2a1 enhancer element (ECol2a1) were inserted upstream of NAD1 to
obtain 8�ECol2a1-NAD1. �IneM1-TR70 was made by replacing the NAD1 pro-
moter with the �2011/�67 fragment of �IneM1-AC8Luc (see below).

Luciferase reporters FO15Luc and AC8Luc, driven by the short and long
Matn1 promoters, respectively, as well as �Pe1M1-FO15Luc and �Pe1M4-
FO15Luc, carrying point mutations in the Sox motif and spacer of Pe1, respec-
tively, were described (34). To produce 8�ECol2a1-FO15Luc, eight copies of
ECol2a1 were inserted upstream of FO15Luc. Mutations were introduced into
Pe1, Ine, and SI elements of reporters by PCR-based QuikChange site-directed
mutagenesis (Stratagene) using oligonucleotides carrying the desired mutations.
All constructs were verified by restriction enzyme analysis and DNA sequencing.

Generation and histological analysis of transgenic mice. All animal experi-
ments were conducted according to the ethical standards of the Animal Health
Care and Control Institute, Csongrád County, Hungary. C57BL/6, CBA, CD-1,
and FVB mice were obtained form Charles River Laboratories, Hungary. Trans-
genic mice were generated essentially as described previously (19). On embry-
onic day 15.5 (E15.5), foster mothers were sacrificed by cervical dislocation and
the transgenes were detected by PCR in founder (G0) embryos. These embryos
were stained with X-Gal (5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside)
and photographed as whole mounts with a Leica MZFLIII stereomicroscope
equipped with a DC300F camera. Cryosections were counterstained with 0.5%
eosin and analyzed using a Nikon Eclipse E600 microscope equipped with Spot
RT Slider camera as described previously (19). Figures were made with Adobe
Photoshop 8.0 and CorelDraw X4 software.

EMSA and supershift experiments. Full-length cDNAs for L-Sox5 and Sox6
were inserted in frame into the pGEX expression vector. Glutathione S-trans-
ferase (GST)-tagged L-Sox5, Sox6, and SOX9 were expressed and purified, and
crude cell extracts were made as described previously (34). Twenty to 30 fmol
end-labeled DNA probes was incubated with 1 to 2.5 �g GST-SOX9 or GST–
L-Sox5 or 3 �g crude CEC or CEF cell extracts in the presence of 100 to 500 ng
poly(dG-dC) � (dG-dC) and separated on prerun 5% or 6.6% PAGE gel. In
competition electrophoretic mobility shift assays (EMSA), 50- and 500-fold mo-
lar excesses of cold competitors were added. Supershift experiments were per-
formed as described previously (34) using Sox9, L-Sox5, and Sox6 antisera (26).

In vivo footprinting. CEC and CEF cells and HDM cultures were treated
with dimethylsulfate (DMS) or irradiated with UV light and subjected to
genomic footprinting as described previously (34). Briefly, 30 �g of in vivo-
and in vitro-treated DNA samples cleaved with piperidine were amplified by
ligation-mediated PCR (LM-PCR) (32) between �227 and �140 using linker
primers LP11 and LP25 and gene-specific nested primers PU1 and PU2
(upper strand), PL1 and PL2 (lower strand), and PU3 or PL3 (hybridization
probe) (34) (see Fig. 4A).

Transient expression assay. CEC, CEF, and COS-7 cells were transfected with
the Ca-phosphate coprecipitation method 4 to 6 h after plating (34, 41). HDM
and LDM cultures were transfected similarly, but 24 h after plating. Briefly, 2 �g
(CEC and CEF) or 5 �g (HDM, LDM, and COS-7) reporters was added with 0.5
�g pRL-TK vector (Promega) as an internal control to correct for transfection
efficiency. Control plates were transfected with FO15Luc. Firefly and Renilla
luciferase activities were measured using Luminoscan Ascent (ThermoLab-
system 2.6) and luciferase assay systems (Promega) 72 h (HDM and LDM) or
48 h (other cells) posttransfection.

Unless indicated otherwise, cotransfections were performed with 2 �g or 5
�g AC8Luc and increasing amounts (50 to 250 ng) of effector plasmids
pcDNA5�UT-FLAG-L-Sox5 (pFSox5) and pcDNA5�UT-FLAG-Sox6 (pFSox6)
(26) without or with 250 ng pCDMA-SOX9 (pSOX9) (26). In a typical experi-
ment, 250 ng pSOX9 and 125 ng each of pFSox5 and pFSox6 effector plasmids
were used. Other experiments were performed with 0 to 300 ng effector plasmids
expressing human CTF-1 (pCTF-1) (36) or mouse Nfia, Nfib, Nfic, and Nfix
(pNfia, pNfib, pNfic, and pNfix), homologous to chicken Nfia1.1, Nfib2, Nfic2,
and human NFIX2, respectively (9). Transfection mixtures were adjusted with
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empty vectors to the same amount of total DNA. Luciferase activities were
expressed as fold values relative to that for FO15Luc, taken as 1, unless noted
otherwise. Transfections were performed in duplicate or triplicate and repeated
3 to 10 times with at least two different DNA preparations. Results are presented
as means � standard errors of the means (SEM).

Combined forced expression and Western analysis. To estimate the relative
expression levels of Sox and Nfi proteins, we used pcDNA5�UT-FLAG-SOX9
(pFSOX9) (26) and we made pFNfib by inserting fragments of Nfi expression
plasmids (9) into pcDNA5�UT-FLAG. COS-7 cells were cotransfected as de-
scribed above with AC8Luc, 1 �g pFSOX9, and increasing amounts of effector
plasmids pFSox5 and pFSox6 or pFNfib. Transfected cells were lysed in 100 �l
buffer containing 14 mM HEPES (pH 7.9), 1.5 mM MgCl2, 6 mM KCl, 0.44 mM
NaCl, 0.08 mM EDTA, 2.3 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl
fluoride, 10% glycerol, and a protease inhibitor cocktail (Sigma-Aldrich; P2714).
Supernatants were used to measure luciferase activities and in Western blots with
rabbit anti-FLAG (Sigma) antisera.

