ROLE OF PPARP IN IRRADIATION MEDIATED INTESTINAL DAMAGE

SAJIT THOTTATHIL OOMMEN

SAJIT THOTTATHIL OOMMEN, 2011, ROLE OF PPARP IN IRRADIATION MEDIATED INTESTINAL DAMAGE

Originally published at: Thesis, University of Lausanne

Posted at the University of Lausanne Open Archive.

http://serval.unil.ch

Copyright
The University of Lausanne expressly draws the attention of users to the fact that all documents published in the SERVAL Archive are protected by copyright in accordance with federal law on copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the author and/or publisher before any use of a work or part of a work for purposes other than personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose offenders to the sanctions laid down by this law. We accept no liability in this respect.
ROLE OF PPARβ IN IRRADIATION MEDIATED INTESTINAL DAMAGE

Thèse de doctorat ès sciences de la vie (PhD)
présentée à la
Faculté de biologie et de médecine
de l’Université de Lausanne
par

SAJIT THOTTATHIL OOMMEN

Master de l'Université de Mysore (L'Inde)…

Jury

Prof. Nicolas Fasel, Président
Prof. Béatrice Desvergne, Directrice de thèse
Prof. Freddy Radtke, Expert
Prof. Gisou Van Der Goot, Expert

Lausanne 2011
Ecole Doctorale

Faculté de biologie
et de médecine

Imprimatur

Vu le rapport présenté par le jury d'examen, composé de

Président
Monsieur Prof. Nicolas Fasel

Directeur de thèse
Madame Prof. Béatrice Desvergne

Experts
Madame Prof. Gisou Van der Goot
Monsieur Prof. Freddy Radtke

le Conseil de Faculté autorise l'impression de la thèse de

Monsieur Sajit Thottathil Oommen

Master of Science of University of Mysore, India

intitulée

ROLE OF PPAR beta
IN IRRADIATION MEDIATED INTESTINAL DAMAGE

Lausanne, le 7 novembre 2011

pour Le Doyen
de la Faculté de Biologie et de Médecine

Prof. Nicolas Fasel
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Prof. Beatrice Desvergne for giving me this opportunity to pursue my Ph.d in her laboratory at the Centre for Integrative Genomics (CIG). I especially thank her for her patience, understanding, guidance and all the constructive comments to improve my work.

I would also like to thank Prof. Freddy Radtke, Prof. Gisou Van Der Goot, and Prof. Pierre Michetti for being part of the thesis committee and for their detailed review, constructive criticism and excellent advice for the preparation of my thesis. I would especially like to thank Prof. Edward Farmer for being the President of the mid-thesis committee, for all his valuable suggestions and for taking the extra efforts to coordinate the thesis evaluation. My special thanks to Prof. Nicolas Fasel for being the President of the thesis committee in the absence of Prof. Edward Farmer and for the valuable discussions and his suggestions.

I am also thankful to my mentor - Prof. Bernard Thorens for his availability, his patient listening and his advises. My deep gratitude to Prof. Walter Wahli and Dr. Liliane Michalik for all their collaborations and their insightful comments during the PPAR group meetings.

My heartfelt thanks to Prof. Mathias Chamaillard for the collaboration on their project that resulted in a publication. My sincere thanks to Federic Varnat for his advice on primary cell culture technique and several aspects of the irradiation model. I would also like to take this opportunity to thank Laurent Dubuquoy for his collaboration and very expert and insightful comments for the in-vivo experiments.

I warmly thank Prof. Werner Held for his valuable advice and help with the Irradiation experiments. My sincere thanks to the members of the Transgenic Core Facility (TCF) and the Flow Cytometry Core facility (FCCF) at EPFL for their valuable help with the lentivirus production and FACS analysis respectively.

I am grateful to all the members of the CIG with whom I could work in an amiable environment. My sincere thanks to the members of the Genomic Technologies Facility for their help with Q-PCR and microarray experiments especially Manuel, Alexandra, Melanie and Hannes. I also wish to thank Sylvian Pradervand and Leonore Wigger for their help with the statistical analysis of the microarray data. I also extend my warm
thanks to Armelle Bauduret at the Genotyping facility and Catherine Roger at the Phenotyping facility for their invaluable support.

This work would not have been complete without the help of Josianne Bonnetti, Librarian of the University. Thank you for your help with making available many of the research articles that I needed. My sincere thanks are due to Christian Freymond, for her well-organised management of the lab that helped in very smooth flow of my work and also to Gilles Boss for all sorts of technical help at the CIG. I also wish to thank Nourra Egger and Marlyne Berger at the Central stores for their kind help and generosity. I would like to thank Corinne Hanggeli, Gergely and Edgar for their excellent informatics support at the CIG.

I am thankful to all the members at the animal facility particularly Patrick Gouait, Jose Huaman and Fabienne. Thanks for your help and support with maintaining the mice and all things I could learn from you. My sincere thanks to Carine for her valuable technical help and support all through out my thesis. I also wish to thank Elizabeth Joye, Genevieve, Maude, Fanny, Corinne Tallichet, Helene and Wanda who at one or the other time have offered their technical expertise and support.

I am greatly indebted to Marlene Petit for all her help with the administrative work without which my stay here would have been impossible. I really appreciate her special efforts and excellent secretarial skills in getting around things relating to my resident permit extension for my stay here in the last few months. I would also like to extend my thanks to Loyse Rebord for her help with administrative matters. I am grateful to many of the new and old colleagues and friends for the good ambience at the floor. I am especially grateful to Christoph, Laure, Cristina, Federica, Aurelien, Alex. M, Alex. K, Radina, Silvia, Nicolas. R, Pipat, Ilenia for their patient guidance and discussions. I also thank Jean-Marc, Jose, Virginie, Ilhelm, Matthew, He Fu, Imtiaz, Marta, Gwendoline for time spent in lab in meaningful discussions. I specially cherish the friendship of Chiara and Maria-giovanna for the time spent in our lab. My special thanks to Nathalie, particularly for her help with the translation of the abstract in French.

This work would be incomplete without the support of my friends in Lausanne – Shweta Tyagi, Shawon, Honey, Dhaval, Sandeep, Sujatha. Thanks to you for the homely feeling away from home. Thank you Shawon for all your help, support and your valuable suggestions. Words cannot convey the depth of my gratitude to you and I wouldn’t have made it if not for your friendship and support.
This work would have been impossible without the prayers and support of my close friends Badri, Mary, Marc, Clara, Alice, Royson, Shaila, Lori, and Eva. Thank you for standing through the tough and testing times and for all your encouragement and invaluable support. Thank you Ibolya for the work in your lab in Hungary and to Betty for all your guidance that in a way laid the foundation for my work in Swiss.

This work would be incomplete without the prayers and invaluable support of my friends at Westlake church, Lausanne. My heartfelt thanks to the entire congregation, particularly to Tom, Martin, Alphonse for your guidance and spiritual insight. My heartfelt thanks to Clive and Daniel for walking along with me in the tough times. I extend my special thanks to the Zindlers, Karen Rizzo, Brandon, Meredith, Brian, Carolyn, Jonathan Olivier, Jonathan Schuler, Gustavo, Suleidy for your friendship and encouragement.

My special thanks to my friends in India – Sukumar anna, Sangeetha akka, Kiran uncle, Geetha Aunty, Soujanya, friends at Bethel fellowship and IISc BSF. Thanks for your invaluable support, friendship and prayers throughout my entire work here. My heartfelt thanks to Prof. Cletus D’Souza for the constant encouragement, support, guidance and faith in me. I am so privileged to have you as my teacher.

I owe my loving thanks to my Family – my parents for their faith in me and their hopes for me. Special thanks to my brother Sanjay and Sister in law- Liji for taking care of responsibilities at home and letting me stay focussed on my studies, and to my niece – AnnaMaria you are such a darling and blessing to all of us.

There are many more people who have helped me in one or the other way throughout this entire period of my thesis work and although I may not mention each of your names here, your help and support is warmly appreciated and my prayers for God’s blessings on your life.

And last but not the least, my sincere and heartfelt thanks to Almighty God. Thank you Lord for this gift of life and your plans for me in Switzerland and for the miracles you have done. Thank you that you are a loving, faithful and everlasting God who keeps his Promises.
Table of Contents

Abbreviations

Summary .. 6
Résumé.. 7

Chapter I. Introduction .. 9

1. The Intestine .. 9
 1.1. General organization of the intestine ... 9
 1.1.1. Composition of the intestinal epithelium .. 9
 1.2. Signaling pathways in intestinal epithelial homeostasis 12
 1.2.1. Wnt Signaling .. 12
 1.2.2. Notch Signaling .. 16
 1.2.2.1. The Notch pathway in lineage determination (Secretory vs Absorptive) .. 17
 1.2.3. Hedgehog signaling .. 21
 1.2.3.1. Hedgehog Secretion ... 21
 1.2.3.2. The hedgehog-mediated transduction cascade 22
 1.2.3.3. Identifying Hedgehog Target Cells ... 24
 1.2.3.4. Hedgehog signaling and homeostasis of the adult gut 24
 2. The nuclear receptor superfamily ... 26
 2.1. Classification .. 26
 2.2. The PPARs subfamily: a brief overview ... 27
 2.2.1. PPARβ/δ ... 30
 2.2.1.1. Structural properties .. 30
 2.2.1.2. Ligand specificity .. 30
 2.2.1.3. PPARβ: Functional properties ... 31
 2.2.1.3.1. PPARβ in metabolism ... 31
 2.2.1.3.2. PPARβ in cell fate .. 32
 2.2.1.3.2.1. The anti-apoptotic activity of PPARβ 32
 2.2.1.3.2.2. PPARβ in cell differentiation ... 34
 2.2.1.3.2.2.1. In the placenta: Giant cell differentiation 34
 2.2.1.3.2.2.2. In the skin: Keratinocyte differentiation 35
 2.2.1.3.2.2.3. In the Central nervous system: neuronal and oligodendrocyte differentiation .. 35
 2.2.1.3.2.4. In adipocyte differentiation .. 36
 2.2.1.3.2.3. PPARβ in cell proliferation ... 36
 2.2.1.4. PPARβ in the intestine .. 37
 2.2.1.4.1. Expression ... 37
 2.2.1.4.2. PPARβ and paneth cell differentiation .. 37
 2.2.1.4.3. A role for PPARβ in colorectal cancer 38
 3. Irradiation: a medical concern and a tool for exploring cell and tissue repair 40
 3.1. Signal transduction and cellular radiation responses 40
 3.2. Irradiation and the intestine .. 43
 3.2.1. Effects of radiation on the small intestinal cell types 44
 3.2.1.1. The role of the intestinal adult epithelial stem cells 45
 3.2.1.2. Radiation-induced apoptosis ... 45
3.2.1.3. The regenerative capacity of the epithelium after irradiation... 47
3.2.1.4. Mechanisms of radioprotection.. 47
4. Aim of the work... 49

Chapter II. Results... 51
1. Consequences of PPARβ deletion at 8d post irradiation............. 51
 1.1. Reduction of the number of mesenchymal cells in the lamina propria 51
 1.2. Decrease of ECM components resulting in adhesion defect at 8d post-irradiation.. 55
2. In vivo analyses of the epithelia-mesenchyme crosstalk after irradiation........ 58
3. Exploring the molecular pathways controlled by PPARβ upon irradiation....... 60
 3.1. Microarray analyses at 4 hours post-irradiation 60
 3.2. Studies on cholesterol biosynthesis pathway using in vivo model 64
 3.3. Validation of an in-vitro intestinal cell line model – HT-29 65
 3.3.1. Estimation of basal levels of PPARβ and its activity in HT-29 cell model................................. 65
 3.3.2. Evaluation of PPARβ agonist and antagonist activities in HT-29 cell model................................. 67
 3.3.3. Generating lentivirus to mediate PPARβ silencing......................... 70
 3.3.4. Irradiation experiments: fine tuning the condition of cell irradiation 78
 3.3.5. Studies on cholesterol biosynthesis pathway using HT-29 cell culture model... 80
3.4 Global gene expression analysis using microarray to identify the effect of irradiation at 10Gy .. 82
 3.4.1 Gene expression changes as an effect of 10Gy irradiation in HT-29 cells.. 85
 3.4.2 GeneGo pathway analysis of the microarray data............................ 87
 3.4.3 Gene expression changes as an effect of treatment with agonist of PPARβ .. 89
 3.4.4 Gene expression changes as an effect of treatment with antagonist of PPARβ .. 93
 3.4.5 Validation of the genes of the microarray data by Q-PCR................. 96
 3.4.6 Clonogenic survival assay in intestinal cell lines........................... 97
 3.4.7 Role of PPARβ in H2O2 mediated damage in intestinal cell lines ... 100

Chapter III. Discussion and Perspectives...................................... 105
1. The late effects observed in gamma-irradiated PPARβ−/− mice 106
 1.1. Alteration of the mesenchymal compartment............................... 106
 1.2. Alteration of the extra-cellular matrix of the mesenchymal compartment 107
 1.3. The epithelial-mesenchymal cross-talk .. 108
 1.4. The unexplored role of the endothelial microvasculature 108
2. New information gained from microarray data 109
 2.1. Irradiation induces the cholesterol biosynthetic pathway............... 109
 2.2. PPARβ-independent responses of HT29 to irradiation 110
 2.3. PPARβ-dependent responses of HT29 to irradiation..................... 111
3. How to reconcile in vivo and in vitro data?...................................... 111

Chapter IV. Materials and methods... 113
1. Animal experiments.. 113
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Generation of PPARβ⁻/⁻ mice</td>
</tr>
<tr>
<td>1.2. Gamma-irradiation model</td>
</tr>
<tr>
<td>1.3. Histological analysis</td>
</tr>
<tr>
<td>1.4. Detection of apoptosis</td>
</tr>
<tr>
<td>1.5. Generation of PPARβ villin-Cre conditional KO mice</td>
</tr>
<tr>
<td>2. Experiments with cell cultures</td>
</tr>
<tr>
<td>2.1. Cell cultures</td>
</tr>
<tr>
<td>2.2. Transfections</td>
</tr>
<tr>
<td>2.3. Luciferase assays</td>
</tr>
<tr>
<td>2.4. Agonist/Antagonist treatments</td>
</tr>
<tr>
<td>3. Gamma irradiation experiments</td>
</tr>
<tr>
<td>4. Extraction of Total RNA</td>
</tr>
<tr>
<td>5. RT and Q-PCR</td>
</tr>
<tr>
<td>6. Microarray experiments</td>
</tr>
<tr>
<td>7. Extraction of proteins from cells</td>
</tr>
<tr>
<td>8. Western blot</td>
</tr>
<tr>
<td>9. PPARβ silencing using lentivirus</td>
</tr>
<tr>
<td>9.1. Lentivirus production</td>
</tr>
<tr>
<td>10. MTT assay</td>
</tr>
<tr>
<td>11. Caspase-3/7 assay</td>
</tr>
<tr>
<td>12. Clonogenic assay</td>
</tr>
<tr>
<td>12.1. Seeding after irradiation protocol</td>
</tr>
<tr>
<td>12.2. Seeding before irradiation protocol</td>
</tr>
<tr>
<td>12.3. Counting of colonies</td>
</tr>
<tr>
<td>13. H₂O₂ assays</td>
</tr>
<tr>
<td>14. Statistical analysis</td>
</tr>
</tbody>
</table>

References | 131 |
Annexes | 153 |
ABBREVIATIONS

ADRP: Adipose Differentiation Related Protein
AF: Activation function
ANGPTL4: Angiopoietin-like 4
Apc: Adenomatous polyposis coli
BMP: Bone morphogenetic protein
BSA: Bovine serum albumin
CASP8: Caspase 8
cDNA: Complementary DNA
cRNA: Complementary RNA
COL1A1: Collagen Type I alpha 1
COL2A1: Collagen Type II alpha 1
COL3A1: Collagen Type III alpha 1
CRC: Colorectal cancer
COX: Cyclooxygenase
DBD: DNA binding domain
DEPC: Diethylpyrocarbonate
DMEM: Dulbecco's Modified Eagle Medium
DMSO: Dimethyl sulfoxide
EEF1A1: Eukaryotic translation elongation factor 1 alpha 1
EGF: Epidermal growth factor
Elf3: E47-like factor 3
ES cells: Embryonic stem cells
FACS: Fluorescence activated cell sorting
FAP: Familial adenomatous polyposis
FCS: Fetal calf serum
FDFT1: Farnesyl-diphosphate farnesyl transferase 1
GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
GFP: Green fluorescent protein
GUSB: Glucuronidase, beta
Gy: Gray (SI unit of absorbed radiation dose of ionizing radiation)
Hes1: Hairy/Enhancer of Split 1
Hip: hedgehog interacting protein
HMGCR: 3-hydroxy-3-methylglutaryl-Coenzyme A reductase
HMGCS1: 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)
IFNy: Interferon γ
Ihh: Indian Hedgehog
ISC: Intestinal stem cell
LBD: Ligand binding domain
L-FABP: Liver fatty acid binding protein
LSS: Lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)
MMP: matrix metalloproteinase
MOI: Multiplicity of infection
MVD: Mevalonate (diphospho) decarboxylase
MTT: (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
Ngn3: Neurogenin 3
NFkB: Nuclear factor-κB
Abbreviations

NSAIDS: Non-steroidal anti-inflammatory drugs
OD: Optical density
Klf4: kruppel-like factor 4
PATCH1: Patched-1 (hedgehog protein receptor)
PBS: Phosphate buffered saline
PDK1: Pyruvate dehydrogenase kinase, isoenzyme 1
PDK4: Pyruvate dehydrogenase kinase, isoenzyme 4
PFA: Paraformaldehyde
PPAR: Peroxisome proliferator-activated receptor
PPRE: PPAR response element
RNA: Ribonucleic acid
RNAi: RNA interference
RXR: Retinoid X receptor
siRNA: Small interfering RNA
Shh: Sonic hedgehog
Smo: Smoothened
TBP: TATA-binding protein
Tcf: T cell factor
TGF-β: Transforming growth factor-β
TNFα: Tumor necrosis factor α
TUNEL: Terminal deoxynucleotidyl transferase-mediated dUTP Nick –end labeling
Peroxisome proliferator activated receptors (PPARs) belong to the nuclear receptor superfamily of transcription factors. Of the three known PPAR isotypes, PPAR\(\beta\) has been shown to regulate proliferation, apoptosis and differentiation in different tissues. Previous work from our lab have emphasized its role in cell survival and wound healing. In the small intestine, PPAR\(\beta\) is expressed in the intestinal crypts where it is known to regulate the differentiation of the Paneth cells by attenuating the expression of Ihh. Despite its remarkable potential of rapid self-renewal, small intestinal epithelium is sensitive to cytotoxic insults, especially to radiotherapy of cancers in the abdomino-pelvic region. Both acute and chronic exposure of the intestine to irradiation thus can lead to radiation-induced gastrointestinal syndrome. Due to the known protective role of PPAR\(\beta\) in inflammatory context, the aim of this thesis was to directly characterize the role of PPAR\(\beta\) in the molecular response to gamma-irradiation induced intestinal cell damage in a mouse model and in the human HT-29 colon carcinoma cell line. By comparing the effects of irradiation on HT-29 cells that were treated with or without PPAR\(\beta\) ligands, there was no evidence for a protective role of PPAR\(\beta\). This contrasts with the situation in-vivo, since targeted deletion of PPAR\(\beta\) transiently increased the rate of apoptosis of intestinal stem cells 4hrs after irradiation. Furthermore, 8 days post irradiation, cell death was also increased in the mesenchyme, followed by impaired adhesion of the epithelia to the mesenchyme due to loss of collagen I and III of the extracellular matrix components. PPAR\(\beta\) thus appears to affect the crosstalk between the mesenchyme and the epithelium, consistent with the observed delay in tissue repair at 3.5 days post-irradiation in the PPAR\(\beta\)^-/- mice. In cultured HT-29 cells lacking a mesenchymal component, the same crosstalk is unlikely to occur explaining perhaps the apparent discrepancy between our in vivo and in vitro results, if a protective role of PPAR\(\beta\) relies on the crosstalk between epithelia and mesenchyme. Overall, our findings are consistent with a possible involvement of PPAR\(\beta\) in attenuating intestinal tissue damage in conditions of radiotherapy for cancers. The exact molecular mechanism of PPAR\(\beta\) action still warrants further exploration to better understand its physiological role in this regard.
RÉSUMÉ

Les récepteurs activés proliférateurs de peroxisomes (PPARs) appartiennent à la grande famille des récepteurs nucléaires et ont été impliqué dans plusieurs processus physiologiques. Parmi les trois isotypes PPAR, PPARβ est bien connu pour son rôle dans les décisions déterminant le destin des cellules, notamment dans les processus de prolifération, de différenciation et d’apoptose. Ce rôle a particulièrement été souligné comme protecteur dans les contextes de survie cellulaire et de cicatrisation. Il est fortement exprimé dans l’intestin grêle. Notre groupe a déjà rapporté sa présence importante dans les cryptes duodénales, où se trouvent les cellules souches intestinales. Précédemment, nous avons aussi fait remarquer le rôle de PPARβ dans la differentiation des cellules de Paneth, par la régulation négative de la signalisation Ihh de l’épithélium intestinal. Malgré sa capacité de figurer parmi les tissus du corps qui se régénèrent le plus rapidement, l’épithélium intestinal est particulièrement sensible aux attaques cytotoxiques, surtout celles dues à la radiothérapie des cancers abdomino-pelviens. Cela peut donner lieu à des lésions gastro-intestinal en tant qu’effet indésirable d’une exposition aiguë et chronique à l’irradiation. En raison du rôle protecteur de PPARβ le but de cette étude était de comprendre les voies de signalisation moléculaires régulées par PPARβ qui sont impliquées dans les réponses des cellules intestinales aux dommages causés par l’irradiation.

Afin de déchiffrer les mécanismes moléculaires sous-jacents, un modèle in-vitro d’une lignée cellulaire - HT-29 a été utilisée. Il n’y a cependant pas de preuve d’un effet protecteur de PPARβ dans divers contextes d’endommagement cellulaire testés in-vitro. Ceci contraste avec les observations in-vivo qui indiquent que l’irradiation provoque une létalité supérieure dans les souris PPARβ−/− par rapport aux souris PPARβ+/+, entre autre correlée avec une apoptose augmentée des cellules souches intestinales à 4h après irradiation. En plus, le décès plus important de cellules mésenchymateuses a été observé dans les souris PPARβ−/−, 8 jours après irradiation. Moins nombreuses, ces cellules se sont également détachées de la matrice extracellulaire reliant l’épithélium et le mésenchyme. Nous stipulons qu’in-vivo, PPARβ participe au dialogue entre le mésenchyme et l’épithélium, ce qui est concordant avec le délai observé lors de la réparation tissulaire. Ce
dialogue entre l’épithélium et le mésenchyme, n’existe pas de la même manière in-vitro. Il en résulte donc un défaut de réponse mésenchymale médiée par PPARβ, d’où le paradoxe entre les conditions in-vivo et in-vitro.

Ces observations indiquent l’implication possible de PPARβ dans les lésions actiniques, en tant que conséquence naturelle de la radiothérapie de patients avec un cancer. Les mécanismes précis de l’action de PPARβ nécessitent une exploration approfondie de son rôle physiologique dans ce contexte.
CHAPTER I:

INTRODUCTION
1. The Intestine

1.1 General organization of the intestine

The intestinal tract can be divided into the small intestine composed of the duodenum, jejunum and ileum and the large intestine composed of the colon and the rectum. The intestinal tract is a tubular structure composed of three different layers. The outer layer consists of layers of innervated smooth muscle cells that help in the process of peristalsis. The middle layer is composed of the stromal tissue and the inner layer is composed of epithelial cells, referred to as the mucosa that processes the nutrients and absorbs them.

The main function of the small intestine is to absorb the nutrients from the ingested food. To achieve this goal, the small intestinal mucosal surface area is enormously increased by numerous finger-like protrusions, termed villi. Deeply embedded structures into the submucosa are the crypts of Lieberkuhn. The functional unit of the small intestine is composed of the crypt-villus unit whereas the mucosa of the large intestine is composed of only crypts and surface epithelium, with no villi.

1.1.1 Composition of the intestinal epithelium

The intestinal crypts are the structures that contain the intestinal stem cells. The intestinal stem cells give rise to all the four different cell types namely enterocytes, goblet, enteroendocrine and the Paneth cells that form the crypt-villus unit (Fig.1, Crosnier et al., 2006). They divide to give rise to the transit-amplifying cells that then differentiate and migrate upward to form absorptive cells/enterocytes, goblet cells and the enteroendocrine cells.

Enterocytes constitute more than 80% of all intestinal epithelial cells and cover almost the entire surface of the villi. Enterocytes secrete digestive enzymes and they mediate nutrient, ion and water uptake by expressing transporter proteins and by extending large numbers of microvilli that increase the total surface area.

Goblet cells are specialized secretory cells responsible for producing the mucus lining that fulfills an essential protective function, especially in the distal intestine where
these cells are most abundant. They secrete mucins and trefoil proteins that are necessary for proper movement and effective expulsion of gut contents. They also provide protection against stress caused by shearing and chemical damage.

Enteroendocrine cells secrete specific peptide hormones to coordinate important gut functions. These gut hormones include catecholamines, serotonin, substance P, and secretin (Hocker & Wiedenmann 1998). Based on their morphology and expression of these intestinal hormones, one can distinguish 15 different subtypes of enteroendocrine cells, which will not be described herein.

Paneth cells secrete antimicrobial proteins and enzymes like lysozymes, cryptidins and defensins (Porter et al. 2002). Along the crypt-villus axis, they are the only differentiated cells that migrate downward to occupy the crypt base next to the stem cells. **Table 1** (Adapted from Sancho et al., 2004) summarizes the markers used to identify the different intestinal epithelial cells.

Fig. 1 | The distribution of epithelial cells types in the mammalian small intestine. **a.** A villus with one of the crypts that contribute to renewal of its epithelium. Arrows indicate the upwards flow of cells out of the crypts. Stem cells lie near the crypt base; it is uncertain whether they are mixed with, or just above, the Paneth cells. Above the stem cells are transit-amplifying cells (dividing progenitors, some of them already partially differentiated); and above these, in the neck of the crypt and on the villus, lie post-mitotic differentiated cells (absorptive cells, goblet cells and enteroendocrine cells; see panel **b**)(Adapted from Crosnier et al., 2006).
Chapter I: Introduction

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferative</td>
<td>All proliferative cells</td>
</tr>
<tr>
<td>Ki67</td>
<td>Proliferative—mainly bottom two thirds of crypts</td>
</tr>
<tr>
<td>e-Myc</td>
<td>All proliferative crypt cells</td>
</tr>
<tr>
<td>NRP-B</td>
<td>Intervillus pockets in fetal small intestine</td>
</tr>
<tr>
<td>CD44</td>
<td>Intervillus pockets in fetal small intestine</td>
</tr>
<tr>
<td>SHH</td>
<td>Stem cells + base columnar cells</td>
</tr>
<tr>
<td>IHH</td>
<td>Goblet + enteroendocrine + Paneth precursors</td>
</tr>
<tr>
<td>Musashi-1</td>
<td>Decreasing gradient from bottom to top of crypt</td>
</tr>
<tr>
<td>EphB3</td>
<td>Proliferative cells (specific precursors?)</td>
</tr>
<tr>
<td>EphB2</td>
<td>Enteroendocrine precursors</td>
</tr>
</tbody>
</table>

Differentiated
- **P21waf1/Cip1**: Cell cycle arrested cells
- **Ephrin-B1**: Gradient from surface epithelium to crypt bottom
- **IHH**: Top third and surface epithelium in adult colon
- **Carbonic anhydrase II**: Top third and surface epithelium in colon
- **Phospho-smad 1/5/8**: Differentiated cells in villus
- **Villin**: Microvilli-increasing gradient from crypt to villus
- **Fabp/FabpL**: Enterocytes
- **Alkaline phosphatase**: Enterocytes-brush border
- **Sucrose isomaltase**: Enterocytes-brush border
- **Math-1**: Mature goblet, enteroendocrine and Paneth cells
- **Muc2**: Goblet cells
- **NeuroD/Beta**: Enteroendocrine cells
- **Synaptophysin**: Enteroendocrine cells
- **Secretin**: Enteroendocrine cells
- **Serotonin**: Enteroendocrine cells
- **Lysozyme**: Paneth cells
- **Cryptdins**: Paneth cells
- **EphB3**: Paneth cells

Table 1: Markers of cell type or compartment in the intestinal epithelium (adapted from Sancho, E et al., 2004).
1.2 Signaling pathways in intestinal epithelial homeostasis

The intestinal epithelium is one of the most dynamic self-renewing systems of the body. The intestinal epithelium has the fastest turnover rate with the absorptive cells being replaced every 7 days. The pattern of renewal is quite uniquely organised by compartmentalization of the small intestinal crypt-villus unit, with proliferation ongoing at the bottom of the crypt and the differentiation at the top of the crypt. This pattern is followed by unidirectional migration of the cells starting from the crypt base to the tip of the villi, where they finally undergo apoptosis and are eliminated into the intestinal lumen. The intestinal stem cells are located at +4 position from the bottom of the crypts (Potten et al., 2003) and give rise to the transit-amplifying progenitor cells that migrate upwards towards the villi. They further divide and the differentiated cells move up the crypt neck and migrate to the villi, the only exception being the Paneth cells that migrate downward and remain there. The Paneth cells live longer than the other cells from the epithelium and are renewed only every 20 days.

As the entire small intestine is composed of numerous crypt-villus units with millions of cells, this entire mechanism of proliferation, differentiation and migration has to be tightly regulated to maintain a proper homeostasis. This is achieved by the compartmentalization of the small intestine and the numerous reciprocal signalling within the crypt-villus unit. The signaling pathways involved like Wnt, Indian hedgehog (Ihh), Bmp, Notch not only act independently but also in crosstalk with each other by expressing and regulating different components of the signaling pathway in different zones. Recent studies have elucidated the role of the interactions of these signals arising from the epithelium and the mesenchyme, as discussed below (reviewed in Crosnier et al., 2006).

1.2.1 Wnt Signaling

Wnt signaling has been recognized as indispensible in virtually every developmental process as all throughout the animal kingdom (Cadigan & Nusse 1997). The key player of the signaling pathway is β-catenin, a cytoplasmic protein. According to the classical model of Wnt signaling regulation, the tumor suppressor complex Apc controls the stability of β-catenin. In the absence of Wnt signal, the axin/GSK-3/Apc/Ck-1
destruction complex normally binds to β-catenin and phosphorylates it sequentially. Hyperphosphorylated β-catenin is then polyubiquitinated by an E3 ubiquitin ligase containing the F-box protein β-TrCP and destroyed by the proteasome, thereby preventing its nuclear translocation. This results in the repression of the Wnt responsive genes. In the presence of the activated Wnt signal, the secreted Wnt proteins bind to the cell surface receptor called frizzled (Frz), which usually interact with the transmembrane protein LRP (reviewed in Polakis 1999, Bienz & Clevers 2000, and Giles et al. 2003) and form a complex with the Disheveled (Dvl). Dvl is a cytoplasmic protein that functions upstream of β-catenin. In the presence of the Wnt signal, Dvl inhibits the Apc-containing destruction complex, resulting in hypophosphorylation of β-catenin that enables its translocation to the nucleus and further activation of the transcription of the target genes by its binding to the TCF/LEF complex.

Studies by Roberts et al. (2007) have led to the revision of the classical model of Wnt signaling. The authors show that Wnt binding to Frizzled triggers the recruitment and polymerization of Disheveled (DVL) to the membrane, itself recruiting the axin containing complex. This results in an inhibition of the Axin/GSK-3β/CK-1/Apc complex formation, allowing the stabilization and accumulation of the cytoplasmic β-catenin. β-catenin then translocates to the nucleus where it interacts with the T cell factor/lymphoid-enhancing factor (TCF/LEF family). In the absence of β-catenin, the TCF/LEF factors repress transcription of their target genes, to which they bind. Upon binding to β-catenin, the TCF/LEF factors turn to activators and translate the Wnt signal into transcription of the target genes (Fig. 2).

The expression pattern of all the Wnts, as well as that of other proteins belonging to this pathway, such as Frizzled, LRPs, and TCFs, are consistent for the presence of an active Wnt signaling in the epithelial cells of the crypt base (Gregorieff et al., 2005). Indeed, the role of Wnt signaling in the proliferation of the intestinal epithelial precursor cells has been reported by multiple in-vivo studies (Bienz & Clevers 2000, Booth et al. 2002, Kinzler & Vogelstein 1996), pointing Wnt as a master regulator of the intestinal epithelial proliferation and differentiation processes (Van de Wetering et al., 2002).

Various mice models have been used to inhibit the Wnt signaling in the small intestine (for example, mice lacking TCF4 transcription factor (Korinek et al., 1998); mice with a conditional deletion of β-catenin in the intestinal epithelium (Ireland et al., 2004;
Tea Fevr et al., 2007); adenoviral or transgenic expression of Dickkopf-1, a natural secreted Wnt antagonist (Kuhnert et al., 2004, Pinto et al., 2003)). In all these models, a considerable decrease of intestinal epithelial cell proliferation was observed. Further analyses demonstrated that indeed the maintenance of the crypt progenitor compartment in the intestine requires active Wnt signaling. On the contrary, transgenic expression of R-Spondin-1, a Wnt agonist, resulted in enormous hyperproliferation of the intestinal crypts due to activation of the Wnt pathway (Kim et al., 2005). Apart from regulating the proliferation of the transit–amplifying precursor cells, Wnt signaling is also involved in the terminal maturation of the Paneth cells via inducing Sox9 (Blache et al., 2004; Van Es et al., 2005).
Fig. 2 | Models of Wnt signal transduction. (a) Classic model of Wnt signaling. See text for more details. (b) Revised model of Wnt signaling. In the absence of Wnt, Dvl remains cytoplasmic, in equilibrium between monomers and polymers. The destruction complex is active, and β-catenin is degraded. Wnt stimulation triggers Dvl recruitment to the plasma membrane by Frizzled (Fz) receptors, which function with LRP5–LRP6 coreceptors (reviewed in Clevers, 2006). Dvl binds the C-terminal tail of Fz using its PDZ domain (Wong et al., 2003). Dvl polymers at the membrane serve as a dynamic scaffold for Axin recruitment and inactivation (Cliffe et al., 2003). Wnt stimulation also leads to phosphorylation of LRP5–LRP6 by CKIγ and GSK3 (reviewed in Clevers, 2006). Phosphorylated LRP5–LRP6 can interact with Axin, potentially providing another mechanism to recruit and inactivate Axin at the membrane (Tamai et al., 2004; Mao et al., 2001; Tolwinski et al., 2003). Several models have been proposed to explain Axin inactivation, including a conformational change upon Dvl and/or LRP5–LRP6 binding, and Axin degradation (reviewed in Clevers, 2006). (Adapted from Roberts et al., 2007).
1.2.2 Notch Signaling

Notch signaling has been implicated in cell fate decisions and morphogenesis in different species (Artavanis-Tsakonas et al. 1999). The Notch gene was first characterized in the fly *Drosophila melanogaster*, and encodes a 300-kD single-pass transmembrane receptor. Notch act as a receptor that is activated by transmembrane ligands known as DSL (Delta, Serrate, and Lag 2) proteins (Mumm & Kopan 2000). The interaction between Notch ligands and their receptor then occurs between two adjacent cells. This interaction enables proteolytic cleavage of the receptor to generate the Notch intracellular domain (NICD) that translocates into the nucleus. A key step in the cleavage process involves the activity of the gamma-secretase protease complex. In the absence of Notch signaling, the cofactor proteins collectively called CSL (CBF1, Su(H), Lag-1) act as transcriptional repressors. Their binding to NICD turns the complex into a transcriptional activator function that enables transcription of their target genes (e.g., HES, Hairy/Enhancer of Split genes)(Baron, 2003). This “core” Notch signaling pathway is depicted in Figure 3.

Notch signal regulates cell fate between adjacent cells in progenitor cell clusters. Signaling through Notch takes place when a cell gains levels of the ligand that is higher compared to their neighboring cells. This is mediated either through the intrinsic or extrinsic regulatory mechanisms, which are not well characterized, or through stochastic events that get instantly amplified through feedback regulatory mechanisms (Mumm & Kopan 2000). One of the best-characterized target genes of Notch is the hairy/ enhancer of split (HES) transcriptional repressor, which belongs to the basic helix-loop-helix (bHLH) proteins. The HES protein is itself a transcription factor, which further regulates the downstream target genes (Artavanis-Tsakonas et al. 1999, Mumm & Kopan 2000, Baron, 2003).
1.2.2.1 **The Notch pathway in lineage determination (Secretory vs Absorptive)**

As discussed previously, the transit amplifying cells differentiate to form the four different cell types, of which three are secretory (the goblet cells, the enteroendocrine cells, and the paneth cells) while the fourth one (the enterocytes) belong to the absorptive lineage. Figure 4 gives a schematic overview of the cell lineage specificity in the intestine. Similar to the role played by the Wnt signaling, the Notch pathway is vital to maintain the crypt compartment in its undifferentiated and proliferative state. Notch signaling deficiency in the intestinal epithelium either through conditional deletion of the CSL gene or through pharmacological gamma-secretase inhibitors results in the rapid and complete conversion of all epithelial cells into goblet cells (Milano et al., 2004; Wong et al., 2004).
Treatment of Apcmin/+ mice induced Math1 expression in adenomas and the conversion of proliferative adenoma cells into post-mitotic goblet cells (Van Es et al., 2005). Both the Notch1 and Notch2 receptors mediate Notch signals in the intestinal epithelium. These receptors work redundantly as evidenced by the complete conversion of the proliferative crypt cells into postmitotic goblet cells only upon conditional inactivation of both these receptors in the gut (Riccio et al., 2008). An opposite effect in the form of depletion of goblet cells and a reduction in enteroendocrine and Paneth cell differentiation are observed upon specific overexpression of the constitutively active Notch1 receptor (Fre et al., 2005; Stanger et al., 2005). Thus, in the intestinal epithelium, the Notch pathway regulates absorptive versus secretory cell fate decisions. There have been no reports of mutational alterations in Notch signaling in intestinal tumorigenesis so far.

A characteristic feature of Notch signaling is the regulation of the downstream effectors of Notch. As mentioned above, the first set of genes activated by Notch belongs to the Hairy/Enhancer of Split (Hes) class that encode transcriptional repressors. Hes repressors in turn repress transcription of a second set of genes, typically basic helix-loop-helix (bHLH) transcription factors that, when derepressed, induce differentiation along specific lineages. One of these is Math1 (Jensen et al., 2000). The epithelium of Math1 mutant mice is populated only by enterocytes indicating the fact that intestinal Math1 expression is required for the commitment towards the secretory lineage (Yang et al., 2001). The factors that are downstream of Math1 play specific roles in epithelial cell differentiation. For example, the zinc-finger transcriptional repressor Gfi1 is absent in Math1−/− embryonic intestines, implying that it acts downstream of Math1. Gfi1−/− mice lack paneth cells and display a clear reduction in the number of goblet cells. There is, however, an increase in the number of enteroendocrine cells (Shroyer et al., 2005). Other factors include kruppel-like factor 4 (Klf4), a zinc-finger transcription factor whose deletion results in the loss of goblet cells (Katz et al., 2002) and Neurogenin3 (Ngn3), a bHLH transcription factor that is downstream of the Notch-Hes1-Math1 signaling cascade. Ngn3−/− mice do not develop any intestinal endocrine cells (Jenny et al., 2002).