Statistical analysis was carried out using one-way analysis of variance
(ANOVA) with KyPlot version 2.0 beta 15.

QRT-PCR. Total RNA was isolated from cultured cells using an RNA isola-
tion kit (Macherey-Nagel). Quantitative real-time PCR (QRT-PCR) was per-
formed on a RotorGene 3000 instrument (Corbett Research) with gene-specific
primers and the SYBR green protocol (16). Briefly, 2 �g of DNase-treated RNA
was reverse transcribed using the High-Capacity cDNA Archive kit (Applied
Biosystems). Reactions were done with FastStart SYBR green Master mix
(Roche Applied Science) at a primer concentration of 250 nM as follows: 15 s at
95°C and 45 cycles of 95°C for 15 s, 60°C for 25 s, and 72°C for 25 s. The quality
of the reaction was checked by melting temperature analysis. Individual thresh-
old cycle (CT) values were normalized to the average CT values of three internal
control genes (glyceraldehyde 3-phosphate dehydrogenase [GAPDH], 18S
rRNA, and 28S rRNA genes). The final relative gene expression ratios were
calculated as ��CT values (comparison of the normalized ratios). Gene-specific
primer sequences are shown in Table S1 at http://www.brc.hu/pub/Supplemental
_Material_Nagy_et_al_MCB2010.pdf.

Genome sequence analysis. The MAF format 44-way vertebrate multiple
alignment file of human chromosome 1 was downloaded from the University of
California, Santa Cruz (UCSC), website (http://hgdownload.cse.ucsc.edu
/downloads.html). The corresponding Matn1 promoter region was extracted
from this file using the MAF2FASTA program of the MULTIZ package (http:
//www.bx.psu.edu/miller_lab/) using the corresponding human positions. The Ine
and Pe1 region was extracted and further refined manually. The 75% majority
rule consensus and the sequence logo were generated with the Geneious Pro
program.

RESULTS

Proximal elements restrict spatiotemporal activation of the
Matn1 promoter by homologous and heterologous enhancers.
We previously reported that a LacZ transgene driven by a
Matn1 short promoter (�334/�67; NAD1) exhibited low ac-
tivity in mouse embryos (34). The addition of the Matn1
�2011/�948 sequence (PS) markedly increased transgene ac-
tivity (Fig. 1A and B), but this activity remained lower than
that of a transgene harboring the full-length (�2011/�67;
TR70) promoter (19) (Fig. 1C). Histological analysis revealed
that the transgene activity also increased proximodistally in the
limbs and craniocaudally in the vertebral bodies, as with TR70
(Fig. 1D to L). This activity was restricted to columnar and
prehypertrophic chondrocytes. The �2011/�1134 region in-
creased the short promoter activity less markedly than the
�2011/�948 region but showed similar zonal and proximo-
distal specificity (see Fig. S1 at http://www.brc.hu/pub
/Supplemental_Material_Nagy_et_al_MCB2010.pdf). We
therefore concluded that elements in the �2011 to �334
region enhance the activity but not the tissue specificity of
the Matn1 promoter.

Next we tested activation of the Matn1 short promoter by 8
tandem copies of the pancartilaginous Col2a1 minimal en-

hancer (8�ECol2a1-NAD1). Interestingly, 8�ECol2a1-NAD1
dramatically differed in its expression pattern from
p3000i3020Col2a1, which contains the Col2a1 promoter and
enhancer (47) (Fig. 2B and C). It was expressed exclusively in
distal structures, like digits, caudal vertebral bodies, and nasal
cartilage and only in columnar and prehypertrophic GP zones
(Fig. 2D to N). Its sporadic or weak activity in epiphyseal and
source chondroblasts and lack of activity in condensed mesen-
chymal cells, perichondrium cells, and prechondrocytes dif-
fered markedly from the high activity of the Col2a1 transgene
in these cells (47, 48). Thus, the Matn1 short promoter inhib-
ited the Col2a1 enhancer in proximal structures and at early
chondrocyte differentiation stages. Even 16 copies of ECol2a1

neither increased the transgene activity nor altered its re-
stricted spatiotemporal expression (data not shown).

To sum up, the Matn1 short promoter plays a critical role in
restricting cartilage-specific expression, and its activity is en-
hanced by distal elements. It is even capable of restricting the
activity of a powerful Sox-driven panchondrocytic Col2a1 het-
erologous enhancer to distal structures and specific GP zones.

The Sox trio binds to the initiator element in vitro. To
uncover the powerful mechanism employed by the Matn1 short
promoter, we dissected its elements. We reasoned that Pe1,
which is the most conserved element in amniotes, could be
involved in Sox-mediated functions, because it bears a palin-
drome resembling the preferred Sox9-binding site (29) (see
Fig. S2B at http://www.brc.hu/pub/Supplemental_Material
_Nagy_et_al_MCB2010.pdf) and because it is recognized by
the Sox trio in vitro and protected in genomic footprinting (34).
In addition, we found two conserved pairs of inverted Sox
motifs in the Ine element of mammals (Fig. 3A; see Fig. S2A
at the URL listed above). The sequence is poorly conserved in
the chicken, but the chicken promoter also features two pairs
of Sox motifs and a conserved GTGCC motif in the Ine ele-
ment and an Nfi site upstream of TATA (Fig. 3A). These
motifs could thus also play conserved regulatory roles.

We delineated the Sox-binding sites of Ine by EMSA using
purified Sox proteins (Fig. 3B to F). GST-fused SOX9, L-Sox5,
and Sox6 efficiently bound Ine in vitro (Fig. 3C and D and data
not shown). Mutations M2 and M5, which disrupted both in-
verted Sox motifs, abolished complex formation, whereas M1
and M3, which disrupted only one Sox motif, had partial effect.
Probes carrying the 5� (Ine5�h1) or 3� (Ine3�h2) Sox motif
showed weaker binding than Ine (Fig. 3E and F). Mutation M1
less severely reduced complex formation with L-Sox5 than with
SOX9. This was possibly due to the presence of an upstream
Sox-like motif, as mutations in this motif (M6), in the 5� half
site (M7), or in both sites (M6-7) had a more drastic conse-
quence than M1 (Fig. 3E and F). Mutation M2-3 abolished Sox
binding to the 3� site. We concluded that both Sox sites might
be functional and might act cooperatively.