Interestingly, Math1 expression is reduced in intestinal crypts in mouse models with impaired Wnt signaling, setting Math1 as the crossroad between the Wnt and Notch signaling. Indeed, as a functional consequence of the impaired Wnt signaling, the secretory lineages are depleted, and the villi are lined mainly with enterocytes (Ireland et al., 2004; Korinek et al., 1998; Pinto et al., 2003). Beside repressing Math1 activity and thereby repressing the secretory lineage, HES exert a positive activity on the
differentiation of the absorptive enterocytes, as suggested by the decrease in absorptive enterocytes in the Hes1$^{-/}$ animals (Jensen et al., 2000). These activities are mediated by HES acting on E47-like factor 3 (Elf3), a member of the Ets transcription family (Ng et al., 2002) and on the expression of transforming growth factor β type II receptor (Tgf-βRII) (Flentjar et al., 2007).

A summary of the proposed positioning of each component of the Notch and Wnt pathways acting on the epithelial cell lineage commitment is presented in the Figure 4 (Van der Flier and Clevers, 2009).
Fig. 4 | Schematic overview of the genetic hierarchy of epithelial cell lineage commitment in the intestine. Intestinal stem cells proliferate under control of both the Wnt and the Notch pathways and can differentiate into all four differentiated cell types present in the intestinal epithelium. Math1 is required for the commitment to the secretory lineage. Gfi1 and Sox9 are responsible for differentiation into Paneth cells. Gfi1, kruppel-like factor 4 (Klf4), and E47-like factor 3 (Elf3) are necessary for goblet cell development. Neurogenin3 (Ngn3) is required for endocrine cell fate specification. Downstream of Ngn3, a set of transcription factors is responsible for the specification of the various enteroendocrine hormone–expressing cell types. Hairy/ Enhancer of Split 1 (Hes1), through Elf3 and the transforming growth factor β type II receptor (Tgf-βRII), is responsible for differentiation into enterocytes of the absorptive lineage (Adapted from Van der Flier and Clevers, 2009).
1.2.3 Hedgehog signaling

- **Hedgehog Secretion**

The Drosophila Hedgehog mutant was first identified in 1980 (Nüsslein-Volhard and Wieschaus 1980), following which three separate groups identified the Drosophila hedgehog gene in 1992 (Lee et al., 1992; Mohler and Vani 1992; Tabata et al., 1992). Sonic hedgehog (Shh), desert hedgehog (Dhh), and Indian hedgehog (Ihh) are three murine homologs, which are highly conserved in mouse and humans (Marigo et al., 1995).

Hedgehog proteins undergo extensive post-translational modifications before they can function as a signaling molecule. Autocatalytic cleavage of a 45-kDa precursor protein results in a 19-kDa NH2-terminal fragment that carries out the signaling function and a 26-kDa COOH-terminal fragment that acts as a cholesterol transferase apart from catalyzing the cleavage itself (Bumcrot et al., 1995; Lee et al., 1994; Porter et al., 1996; Porter et al., 1995). One characteristic feature of hedgehog proteins is that they are poorly soluble owing to dual lipid modification of the mature NH2-terminal fragment that is linked covalently to a palmitate and a cholesterol group (Mann and Beachy, 2004). These modifications enable the hedgehog protein to fuse to the cell membrane and thus play a key role in directing the range of the hedgehog signaling in a tissue (Chen et al., 2004). In addition, both the above-mentioned modifications are necessary for the formation of multimers of NH2-terminal hedgehog protein, required for the long range signaling (Chen et al., 2004; Zeng et al., 2001). Studies in Drosophila suggest that the lipid moieties of the hedgehog multimers associate with the outer phospholipid layer of lipoprotein particles and that this association is necessary for hedgehog signaling activity (Panakova et al., 2005).

The release of mature hedgehog protein from the hedgehog-producing cell requires Dispatched (Disp), a 12-pass transmembrane protein with a sterol-sensing domain. The significant role of Disp1 for hedgehog signaling activity was evident from Disp1/ mutant mice that showed phenotype similar to mice that lack hedgehog signaling receptor (Smo) (Caspary et al., 2002; Kawakami et al., 2002; Ma et al., 2002).
1.2.3.2 The hedgehog-mediated transduction cascade

Smoothed (Smo) is a seven-span transmembrane receptor that mediates the transmission of the Hedgehog signal. It binds to the cell membrane and intracellular vesicles (when overexpressed in cell lines) (Chen et al., 2002; Corbit et al., 2005; Incardona et al., 2002). Hedgehogs regulate the activity of Smo indirectly by binding to a second receptor Patched (PTCH1). In vertebrates, there exist two PTCH1 genes, PTCH1 (Goodrich, et al., 1996) and PTCH2 (Motoyama et al., 1998). PTCH is a 12-span transmembrane receptor with two large hydrophilic extracellular loops that mediate Hedgehog binding. Binding of Hedgehog to PTCH1 releases the inhibitory action of PTCH1 on Smo, which is now active (Fig. 5). Another component of this signaling cascade is Hedgehog-interacting protein (Hhip), which binds and somehow captures Hedgehog on receiving cells. It thus acts as a negative regulator of Hedgehog signaling (Chuang et al., 1999). Interestingly, PTCH1 and Hhip are transcriptional targets of Hedgehog signaling and function in a negative feedback loop thereby restricting the range of Hedgehog signaling in a tissue.
Two key receptors involved in the Hedgehog pathway in normal adult cells are Smoothened (Smo), which initiates a signaling cascade, and Patched-1 (PTCH1), which inhibits this signaling mechanism potentially by preventing Smoothened from reaching the cell surface. A: In the absence of ligand, PTCH1 inhibits Smoothened (Smo), a downstream protein in the pathway. It has been suggested that Smo is regulated by a small molecule, the cellular localization of which is controlled by PTCH. PTCH1 has a sterol-sensing domain (SSD), which has been shown to be essential for suppression of Smo activity. B: Upon binding of Hedgehog to Patched-1 (PTCH1) receptor, it regulates Smo by removing oxysterols from Smo. PTCH acts like a sterol pump and removes oxysterols that have been created by 7-dehydrocholesterol reductase. Upon binding of an Hh protein or a mutation in the SSD of PTCH the pump is turned off allowing oxysterols to accumulate around Smo. This accumulation of sterols allows Smo to become active or stay on the membrane for a longer period of time. The binding of Shh relieves Smo inhibition, leading to activation of the Gli transcription factors (Image adapted from www.google.com).

Understanding of the vertebrate signal transduction operating downstream of Smo is far from complete, in part due to the relative lack of conservation of downstream targets of the Hedgehog signaling between Drosophila and vertebrates (Huangfu and Anderson, 2006; Osterlund and Kogerman, 2006). However, in both cases, the end-point target are transcription factors: Ci in Drosophila, and the glioblastoma (Gli) transcription factors in vertebrate –Gli1, Gli2, and Gli3– which mediate all aspects of Hedgehog signaling in
vertebrates (Hui et al., 1994). The major Glis to transduce the Hedgehog signal in the gut are Gli2 and Gli3.

1.2.3.3 Identifying Hedgehog Target Cells

It is essential to identify Hedgehog receiving cells to elucidate the role of Hedgehog signaling in any organ. Irrespective of the number of different target genes that have been identified, their regulation often differs in time or per organ. The expression pattern of two target genes – PTCH1 and Gli1 seems to be conserved particularly well throughout vertebrates. This expression pattern reflects the fact that Hedgehog signaling activity is seen in most if not all situations in vertebrates. However, a difference may exist for the sensitivity of the expression of PTCH1 and Gli1 for the range of the Hedgehog signal in the developing vertebrate gut. Both Shh and Ihh are expressed in the epithelium of the developing stomach and colon at E18.5. Expression of PTCH1 is high in a small zone very close to the Hedgehog expressing cells, whereas Gli1 is also expressed intensely in the smooth muscle layer at much greater distance (Ramalho-Santos et al., 2000).

1.2.3.4 Hedgehog signaling and homeostasis of the adult gut

There is very little information on the role of Hedgehog signaling in the adult small intestine. Low levels of Shh mRNA can be detected just above the Paneth cell position in the crypt. However when using gastric specimens as a positive control, expression levels are too low to be detected by immunohistochemistry (Van den Brink et al., 2002). Other reports confirmed, by quantitative PCR, this low expression of Shh in the small intestine and colon compared with the stomach (Suzuki et al., 2005). Batts et al., 2006 showed by in situ hybridization that Ihh is expressed at the crypt-villus junction with gradually diminishing expression towards the tip of the villus, and PTCH1 is expressed at low levels in the mesenchyme. Enterocytes on the upper half of the villus mainly express the Ihh protein (Jung et al., 1999). This partially overlapping expression pattern of mRNA and protein is typical for many enterocyte genes. An explanation for this is cells that have moved to the top of the villus often no longer transcribe mRNA from a given gene but still express the translated protein. The overall activity of the hedgehog pathway in intestinal homeostasis seems however modest as treatment of mice with cyclopamine, a potent inhibitor of Hh signaling, resulted in a modest 10% reduction of proliferation in the duodenum (Van den Brink et al., 2007).
While studying the role of PPARβ in the small intestinal homeostasis, our laboratory showed that Indian Hedgehog (Ihh) is important for Paneth cell differentiation. PPARβ knockout (PPARβ−/−) mice displayed approximately threefold induction of Ihh mRNA and protein. Treatment of wild-type mice with a PPARβ specific agonist strongly reduced Ihh mRNA levels, showing that PPARβ negatively regulates Ihh expression. Moreover, administration of the hedgehog pathway inhibitor cyclopamine increased the number of Paneth cells in the duodenum in both PPARβ−/− and wild-type mice, consistent with a role for Ihh in mediating inhibition of Paneth cell differentiation by PPARβ. In HT-29 colon cancer cells, upon treatment with recombinant Shh, expression of lysozyme, a Paneth cell marker was reduced, whereas treatment with cyclopamine increased lysozyme expression, thus recapitulating the effects of PPARβ in-vitro. These results agree with and corroborate the in vivo data and its interpretation that PPARβ inhibits Paneth cell differentiation at least in part by repressing Ihh expression. This is mediated by inhibiting the negative feed back loop operating between the mature paneth cells and the paneth cell precursors (Varnat et al., 2006). Figure 6 recapitulates the various signals at work in the small intestine and their cross talk.

Fig. 6 | Signaling pathways in the small intestine. a Components of the hedgehog (HH), platelet-derived growth factor (PDGF), bone morphogenetic protein (BMP), Wnt, Eph/ephrin and Notch pathways are expressed in different regions along the crypt–villus axis — some in the epithelium and some in the mesenchyme. **b** A model of how the HH, BMP and Wnt signalling pathways combine to organize the pattern of villi and crypts or intervillus pockets. Epithelial cells in each crypt or intervillus pocket form a signalling centre, which functions as a source of long-range inhibition through the HH–BMP relay, and of short-range auto-activation through Wnt signalling. HH signalling activates the expression of BMP in the mesenchyme. BMP feeds back on the intestinal epithelium to repress Wnt signalling. The expression of the BMP inhibitor noggin in the neighbourhood of the crypts counteracts the effect of BMP so that Wnt activity is maintained in the crypt epithelium (Adapted from Crosnier et al., 2006).
2. The nuclear receptor superfamily

Nuclear receptors are transcription factors that are activated upon ligand binding. All nuclear receptors share some common features that include a DNA binding domain (DBD) and a ligand-binding domain (LBD). Upon ligand binding, the receptors are activated and these activated receptors then bind to specific response elements at the promoter of the target genes.

The nuclear receptors can bind DNA either as homodimers or heterodimers with RXR (retinoid X receptor) as the partner. A dual mode of action has been reported for these receptors: by default, they bind co-repressors that inhibit transcription of target genes, whereas in the presence of a ligand, they exchange co-repressor for co-activators to mediate transcriptional activation.

2.1. Classification

Nuclear receptors can be broadly classified into three categories:

1. Classical hormone receptors: these receptors recognise only few specific ligands and bind to them with a very high-affinity. Most of these are hormone binding receptors like thyroid hormone receptors (THR), glucocorticoid receptors, retinoic acid receptors (RAR), estrogen receptors (ERs), vitamin-D receptor (VDR), progesterone receptors (PR), mineralocorticoid and androgen receptors (AR).

2. Orphan receptors: these are the class of receptors which have a ligand binding domain but for which a specific ligand has not been identified so far. Some of the members of this group include SF-1, LRH-1, SHP, TLX, ROR-α, β, γ, GCNF, etc.

3. Adopted orphan receptors: these are receptors that have the ability to bind to a wide variety of molecules but with a relatively poor affinity. These receptors usually bind to molecules involved in metabolic pathways as substrates, intermediates or end products. Some examples are the pregnane X receptor (PXR), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liverX receptor (LXR) and peroxisome proliferator activated receptors (PPARs).
The latter group of receptors have gained importance due to their involvement as sensors in various metabolic pathways like fatty acid and cholesterol metabolism (reviewed in Desvergne et al., 2009). Many recent studies from various groups have elucidated their role in metabolism, cell proliferation and differentiation, cell survival and also tissue repair.

2.2 \textit{The PPARs subfamily: a brief overview}

PPARs belong to the nuclear receptor family and can be classified into three isotypes: PPARα, β/δ and γ. They were the first nuclear receptors identified as “sensors” rather than classic hormone receptors. They are nuclear, lipid-activable molecules that control a variety of genes in several pathways of lipid metabolism (Desvergne and Wahli, 1999). PPARα (NR1C1) is highly expressed in tissue with high activity levels of lipid catabolism, e.g. liver, brown adipose tissue, skeletal and heart muscle. PPARβ (also called PPARδ) is ubiquitously expressed. The PPARγ gene gives rise to two isoforms, PPARγ_1 and PPARγ_2, the latter differing only by an additional stretch of 30 aminoacids in the N terminus. The expression of PPARγ_2 remains restricted to adipose tissues whereas PPARγ_1 is also detected in the colon, spleen, retina, hematopoietic cells and skeletal muscle.

All the three PPARs share a common modular structure containing the four major domains (Fig. 7) as follows:

a. The A/B domain is the N-terminal region. This poorly structured N-terminal domain encompasses a weak ligand–independent transactivation domain in PPARα and PPARγ.

b. The C-domain, which is the DNA binding domain, with its two zinc fingers is extremely well conserved and is the hallmark of the nuclear receptor family. It consists of 60-70 aminoacids and is responsible for the binding to the PPRE in the promoter region of the target genes.

c. The D-domain or the hinge region connects the DBD to the LBD and is a poorly conserved region.

d. The E/F domain is the ligand-binding domain and also helps in the dimerization. It carries the AF-2 site that is responsible for ligand dependent transcriptional activation. This ligand-binding cavity of PPAR is particularly large, a feature that likely explains the promiscuous behaviour of PPAR with respect to ligand binding.
In addition to the diverse substances grouped under their ability to provoke peroxisome proliferation, various fatty acids more particularly unsaturated fatty acids, and some eicosanoids mainly derived from arachidonic acid and linoleic acid, bind to the three PPARs with varying affinities. However, all the physiological ligands that could activate PPARs \textit{in vivo} have most likely not been found yet.

Fig. 7

\textbf{Schematic representation of the structure of PPARs.} PPAR proteins are organized in distinct domains that display specific function. The domain A/B contains the activating function 1 which is independent of the presence of ligand, the domain C is implicated in the DNA binding, the domain D is a hinge region and the domain E/F is implicated in the heterodimerization and ligand recognition, contains an activating function 2 which is dependent of the presence of ligand and is necessary for the heterodimerization with RXR.

PPARs bind to DNA as heterodimers with the retinoid X receptor (RXR), on PPAR response elements (PPRE) comprising direct repeats of two hexamers closely related to the sequence AGGTCA and separated by one nucleotide (DR-1 sequence). The classical model of PPAR-dependent transactivation proposes a two-step process (Fig. 8). In the absence of the ligand, the nuclear receptor dimer binds to a co-repressor protein, such as NCoR, that inhibits its transactivation properties. In the presence of the ligand, or due to an alternative pathway of activation such as phosphorylation, the co-repressor is released and PPAR recruits co-activators, most likely organized in large complexes (Surapureddi et al., 2002). The co-activators that can physically interact with PPARs include CBP, p300, and PGC-1.
Mechanisms of transcriptional activation and repression by heterodimeric nuclear receptors. (A) Ligand-dependent transactivation. The binding of natural or synthetic agonists causes the recruitment of coactivator complexes to the ligand-binding domain. In general, ligand-dependent transcription of nuclear receptor target genes is associated with the recruitment of numerous coactivator complexes that act in a combinatorial or sequential manner. These complexes are associated with a number of enzymatic activities, including histone acetyltransferase (HAT), histone methyltransferase (HMT), and nucleosome remodeling (NRM) activities. Structurally distinct ligands may alter the pattern of recruitment of these factors, resulting in altered patterns of gene activation. (B) Active repression. A subset of heterodimeric nuclear receptors, including PPAR/RXR and LXR/RXR heterodimers, are capable of binding to REs in the absence of ligand and recruiting corepressor complexes that actively repress transcription. A number of corepressor complexes are associated with histone deacetylase (HDAC) activities, as well as histone methyltransferase and nucleosome remodeling activities that are generally distinct from those associated with coactivator complexes. HDM, histone demethylase (Adapted from Glass, 2006).

Concerning the functional activities, PPARα and PPARγ perform opposing functions with respect to lipid metabolism. Most of PPARα activity is linked to its ability to promote fatty acid oxidation, a vital process during fasting, and to govern many aspects of lipoprotein metabolism (Duval et al., 2007). In contrast, PPARγ was first identified as a key regulator of adipogenesis, and necessary for intra-cellular lipid storage. Fibrates on the one hand and thiazolidinediones on the other hand are hypolipidemic and hypoglycemic drugs that act through their binding to PPARα and PPARγ respectively, making these two subtypes highly attractive as targets of drugs designed for metabolic disorders such as the type 2 diabetes. However, their therapeutic potentials go beyond the lipid and glucose metabolism as many research groups are now exploring their efficacious activity as anti-inflammatory regulators, particularly in the context of atherosclerosis and cardiovascular diseases (Zandbergen and Plutzky 2007; Széles et al., 2007). Due to the lack of appropriate tools and guided hypothesis for its functions, PPARβ was getting much less attention than the two other isotypes. However, identification of anti-obesity properties of PPARβ and conflicting reports so far on the role of PPARβ in the progression or attenuation of colon cancers has quite stimulated the field.
2.2.1 PPARβ/δ

2.2.1.1 Structural properties

Several structures have been determined for the ligand-binding domain of the human PPARβ (Reviewed in Zoete et al., 2007). The overall structure is common to other nuclear receptors, with a bundle of 13 helices and a small four-stranded β-sheet. PPARs accommodate an extra helix (H2’) and are characterized by a very large Y-shaped cavity. A particularity of the PPARβ pocket is the narrowness of one of the Y arm, which thus cannot accommodate bulky polar heads (Xu et al., 2001). Interestingly, the structure of the PPARβ ligand-binding domain in the absence of ligand is not well defined and rather corresponds to equilibrium of different conformations, among which those favoring co-activator recruitment.

2.2.1.2 Ligand specificity

Natural ligands: Many unsaturated fatty acids can bind to PPARβ in a pattern closely resembling the binding to PPARα (Desvergne and Wahli, 1999). The very large density lipoproteins (VLDL), through release of their triglycerides, are proposed to specifically deliver ligands to PPARβ in the macrophages (Chawla et al., 2003; Ziouzenkova and Plutzky, 2004). Arachidonic acid derivatives, and more particularly prostacyclin (PGI2) formed upon cyclooxygenase 2 (COX-2) activation are strong candidates (Lim et al., 1999), and the stable synthetic analog carbaprostacyclin exhibits some binding properties (Forman et al., 1997). However, this activation seems to be tissue and/or context dependent. Other prostaglandins have also been diversely proposed as PPARβ ligands (Yu et al., 1995). Metabolites derivatives obtained through the 12/15-lipoxygenase activity, such as 9-HODE, 13-HODE, 12-HETE and 15-HETE, are low affinity PPARγ activators (Nagy et al., 1998). They also activated PPARβ however with some intriguing results since 13-s HODE is reported to be an inhibitor of PPARβ in colon epithelial cells (Shureiqi et al., 2003), but an agonist in preadipocytes (Coleman et al., 2007). Finally, a recent report suggests that retinoic acid (RA) would be a ligand destined for either PPARβ
or RARs, depending on the relative expression of CRABPII (delivering RA to RARs) and FABP5 (delivering RA to PPARβ) (Schug et al., 2007).

Synthetic ligands: Following the very first synthetic compound called L165041, which can give some PPARγ activation at high doses, the most often used ligand in fundamental research is the glaxo compound GW501516. Presently, PPARβ specific antagonist—GSK0660 is also available commercially (Shearer et al., 2008).

2.2.1.3 PPARβ: Functional properties

2.2.1.3.1 PPARβ in metabolism

The most significant outcome of PPARβ activation concerns its anti-obesity effect. Indeed, PPARβ is implicated in energy consumption in peripheral tissue by controlling β-oxidation and energy uncoupling. The skeletal muscle is considered to be the prime site where PPARβ regulates genes mainly involved in β-oxidation and uncoupling such as FABP3, lipoprotein lipase, carnitine-o-palmitoyl transferase (CPT-1), or UCP-3, among others (Bedu et al., 2005). Consistently, *in-vivo* over-expression of PPARβ in skeletal muscle provokes a shift toward more oxidative fibres and promotes a general decrease of body fat content (Luquet et al., 2003). Quite similar results were obtained using a constitutively active PPARβ-VP16 fusion protein expressed under the control of the α-actin promoter, which increased the oxidative type I fibres in the muscle of PPARβ-VP16 transgenic mice. Importantly, these mice remained lean and insulin-sensitive on a high fat diet (Wang et al., 2004). A mirror image was obtained when specifically deleting PPARβ in skeletal muscles, with lower oxidative activity of the muscle fibres and an increased body fat mass leading to insulin resistance (Schuler et al., 2006). The fact that PPARβ expression increases upon exercise (Rusell et al., 2005) suggests that PPARβ could be implicated in adaptive response of skeletal muscle to physical exercise (Reviewed in Grimaldi, 2007).

In parallel to acting on lipid metabolism, a role for PPARβ in regulating systemic lipid transport through lipoproteins adds to its potential therapeutic effects. In obese rhesus monkeys, an animal model for human obesity and associated metabolic disorders, as well
as in diabetic db/db mice, a selective PPARβ agonist caused a beneficial increase in serum HDL cholesterol and a decrease in small-dense LDL (Leibowitz et al., 2000; Oliver et al., 2001). Conversely, PPARβ deficient mice exhibit LDL hypertriglyceremia, due to increased hepatic production of VLDL and decreased LPL-mediated catabolism (Akiyama et al., 2004). One important mechanism for these effects is an increase in reverse cholesterol transport via increased expression of ABCA1 (Oliver et al., 2001), as well as a reduced cholesterol absorption in mutant intestine that is associated with a decrease in Niemann-Pick C1 like 1 (NPC1L1) protein (Van der Veen et al., 2005).

In the context of atherosclerosis, the role of PPARβ in macrophages remains difficult to explore as the three PPAR isotypes are coexpressed and have significant overlapping activities, particularly with respect to anti-inflammation properties. In macrophages, a direct interaction of PPARβ with BCL6 or p65 negatively regulates NF-κB driven promoters. However, this mechanism is likely tissue- or context-dependent (Trifilioff et al., 2003; Kharroubi et al., 2006). Other studies of PPARβ in macrophages have focused on its capacity to act as a VLDL sensor, to which it responds by increasing carnitine synthesis and lipase activation.

2.2.1.3.2 PPARβ in cell fate

2.2.1.3.2.1 The anti-apoptotic activity of PPARβ

Apoptotic cell death can take place by two major mechanisms: either through the activation of the death receptor pathways by the binding of TNF-or Fas-Ligand (Fas-L), or through activation of the mitochondrial pathway through the Bcl-2 family of proteins. Cell death through both of these major apoptotic mechanisms can be prevented by the activation of the Akt1 pathway. Phosphorylation of Akt1 at threonine 308 (T308) by the 3-phosphoinositide-dependent kinase-1 (PDK1) and of serine 473 (S473) by the integrin-linked kinase (ILK) (Nicholson and Anderson, 2002) or other kinases is necessary for the maximal Akt 1 activity.

In skin wound healing, PPARβ protects keratinocytes from anoikis and growth factor deprivation-induced apoptosis through the activation of Akt1 pathway (Di-poï et al, 2002). In this context, the Akt1 phosphorylates Bad, the proapoptotic member of the Bcl-2
family, thus preventing cytochrome c release which can trigger the activation of the initiator caspase-9. PPARβ exerts regulation of Akt1 phosphorylation through transcriptional upregulation of ILK and PDK1, and repression of PTEN (phosphatase and tensin homolog deleted on chromosome 10). Keratinocytes derived from PPARβ⁺/⁺ or PPARβ⁻/⁻ showed no difference in the expression of Akt1. However, the expression of ILK and PDK1 was reduced in the PPARβ⁻/⁻ cells as compared to their wt counterparts whereas the expression of PTEN was 2-fold higher in PPARβ⁻/⁻ cells. Consistent with this decreased PDK1/ILK protein levels in PPARβ⁻/⁻ cells, is the reduced phosphorylation of Akt1 at T308 and S473 in PPARβ⁻/⁻ cells. Further, treatment of PPARβ⁺/⁺ keratinocytes with the PPARβ ligand L-165041 resulted in an increase of both PDK1 and ILK and a decrease in PTEN expression, indicating that it is a direct PPARβ target that is further strengthened by the fact that it was unaffected by protein synthesis inhibitor cycloheximide (CH). However, in the case of PTEN regulation it turned out to be an indirect regulation by PPARβ. These results clearly show that in keratinocytes, PPARβ controls cell fate decision by directly controlling apoptosis through the Akt1 pathway (Fig. 9).
Fig. 9 | Model for the anti-apoptotic role of PPARβ in keratinocytes. Following stimulation by TNF-α, PPARβ directly upregulates ILK and PDK1 and downregulates PTEN, leading to the activation of Akt1 in a PI3K-dependent manner. In response to this activation, the activity of several of its targets, including Bad, FKHR, and NF-κB, is modified, leading to the inhibition of apoptosis and changes in cell adhesion/migration. Dotted lines represent a modification at the transcriptional level, and continuous lines represent a modification of the protein activity. Inhibitors of PI3K (LY294002) and NF-κB (PDTC) are indicated (Adapted from Di-Poi et al., 2002).

2.2.1.3.2.2 PPARβ in cell differentiation

2.2.1.3.2.2.1 In the placenta: Giant cell differentiation

Early evidence for the role of PPARβ in development came from the observation that null mutation of PPARβ showed embryonic lethality at E9.5 to E10.5, with the trophoblast giant cell layer being the most affected. Interestingly, treatment of a rat trophoblast cell line (RCHO cells) with PPARβ ligand markedly accelerated giant cell
differentiation via increased expression of PDK1 and ILK, subsequent phosphorylation of Akt, and Id2 inhibition of expression. The links between PPARβ activity in giant cells and its role on Akt activity is further strengthened by the remarkable pattern of phospho-Akt expression \textit{in-vivo} at E 9.5, specifically in the nucleus of the giant cells. In addition to this main pathway, PPARβ also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Thus, PPARβ is a major regulator of secondary giant cell differentiation, which plays a major role in the establishment of the placental structure and has important endocrine function (Nadra et al., 2006).

\textbf{2.2.1.3.2.2.2 In the skin: Keratinocyte differentiation}

Inflammatory signals from skin wounding results in generation of TNF-α and IFN-γ. These inflammatory signals activate the stress-associated signaling pathway and also further stimulate PPARβ expression via an AP-1 site in its promoter. These signals also promote the synthesis of a PPARβ ligand that is so far unidentified. The resulting increase in PPARβ transcriptional activity strongly accelerates the differentiation of keratinocytes that increases their resistance to apoptotic signals. (Tan et al., 2001). Also PPARβ promotes hair follicle morphogenesis by regulating the balance between the proliferation and apoptosis required for this process by the anti-apoptotic action mediated via the Akt/PKB pathway (Di-poi et al., 2005).

\textbf{2.2.1.3.2.2.3 In the Central nervous system: neuronal and oligodendrocyte differentiation}

A role for PPARβ in neuronal differentiation is suggested due to the high level of expression of PPARβ in the CNS (Woods et al., 2003; Moreno et al., 2004; Cullingford et al., 1998) and in neurons in culture (Di Loreto et al., 2006; Cimini et al., 2005). In the primary glial culture as well as in enriched oligodendrocyte culture, PPARβ agonist strongly accelerates the differentiation of the oligodendrocytes, increasing both the number of oligodendrocytes and the size of the membrane sheets they produce (Saluja et al., 2001).
2.2.1.3.2.4 *In adipocyte differentiation*

The implication of PPARβ in adipocyte differentiation is more complex. PPARβ is highly expressed in the preadipocytes where it mediates long-chain fatty acid effects on the expression of adipose-related genes. The reduced fat mass observed in some PPARβ null mice is consistent with a role in adipogenesis (Barak et al., 2002; Peters et al., 2000). In contrast, the adipose tissue specific deletion of PPARβ at a later stage did not affect adiposity of the mice (Barak et al., 2002). Taking into account some contradictory observations in cell in culture (Brun R et al., 1996; Holst et al., 2003; Matsusue et al., 2004), as well as in-vivo (Akiyama et al., 2004; Wang et al., 2003), the role of PPARβ in adipogenesis seems strongly intertwined with its general metabolic activity rather than specifically acting on the differentiation program.

2.2.1.3.2.3 *PPARβ in cell proliferation*

The influence of PPARβ on proliferation is complex. As mentioned above, PPARβ promotes terminal differentiation and inhibits proliferation of keratinocytes, at least in part through down-regulation of cyclin A (Tan et al, 2001) or through increased ubiquitination of PKCa (Kim et al, 2005). Assays performed in a variety of cell lines did not demonstrate any pro-proliferation activity of a PPARβ agonist (Hollingshead et al., 2007). In contrast, PPARβ can promote proliferation of hepatic stellate cells (Hellemans et al., 2003) and vascular smooth muscle cells (Zhang et al., 2002). Thus a direct anti- or pro- proliferative activity of PPARβ agonist has yet to be further studied. Attention must be paid to the fact that a higher degree of cell survival rather than a direct proliferation activity may account for an increased cell population. Thus, the anti-apoptotic role of PPARβ might be essential to be taken into consideration in some experimental settings aimed at evaluating cell proliferation.
2.2.1.4 *PPARβ in the intestine*

2.2.1.4.1 *Expression*

PPARβ is ubiquitously expressed in the body. It has been reported that of the three PPAR isotypes, *PPARβ* is the major isotype expressed in the gastrointestinal tract (Fig.10; Escher et al., 2001). Also it has been shown that *PPARβ* is highly expressed at the bottom of the crypt and the expression reduces towards the tip of the villi (Varnat et al., 2006).

![Comparative analysis of PPARα, PPARβ, and PPARγ expression in the gastrointestinal tract](image)

Fig. 10 | Comparative analysis of PPARα, PPARβ, and PPARγ expression in the gastrointestinal tract. Histograms show quantifications (in relative values) of PPAR mRNA levels ± SD, normalized to L27 mRNA expression, derived from RNase protection assays, [n=3](Adapted from Escher et al., 2001).

2.2.1.4.2 *PPARβ and Paneth cell differentiation*

In the gut, *PPARβ* is involved in the differentiation of the Paneth cells, but does not significantly affect the three other cell types. Mature Paneth cells signal to their precursors through the Ihh to negatively regulate their differentiation. *PPARβ* acts by inhibiting the negative feedback loop operating between the mature Paneth cells and the Paneth cell precursors (Varnat et al., 2006). The intensity of the Ihh signal received by the precursor cells determines the number of mature Paneth cells in the crypt. High levels of Ihh lead to the suppression of the maturation of the PATCH-1–positive cells, limiting them in their precursor state. On the contrary, weak Ihh signal inhibits the positive feedback loop on PATCH-1 expression stimulating the terminal differentiation of precursor cells to fully mature Paneth cells. Although the total number of mature Paneth cells is reduced in
the PPARβ-null mice, the levels of Ihh are particularly high, thus falsely signaling the precursor cells to delay differentiation (Fig. 11).

Fig. 11 | Model for PPARβ action on the level of Ihh, resulting in the alteration of Paneth cell homeostasis. PPARβ controls the number of Paneth cells by regulating the differentiation of their precursors; for details see text (Adapted from Varnat et al., 2006).

2.2.1.4.3 A role for PPARβ in colorectal cancer

PPARβ is a target of Wnt signaling and is also involved in the progression of colorectal cancer (He et al., 1999). There are conflicting reports so far on the role of PPARβ in the progression or attenuation of colon cancers. Inactivation of Apc gene or treatment with azoxymethane has been shown to increase the levels of PPARβ in colorectal tumors (He et al., 1999; Gupta et al., 2000). This increased levels of PPARβ in colorectal tumors compared to the normal mucosa is consistent with the hypothesis that Apc suppresses activity of β-catenin /TCF-4 transcription of target genes including PPARβ, cyclin D1 (He et al., 1999). A decrease in tumor formation was observed when the PPARβ-null HCT cells were xenografted in nude mice (Park et al., 2001). In addition, it has been shown that treatment of Apc$^{min/+}$ mice with PPARβ-specific ligand (GW501516) leads to the increase in the number and size of the small intestinal adenomas
(Gupta et al., 2004). In summary, these studies suggest that loss of Apc leads to the increase in expression of PPARβ through β-catenin /TCF-4 transcriptional pathway, thus promoting tumorigenesis. On the other hand, several studies show conflicting results. Comparative studies on the normal colonic mucosa and adenomas from Apcmin/+ mice as well as in humans between normal and cancer tissue show decrease in the expression of PPARβ (Chen et al., 2004). This is consistent with the observations in mice with targeted deletion of Apc in intestine, that show decrease in PPARβ mRNA and protein levels and increase in c-myc levels along with accumulation of β-catenin (Reed et al., 2004). Since then, a certain numbers of papers have continued to feed the controversy but do not give clues on the reasons for such discrepancies.

However, a particular attention has recently been brought on the angiogenesis that accompanies tumor formation. In addition to the role of Akt signaling in regulating angiogenesis (Shiojima and Walsh, 2002), PPARβ upregulates VEGF expression (Wang et al., 2006; Piqueras et al., 2007). It is now further proposed that PPARβ plays an essential role for the formation of functional tumor microvessels (Müller-Brüsselbach et al., 2007).
3. **Irradiation: a medical concern and a tool for exploring cell and tissue repair**

After surgery, radiotherapy is one of the most used therapeutic actions for cancers, especially for those that are localized and have not metastasized yet. Ionizing radiations have variable success rates depending on the type of solid tumor involved. For e.g., lymphomas and seminomas are quite responsive to low doses of irradiation where as some like melanoma and glioblastoma are very radioresistant and show higher resistance even after high doses (Jung and Dritschilo, 1996). Failures in patients treated with ionizing radiation have been correlated to various features attributed to distant metastases as well as to the primary site. Indeed, precise localisation, size, and inadequate vascular supply (hypoxia) of the tumor can all play a role in the non-responsiveness to ionizing radiation. However, the most important factors that contribute to radiation resistance are cellular and genetic factors such as differential tissue-specific gene expression (e.g., p53, ataxia telangiectasia mutated (ATM) status (Peters et al., 1982; Deacon et al., 1984). These observations emphasize the need to well understand the molecular responses to radiation and their modulation, as discussed below.

3.1 **Signal transduction and cellular radiation responses**

Numerous radiobiological studies have proven the activation of existing cellular response pathways of the mammalian cells in response to ionizing radiation over a wide dose ranges. These pathways can either activate the cytoprotective or the cytotoxic responses thereby mediating the cell survival or the cell death, respectively. The mitogen-activated protein kinase (MAPK) and the phosphatidylinositol-3 phosphate kinase (PI3 kinase) mediate the cytoprotective responses. They activate the cellular biosynthetic machinery and may also act by stimulating the cellular proliferation if the cell is able to repair the radiation-induced damage. The most direct cytotoxic response involves Jun N-terminal kinase (JNK no known as MAPK8) and results in cellular death due to apoptosis and/or some other form of cell death (reviewed in Schmidt-Ullrich et al., 2000).

The production of radiation-induced radicals forms the primary ionizing events and is the immediate response of cells to irradiation. The primary radical generated •OH is
short lived with diffusion range about 4nm before reacting (Roots and Okada, 1972). Cellular Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) play a role in the cytoplasmic amplification mechanisms that are responsive to relatively low radiation doses. Figure 12 summarizes the potential sources and sensors of these ROS/RNS. O$_2^-$ and H$_2$O$_2$ form the secondary ROS molecules and H$_2$O$_2$ can react with cellular metal ions to produce additional •OH.

![Radiation-induced Cellular Reactive Oxygen and Nitrogen](image)

Fig. 12 | Radiation-induced cellular reactive oxygen/nitrogen species (ROS/NOS), sources and targets. Targets and sensors of radiation-induced ROS/RNS are localized in subcellular compartments including membranes, mitochondria and the nucleus. In each of these compartments, sensors and amplifiers of primary and secondary radicals are in proximity. While the cellular amplification systems enhance signal transduction responses, the effector molecules of these pathways feed into nuclear DNA damage recognition and repair functions (Adapted from Schmidt-Ullrich et al., 2000).

Some of these ROS/RNS remain sufficiently stable to diffuse significant distances within cells, e.g H$_2$O$_2$, nitric oxide and peroxynitrite, and contribute to the subsequent cellular damages. First, they are membrane permeant and can also change the membrane structure via lipid peroxidation (Berroud et al., 1996; Ritov et al., 1996). Second, they can interact with protein. A particularly interesting example is the interconversion of reduced and oxidized Cys, which change a protein conformation and therefore its activity, as it has been shown for Tyr phosphatase 1B, whose inhibition could lead to enhanced phosphorylation and activation of target proteins, such as EGFR (Bae et al., 1997; Lee et al., 1998).

Finally, exposure to ionizing radiation induces the formation of DNA double-strand breaks, which can provoke a P53-mediated response. The tumor suppressor TP53
and the protein mutated in ataxia telangiectasia cells, ATM, were identified to function as sensors of DNA damage (Morgan and Kastan, 1997; Giaccia and Kastan, 1998). They regulate cell cycle checkpoints, apoptosis and DNA repair (Reviewed in Schmidt-Ullrich, et al., 2000). They are known to activate signaling systems, to initiate damage repair or responses of cell death or apoptosis. In general, the cells deficient in TP53 or carrying a TP53 mutation are more radioresistant than cells expressing wild-type TP53 (Lee and Bernstein, 1993). However, the effect of mutant TP53 on radiosensitivity depends on the specific mutant and the cell type involved. In cells expressing wild-type TP53, irradiation results in cell cycle arrest mainly at the G1-phase checkpoint via transcriptional activation of CDKN1A, a potent inhibitor of CDKs, (Fig. 13; Canman et al., 1994; Kuerbitz et al., 1992). This cell cycle regulation is thus significantly linked to the vital cellular processes of biosynthesis, such as DNA repair, transcriptional regulation, the initiation of cell proliferation, or cell death and apoptosis. The complex interplay between such response systems reflects the extent of surveillance mechanism cells possess to maintain the integrity of the nuclear material against genotoxic stress.