CEC nuclear proteins formed three major complexes with
Ine. Complexes I and II were supershifted with Sox9, L-Sox5,
and Sox6 antibodies (Fig. 3G) and competed with HMG, Sox9,
or ECol2a1 probes (Fig. 3H). They thus likely contain the Sox
trio. In contrast, complex III was not specific to chondrocytes
and did not contain Sox factors (Fig. 3G to I).

Ine3�h1, in which the 5� Sox site was mutated, formed two
major CEC nucleoprotein complexes (Fig. 3J). These com-
plexes migrated like complexes II and III, and formation of the
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former one was competed by the HMG probe. As complex I
was neither efficiently disrupted nor formed with Ine3�h1, we
concluded that it likely formed on the 5� Sox site. IneM1, which
was mutated in the 5� Sox site, decreased the formation of
complex I (Fig. 3K), as judged by reduced supershift forma-
tion, especially with Sox9 antibody (compare Fig. 3G and L).
Interestingly, a new complex, not supershifted with Sox anti-
bodies, migrated close to or slightly below complex I with
probes IneM1, IneM2, and IneM3 (Fig. 3K to N, arrowheads).
As IneM1 and IneM3 carried an intact Sox site, they efficiently
displaced both the Sox-specific and unrelated complexes of Ine
(Fig. 3J). IneM3, which carried mutations in the 3� Sox site, did
not produce the Sox-specific complex II, but supershifts with
L-Sox5 and Sox6 antibodies indicated that it formed complex I
(Fig. 3K and N). IneM2, however, which carried mutations in
both Sox sites and in the conserved GTGCC motif, neither
formed complexes I to III (Fig. 3K and M) nor competed for
those (Fig. 3J). Complex III may contain the unidentified fac-
tor binding to the GTGCC motif. Supporting this hypothesis,

only complex III efficiently formed with IneM5, which carried
mutations in both Sox sites but had part of the GTGCC motif
intact (Fig. 3K and O).

We concluded that Sox factors cooperatively bind the Ine
5� and 3� Sox sites. SOX9 binds efficiently only when both
sites are intact. Apart from two CEC-specific Sox com-
plexes, an unrelated complex forms on the conserved GT-
GCC motif in mesenchymal cells. This motif is not listed in
the TRANSFAC database and likely interacts with a non-
chondrocytic factor.

Cartilage-specific in vivo occupancy of Ine and SI. To deter-
mine occupancy of the Matn1 promoter in intact cells, we
performed in vivo footprinting. We treated CEC and CEF
genomic DNA with DMS or UV light to modify G residues at
the N-7 position or produce 6-4 photoproducts at TC and CC
dinucleotides, respectively (Fig. 4). Bound proteins blocking
these modifications appeared as footprints on LM-PCR
genomic sequencing ladders compared to LM-PCR of naked
CEC and CEF DNA treated with the same reagents in vitro.
Differences in the modification patterns between the in vivo-

FIG. 1. Upstream elements increase the activity of the Matn1 prox-
imal promoter in vivo. (A) Schematic of PS-NAD1 depicting conserved
DNA blocks (rectangles, diamond, and oval) in the distal and proximal
Matn1 promoter regions. (B and C) Expression of PS-NAD1 (B) and
TR70 (C; 2-kb Matn1 promoter) transgenes in founder embryos (FE)
stained with X-Gal at E15.5. (D to L) Histological analysis of PS-
NAD1 embryo cryosections. In the developing limbs, X-Gal staining
increases proximodistally from humerus (h), ulna (ul), and femur (f) to
radius (ra), tibia (ti), and fibula (fi) and further from carpals (c) and
metacarpals (mc) to phalanges (ph) (D to H). Staining is absent in
cranial (cran) vertebral bodies (vb) but increases from lumbar (lumb)
to caudal (caud) regions (I to K). LacZ activity is restricted to the GP
zones of columnar chondroblasts (cc) and prehypertrophic chondro-
cytes (pc), while it is low or absent in the zones of epiphyseal (ec) and
source chondroblasts (sc) and hypertrophic chondrocytes (hc) (D, G,
and J to L). np, nucleus pulposus; r, rib. Bars, 2 mm (B and C) and 200
�m (D to L).