Fig. 13 | ATM/TP53 and cellular radiation responses. The nuclear sensor proteins of DNA damage, TP53 and ATM, play a central role in modulating cellular responses that may directly or indirectly affect apoptosis or DNA repair and survival. Radiation may activate TP53 directly through DNA-PK or indirectly through ATM. In addition, ATM may directly affect repair through ABL and RAD51/S2. Alternatively, ATM may regulate transcription through the cytoplasmic IKB and NFkB. The modulation of cell cycle progression at the G1/S-phase checkpoint by TP53 is mediated by a complex network of positive and negative regulators including MDM2, CDKN1A, GADD45 and PCNA. Arrows and blocks represent stimulatory and inhibitory signals, respectively (Adapted from Schmidt-Ullrich et al., 2000).
3.2 Irradiation and the intestine

Treatment for abdominal and pelvic cancers by radiotherapy is one of the main sources for patients to get exposed to irradiation and may induce adverse effects on the intestine, first described by Walsh, 1897. Walsh concluded that radiation caused a direct inflammation of the gastrointestinal mucous membranes. In studies on domestic animals, X-ray irradiation induced injuries of the small intestine were dose-dependent as reported by Krause and Ziegler (1906-1907). Proliferation of the intestinal bacteria was believed to be the cause of the observed harmful effects. Contrary to this, delayed changes caused by X-irradiation was observed by Regaud et al., 1912 in dog small intestine. A mode of acute radiation death, the so-called GI-syndrome was described in 1956 by Quastler, which had a well-defined time course using dose ranging from 10 to 100 Gy of X-ray irradiation. The high sensitivity of the GI tract to X-irradiation makes it a target for complications in accidentally exposed persons and during the course of treatments for cancers by radiotherapy. Indeed, as abdomino-pelvic cancers increase with the aging of the population and lead to increased utilization of radiotherapy, the requirement of a better and thorough knowledge of the effects of radiation on the cells and organism as a whole has to be emphasized.

On clinical levels, radiation-induced intestinal damages are well documented and can be caused by various types of irradiation (X-ray, neutron, gamma). Ionizing radiation effects on the GI tract can be categorized into two main groups: early effects that occur at relatively low doses equivalent to 1 Gy and the GI syndrome that occur at high doses of radiation doses (more than 10 Gy). The effects of ionizing radiation on the gut can be followed in a time dependent manner and can be categorized as initial phase (1-3 days after exposure) followed by the acute, subacute and the late phases of the illness (Berthrong and Fajardo 1981; Anno et al., 1989; Rubio and Jalnas, 1996).

The acute phase is the early response of the radiation-induced stress and is characterized by the damage to the intestinal epithelium (depletion of epithelium or complete denuding of epithelial layer). This loss of integrity of the intestinal epithelium is the usual major effect on the intestine followed by the symptoms of nausea, vomiting, diarrhoea, loss of electrolytes and fluids, haemorrhage, anorexia, bacterial infection and endotoxemia. Alteration in the balance of electrolytes and fluids may be responsible directly for the effect on changes in cellular transport processes (Young, 1987). Ionizing
radiation mediated loss of intestinal epithelia leads to bacterial infection and endotoxemia and the bacterial products released thereafter can result in altered cellular communications.

Subacute and late responses of the ionizing radiation-induced GI damage result in radiation enteritis or radiation-induced enteropathy. Abdominal pain, gut perforation, haemorrhage, gut obstruction, diarrhea, malabsorption and dysmotility are the most frequent clinical consequences. The late effects of ionizing radiation are seen after almost 2 months after treatment and can be seen to last until a year later. Severe collagen accumulation results from aggregation of scattered thin fibrils in the submucosa from the second month after exposure to irradiation. In addition, the other compartments like the connective tissue and vascular tissue respond slowly to these radiation effects and contribute to the appearance of fibrosis (Langberg et al., 1996).

However, the cause of fibrosis remains poorly understood. The possible mechanisms may include direct effects of radiation on collagen or other constituents of the extracellular matrix, modified production or degradation of extracellular materials, direct or indirect effects of radiation to the vascular and/or parenchymal cell constituents, consequences of non-specific inflammatory or autoimmune processes, as reviewed by (Hauer-Jensen, 1990) and (Followill et al., 1993; Somosy et al., 2002).

3.2.1. Effects of radiation on the small intestinal cell types

Experimentally, radiation can be a very useful tool to induce damage to the tissues (Potten, 2004), thus allowing studying how the cells and tissues recognize the occurrence of damages and thus their repair response. Thus, radiation is an ideal cytotoxic agent for such studies. Using mouse models of total body irradiation, it was shown that in the first three to six hours after a moderate irradiation, the low levels of spontaneous p53-dependent apoptosis in the intestinal crypt dramatically increase. This cell death associated to a cell cycle arrest lead to shrinkage of the villi and loss of protective barrier observed 18 to 24 hours post-irradiation. Release from mitotic arrest occurs at about 36 hours and is associated with a rapid increase in the proliferative activity. At doses < 15Gy, surviving progenitor cells lead to crypt recovery identified at 3.5 days post-irradiation as typical hyperplastic regenerative crypts that exceed the size of control crypts by more than 2 folds. Large regenerating crypts split or bud to generate new crypts, until the intestinal mucosa regains a normal architecture at about 2 weeks after irradiation (Potten, 2004).
3.2.1.1 The role of the intestinal adult epithelial stem cells

Tissue homeostasis and regeneration upon injury are the key processes presumed to be under the control of adult tissue stem cells. Several studies in mice showed that Lgr5 (Barker et al., 2007), CD133/Prominin 1 (Zhu et al., 2009) and Bmi-1 (Sangiorgi and Capecchi, 2008) expressing cells at or near crypt base are intestinal stem cells (ISCs). The cells that exhibit the properties of ISCs are seen to be located in two different positions: the columnar cells at the crypt base called Crypt Base Columnar cells (CBCs) and some +4 position cells just above the Paneth cells. Work from several groups has identified that apoptosis in these cells is mainly responsible for the acute intestinal damage and rapid onset of gastrointestinal (GI) syndrome and death using a whole body radiation model (Potten, 2004; Ch’ang et al., 2005; Qiu et al., 2008).

3.2.1.2 Radiation-induced apoptosis

Many early reports show that damages to stem cells are an early response to irradiation (Potten et al., 1983, 1994). These damages to stem cells provoke apoptosis and mitotic inhibition (G2 block) (Potten et al., 1983; Carr et al., 1996). Mitotic inhibition is observed as early as 30min post irradiation, and lasts for the next 8-20 h (Potten et al., 1983). Soon after irradiation, there is initiation of apoptotic processes, and apoptotic cells appear after 2-3 h post irradiation that are visible by morphological analysis of the fine ultra structural features (Ijiri and Potten, 1984; Potten, 1992; Merritt et al., 1995; Arai et al., 1996).

Radiation induced apoptosis is one of the key events responsible for the acute intestinal damage and rapid onset of gastrointestinal syndrome (Potten 2004). Studies on mice have shown that as early as within 3- 6 h after gamma-irradiation, numerous apoptotic cells are observed in the region towards the bottom of the small intestinal crypts where the putative stem cells reside. The highest levels of apoptosis are seen following radiation doses >1Gy. Similarly in the proliferative zone of the murine colonic crypts, apoptosis can be observed within a few hours of gamma-irradiation. Nevertheless, the colonic epithelium is more resistant when compared to the small intestinal epithelium in
the context of radiation induced apoptosis as evidenced by maximal apoptosis occurring only above doses of 8Gy (Potten and Grant, 1998).

Using transgenic mice studies, two broad types of apoptosis has been characterized in the mouse intestine. In the normal, unstressed intestine, spontaneous apoptosis occurs constantly at low levels and the stress-induced apoptosis occurs as a result of genotoxic insult like exposure to gamma rays or DNA damaging drugs. Spontaneous apoptosis occurs at the base of the crypts at or near the position of the epithelial stem cells. Studies using p-53 and Bcl2 knockout mice have shown that in both the small and the large intestine, spontaneous apoptosis is independent of p53 and Bax, but Bcl2 only regulates spontaneous apoptosis in the colon. On the contrary, studies using p-53 knockout mice have shown that both p53 and Bcl2 are important regulators of stress-induced apoptosis. Bax only plays a minor role in the regulation of stress-induced apoptosis (Watson and Pritchard, 2000).

Studies on radiation induced apoptosis by Potten et al., 2004 indicate that there were about six apoptosis-susceptible cells per crypt located at around cell positions 4–5. These cells lacked repair capacity and instead initiated a TP53-dependent cell suicide to delete the damaged cell. This occurred fairly rapidly within a period of 3–6 h. This apoptotic response may be part of the mechanism operating in the stem cells of the small intestine to protect their genome. Interestingly, the response of the large intestine is strikingly different owing to two factors. First, apoptosis in the large intestine occurs randomly throughout the crypt and is not limited specifically to the stem cell position, which is at the base of the crypt. Second, the apoptosis-susceptible cells are more resistant to radiation since higher doses are required to induce similar total yields. Lastly, the stem cells of the large intestine express the protein associated with the cell survival gene Bcl2 that prevents them from undergoing apoptosis. In contrast, the small intestinal stem cells do not express this gene as determined by immunohistochemistry and confirmed by studies of the yield of apoptotic cells in the small and large intestines of Bcl2 knockout mice (Merritt et al., 1995).

The Bcl-2 family of proteins is evolutionarily conserved regulators of apoptosis and the BH3-only subgroup of proteins appears to initiate and promote apoptosis in a cell type and stimulus specific manner (Yu and Zhang, 2004; Labi et al., 2006). Several groups have shown that the p53 upregulated modulator of apoptosis (PUMA) is a BH3-only protein and is a transcriptional target of p53 that has an essential role in p-53 dependent and independent apoptosis through the mitochondrial pathway (Han et al., 2001; Nakano
and Vousden, 2001; Yu et al., 2001). Recent studies by Qiu et al., 2008 indicate that PUMA deficiency protects the ISCs (both CBCs and +4 position cells) and progenitors from radiation induced apoptosis and improve crypt regeneration.

3.2.1.3 The regenerative capacity of the epithelium after irradiation

The regenerative capacity of the crypts upon radiation-induced damage is initiated by the survival of one or more clonogenic cells by a process referred to as clonal regeneration. The clonal regeneration process was studied in detail by Rod Withers in the late 1960s and published as the crypt microcolony assay (Withers and Elkind, 1969; 1970). The assay involves counting the number of regenerating crypt-like foci between 3–4 days after different doses of radiation to generate crypt radiation survival curves. This is achieved by routine staining of paraffin-embedded tissue sections on day 3-4.

Several studies indicate that the estimates of the number of clonogenic cells in a crypt depends somewhat on the intensity of the dose that one uses to investigate them. Small doses tend to give lower estimates, whereas high doses, or more severe stress, tend to give higher estimates. These conclusions are well accepted and have been seen to be consistent with the data obtained by other cell kinetic, lineage-tracking and mathematical modeling exercises.

According to Potten et al., 2004, at low doses of radiation damage, the crypt contains a relatively small number (about six per crypt) of clonogenic regenerators of the crypt, where as at higher doses the number is greater (up to about 30–40 potential clonal regenerators that can be recruited into action). This suggests that the crypt may be composed of a small number of lineage ancestor stem cells (four to six per crypt) that function as the day-to-day actual stem cells and a larger population of cells (from six to 30–40) that have not lost the potential to function as stem cells if the tissue is severely damaged, i.e. potential stem cells (Cai et al., 1997). However, there is still quite a lot of debate about what could determine the overall gastrointestinal damage.

3.2.1.4 Mechanisms of Radioprotection

It has been shown by Booth and Potten, 2001 that growth factors protect against radiation or chemotherapy induced mucosal injury. For example, the various growth
factors like the insulin-like growth factor 1 (IGF-1), keratinocyte growth factor and fibroblast growth factor-2 (or basic fibroblast growth factor-2 (bFGF-2)) have been shown to protect the +4 position cells and increase animal survival after whole body radiation (Booth and Potten, 2001; Paris et al., 2001; Wilkins et al., 2002). But what is not well understood are the targets and the mechanism of intestinal protection provided by these growth factors. Recently, Qui et al., 2010 have shown that the suppression of PUMA has a critical role in IGF-1 and bFGF- mediated radioprotection in the gastrointestinal system through a PI3K/AKT/p53- dependent mechanism. More recently, it has been shown by Jones et al., 2011 that Flagellin pretreatment protected mice from radiation-induced intestinal mucosal injury and apoptosis via a toll-like receptor 5 (TLR5)- dependent mechanism.

It is noteworthy that apart from growth factors, prostaglandin E2 (PGE2), a prostaglandin produced by the intestinal epithelial cells in response to gamma-irradiation (Murmu et al., 2004) has a remarkable radioprotective effect on ISC (Tessner et al., 2004). It has been shown that PGE2 can activate PI3K/ Akt signaling through PPARβ activation in colon cancer cell line model (Gupta et al., 2004; Wang et al., 2004). It then could be speculated that PGE2 exert its radioprotective effect through the activation of PPARβ.

While many studies concerned the intestinal epithelium responses to ionizing radiation, many different cell types besides the epithelial cell layer of the GI tract are also affected. Some studies have shown that stromal pericryptal fibroblasts are highly sensitive to irradiation (Potten et al., 1983). Finally, there is strong evidence for the vital role of fibroblasts in radiation-induced late inflammation and altered composition of the extracellular matrix (Barcellos-Hoff, 1998; Hauer-Jensen et al., 1998).
AIM OF THE WORK
AIM OF THE WORK

Of the known three PPAR isotypes, PPARβ remains the least known. Works in our laboratory has revealed the importance of this particular isotype in apoptosis, cell survival and proliferation. Furthermore, previous work from our group has shown that PPARβ plays a role in the differentiation of Paneth cells of the intestine by inhibiting the Ihh pathway. Considering the previous works from our laboratory on the role of PPARβ in cell survival and tissue repair (Di-Poi et al., 2002; and Letavernier et al., 2005), it was important to disturb the intestinal epithelial cell homeostasis and assess whether PPARβ might affect the healing process. Reports in the literature substantiate that gamma-irradiation is a very powerful tool that can be used to induce intestinal epithelial cell death, and follow the regenerative process of the gut (Potten, 2004). Thus PPARβ+/+ and PPARβ−/− mice were exposed to 10Gy irradiation and the animals were sacrificed at 4h and at 3.5 days post-irradiation. At 4h post-irradiation, PPARβ−/− mice showed significantly higher apoptosis of the epithelial cells when compared to the control animals, more particularly at the level of the proposed location of the stem cell niche within the duodenal crypts (position +4 or +5 from the crypt bottom). Indeed, a BrdU staining protocol that allows the identification of stem cells in forms of “label retaining cells” further suggested that stem cells that were particularly damaged as an effect of irradiation. This correlated then with a significant reduction of epithelial cell proliferation at 3.5 days post-irradiation in the PPARβ−/− animals accompanied with a strong reduction of crypt survival.

The aim of my thesis work was thus to elucidate the molecular signalling mechanism mediated by PPARβ in the intestine upon gamma irradiation and more broadly to explore the possible role of PPARβ in intestinal epithelium repair.

More specifically, our goals and corresponding strategies were to answer the following questions:

a. *Is the poor recovery state of the PPARβ−/− small intestine at 3.5d post irradiation a permanent damage or does it only reflect a delay in the healing process?*

With that respect, we will explore the phenotype at 8 day post-irradiation, by classical histological and immunohistological analyses, focusing on the two different compartments: epithelial and the intra-villus mesenchyme.
b. *Which cell population is primarily affected by PPARβ deletion?*

The intestinal homeostasis is maintained as a result of interplay of signals arising from two main compartments - the epithelial and the mesenchymal compartments. Using PPARβ conditional KO mice (PPARβ L2/L2) crossed with mice carrying the villin-Cre-ERT2 transgene, we planned to obtain mice where deletion of PPARβ in the intestinal epithelial cells can be provoked by Tamoxifen injection. The comparison of the phenotype provoked by the gamma-irradiation in PPARβ L2/L2 Cre+ treated vs PPARβ L2/L2 Cre- treated with tamoxifen will tell us how much of the phenotype is due to the epithelial compartment vs the mesenchymal response.

c. *Which PPARβ-dependent pathways are solicited in the irradiated intestine?*

Starting from the previous demonstration that PPARβ is downstream of Wnt, as one of its target gene, and upstream of Ihh as one negative regulator of Ihh expression (Varnat et al., 2006), we wanted to pursue our quest for the molecular mechanisms utilized by the epithelial cells wounded by gamma-irradiation and the role played by PPARβ in the cell survival and repair process. For that purpose, primary enterocytes in culture represent an ideal tool. For ease of manipulation, we also considered to use the HT-29 cells, which are intestinal colon adenocarcinoma cells of human origin.
CHAPTER II:

RESULTS
1. Consequences of PPARβ deletion at 8d post irradiation

The apparent poor proliferation responses observed in the small intestine of PPARβ−/− at 3.5d post irradiation prompted us to explore further the repair mechanism of the PPARβ−/− mice at 8d post irradiation. For that purpose, we irradiated five 12-week old male mice with two rounds of 5Gy each. Mice were sacrificed at 8 days post-irradiation and we made histological analysis of the duodenal tissue sections of these mice.

1.1 Reduction of the number of mesenchymal cells in the lamina propria

Analyses by haemotoxylin-eosin (HE) of the duodenum from PPARβ+/+ and the PPARβ−/− mice at 8 d post-irradiation revealed that at that late time, the epithelial layer seems equally restored in both genotypes, the height of the villi are also of similar size (Fig. 14). Intriguingly, the mesenchymal compartment in the PPARβ−/− mice appeared less dense compared to that of the PPARβ+/+ mice. This result in a thinning of each villi, as can be seen in Figure 14. This loosening of the lamina propria might be better seen on longitudinal section of the villi, shown in inserts within figure 14b. To document this subtle phenotype, we quantified the number of epithelial and mesenchymal cells within each crypt-villi unit from both the genotypes. The calculation was made as follows: the HE stained sections from both the PPARβ+/+ and the PPARβ−/− mice were used to take images of full length crypt-villi unit. These images were then processed using the Image J software and we counted the number of epithelial and mesenchymal cells within 200 crypt-villi unit from each animal totalling 1000 villi from five different animals for each genotype (five different fields of each section, and two different sections from four different slides from each animal).

To overcome the difficulties bound to the fact that small intestinal sections cannot be easily positioned such as the sections run by the central crypt-villus axis, we also calculated the ratio of epithelial cells to the mesenchymal cells in the transversal section of each villus unit. As shown in the Fig. 15, this ratio was significantly higher in the PPARβ−/−
mice when compared to the PPARβ^{+/+} mice, confirming the relative low density of mesenchymal cells in the lamina propria.

Fig. 14a and b | Haematoxylin-eosin staining of a. PPARβ^{+/+} and PPARβ^{−/−} control samples. b. PPARβ^{+/+} and PPARβ^{−/−} at 8 days post-irradiation. Panel a: PPARβ^{+/+} and PPARβ^{−/−} (n=5 for each genotype) samples do not show any difference in length of the villi and arrangement of cells in the intra-villus mesenchyme but in Panel b: After 8 days post-irradiation, PPARβ^{−/−} show thin and long villus with fewer cells and loosely organised mesenchyme in the intra-villus region. Black arrows point to regions where there are mesenchymal cells. (Scale bar = 100µm).
Fig. 15 | Epithelia/ mesenchyme ratio as calculated by counting the epithelial and mesenchymal cells within 1000 crypt-villi unit using the Image J software. A total of 5 PPARβ⁺/⁺ and PPARβ⁻/⁻ mice were analysed at 8 days post-irradiation and the epithelia/ mesenchyme ratio is presented for (a) each individual of both genotypes and (b) the average for 5 mice of both genotypes. Images of HE stained sections from both the PPARβ⁺/⁺ and the PPARβ⁻/⁻ mice were processed using the Image J software. Data represented was obtained by taking a count of the number of epithelial and the mesenchymal cells within 200 crypt-villi unit of each animal totalling 1000 villi for five different animals of each genotype. Statistical analysis was performed by paired t-test. *** Statistically significant at p< 0.001 when PPARβ⁺/⁺ is compared with the PPARβ⁻/⁻.