FIG. 2. The short promoter restricts the Col2a1 enhancer activity
in vivo. Schematic (A) and expression (B) of the 8�ECol2a1-NAD1
transgene in comparison with the pattern of P3000i3020Col2a1
(C) driven by the Col2a1 promoter and enhancer (47). (D to N)
Histological analysis of 8�ECol2a1-NAD1 cryosections. In the develop-
ing limbs (D to I), X-Gal staining is relatively weak in the humerus and
radius but sharply increases toward the distal phalanges. LacZ activity
is completely repressed or limited to a few cells in the cranial and
lumbar vertebral bodies but is high in the caudal ones and in the distal
part of nasal bone (nb) (K to N). Expression is highest, limited to
groups of cells, in the columnar and prehypertrophic zones, but it is
strongly reduced in the source and epiphyseal chondroblasts, except
for sporadic staining in the distal epiphysis of the humerus (D to N). t,
tarsal; mt, metatarsal. Other abbreviations are as defined for Fig. 1.
Bars, 2 mm (B) and 200 �m (D to N).
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FIG. 3. Binding of Sox proteins to Ine in vitro. (A) Ine sequences of selected amniotes and the 75% majority rule consensus for amniotes (see
the whole alignment in Fig. S2A at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf). TATA and the most conserved
motif are boxed; NFI motifs are in boldface. Positions are given from TATA. Nucleotides fully conserved in mammals or in amniotes are marked
by asterisks at the top and above the consensus sequence, respectively. Arrows and dotted arrows depict motifs similar to the preferred
Sox9-binding site (29) and Sox consensus (21), respectively. Equus_cabal, Equus caballus; Canis_famili., Canis familiaris; Pteropus_v., Pteropus
vampyrus; Myotis_lucif, Myotis lucifugus. (B) Sequences of Ine and its shorter or mutant derivatives. The conserved GTGCC motif, mutant
nucleotides, the 5� (I) and 3� (II) paired Sox sites and unrelated factor-binding site (III) are denoted. (C to F) EMSA of nucleoprotein complexes
formed with purified GST-fused Sox proteins on Ine and its derivatives. (G to O) Binding of CEC nuclear proteins to Ine and Ine mutants.
(G) Supershift analysis with Sox antibodies (Ab). (H) Competition EMSA with 50-, 100-, and 500-fold molar excesses of the indicated cold
competitors. (I) Comparison of CEC and CEF nucleoprotein complexes. (J) Competition EMSA on Ine and Ine3�h1 with the cold probes
indicated. (K to O) EMSA (K) and supershifts (L to O) of the wild-type and mutant Ine. The supershifts (asterisks) and new complexes of Ine
mutants (arrowheads) are marked. F, free probe; PI, preimmune serum.
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and in vitro-treated samples indicated in vivo DNA-protein
contacts at specific nucleotides in the promoter area in CEC
cultures (Fig. 4B and C). Protection, combined with hyperre-
activity on the opposite strand, revealed protein binding to the
Sox motifs of Ine and to the conserved TGTGCC motif at the
start site. Both treatments revealed in vivo occupancy at
TATA, at the Nfi contact points of the reported SI element
(41), at putative PEA3, Sp1, and GC-rich motifs downstream
of SI, and in the Nfi spacer region. In contrast, no footprints
were detected in CEF.

In HDM cultures undergoing early chondrogenesis, none or
weak occupancy was seen at TATA, Ine, and SI elements on
days 0 and 2 (Fig. 5A and B). By day 4, however, the 5� Sox site

of Ine started to be occupied and stronger protection was also
observed for the Sox motifs of Pe1 and Nfi contact points of SII
(Fig. 5C and D).

We concluded that the CEC-specific in vivo footprints at
the Ine Sox sites are likely due to stage-specific binding of
Sox proteins. The TGTGCC motif, the Nfi site, and other
potential ubiquitous factor-binding sites near TATA were
also occupied. Gradual protection at the Pe1 and Ine Sox
sites and at SII and SI Nfi sites in HDM culture suggests that
these elements participate in Matn1 activation during chon-
drogenesis.

The Pe1 Sox site and SI Nfi site are indispensable for pro-
moter activation in transiently transfected chondrocytes. To
study the contribution of short promoter elements to promoter
activity, we introduced point mutations into Ine, Pe1, and SI
and measured their effect on the activity of short (FO15Luc)
and long (AC8Luc) promoter constructs. IneM2, which carried
mutations in the Sox- and ubiquitous factor-binding sites of
Ine, and a double Pe1M1/IneM2 mutation most effectively
reduced the activity of the short promoter in CEC (Fig. 6A and
B). The �2011/�334 sequence enhanced the short promoter
activity 	19-fold in AC8Luc in CEC but hardly did so in low-
or nonexpressing cultures (Fig. 6C). IneM1, IneM2, and
IneM3 cut the long promoter activity by one half or more in
CEC. The effect of Pe1M4, which carried a mutation in a
factor-binding site in Pe1 (34), was similar, but Pe1M1, in
which the Sox site of Pe1 was disrupted, dropped the long
promoter activity 13-fold, abolishing CEC-specific enhance-
ment from upstream elements. Pe1M1/IneM2 decreased the
activity (P 
 0.05) to a level even closer to that of FO15Luc.
Thus, the Sox sites in Pe1 and Ine are needed to mediate
promoter activation from upstream elements.

Considering that the SI element was protected in genomic
footprinting in CEC culture (Fig. 4) and bound Nfi proteins in
vitro (41), we also mutated its Nfi contact points. Mutation
SI2dm, either alone or in combination with Pe1M1 or Pe1M4,
markedly reduced the short promoter activity in mesenchymal
cells (Fig. 6A and B). This mutation also dropped the long
promoter activity by 10-fold in CEC and similarly in other
cultures, indicating non-tissue-specific inhibition (Fig. 6C).
Double mutation Pe1M1/SI2dm further diminished the activity
(P 
 0.001) to the basal promoter level in mesenchymal cells,
suggesting an additive or synergistic effect. Thus, disruption of
the Nfi site of the SI silencer element abolished both the tissue-
and stage-specific promoter activity.

We concluded that, although Ine recognition by Sox factors
may be involved, Sox factor binding to Pe1 seems to be more
crucial for promoter activation in CEC culture rich in late
proliferative chondroblasts. In addition, binding of the ubiq-
uitous Nfi to SI near the TATA box may be similarly crucial.
The position-specific conservation of motifs similar to the NFI
consensus (35) near TATA in amniotes (see Fig. S2A at http:
//www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010
.pdf) further supports the importance of SI in the regulation of
the gene. The significant, but less dramatic, effect of other
mutations suggests that the binding of factors to the Pe1 spacer
and to the conserved motif of Ine may also be needed for full
promoter activity.

Sox and Nfi sites of the short promoter are important for
enhancement by ECol2a1. Next we tested the activation of the

FIG. 4. Tissue-specific occupancy of Ine1 and SI in genomic foot-
printing. (A) Schematic depicting the primers used in footprinting and
the short promoter elements. (B) Footprints on the upper DNA
strand. AG and CT are Maxam-Gilbert ladders. DNA from CEC and
CEF cultures treated in vivo (v) with DMS (open boxes or solid
triangles) or UV light (open circles or solid diamonds) is compared
with the in vitro (t) DNA samples treated with these reagents after
isolation from CEC and CEF. Differences in the modification patterns
between in vivo and in vitro treatments appear as hyperactivities (solid
diamonds or triangles) or protections (open circles or boxes), revealing
specific in vivo DNA-protein contacts. (C) Summary of in vivo foot-
printing on both strands.
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short promoter by a heterologous cartilage enhancer. Eight
copies of ECol2a1 robustly increased the short promoter activity
in CEC but had no effect in CEF or in HDM cultures consist-
ing of early proliferative chondroblasts (Fig. 6D). Lining up
with transgenic mouse data, these results indicate that the
Matn1 short promoter also restricted the broad cartilage-spe-
cific enhancement by ECol2a1 to late proliferative chondroblasts
in tissue culture.

Mutations Pe1M1, IneM2, SI2dm, and Pe1M1/IneM2 de-
creased the relative activity of 8�ECol2a1-FO15Luc by 43.6%,
46.6%, 64.9%, and 78%, respectively, in CEC culture (Fig.
6D). Thus, our data show that, whereas Sox factor binding to
Pe1 is crucial for the interaction between the homologous
distal and proximal promoter elements, Sox9 binding to Pe1
and Ine is less essential for mediating enhancement from
ECol2a1. Disrupting all three Sox sites of Pe1 and Ine or the Nfi
site of SI, however, highly diminished the enhancement, sup-
porting the hypothesis that the short promoter elements may

also interact with the heterologous enhancer via the bound Sox
and Nfi factors.

Dramatic decrease of transgene activity by mutation of the
5� Sox site in Ine. A transgene carrying the IneM1 mutation
displayed very low activity in founder embryos, but this activity
remained restricted to the columnar and prehypertophic GP
zones, as with TR70 (Fig. 7). Thus, consistent with the reduced
Sox-specific complex formation (Fig. 3L), the IneM1 mutation
hampered promoter activation in vivo but did not alter the
zone- and distal structure-dependent expression pattern of the
promoter. The 5� Sox site of Ine is thus needed for optimal
promoter activation in vivo.

Accumulation of Nfi and Sox mRNAs during in vitro chon-
drogenesis. We compared the kinetics of expression of Matn1
and other genes in chondrogenic cultures by QRT-PCR. In
CEFs, the steady-state mRNA levels of Matn1 and the Sox trio
were very low, while those for Nfi, but not Nfic, were elevated
relative to those in the committed mesenchyme (HDM, day 0)

FIG. 5. Slow gradual occupancy of the short promoter elements during chondrogenesis. Shown is a comparison of in vivo footprints formed with
DMS in the vicinity of the Ine (A) and Pe1 elements (C) in CEC and in day 0, 2, and 4 HDM cultures. (B and D) Summary of in vivo footprinting
on both strands. Other symbols are as in Fig. 4.
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(Fig. 8A to C). In HDM culture, the Col2a1 mRNA level
slowly but continuously accumulated during differentiation,
whereas the Matn1 mRNA level dramatically increased be-
tween days 2 and 4 (Fig. 8A). Upon differentiation of CEC, the
Col2a1 and Matn1 relative mRNA levels rose to values of
181-fold and 2,057-fold, respectively. Sox9 and Col2a1 mRNAs
accumulated with similar kinetics, but the low levels of L-Sox5
and Sox6 mRNAs increased sharply only in CEC culture, ex-
cept for a small, transient boost of Sox6 mRNA at days 3 and
4 in HDM culture, just preceding the first peak in the Matn1
mRNA level (Fig. 8B). The relative Nfi mRNA levels also
increased transiently by 2.6- to 22-fold, with two peaks at
day 4 and days 6 and 7 in HDM culture, followed by a sharp
decline in CEC culture to close to 1 (Nfia and Nfix) or below
1 (Nfib and Nfic) (Fig. 8C).

Thus, CEC culture, rich in late proliferative chondroblasts,
is characterized by high Matn1 and Sox trio levels but low Nfi
mRNA levels. However, day 4 HDM culture, consisting of
early proliferative chondroblasts, exhibits high Nfi mRNA lev-
els but lower Matn1, Sox9, and Sox6 mRNA levels and very low
L-Sox5 mRNA expression. Sox6 and Nfi mRNA levels peaked
in HDM culture at the time of Matn1 activation, suggesting a
function in Matn1 regulation.

Dose-dependent synergy of L-Sox5/Sox6 with SOX9. Next,
we assessed activation of the Matn1 long promoter by cotrans-
fected Sox proteins. While SOX9 doubled it, L-Sox5/Sox6 de-
creased the promoter activity by about one-half in mesenchy-
mal cells (Fig. 9A). Coexpression of L-Sox5/Sox6 with SOX9

FIG. 6. Effect of Ine, Pe1, and SI mutations on reporter activities in transfected cells. (A) Schematic of single or double mutations introduced
into the short promoters of reporters FO15Luc, AC8Luc, and 8�ECol2a1-FO15Luc driven by the short or long Matn1 promoter or multiple copies
of ECol2a1 fused to the short promoter, respectively, as seen on their full maps (bottom). (B to D) Luciferase activities of wild-type (wt) and mutant
reporters in the low-, high-, and nonexpressing HDM, CEC, and CEF cultures, respectively, are presented as fold values relative to that for
FO15Luc. *, P 
 0.05; **, P 
 0.01; ***, P 
 0.001 (compared with wild-type reporter). nd, not determined.