These differences observed at 8 days post irradiation might reflect differences in the rate of proliferation and/or apoptosis of these two cell types in the previous stages of recovery. Hence, we performed an immunostaining on paraffin sections of the duodenal samples at 3.5 d post irradiation from PPARβ⁺/⁺ and PPARβ⁻/⁻ mice, using an antibody against Ki-67, a marker for proliferation. As seen in Fig. 16, there are rather few cells labelled in the mesenchymal compartment when compared to highly proliferative crypts. The number of Ki-67 positive cells is even lower in the mesenchyme of PPARβ⁻/⁻ mice when compared to PPARβ⁺/⁺ mice, confirming that the mesenchyme cells of the PPARβ⁻/⁻ mice underwent lower proliferation.
Chapter II: Results

Fig. 16 | Evaluation of proliferation in the PPARβ+/+ and PPARβ−/− samples at 3.5 days post irradiation. Immunostaining of the proliferation marker Ki-67 on paraffin sections from PPARβ+/+ and PPARβ−/− samples at 3.5 days post-irradiation (n=3 for each genotype). PPARβ−/− show less number of mesenchymal cells as evident by the DAPI staining in the intravillus mesenchyme and also less number of proliferative cells in this region as evident by co-staining of Ki-67 (red) and Dapi(blue) in comparison to PPARβ+/+. (Scale bar = 100 µm).

In parallel, we performed a TUNEL assay on paraffin sections of the duodenal samples from PPARβ+/+ and PPARβ−/− mice, to evaluate the number of apoptotic cells at 3.5 d post irradiation in the epithelial and the mesenchymal compartments (Fig. 17). As expected, TUNEL staining is mainly found along the epithelial sheet, with reinforcement at the top of the villi. Interestingly, PPARβ−/− mice showed a higher number of Tunel positive cells in the mesenchyme compared to the epithelia confirming that the mesenchymal cells underwent higher apoptosis. Intriguingly, there were fewer apoptotic events in the epithelial sheet of PPARβ−/− intestine.

Altogether these results suggest that the low mesenchymal cell density in PPARβ−/− mice after irradiation is in part caused by a decreased proliferation and increased apoptosis rate in the mesenchymal compartment. This also emphasizes a differential response to gamma irradiation of the cell types constituting these two compartments.
Fig. 17 | Evaluation of apoptosis in the PPARβ^{+/+} and PPARβ^{-/-} samples at 3.5 days post irradiation.

Immunostaining using Tunel assay on the paraffin sections from PPARβ^{+/+} and PPARβ^{-/-} samples at 3.5 days post-irradiation (n=3 for each genotype). PPARβ^{-/-} show positive staining for Tunel mainly in the intra-villus mesenchyme, indicating death of mesenchymal cells in this region where as PPARβ^{+/+} stain positive for Tunel mainly in the villi tip where apoptosis of epithelial cells takes place normally as a result of homeostasis. (Scale bar = 100µm).

1.2 Decrease of ECM components resulting in adhesion defect at 8d post-irradiation

The looseness of the structure of the lamina propria at day 8 post-irradiation in PPARβ^{-/-} mice is also exemplified by a particular phenotype shown in Figure 18. On HE staining, the mesenchymal cells in the PPARβ^{-/-} mice appeared to be contracted from the epithelial basement membrane and concentrated towards the centre of the lamina propria leaving an empty space between the epithelia and the mesenchyme.

While quite unlikely, we first check whether this empty space might be due to an inappropriate secretion of mucus towards the baso-lateral side of the gut epithelial cells, hence pushing the mesenchymal cells towards the centre of the lamina propria. To evaluate this, we performed alcian blue staining of the duodenal sections from both the PPARβ^{+/+} and PPARβ^{-/-} mice at 8d post irradiation to detect the mucopolysaccharides and glucosaminoglycans of the mucus secreted by Goblet cells. However, we did not observe any mucus staining in this empty space (Fig. 19).
Fig. 18 | Haematoxylin-eosin staining of PPARβ+/+ and PPARβ−/− at 8 days post-irradiation. At 8 days post-irradiation (n=5 for each genotype) PPARβ−/− show detachment of the epithelial layer from the basal mesenchmal layer as seen by gaps between the two layers. Black arrows show regions in the PPARβ−/− where detachment is clearly seen. (Scale bar = 20µm).

Fig. 19 | Alcian blue staining of the PPARβ+/+ and PPARβ−/− samples at 8d post irradiation. Immunohistochemistry on paraffin sections from PPARβ+/+ and PPARβ−/− samples at 8 days post-irradiation (n=3 for each genotype). Alcian blue stains the mucopolysaccharides in the mucus. The PPARβ−/− does not show any staining for alcian blue (blue in colour) in the intra-villus mesenchyme as compared to the PPARβ+/+ (Scale bar= 50µm).

We thus explored whether the deposition of the extra-cellular matrix and the contact with the basal membrane of the epithelium was affected. To evaluate the collagen fibres of the extra cellular matrix, we performed Sirius red staining of the sections of the duodenal samples from both the PPARβ+/+ and PPARβ−/− mice at 8d post irradiation. We observed that PPARβ−/− showed a less intense staining for the collagen fibres I and III.
when compared to the PPARβ^{++/+} that had a very intense staining (Fig. 20). This indicates a relative loss of collagen fibres in the lamina propria of PPARβ^{−/−} mice after irradiation. It is thus possible that the empty space observed between the epithelial basement membrane and the collagen fibres attached to the mesenchymal layer in these mice is an outcome of the loss of the collagen fibres resulting in a gap between the two layers. Hence, these observations hint to the possible defect in components of the extracellular matrix in the PPARβ^{−/−} mice due to irradiation. Alternately, the decreased amount of extra-cellular matrix in the lamina propria might mainly reflect the low cellular density present in this compartment.

Fig. 20 | Sirius red staining of the PPARβ^{++/+} and PPARβ^{−/−} samples at 8 days post-irradiation [PPARβ^{++/+} (left lane) and PPARβ^{−/−} (right lane)]. Sirius red stains collagen I and III fibres red in colour. At 8 days post-irradiation PPARβ^{++/+} show detachment of the epithelial layer from the basal mesenchymal layer as seen by detachment of collagen fibres stained in red between the two layers as compared to the PPARβ^{−/−}. Black arrows show regions in PPARβ^{−/−} where detachment of collagen is clearly seen. (n=3 for each genotype); (Scale bar for top lane: 100µm and for bottom lane: 50µm).
2. *In vivo analyses of the epithelia-mesenchyme crosstalk after irradiation.*

Intestinal homeostasis is maintained through a coordination of signals arising from two different compartments (see introduction). To analyse the respective role of PPARβ in the epithelial sheet versus the mesenchymal compartment, we used the villin-Cre-Lox system, to knockdown PPARβ in the epithelial cells of the intestine.

El Marjou, et al. (2004) have reported generation of two complementary systems for Cre-mediated recombination of target genes in the mouse digestive epithelium. Accordingly, we crossed the PPARβ L2/L2 floxed mice with the villin Cre-ER^{T2} to obtain the PPARβ L2/L2 villin Cre⁺ and the PPARβ L2/L2 villin Cre[−]. The PPARβ L2/L2 Villin Cre⁺ mice bear a tamoxifen-dependent Cre recombinase expressed under the control of the villin promoter. Upon tamoxifen treatment, the Cre expressing cells undergo a somatic recombination of the PPARβ L2/L2 alleles. This recombination was detectable throughout the digestive epithelium and persisted for 60 days.

For our experimental purpose, we had three groups of 12 weeks old mice: PPARβ L2/L2 (n=4), which served as wild type controls, PPARβ L2/L2 Villin Cre⁺ (n=5) and the PPARβ L2/L2 villin Cre[−] (n=4). Each of the three groups was treated with tamoxifen and vehicle. Tamoxifen was administered intraperitonally at a dose of 1mg/ml/kg per day for 5 consecutive days. For the vehicle treated group, equal volume of sunflower oil was administered. The tamoxifen-mediated deletion was allowed for one week and after one week the animals were irradiated and then sacrificed at 3.5 and 8 days post irradiation.

We performed a histological analysis to evaluate the phenotype at 8 days post irradiation. Histological analysis by haematoxylin-eosin staining showed that the Villin Cre⁺ mice (n=5) have the similar kind of defect like that of the PPARβ^{−/−} mice with reduction in the number of mesenchymal cells and also detachment of mesenchyme from the basement membrane and separation from the epithelia (Fig. 21).
Fig. 21 | Haematoxylin-eosin staining of PPARβ L2/L2, PPARβ Villin cre- and PPARβ villin cre+ conditional KO at 8 days post irradiation. Tissue specific knockdown of PPARβ was brought about by the Cre-Lox system as explained in the text. The figure shows normal architecture of the villus in the PPARβ L2/L2 mice and the PPARβ villin cre- which served as controls whereas the PPARβ villin cre+ KO shows thinner villi with reduced number of mesenchymal cells. (Scale bar for top lane: 100µm and bottom lane: 50µm; n=5).

On the other hand, the PPARβ L2/L2 control group (n=3) does not show any defect. Thus, these set of experiments suggest a possible role of PPARβ in initiating the signal from the epithelia to the mesenchyme in response to damage upon irradiation. Thus, this model of the epithelial specific PPARβ conditional KO may be a good model to confirm the signaling crosstalk between the epithelia and the mesenchyme during the recovery from irradiation mediated damage. However, high variability in the results prevented us to pursue along this experimental line.
3. Exploring the molecular pathways controlled by PPARβ upon irradiation

3.1 Microarray analyses at 4 hours post-irradiation

In the course of his thesis work, Frederic Varnat had prepared a microarray analysis, performed on scraped intestinal mucosa before and at 4 hours post-irradiation, comparing PPARβ+/+ and PPARβ−/− mice.

To help in identifying the first molecular event along the irradiation, we first analysed the results obtained from this study. A global view of the results is shown in Figure 22. A total of 2527 genes were observed to be differentially modulated between the PPARβ−/− and the PPARβ+/+ mice in non-irradiated condition (i.e., at 0h) whereas 1994 genes were found to be altered between the PPARβ−/− and the PPARβ+/+ at 4h post-irradiation. Of these, 587 genes were found to be modulated at both time-points.

We also observed that as an effect of irradiation, 2561 genes were modulated in the PPARβ+/+ when compared to non-irradiated condition. The same comparison give 1783 modulated genes in PPARβ−/−, i.e. around 800 genes less than in PPARβ+/+. Finally, 2907 genes were found that were commonly modulated between the strains (PPARβ+/+ 4h vs PPARβ+/+ 0h and PPARβ−/− 4h vs PPARβ−/− 0h).

Fig. 22 | Venn diagrams showing results from microarray done on scraped intestinal mucosa from PPARβ+/+ (WT) and PPARβ−/− (KO) mice at 0h and 4h post-irradiation showing number of genes that were modulated in each group. A comparison between PPARβ+/+ (WT) and PPARβ−/− (KO) at the two different timepoints and between non-irradiated (0h) and irradiated at 4h in the two different genotypes is represented.
We then used a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The purpose of Gene Set Enrichment Analysis (GSEA) is to determine whether the members of a gene set S distributes randomly throughout the whole reference gene list L or is just primarily found at the top or bottom. The GSEA has the relative robustness to noise and outliers in the data, which is a big advantage.

The analysis shows that the cholesterol biosynthesis pathway was remarkably affected upon irradiation (Fig. 23 and 24). As seen in these figures, the genes of the cholesterol biosynthesis pathway (Fig. 25) were significantly (Geneset Rank-6) upregulated in the group PPARβ^{+/+} 4h when compared to PPARβ^{+/+} 0h. This same pathway was found to be significantly (Geneset rank-2) down-regulated in the PPARβ^{-/-} 4h when compared to PPARβ^{+/+} 4h. Thus, this clearly indicates that irradiation affects transcription of the genes involved in the cholesterol biosynthesis pathway. The analysis is summarised in Fig. 26.

Before vs after 4h irradiation in WT mice - ↑ by irradiation

<table>
<thead>
<tr>
<th>Gene set rank: 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
</tr>
<tr>
<td>Normalized Enrichment Score (NES)</td>
</tr>
<tr>
<td>Nominal p-value</td>
</tr>
<tr>
<td>FDR q-value</td>
</tr>
</tbody>
</table>

Fig. 23 | Heat map from Gene Set Enrichment Analysis (GSEA) showing cholesterol biosynthesis pathway geneset that is upregulated in PPARβ^{+/+} mice as a result of irradiation.
Fig. 24 | Heat map from Gene Set Enrichment Analysis (GSEA) showing cholesterol biosynthesis pathway geneset that is downregulated in PPARβ-/- mice when compared to PPARβ+/- mice at 4hr post-irradiation.
Chapter II: Results

Fig. 25 | Overview of the various enzymes involved in cholesterol biosynthesis pathway (adapted from GENMAPP2.0). The boxes in blue indicate the various products formed in the pathway brought about by the specific enzymes of the pathway (highlighted in black). All the genes encoding for all these enzymes of the pathway were found to be modulated in the microarray data. The rate-limiting enzyme of the pathway-HMG-CoA reductase (HMGCR) is highlighted in red and the genes coding for the enzymes highlighted in green were selected based on their p-value significance for further validation of the microarray results.

Fig. 26 | Summary of the results of the microarray data showing the modulation of cholesterol biosynthetic pathway genes when comparison is made between the genotypes PPARβ^{++} and PPARβ^{--} at the two different timepoints - 0h (non-irradiated) and 4h post irradiation [N. d= no difference].
3.2 Studies on cholesterol biosynthesis pathway using in vivo model

To validate the observations from the microarray experiment, we performed qPCR analysis of the selected set of genes, namely Farnesyl-diphosphate farnesyl transferase 1 (FDFT1), Mevalonate (diphospho) decarboxylase (MVD), Lanosterol synthase (LSS), 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR), and 3-hydroxy-3-methylglutaryl-Coenzyme A synthase1 (HMGCS1), involved in the cholesterol biosynthesis pathway that was found to be significantly modulated in PPARβ+/+ and PPARβ−/− mice in response to irradiation. These control analyses were performed on a new preparation of samples. A remarkable up-regulation was observed in all the above-mentioned genes in the PPARβ+/+ upon irradiation (Fig. 27). Interestingly, the response was attenuated in PPARβ−/− mice but not absent.

Fig. 27 | Gene expression analysis by QPCR on scraped mucosa samples from the intestine of PPARβ+/+(WT) and PPARβ−/−(KO) control (non-irradiated) and 4h post-irradiated samples. Gene expression analysis was performed by SYBR green assay on the following genes of the cholesterol biosynthesis pathway that were found to be significantly modulated by 10Gy irradiation in PPARβ+/+(WT) and PPARβ−/−(KO) mice: Farnesyl-diphosphate farnesyl transferase 1 (FDFT1), Mevalonate (diphospho) decarboxylase (MVD), Lanosterol synthase (LSS), 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR), and 3-hydroxy-3-methylglutaryl-Coenzyme A synthase1 (HMGCS1), Peroxisome proliferator-activated receptorβ (PPARβ). All samples were normalized using two housekeeping genes namely Glycerladehye-3-phosphate dehydrogenase (GAPDH) and Tata-box binding protein (TBP). Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison test. (* Statistically significant at p<0.05, ** p<0.01, and *** p< 0.001 in comparison to control).
Finally, it is also of interest to note that the levels of PPARβ expression was significantly reduced upon irradiation in the PPARβ+/- mice when compared to the PPARβ+/- non-irradiated mice. These results emphasize the importance of the cholesterol metabolism pathway in the early response to irradiation. It also suggests that PPARβ might be an important contributor to this response, albeit we have not been able to observe the dramatic differences obtained in the microarray analyses.

3.3 Validation of an in-vitro intestinal cell line model: HT-29

The difficulties in obtaining a solid and reproducible molecular phenotype led us to consider a simplified model system to validate our in-vivo data. With that in mind, we decided to use an intestinal colon adenocarcinoma cell line – HT-29.

3.3.1 Estimation of basal levels of PPARβ and its activity in HT-29 cell model

Estimations with qPCR were performed to identify the basal levels of expression of PPARβ in HT-29 cells. The Ct values averaging to ~24 indicates that PPARβ has a high expression level in HT-29 cell line. The levels of PPARβ activity were then estimated with Luciferase assay. The HT-29 cells were transfected with PPRE 3XTk luc (peroxisome proliferator response element with luciferase construct driven by thymidine kinase promoter). 6h after transfection, the cells were treated with PPARβ specific agonist (500nM GW501516) and/or antagonist (900nM GSK0660). 24h after the administration of the ligands, luciferase reporter assays were performed (Fig. 28).
Fig. 28 | Luciferase assay showing PPARβ activity levels in HT-29 cells. Cells were transfected with luciferase construct carrying 3X PPRE and treated with different doses of the agonist GW501516 and the antagonist GSK0660. 24h after initiating the treatment, cells were lysed and luminescence was measured. Data expressed as mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison test. *** Statistically significant at \(p < 0.001 \) and when lane 3 compared with lane 2observed and ### statistically significant at \(p < 0.001 \) when lane 7 compared with lane 6.

Basal activity of PPARβ was moderate as evident from the control group (lane1), and its over-expression in absence of exogenous ligand did not significantly up-regulate its activity (lane5). In response to the agonist, PPARβ activity was significantly induced in cells, both at basal levels of PPARβ (lane3) as well with over-expression of PPARβ using the plasmid pSG5 PPARβ (lane7). The antagonist GSK0660 was not able to down-regulate the activity levels of PPARβ significantly, in both basal and over-expressed states of PPARβ in these cells. This observation indicates that GW501516 at a dose of 500nM can activate PPARβ in HT29 cells. This ligand and dose was thus used for further tests.
3.3.2. Evaluation of PPARβ agonist and antagonist activities in HT-29 cell model

In order to confirm the efficiency of the treatment with PPARβ specific ligands, their effects on endogenous PPARβ target genes were estimated (Fig. 29). After treating HT-29 cells with two different doses (100nM and 500nM) of PPARβ specific agonist (GW501516), we tested by qRT-PCR six known target genes of PPARβ namely Adipose Differentiation Related Protein (ADRP), Angiopoietin-like 4 (ANGPTL4), Indian hedgehog (Ihh), Transforming growth factorβ (TGFβ), Pyruvate dehydrogenase kinase, isozyme 1 (PDK1), and Pyruvate dehydrogenase kinase, isozyme 4 (PDK4).

![Graphs showing gene expression levels](image)

Fig. 29 | Effects of PPARβ specific agonist (GW501516) on gene expression in HT-29 cells. Gene expression analysis was performed by SYBR green assay on the following genes: Adipose Differentiation Related Protein (ADRP), Angiopoietin-like 4 (ANGPTL4), Indian hedgehog (Ihh), Transforming growth factorβ (TGFβ), Pyruvate dehydrogenase kinase, isozyme 1 (PDK1), and Pyruvate dehydrogenase kinase, isozyme 4 (PDK4). All samples were normalized using two housekeeping genes namely human eukaryotic translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison tests. (**)Statistically significant at p<0.01 and (***) at p< 0.001 in comparison to DMSO treatment). NT= no treatment.
Only PDK4 and ADRP were significantly up regulated in a dose-dependent manner when the cells were challenged with both 100nM and 500nM of GW501516. As the levels of up-regulation of PDK4 were more significant than that of ADRP, we thus considered PDK4 as our choice to validate PPARβ activity in HT-29 cells.