FIG. 7. Low zonal activity of the �IneM1-TR70 transgene. (A to
D) Schematic (A) and low activity of the transgene (B to D). (E to M)
Histological analysis of cryosections. Weak X-Gal staining in the de-
veloping shoulder blade (sb) and limbs slightly increases toward pha-
langes (E to I). The increase is more pronounced from cranial to
caudal vertebral bodies (K to M). Staining is seen in the columnar and
prehypertrophic zones (G, H, and M). For other abbreviations, see the
Fig. 1 legend. Bars, 2 mm (B to D) and 200 �m (E to M).
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greatly or moderately increased the ability of SOX9 to activate
the promoter in CEF and HDM cultures, respectively, but
decreased it in CEC culture. This suggests synergy between
Sox proteins at early differentiation stages. When we intro-
duced a constant amount of pSOX9 and increasing amounts of
pSox5 and pSox6 expression plasmids into CEF, LDM, and
HDM cultures, synergistic activation peaked at a low ratio of
pL-Sox5 and pSox6 versus pSOX9 and declined at an elevated
ratio (Fig. 9B). Highest activation was seen in CEF (3.5-fold),
followed by that in LDM and HDM cultures in inverse corre-
lation with the endogenous Sox5 and Sox6 expression levels of
these cultures (Fig. 8B), raising the possibility that L-Sox5/
Sox6 may modulate the activation by SOX9 in a dose-depen-
dent manner.

This hypothesis was confirmed by forced expression of the
FLAG-tagged Sox trio in nonchondrocytic COS-7 cells and
monitoring of protein expression in Western blots (Fig. 9C).
Despite the small effect of SOX9 alone, L-Sox5/Sox6 syner-
gized with SOX9 to activate the long promoter up to 	18- to
20-fold at low molar excess. The activation was high from a 1:1

to 4:1 molar ratio of L-Sox5/Sox6 to SOX9 in repeated exper-
iments, but the synergy dropped above a 5:1 molar ratio (Fig.
9C). When tested individually, L-Sox5 and Sox6 had similar
effects (see Fig. S3 at http://www.brc.hu/pub/Supplemental
_Material_Nagy_et_al_MCB2010.pdf).

We concluded that L-Sox5/Sox6 may finely tune the activity
of the Matn1 promoter by increasing transactivation by SOX9
at a low molar ratio relative to SOX9 (early stages of chon-
drogenesis) and by decreasing transactivation by SOX9 at a
high ratio (late stage).

Pe1 mutation hampers transactivation by SOX9, and Ine
mutation decreases the synergy with L-Sox5/Sox6. Next we
studied the effect of Pe1, Ine, and SI mutations on the activity
of the Sox trio. In COS-7 cells forced to express L-Sox5/Sox6 in
optimal ratio relative to SOX9, the Pe1M1/IneM2 mutation
decreased the synergistic activation of the long promoter by
96.1%, followed by the SI2dm and Pe1M1 mutations (85.5 to
89%) (Fig. 9D). The former mutations also repressed SOX9-
mediated activation by 	70%. Similar effects were obtained
when L-Sox5/Sox6 was expressed in high excess relative to
SOX9 in LDM and CEC cultures (Fig. 9D). Thus, disruption
of the short promoter Sox sites abolished transactivation by the
Sox trio even when upstream sites were intact. The effect of the
Pe1M1 mutation was milder, suggesting that SOX9 binding to
Pe1 is critical for transactivation by SOX9 in early and late
stages of chondrogenesis.

Ine mutations diminished the synergistic activation of SOX9
with an optimal ratio of L-Sox5/Sox6 in COS-7 cells (Fig. 9D).
In LDM culture, IneM1 and IneM3 abolished AC8Luc activa-
tion by SOX9, while IneM2 and IneM3 affected the synergistic
activation by the Sox trio more drastically than IneM1. In
keeping with the effect of Ine mutations in EMSA, this result
indicates that the 3� Sox site in Ine equally interacts with SOX9
and L-Sox5/Sox6, whereas the 5� site preferably binds SOX9 in
early chondroblasts. IneM1 also hampers activation by SOX9
in CEC culture (Fig. 9D). Notably, mutation of the SI Nfi site
highly decreased SOX9- and Sox trio-mediated promoter ac-
tivation in the cultures tested. The variable effect of Pe1M4
and the small effect of SOX9 in COS-7 cells suggest that
ubiquitous and/or Sox partner factors may also bind the pro-
moter elements.

We concluded that SOX9 binding to Pe1 likely plays a key
role in mediating enhancement from distal elements. Based on
the data, we suggest a model (see Fig. 10D). L-Sox5/Sox6
expressed at a low level and bound to Ine may synergistically
increase activation by Pe1-bound SOX9 in early chondrogen-
esis. Later on, when produced in excess to SOX9, L-Sox5/Sox6
may decrease activation by SOX9, possibly by competing for
binding to the same sites. In addition, Nfi binding to SI and
binding of other factors to Pe1 and Ine may also be needed for
efficient activation.

Nfi proteins modulate promoter activity. Next we studied
the effect of Nfi on AC8Luc activity in cotransfection assays. In
CEC culture, all Nfi proteins, except Nfia at low concentration,
robustly inhibited long promoter activity (Fig. 10A). When
NFI and SOX9 were expressed at an optimal ratio, Nfib and
Nfic decreased significantly transactivation by SOX9, but all
Nfi proteins exerted 74% to 90% repression at higher ratio
(see Fig. S4A at http://www.brc.hu/pub/Supplemental
_Material_Nagy_et_al_MCB2010.pdf). Notably, CTF-1, an

FIG. 8. QRT-PCR analysis of marker gene expression in chondro-
genic cultures. (A to C) Marker mRNA levels were determined during
chondrogenesis in HDM culture at time points indicated relative to the
day 0 values and compared to mRNA levels of high-expressing CEC
and nonexpressing CEF cultures. CT values were normalized and rel-
ative gene expression ratios were calculated according to Materials and
Methods. Relative expression levels (��CT) are plotted as log2 ratios.
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isoform of NFIC, only slightly inhibited activation by SOX9
(see Fig. S4B at the URL listed above), suggesting that the
various Nfi splice variants may have different effects. In COS-7
cells, Nfia and Nfib in optimal amounts indeed cooperated with
SOX9 and potentiated its transactivation of the long promoter

(Fig. 10B). The activation, however, declined at higher levels
of Nfia and Nfib. Forced expression of FLAG-tagged proteins
in COS-7 cells revealed that the activation increased up to an
	2:1 molar ratio of Nfib to SOX9 but significantly decreased
above an 	4:1 molar ratio (Fig. 10C).