Alongside using already available PPARβ antagonist in the lab (GSK0660), we decided to test a newly identified molecule VP80 (provided by Rolf Müller) that is considered to be a more specific antagonist of PPARβ. We used luciferase assay system to evaluate its efficacy in our cell system and compared it with the existing potent antagonist GSK0660. In order to compare the antagonizing effects of the two antagonists, we performed an experiment using both VP80 and GSK0660 at a dose range of 1-10 µM and tested its efficacy against GW501516-induced PPARβ activity at a constant dose of 100 nM, so that we can observe the maximum antagonizing effect of these antagonists at a lower effective dose of the agonist (Fig. 30).

![Fig. 30 | Comparison of PPARβ antagonists - GSK0660 and VP80 activity in HT-29 cells.](image)

Cells were transfected with luciferase construct carrying 3X PPRE and treated with 100-1000nM of GW501516 without or with the addition of various concentrations of GSK0660 and VP80. GSK0660 and VP80 can compete with GW501516 and decrease the efficacy of the agonist GW501516. 24h after initiating the treatment, cells were lysed and luminescence was measured. Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison tests. (*= p<0.05, ##= p<0.01; *** statistically significant at p< 0.001).
GW501516 was able to induce significant PPARβ activity dose dependently (100, 500 and 1000 nM) at basal conditions as observed in the Fig.30. Neither VP80 nor GSK0660 were able to inhibit the basal levels of PPARβ activity. GSK0660 at a dose of 10 µM could significantly down-regulate GW501516-induced PPARβ activation by 73%. Furthermore, GSK0660 had no significant cytotoxic effects in comparison to VP80, which showed significant cytotoxic effect at doses of both 5 and 10µM, as evident by the MTT assay (Fig. 31). Significant cytotoxic effects were also observed at higher concentrations of GW501516 at 500 and 1000 nM but not at a concentration of 100 nM.

Fig. 31 | MTT assay to assess cytotoxicity due to the PPARβ antagonists GSK0660 and VP80 at different doses in HT-29 cells. Cells were transfected with luciferase construct carrying 3X PPRE and treated with 100-1000nM of GW501516 without or with the addition of various concentrations of GSK0660 and VP80. An MTT assay was performed on cells 24h after initiating the treatment. MTT assay is a colorimetric assay for measuring the activity of enzymes that reduce MTT to formazan dye, giving a purple color in living cells as against dead cells. Thus, MTT assay gives a measure of the cytotoxicity due to the treatment with the ligands. The absorbance at O.D 550nm is inversely proportional to the cytotoxicity. The higher the absorbance the lesser the cytotoxicity and vice-versa. Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison test (*Statistically significant at \(p<0.05 \); **\(p<0.01 \); *** at \(p<0.001 \) and ## at \(p<0.01 \).
These observations suggest that GSK0660 had higher inhibitory effect with lesser cytotoxicity. It was chosen as the best candidate to antagonize PPARβ mediated effects and was used at a concentration of 10µM for further studies.

3.3.3. Generating lentivirus to mediate PPARβ silencing

In the framework of identifying the irradiation effects mediated by PPARβ in the in-vitro conditions, we decided to use the lentivirus-based approach to knock down PPARβ in HT-29 cells. Although we had in the lab a lentivirus based vector construct carrying silencing sequence for PPARβ (pLVTHsi PPARβ) that recognize human and mouse PPARβ [Nadra et al., 2006], we had to spend considerable time standardizing the various steps in the production of the lentivirus. For this, we collaborated with the Transgenesis Core Facility (TCF) at EPFL to learn to produce and titrate the lentivirus efficiently. The pLVTH vector carries a marker gene (GFP) downstream of an internal EF1-α promoter allowing an easy detection (or selection by FACS) of infected cells. The vectors can be readily generated at quite high titers (more than a million particles per ml) by cotransfection into 293T cells together with the relevant packaging vectors, pCMV-ΔR8.74 and pMD2G-VSVG, encoding for the envelop and the packaging genes respectively.

We first amplified the vector pLVTHsi PPARβ (for PPARβ knockdown), the control vector- pLVTHsi PPARβ ctrl along with pCMV-ΔR8.74 and pMD2G-VSVG. These vectors were used further to produce the lentivirus by transfecting cell lines having good transfection efficiency - 293T cells. In order to verify the efficiency of the pLVTHsi PPARβ lentivirus produced, the pSuper-siRNA vectors were initially transfected in 293T cells, along with vectors expressing our target gene (PPARβ) fused to green fluorescent protein (GFP). The biological titer of the lentivirus produced was then estimated by FACS analysis. Further, this lentivirus was tested in different concentrations in the HT-29 cell system in order to identify the appropriate Multiplicity of infection (MOI) of virus required to obtain the maximal silencing of our target gene. The knockdown efficiency was also tested at different time-points post infection to ascertain the desired silencing of our gene of interest.
Thus in collaboration with the Transgenesis Core Facility (TCF) at EPFL, we generated the first batch of the lentivirus pLVTHsi PPARβ (S) containing the sequence to silence PPARβ and its control pLVTHsi PPARβ ctrl (SC) with a titer of \(1.85 \times 10^6\) TU/µl and \(2.6 \times 10^6\) TU/µl respectively (Fig. 32).

![Flow cytometric analysis of Green fluorescent protein (GFP) in 293T cells.](image)

Fig. 32 | Flow cytometric analysis of Green fluorescent protein (GFP) in 293T cells.

293T cells were infected with various dilutions (10\(^1\), 10\(^{-1}\) to 10\(^{-5}\)) of either lentivirus construct carrying si PPARβ (S) or si PPARβ ctrl (SC) with a GFP tag. 72h post-infection cells were fixed and analyzed by Flow cytometry. Non-infected cells were used for gating. The cells were separated into two populations- the GFP positive and GFP negative cells. The percentage of GFP positive cells in each dilution was used to calculate the titer of the virus. Note that only dilutions yielding 1% to 20% GFP positives were used for titer calculations.

We first determined the appropriate MOI of both S and SC in HT-29 cells by infecting the cells with different MOI (MOI 1, MOI 25, MOI 50, MOI 75 and MOI 100). The efficiency of infection was observed both by fluorescence microscopy (Fig. 33) and FACS for the reporter gene-green fluorescent protein (GFP), which is tagged with our gene of interest PPARβ (Fig. 34 a, b). The results are as summarized in Table-2.
Table 2 | Multiplicity of infection (MOI) analysis by FACS. HT-29 cells were infected with various concentrations of either lentivirus construct carrying si PPARβ(S) or si PPARβ Ctrl (SC) with a GFP tag. 48h post-infection cells were fixed and analysed by Flow cytometry. Non-infected cells were used for gating. The cells were separated into two populations- the GFP positive and GFP negative cells. The percentage of GFP positive cells in each concentration was used to calculate the percentage infection.
Fig. 33 | Fluorescence microscopy pictures of HT-29 cells infected with lentivirus for either lentivirus construct carrying siPPAR\(\beta\)(S) or siPPAR\(\beta\) ctrl (SC) with a GFP tag. Concentrations ranging from MOI 25 to MOI 100 of each type of virus were used to infect the cells and 48h post-infection cells were analysed by fluorescence microscopy. Non-infected cells were used as negative control. Scale bar: 100\(\mu\)m.
Fig. 34a | Multiplicity of infection (MOI) analysis by FACS. HT-29 cells were infected with various concentrations of lentivirus construct carrying si PPARβ ctrl (SC) with a GFP tag [SC25, SC50, SC75, SC100]. 48h post-infection cells were fixed and analysed by Flow cytometry. Non-infected cells were used for gating. The cells were separated into two populations- the GFP positive and GFP negative cells. The percentage of GFP positive cells in each concentration was used to calculate the percentage infection.
Fig. 34 b | Multiplicity of infection (MOI) analysis by FACS. HT-29 cells were infected with various concentrations of lentivirus construct carrying SiPPARβ(S) with a GFP tag [S25, S50, S75, S100]. 48h post-infection cells were fixed and analysed by Flow cytometry. Non-infected cells were used for gating. The cells were separated into two populations— the GFP positive and GFP negative cells. The percentage of GFP positive cells in each concentration was used to calculate the percentage infection.
Chapter II: Results

From the observations it was evident that both MOI 50 and 75 can effectively infect about 90% of the cells. Further, in order to confirm whether this MOI can efficiently inhibit PPARβ and its activity, we evaluated the relative levels of expression of PPARβ and PDK4 by qPCR analysis in response to MOI 50 (Fig. 35 a, b) and MOI 75 (Fig. 36 a, b) at 24, 36 and 48 hrs after infection.

Fig. 35 a, b | Relative expression of (a) PPARβ and (b) PDK4 after infection with S (si PPARβ) and SC (si PPARβ ctrl) at MOI 50 and at three different timepoints - 24, 36, 48h post infection. HT-29 cells were infected with S (si PPARβ) and SC (si PPARβ ctrl) at MOI 50 and at 24, 36, and 48h post-infection, RNA was extracted from cells. Gene expression analysis was performed by SYBR green assay on PPARβ and PDK4. All samples were normalized using two housekeeping genes namely human eukaryotic translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Note that infection with S was compared with SC and infection with SC compared to non-infected (NI) to determine percentage significance. Data expressed are mean+/− SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison test. (*Statistically significant at p<0.05, ** p<0.01 and *** p< 0.001 when compared to SC; ## Statistically significant at p<0.01 and ### at p< 0.001 when compared to NI.)
Fig. 36 a, b | Relative expression of (a) PPARβ and (b) PDK4 after infection with S (si PPARβ) and SC (si PPARβ ctrl) at MOI 75 and at 48 and 72h post infection. HT-29 cells were infected with S (si PPARβ) and SC (si PPARβ ctrl) at MOI 75 and at 48h and 72h post-infection, RNA was extracted from cells. Gene expression analysis was performed by SYBR green assay on PPARβ and PDK4. All samples were normalized using two housekeeping genes namely human eukaryotic translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Note that infection with S was compared with SC and infection with SC compared to non-infected (NI) to determine percentage significance. Data expressed are mean+/- SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison test. (**Statistically significant at \(p<0.01 \) and *** at \(p<0.001 \) when compared to SC; # Statistically significant at \(p<0.05 \), ## at \(p<0.01 \) and ### at \(p<0.001 \) when compared to NI).

We also tested the effect of MOI 100 at 72 hrs post infection (Fig. 37) in order to check whether further better inhibition could be attained in comparison to MOI 75. But there was not much difference in the levels of inhibition of PPARβ by MOI 100 in comparison to MOI 75 at 72 h post-infection.
Fig. 37 | Relative expression of PPARβ and PDK4 after infection with S (si PPARβ) and SC (si PPARβ ctrl) at MOI 100 and at - 72h post infection. HT-29 cells were infected with S (si PPARβ) and SC (si PPARβ ctrl) at MOI 100 and at 72h post-infection, RNA was extracted from cells. Gene expression analysis was performed by SYBR green assay on PPARβ and PDK4. All samples were normalized using two housekeeping genes namely human eukaryotic translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Note that infection with S was compared with SC and infection with SC compared to non-infected (NI) to determine percentage significance. Data expressed are mean+/− SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison test. (**Statistically significant at \(p< 0.001\) when compared to SC; ### Statistically significant at \(p< 0.001\) when compared to NI).

Of all the different MOI and different time-points post-infection, MOI 75 at 48 hrs post-infection was the most effective condition to silence PPARβ by 83% and was thus considered for further microarray studies. Paradoxically, PDK4 that we used a target gene of PPARβ and for which we expected a down-regulation parallel to that of PPARβ remained stably expressed, if not induced, upon lentivirus infection. This effect is likely due to the fact that PDK4 is an important enzyme in metabolism and is regulated by many other factors than PPARβ. The condition of lentivirus infection might therefore perturb the pathway to which PDK4 belongs, overriding a possible response generated by the lack of PPARβ.

3.3.4. Irradiation experiments: fine-tuning the condition of cell irradiation

To observe irradiation-mediated cell damage in HT-29, we performed a study to evaluate the effect of different doses of irradiation (ranging from 0-30 Gy) at different timepoints post-irradiation. In order to confirm cell damage, we assessed apoptosis using Casapse- 3/7 as a marker for early apoptosis using the Caspase-Glo® 3/7 Assay kit (Promega).
The Caspase-Glo® 3/7 Assay kit provides a homogeneous luminescent assay that measures caspase-3/7 activities (see materials and methods). We used this Caspase assay at different time-points, i.e. 4h, 6h, and 24h post irradiation. As there were no signs of apoptosis at 4h post irradiation (data not shown), we decided to keep 6h and 24h time-point post irradiation.

We observed that at 6h post-irradiation (Fig. 38), there was significant increase in the Caspase-3/7 activity at doses starting from 10Gy till 30Gy, whereas at 6Gy it remained unaltered. As Caspase-3/7 is a marker of early apoptosis, this indicates that a dose of 10Gy could damage the cells sufficiently enough to initiate apoptosis as early as 6h post-irradiation.

![Caspase-3/7 assay at 6h post-irradiation with different doses of irradiation.](image)

Fig. 38 | Caspase-3/7 assay at 6h post-irradiation with different doses of irradiation. HT-29 cells were irradiated with different doses of irradiation ranging from 0-30Gy and sham-irradiated (ShIR) cells served as control. At 6h post-irradiation, all sets of cells were lysed and analysed using the Caspase- 3/7 assay kit. Luminescence emitted due to caspase-3/7 cleavage of the luminogenic substrate was measured for each dose at 6h post irradiation. Luminescence measured was proportional to the caspase activity present and the signal from no cell control was subtracted from the signal from the treated and untreated controls. The fold change values were calculated with Sham irradiated cells (ShIR) as control group for statistical calculations. Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison tests. (*Statistically significant at \(p < 0.05 \) and ** \(p < 0.01 \) when compared to sham ShIR).

We also observed the effects of irradiation till 24h post-irradiation (Fig. 39). We could see significant apoptosis in cells irradiated with 10Gy and 30Gy, but the basal levels
of Caspase-3/7 activation in the control group was too low suggesting that a repair process might be already in progress to rescue the cells from the damage.

![Graph](image)

Fig. 39 | Caspase-3/7 assay at 24h post-irradiation with different doses of irradiation. HT-29 cells were irradiated with different doses of irradiation ranging from 0-30Gy and sham-irradiated (ShIR) cells served as control. At 6h post-irradiation, all sets of cells were lysed and analysed using the Caspase-3/7 assay kit. Luminescence emitted due to caspase-3/7 cleavage of the luminogenic substrate was measured for each dose at 24h post irradiation. Luminescence measured was proportional to the caspase activity present and the signal from no cell control was subtracted from the signal from the treated and untreated controls. The fold change values were calculated with Sham irradiated cells (Sh.I) as control group for statistical calculations. Data expressed are mean±SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison test. (*Statistically significant at p<0.05 when compared to sham ShIR).

3.3.5. Studies on cholesterol biosynthesis pathway using HT-29 cell culture model

In order to reconfirm our in-vivo observations and to decipher the molecular mechanism by which PPARβ contributes to the cell response to irradiation, and along the setup based on the results discussed above, we irradiated HT-29 cells at a dose of 10Gy. qPCR analyses of a set of genes of interest were then performed in samples retrieved at different time points, 4h, 24h, 48h and 72h. Sham-irradiated HT-29 cells served as control. The genes to be tested were selected based on their p-value from the microarray data of Federic Varnat.
We observed an upregulation at 24h post-irradiation of PDK1, a target gene of PPARβ, indicating that PPARβ is activated in this condition (Fig. 40). While FDFT1, LSS and MVD were found to be upregulated significantly in the scraped mucosa samples from PPARβ+/ mouse intestine at 4hr post-irradiation, this response was delayed in HT-29 at 24hr post irradiation, with increased expression of FDFT1 and LSS of the cholesterol biosynthetic pathway whereas MVD remained unaltered. At this time point also, the expression levels of PPARβ remain unaltered but the levels of caspase-8 (the effector caspase for apoptosis) were significantly upregulated.

Fig. 40 | Effect of 10Gy irradiation on gene expression in HT-29 cells at different time-points (4, 24, 48 and 72h) post- irradiation. HT-29 cells were irradiated with a dose of 10Gy and sham-irradiated (ShIR) cells served as control. At 4, 24, 48, and 72h post-irradiation, RNA was extracted from cells. Gene expression analysis was performed by SYBR green assay on the following genes - Farnesyl-diphosphate farnesyl transferase 1 (FDFT1), Lanosterol synthase (LSS), Mevalonate (diphospho) decarboxylase (MVD), Peroxisome proliferator-activated receptorβ (PPARβ), Pyruvate dehydrogenase kinase isozyme 1 (PDK1), Caspase8 (Casp8- effector caspase). All samples were normalized using two housekeeping genes namely human eukaryotic translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison tests. (*Statistically significant at p<0.05, **at p<0.01 and *** at p< 0.001 in comparison to sham-irradiated (ShIR) cells).
3.4 Global gene expression analysis using microarray to identify the effect of irradiation at 10Gy.

Microarray studies have been the method of choice in the recent years to evaluate the large-scale gene expression changes in tissues or cells in response to physical or chemical stimuli (DeRisi 1997; Axelson et al., 2007). A global gene expression analysis using microarray was thus performed to identify the effect of irradiation at 10Gy in an *in vitro* intestinal cell line model of HT-29. The experimental design was as follows.

According to the above-mentioned set-up, we performed the RNA extraction for each sample, followed by some qPCRs to assess the quality of the experiment and evaluate PPARβ silencing. Unfortunately, the results showed that PPARβ silencing was extremely mild, with an expression levels remaining at around 70% of the control infected cells. This led us to perform a series of tests to identify the cause of this problem. We finally could demonstrate that the quality of the virus preparation was responsible of this failure. Therefore, the following microarrays analyses were only performed on the set of conditions with no viral infection.
Fig. 42: Final modified experimental design used for the microarray analyses. Originally seven groups (Fig. 41, A-G) were planned to evaluate the effect of 10Gy irradiation on HT-29 cells at two different timepoints post-irradiation (6h and 24h). Of these two groups that were designed to explore the role of PPARβ by silencing it using lentivirus were eliminated due to mild silencing effects. Instead, we evaluated the role of PPARβ with PPARβ specific agonist (500nM GW501516) and antagonist (10µM GSK0660) treatment. Sham-irradiated group-A (Sh.ird) without any other treatment would serve as control for all four groups (D-G) of 10Gy-irradiation (10Gy) with various other treatments. DMSO ctrl (G) would serve as control for both group-E: agonist (GW501516) and group-F: antagonist (GSK0660) treatment.

Using the microarray data, we first analyzed the expression profiles of HT-29 cells treated with 10Gy irradiation at 6h and 24h post irradiation, in comparison with that of control sham-irradiated cells, at the same time points post irradiation. It was observed that most genes that were differentially expressed show low fold-change. Hence, in the data shown below, we have not made any fold-change cut-offs, but have only kept those for which the p-value was significant.