FIG. 9. Functional importance of Sox-binding sites in cotransfection assays. (A to C) AC8Luc was cotransfected with Sox expression plasmids
in various cultures as indicated. Western analysis with anti-FLAG antibody (C) shows the relative expressions of L-Sox5/Sox6 and SOX9 in the
transfected COS-7 samples. (D) Effect of point mutations on the synergistic activation of the long promoter by L-Sox5/Sox6 and SOX9 coexpressed
at optimal (2.7:1) molar ratio in COS-7 cells and at a higher ratio in LDM and CEC cultures. The schematic indicates factor binding to the short
promoter elements and to the upstream elements (Upe) (not drawn to scale). Thin and thick arrows depict the transcription efficiencies at early
(E) and at late (L) stages of chondrogenesis. Luciferase activities are given as fold values relative to that for AC8Luc. *, P 
 0.05; **, P 
 0.01;
***, P 
 0.001 (compared with the reporter cotransfected with vectors [A to C] or between the cotransfected mutants and the similarly
cotransfected wild-type AC8Luc [D]); #, P 
 0.05; ##, P 
 0.01; ###, P 
 0.001 (compared with the SOX9-cotransfected reporters).
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These data suggest that Nfi proteins may increase or de-
crease SOX9-mediated transactivation of Matn1 depending on
their abundance relative to SOX9 (Fig. 10D). The conservation
of Nfi sites near TATA and Pe1 (see Fig. S2 at the URL men-
tioned in the previous paragraph) underlines the importance of
Nfi proteins in the restricted cartilage-specific expression of
Matn1 in amniotes.

DISCUSSION

By dissecting the control mechanism that directs Matn1 ex-
pression to specific GP zones, this study sheds new light on a
distinctive regulatory network orchestrated by the chondro-
genic Sox trio. Focusing on the role of short promoter ele-
ments, the present work, in line with former reports (19, 34,
41), reveals the following unique features of Matn1 regulation.
(i) Remarkable sequence and positional conservation of prox-

imal (short) and distal promoter elements strongly suggests an
evolutionarily conserved transcriptional mechanism in am-
niotes. (ii) Fundamentally, the proximal promoter is responsi-
ble for conferring spatiotemporal expression. It exerts such a
dominant effect that it is even capable of restricting spatially
and temporally the activity of the otherwise pancartilaginous
Col2a1 enhancer. (iii) This effect is likely due to a unique set of
conserved proximal elements. The Sox site in Pe1, located 95
to 195 bp upstream of TATA, preferably binds SOX9 and is
most crucial for promoter activity, while Sox sites in Ine lo-
cated at the transcription start sites preferably bind L-Sox5/
Sox6 and are also important. An Nfi site in SI near TATA is
also needed for promoter enhancement, and conservation of
Nfi motifs in SII near Pe1 suggests an important function. (iv)
The most highly conserved Pe1 element plays a key role in
SOX9-mediated transactivation from distal DNA elements,
and L-Sox5/Sox6 bound to Ine and Nfi proteins bound to SI

FIG. 10. Modulation of the Matn1 promoter activity by cotransfected Nfi proteins. (A to C) AC8Luc was cotransfected with increasing amounts
of Nfi expression plasmids without or with a constant amount of SOX9 expression plasmids in the cultures indicated. (C) Western analysis was
made with anti-FLAG antibody to determine the relative ratio of Nfib and SOX9 expressed by force at optimal promoter activation. (D) Model
for fine-tuning of the promoter activity by the Sox trio and Nfi. Shown are schematics of factor binding to DNA elements during Matn1 activation
at the onset of chondrogenesis (a), in early (b) and late proliferative chondroblasts (c) at low and optimal occupancy of sites, respectively, and in
the late stage at high occupancy of the Sox (d) or Nfi sites (e). See the text for a detailed description. Symbols are as defined for Fig. 9.
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may modulate transactivation by SOX9 in a dose-dependent
manner and may thereby fine-tune stage-specific promoter ac-
tivity.

Cartilage-specific control elements with functional Sox sites
in other genes in various locations, e.g., intronic, far-upstream,
5� untranslated, or proximal promoter regions, were described
previously (13, 15, 26–28, 46), but none shows similarity to the
Matn1 control region. While the Matn1 short promoter is suf-
ficient to specify the expression pattern of the gene, the Col2a1
promoter has no activity on its own and relies on an intronic
enhancer capable of directing its activity, as well as that of a
heterologous �-globin promoter, to all chondrocytic cells and
each GP zone in transgenic mice (47, 48).

Comparison of orthologous promoter regions (known as
phylogenetic footprinting) can reveal conserved motifs with
important regulatory functions (6). As shown, e.g., for the Sox2
locus, conservation of extragenic sequences in amniotes can
more reliably reflect their functional importance in develop-
ment than the higher degree of conservation between mam-
mals (17). A conserved cartilage-specific element has been
identified, however, only in the far-upstream enhancer of the
mammalian orthologs of Agc1, but it is not conserved in am-
niotes (13). Such a high degree of sequence and positional
conservation among chicken and mammalian orthologs (34)
(see Fig. S2 at http://www.brc.hu/pub/Supplemental_Material
_Nagy_et_al_MCB2010.pdf) has not been found for other car-
tilage ECM genes, strongly suggesting a distance-dependent
important function for Pe1 and Ine in amniotes. Pe1 and Ine
include one or two pairs of oppositely oriented motifs sharing
6/10 to 8/10 or 5/10 to 7/10 nucleotide identity, respectively,
with the preferred Sox9-binding site (29), while Sox9 sites of
cartilage enhancers share only 4 or 5 nucleotides with the Sox
consensus T/AT/ACAAT/AG (13). In line with our former
report (34), the present mutational and functional data con-
firm the key role of the highly conserved Pe1 in SOX9 binding
and SOX9-mediated enhancement from distal elements. Ine is
less conserved, but it is also needed for high transgene activity.
The 3� paired Sox site of Ine had been shifted to a head-to-
head position in the chicken ortholog, and it seems to interact
rather with L-Sox5/Sox6 in EMSA and forced-expression stud-
ies. Notably, the TATA box also showed similarity to the Sox
consensus in most of the Matn1 orthologs, indicating that,
besides the conserved strong Sox9-binding site of Pe1, weaker
Sox sites, which seem to be more diverged, are clustered near
TATA, while the regulatory module might have been under
evolutionary pressure and thus remained more conserved. To
our knowledge, this is the first report on Sox sites clustered
around the transcription start sites, strongly suggesting their
importance in the assembly of the preinitiation complex (PIC).

Matn1 is regulated differently by the Sox trio than other
cartilage genes (13, 24, 26). Whereas Sox9 is sufficient for the
activation of Col2a1, Agc1, and Crtl1, Sox5 and Sox6 are re-
quired to turn on Matn1, as Matn1 mRNA was not detected in
Sox5�/�; Sox6�/� mice (38). Activation of Sox6 precedes that
of Matn1 in culture, underlining the importance of Sox6 in
turning on Matn1. As in cartilage enhancers or the COMP
promoter (13, 26, 27), L-Sox5 and Sox6 also synergize with
SOX9 in the activation of the Matn1 promoter, but only in the
early stage or at low molar excess. Their role, however, turns to
repression in the late stage or at elevated molar ratio. Thus, in

large excess, L-Sox5 and Sox6 may compete with SOX9 for the
same binding sites, as for oligodendrocyte-specific genes (40).

In agreement with the transient activation of Nfi genes dur-
ing in vitro chondrogenesis, dominant negative mutation of
Nfib interfered with chondrogenesis (43). Overexpression of
Nfib increased Sox9 and Col2a1 expression, but Nfi sites me-
diating this regulation have not been identified. By extending
this and our former studies (41), here we provide the first
evidence that, in addition to the Sox trio, Nfi proteins binding
near TATA may also play a critical role in determining the
chondrocyte stage-specific activity of the Matn1 promoter.

According to our model (Fig. 10D), the special geometric
arrangement of proximal elements may explain the unique
regulation of Matn1, as it allows fine-tuning of the promoter
activity by L-Sox5/Sox6 and Nfi, depending on their abun-
dances relative to that of SOX9. At the onset of chondrogen-
esis, binding of Sox and Nfi proteins might be needed to open
the chromatin structure around TATA (Fig. 10D, a and b).
This hypothesis is based on our observations (34) that in vivo
footprints were absent from the short promoter in the nonex-
pressing CEF and that they gradually appeared in differenti-
ating HDM culture, strongly suggesting that activation of
Matn1 involves regulation at the chromatin level. In fact, the
Nfi sites of SI and SII were not occupied in CEF, although the
Nfi genes are expressed in CEF and Nfi proteins can bind SI
and SII from CEF extracts in EMSA and in vitro footprinting
(41). Based on their interaction with histones (3, 12), Nfi pro-
teins may help disrupt the nucleosome structure during Matn1
activation.

At the early stage of chondrogenesis, when occupancy of the
sites is low and SOX9 is expressed at high molar excess relative
to L-Sox5/Sox6, SOX9 preferably binds Pe1 and the Ine-bound
L-Sox5/Sox6 synergizes with SOX9 by likely increasing its ef-
ficiency for binding Pe1 (Fig. 10D, b). L-Sox5/Sox6 similarly
secures Sox9 binding to the Agc1 and Col2a1 enhancers (13).
Binding of Sox factors in the vicinity of TATA may bend the
DNA and facilitate the binding of TATA-binding protein
(TBP) and polymerase II during the assembly of PIC (see also
Fig. S5 at http://www.brc.hu/pub/Supplemental_Material_Nagy
_et_al_MCB2010.pdf). Clustering of Sox motifs in Ine may
increase the probability of L-Sox5/Sox6 binding and help re-
cruit SOX9 to Pe1 and TBP to TATA. Bending the DNA may
also promote the binding of unidentified factors to Pe1 and
Ine. Based on preliminary analysis of mutations, these factors
may affect proximodistal transgene activity (data not shown).
Further, as NFI proteins can activate transcription through
direct interaction with basal transcription factors (e.g., CTF-1
with TFIIB and TBP via its proline-rich transactivation do-
main) and various coactivators and corepressors (12), Nfi bind-
ing to SI (and also possibly to SII near Pe1) may also help the
assembly of PIC and the enhanceosome, thus highly contrib-
uting to activated transcription (see Fig. S5 at the URL listed
above). Pe1 likely plays central role in enhanceosome forma-
tion and in SOX9-mediated promoter activation from distal
elements, but, due to the low abundance of transcription fac-
tors, the transcription activity is low in early proliferative chon-
droblasts (Fig. 10D, b). The promoter activity is highest in late
proliferative chondroblasts, when in vivo occupancy is optimal,
high at Pe1, and Ine, and moderate at SI (Fig. 10D, c). Nfib
exerted activation at an early stage in this study and another
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study (43), but we cannot exclude the possibility that another
Nfi isoform is active in CEC culture, considering the drop in
the relative expression level of Nfib and other Nfi mRNAs. At
this late stage, when the Sox trio mRNA level is elevated,
forced expression of L-Sox5/Sox6 in large molar excess to
SOX9 can decrease transactivation by SOX9, possibly by com-
peting with SOX9 for binding Pe1 and other elements (Fig.
10D, d). High occupancy of the Sox sites of Ine may even
physically interfere with the recruitment of PIC to TATA.
Overproduction of Nfi may also decrease promoter activity due
to competition between activator (e.g., NfIb) and repressor Nfi
isoforms, which may even sterically block TBP binding to
TATA (Fig. 10D, e).

The unique molecular mechanism described here can facil-
itate the construction of GP zone-specific vectors and the de-
velopment of biotechnological therapies for skeletal diseases.
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