Clustering analysis of the microarray results was performed using ‘R’ for quality control (Fig. 43). The cluster analysis for all the 33,297 probesets on the chip groups the biological replicates together as expected. The timepoint effect, i.e. gene expression changes during the course of time from 6h to 24h were found to be the highest as observed by longer distance in the cluster map. The effect of irradiation i.e, gene expression modulated between the irradiated and the sham-irradiated group is seen to be prominent at 24h post-irradiation as compared to the 6h post-irradiation, as observed by longer distance in the cluster map. This same pattern was observed for both the timepoint effect and irradiation effect when the cluster analysis was done for a small subset of 1000 most differentially expressed genes. As an effect of the irradiation upon treatment with the ligands, we see very few changes during the course of time from 6h to 24h but the effect is higher at 6h upon treatment with ligands in comparison to untreated group.
Fig. 43 | Cluster analysis of the gene expression datasets from microarray experiments showing clustering of the most differentially regulated genes with the different number of probesets (26890, 5000) on the chip. Gene expression analysis was carried out on cRNA samples obtained from the various groups outlined in figure- 42 using Affymetrix Human Gene 1.0 ST arrays (Affymetrix, SC, USA). Gene expression was analysed using the software Expression Console and the data was submitted to one-way ANOVA with p< 0.05 considered significant. Clustering analysis of the data was performed using ‘R’ for quality control. Legends: Shird_6h and Shird_24h (Sham-irradiated at 6 and 24h post sham-irradiation; group- A), NI_6h and NI_24h (No treatment except 10Gy at 6 and 24h post- irradiation), GW_6h and GW_24h (PPARβ agonist GW501516 treatment at 6 and 24h post 10Gy irradiation), GSK_6h and GSK_24h (PPARβ antagonist GSK0660 treatment at 6 and 24h post 10Gy irradiation), DMSO_6h and DMSO_24h (DMSO vehicle control for agonist and antagonist treatment at 6 and 24h post 10Gy irradiation), A1, A2, A3 were the three biological replicates for each group of sample.
2.4.4 Gene expression changes as an effect of 10Gy Irradiation in HT-29 cells

From the analysis of the microarray data, as an effect of irradiation, we observed a total of 418 genes modulated at 6h and 1168 genes at 24h with a p-value cut-off of 0.05 (Fig. 44). Of these, 144 genes were common to both time points.

In our experiments, 10 Gy irradiation induced increase in expression levels of NFκB2, decrease of Cyclin B1 prominently and several other genes were regulated moderately at 6h post-irradiation (Table 3). We observed increase in the expression of the cyclin dependent kinase inhibitor CDKN2B/p15, that forms a complex with CDK4/CDK6 and inhibits the activation of the CDK kinases. This protein thus functions as a cell growth regulator that controls cell cycle G1 progression. It is believed to play a role in TGF-β induced growth inhibition. We did not observe the modulation of the most commonly upregulated p53 target gene – CDKN1A (p21/WAF1/Cip1), that acts as an inhibitor of the CDK2/CDK4 complex and thus regulates the cell cycle G1 progression in a p53 dependent manner. Also, we did not observe the modulation of any other p53 dependent DNA damage response target genes like MDM2, Gadd45. Thus, this indicates a p53-independent activation of the process of cellular repair.

FDR 5%, no Fold change cutoff

<table>
<thead>
<tr>
<th></th>
<th>Irr.6h - sham.6h</th>
<th>Irr.24h – sham.24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>6h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 44 | Venn diagram showing the most differentially regulated genes obtained in the microarray experiments between 10Gy irradiated and sham-irradiated groups at two different timepoints post irradiation. This comparison gives us information on expression of genes as an effect of irradiation. [Irr.6h= 10Gy irradiated at 6h, sham.6h= sham-irradiated at 6h, Irr.24h= 10Gy irradiated at 24h, sham.24h= sham-irradiated at 24h].
Interestingly, the irradiation effects at 24h post irradiation were mainly targeted at the histone proteins (Table 4). This correlates with previous reports by Meador et al.
where they confirm that both high- and low-Linear energy transfer (LET) radiation exposure negatively regulate histone gene expression in human lymphoblastoid and colon cancer cell lines independent of p53 status.

<table>
<thead>
<tr>
<th>ID</th>
<th>FoldChange</th>
<th>adj.p.val</th>
<th>Gene.Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>8117580</td>
<td>-1.67</td>
<td>0.0038</td>
<td>HIST1H2AI</td>
</tr>
<tr>
<td>8124510</td>
<td>-1.68</td>
<td>0.0038</td>
<td>HIST1H2BL</td>
</tr>
<tr>
<td>8085350</td>
<td>-1.37</td>
<td>0.0038</td>
<td>C3orf31</td>
</tr>
<tr>
<td>8096335</td>
<td>2.04</td>
<td>0.0038</td>
<td>HERC6</td>
</tr>
<tr>
<td>8140967</td>
<td>1.96</td>
<td>0.0038</td>
<td>SAMD9</td>
</tr>
<tr>
<td>7929052</td>
<td>3.08</td>
<td>0.0038</td>
<td>IFT13</td>
</tr>
<tr>
<td>8124430</td>
<td>-1.68</td>
<td>0.0038</td>
<td>HIST1H1D</td>
</tr>
<tr>
<td>8124524</td>
<td>-2.00</td>
<td>0.0038</td>
<td>HIST1H2AK</td>
</tr>
<tr>
<td>8050537</td>
<td>1.72</td>
<td>0.0038</td>
<td>MATN3</td>
</tr>
<tr>
<td>8117589</td>
<td>-1.49</td>
<td>0.0040</td>
<td>HIST1H3H</td>
</tr>
<tr>
<td>8096301</td>
<td>-1.72</td>
<td>0.0040</td>
<td>SPP1</td>
</tr>
<tr>
<td>8103601</td>
<td>2.11</td>
<td>0.0040</td>
<td>DDX60L</td>
</tr>
<tr>
<td>7929047</td>
<td>3.55</td>
<td>0.0041</td>
<td>IFIT2</td>
</tr>
<tr>
<td>8124397</td>
<td>-1.52</td>
<td>0.0044</td>
<td>HIST1H1C</td>
</tr>
<tr>
<td>7961413</td>
<td>1.57</td>
<td>0.0044</td>
<td>C12orf36</td>
</tr>
<tr>
<td>7927710</td>
<td>1.52</td>
<td>0.0044</td>
<td>CDK1</td>
</tr>
<tr>
<td>8103563</td>
<td>2.91</td>
<td>0.0045</td>
<td>DDX60</td>
</tr>
<tr>
<td>8001133</td>
<td>1.46</td>
<td>0.0045</td>
<td>SHCBP1</td>
</tr>
<tr>
<td>8048926</td>
<td>1.88</td>
<td>0.0046</td>
<td>SPO140L</td>
</tr>
<tr>
<td>8161892</td>
<td>-1.60</td>
<td>0.0046</td>
<td>GNA14</td>
</tr>
</tbody>
</table>

Table- 4 | The list of top 20 genes regulated as an effect of 10Gy irradiation in HT-29 cells at 24h post-irradiation. Genes highlighted indicate key genes coding for various histone proteins and cell cycle regulatory proteins (For details, see text).

3.4.2. **GeneGo pathway analysis of the microarray data**

Analysis of the microarray data was also done using the GeneGO Metacore pathway analysis software to determine the cellular pathways affected upon Irradiation. MetaCore™ is an integrated knowledge database and software suite for pathway analysis of experimental data and gene lists generated by various studies like microarray, sequence based gene expression studies, etc. It is based on a proprietary manually curated database of human protein-protein, protein-DNA and protein compound interactions, metabolic and signaling pathways for human, mouse and rat, supported by proprietary ontologies and controlled vocabulary (http://www.genego.com/metacore.php).

The GeneGO analysis of the top-10 modulated canonical pathways throughout the entire dataset indicates that the most modulated probe sets belong to cell cycle (metaphase
checkpoint, role of APC in cell cycle regulation), apoptosis and survival (anti-apoptotic TNFs/NF-κB/Bcl-2 pathway, APRIL and BAFF signaling), immune response (IL-2 activation and signaling pathway, signaling pathway mediated by IL-6 and IL-1) (Fig. 45). Thus, it gives us a clear picture that the irradiation effects are mainly targeting important cellular processes such as cell cycle checkpoint regulation, immune response and apoptosis and survival pathways.
Fig. 45 | GeneGo analysis of the top 10 modulated canonical pathways throughout the entire dataset across two different timepoints - 6h and 24h post irradiation. The first 10 Canonical pathways generating significant score are displayed as a bar chart along the Y-axis. The X-axis represents the score; the taller the bar, the better the score for the indicated pathway.

3.4.3. Gene expression changes as an effect of treatment with agonist of PPARβ

To identify the role of PPARβ in irradiation-mediated effects, we pre-treated the cells with PPARβ agonist (GW) and antagonist (GSK) at the previously determined dose at which they showed optimal activity in this cell type. As an effect of the agonist (GW) treatment, we observed a total of 3 genes modulated at 6h and 13 genes at 24h with a p-value cut-off of 0.05 (Fig. 46A).
Fig. 46 | Venn diagram showing the most differentially regulated genes between 10Gy-irradiated pretreated with PPARβ ligands - agonist (GW), antagonist (GSK), and 10Gy-irradiated DMSO treated control group. A: With a false discovery rate (FDR) of 5% and B: with a FDR of 10%. This comparison gives us information on expression pattern of genes upon ligand treatment and irradiation.

The genes that were modulated at 6h are PDK4, SLC25A20, and ACADVL. PDK4 showed three fold increase at 6h post-irradiation. This upregulation of PDK4 (pyruvate dehydrogenase kinase, isoenzyme 4) - a known PPARβ target gene indicates that the ligand treatment in this cell type and experiment is functional. SLC25A20 - solute carrier family 25 (carnitine/acylcarnitine translocase), member 20 is a mitochondrial-membrane carrier protein that mediates the transport of acylcarnitines into mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. ACADVL (acyl-CoA dehydrogenase, very long chain) is transported to the inner mitochondrial membrane
where it catalyzes the first step of the mitochondrial fatty acid beta-oxidation pathway. It is specific to long-chain and very-long-chain fatty acids.

At 24h, we observed an increase in the expression of known PPARβ target genes such as PDK4 and ANGPTL4, PLIN2/ADRP and HMGCS2 (Table-5). PDK4 and ANGPTL4 increased to five and three fold respectively at 24h post-irradiation. The expression of ADRP/PLIN2 and HMGCS2 were increased 2.5 and 2 fold respectively at 24h post-irradiation. The top modulated genes at both 6h and 24h post irradiation belonged to various metabolic pathways like lipid metabolism, mitochondrial long chain fatty acid beta-oxidation, mitochondrial unsaturated fatty acid beta-oxidation, ketone bodies biosynthesis and metabolism (Fig. 47).

<table>
<thead>
<tr>
<th>ID</th>
<th>FoldChange</th>
<th>adj.P.Val</th>
<th>Gene.Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>8141094</td>
<td>5.07</td>
<td>2.16E-08</td>
<td>PDK4</td>
</tr>
<tr>
<td>7949971</td>
<td>1.88</td>
<td>4.61E-06</td>
<td>CPT1A</td>
</tr>
<tr>
<td>8160297</td>
<td>2.73</td>
<td>0.000194207</td>
<td>PLIN2</td>
</tr>
<tr>
<td>8025402</td>
<td>2.70</td>
<td>0.000194207</td>
<td>ANGPTL4</td>
</tr>
<tr>
<td>8087224</td>
<td>1.88</td>
<td>0.000194207</td>
<td>SLC25A20</td>
</tr>
<tr>
<td>7939298</td>
<td>1.29</td>
<td>0.008564907</td>
<td>CAT</td>
</tr>
<tr>
<td>7919055</td>
<td>1.86</td>
<td>0.009225528</td>
<td>HMGCS2</td>
</tr>
<tr>
<td>8004271</td>
<td>1.40</td>
<td>0.009225528</td>
<td>ACDVL</td>
</tr>
<tr>
<td>8103951</td>
<td>1.28</td>
<td>0.013944265</td>
<td>ACADVL</td>
</tr>
<tr>
<td>8160284</td>
<td>1.32</td>
<td>0.035157544</td>
<td>HAUS6</td>
</tr>
<tr>
<td>7940341</td>
<td>1.25</td>
<td>0.035157544</td>
<td>MS4A10</td>
</tr>
<tr>
<td>8023261</td>
<td>1.29</td>
<td>0.039168928</td>
<td>ACAA2</td>
</tr>
<tr>
<td>8092021</td>
<td>1.47</td>
<td>0.039168928</td>
<td>LRRRC31</td>
</tr>
<tr>
<td>7960730</td>
<td>1.21</td>
<td>0.050480634</td>
<td>LPCAT3</td>
</tr>
</tbody>
</table>

Table-5 | The list of top 15 genes regulated as an effect of agonist pre-treatment followed by 10Gy irradiation in HT-29 cells at 24h post-irradiation. The genes have been selected based on the cut-off of p-value at p < 0.05.
Fig. 47 | GeneGo analysis of the top 10 modulated canonical pathways upon agonist (GW) treatment throughout the entire dataset across two different timepoints - 6h and 24h post irradiation. The first 10 Canonical pathways generating significant score are displayed as a bar chart along the Y-axis. The X-axis represents the score; the taller the bar, the better the score for the indicated pathway.
3.4.4. Gene expression changes as an effect of treatment with antagonist of PPARβ

As an effect of the antagonist (GSK) treatment, with a p-value cutoff of 0.05, only 2 genes were modulated at 6h. At 24h, 23 genes were modulated (Fig. 48A), among which the 2 genes [(LRRRC31-Leucine rich repeat containing 31) and (AKR1B10-Aldo-keto reductase family 1, member B10)] found in the 6h time-point. The LRRC31-Leucine rich repeat containing 31 belongs to the family of proteins containinf the LRR motif. LRR is a 20-29 residue sequence motif present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. AKR1B10 (aldo-keto reductase family 1, member B10 (aldose reductase) is a member of the aldo/keto reductase superfamily and can efficiently reduce aliphatic and aromatic aldehydes. There is data from literature that suggest that AKR1B10 affects cell survival through modulating lipid synthesis, mitochondrial function, and oxidative status, as well as carbonyl levels, thereby being an important cell survival protein.

At 24h post irradiation, we found the androstenedione and testosterone metabolism, estradiol metabolism and cortisone biosynthesis and metabolism, tyrosine metabolism pathways being modulated (Fig. 48). With a very strict p-value cut-off of 0.05, we found only 23 genes modulated (Table-6) and thus we tested with a higher p-value cut-off of 0.1 (Fig. 48B) and still we found very few genes modulated upon antagonist treatments. The GeneGo pathway analysis of the microarray data gave us a clear picture that the antagonist treatments mainly targeted the important metabolic pathways at 6h and at 24h post irradiation.
<table>
<thead>
<tr>
<th>ID</th>
<th>FoldChange</th>
<th>adj.P.Val</th>
<th>Gene.Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>8136336</td>
<td>1.55</td>
<td>0.002</td>
<td>AKR1B10</td>
</tr>
<tr>
<td>8096116</td>
<td>1.45</td>
<td>0.004</td>
<td>AGPAT9</td>
</tr>
<tr>
<td>8124707</td>
<td>1.42</td>
<td>0.007</td>
<td>TRIM31</td>
</tr>
<tr>
<td>7925929</td>
<td>1.33</td>
<td>0.008</td>
<td>AKR1C3</td>
</tr>
<tr>
<td>8115397</td>
<td>-1.34</td>
<td>0.008</td>
<td>CSorf4</td>
</tr>
<tr>
<td>8179617</td>
<td>1.41</td>
<td>0.008</td>
<td>TRIM31</td>
</tr>
<tr>
<td>8005475</td>
<td>1.28</td>
<td>0.008</td>
<td>TRIM16L</td>
</tr>
<tr>
<td>8178330</td>
<td>1.41</td>
<td>0.010</td>
<td>TRIM31</td>
</tr>
<tr>
<td>7958174</td>
<td>1.23</td>
<td>0.015</td>
<td>TXNRD1</td>
</tr>
<tr>
<td>8172204</td>
<td>1.33</td>
<td>0.015</td>
<td>MAOB</td>
</tr>
<tr>
<td>7931832</td>
<td>1.58</td>
<td>0.015</td>
<td>AKR1C2</td>
</tr>
<tr>
<td>8171435</td>
<td>1.34</td>
<td>0.015</td>
<td>PIR</td>
</tr>
<tr>
<td>7955297</td>
<td>-1.32</td>
<td>0.017</td>
<td>AQP5</td>
</tr>
<tr>
<td>8127158</td>
<td>1.37</td>
<td>0.017</td>
<td>GCLC</td>
</tr>
<tr>
<td>8049349</td>
<td>1.39</td>
<td>0.017</td>
<td>UGT1A1</td>
</tr>
<tr>
<td>7987565</td>
<td>-1.35</td>
<td>0.019</td>
<td>PPP1R14D</td>
</tr>
<tr>
<td>8098246</td>
<td>1.48</td>
<td>0.023</td>
<td>ANXA10</td>
</tr>
<tr>
<td>8013384</td>
<td>1.45</td>
<td>0.023</td>
<td>ALDH3A1</td>
</tr>
<tr>
<td>8021584</td>
<td>1.31</td>
<td>0.026</td>
<td>SERPINB5</td>
</tr>
<tr>
<td>7929388</td>
<td>1.41</td>
<td>0.030</td>
<td>PLCE1</td>
</tr>
<tr>
<td>8140984</td>
<td>-1.53</td>
<td>0.030</td>
<td>HEPACAM2</td>
</tr>
<tr>
<td>8101675</td>
<td>1.37</td>
<td>0.034</td>
<td>ABCG2</td>
</tr>
<tr>
<td>8138466</td>
<td>-1.24</td>
<td>0.040</td>
<td>MACC1</td>
</tr>
</tbody>
</table>

Table - 6 | The list of top genes regulated as an effect of antagonist pre-treatment followed by 10Gy irradiation in HT-29 cells at 24h post-irradiation. The genes have been selected based on the cut-off of p-value at p < 0.05.
Fig. 48 | GeneGo analysis of the top 10 modulated canonical pathways upon antagonist (GSK) treatment throughout the entire dataset across two different timepoints - 6h and 24h post irradiation. The first 10 Canonical pathways generating significant score are displayed as a bar chart along the Y-axis. The X-axis represents the score; the taller the bar, the better the score for the indicated pathway.
3.4.5. **Validation of the genes of the microarray data by Q-PCR**

We performed Q-PCR on RNA samples from HT-29 cells irradiated at 10Gy with control non-irradiated cells and we observed increase in the expression of the inflammatory marker NFκB2 at 6h post irradiation and decrease at 24h post irradiation (Fig. 49). On the other hand, we observed decrease in the expression of the CCNB1 at 6h post irradiation and increase at 24h post irradiation. This data correlates with the data obtained by microarray experiments.

![Graphs showing relative expression levels of NFκB2 and CCNB1](image)

Fig. 49 | Relative expression levels of NFκB2 and CCNB1 as analysed by Q-PCR at two different timepoints - 6h and 24h post 10Gy irradiation compared with sham-irradiated controls. HT-29 cells were irradiated with a dose of 10Gy and sham-irradiated (Sh.ird) cells served as control. At 6 and 24h post-irradiation, RNA was extracted from cells. Gene expression analysis was performed by SYBR green assay on the following genes - nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (NFκB2) and cyclin B1 (CCNB1). All samples were normalized using two housekeeping genes namely human eukaryotic translation elongation factor 1 alpha 1 (hEEF1A1) and human glucuronidase, beta (hGusB). Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Newman-Keuls multiple comparison tests. (*** Statistically significant at \(p < 0.001 \) in comparison to sham-irradiated (Sh.ird) cells).
3.5 **Clonogenic survival assay in intestinal cell lines**

The little effect of PPARβ ligands in modifying the cellular responses to irradiation was quite unexpected and in contradiction with the severe damages seen in PPARβ−/− mice at 3.5 days post-irradiation. We thus looked for more sensitive means to assess the possible activity of PPARβ ligand in shaping cell radiosensitivity. In the field of radiobiology, clonogenic assays are considered gold standards to determine the cytotoxic effect of radiotherapy using ionizing radiations and chemotherapy using several chemical agents and also the latest intervention of dual treatments of chemo-radiotherapy. Thus determining the clone forming ability of these cells upon irradiation and subsequently attempting to modulate this clonogenic capacity and thus a modulation of their intrinsic radiosensitivities using pretreatments with drugs (ligands for PPARβ in this case) would be a promising technique for searching new therapeutic interventions involving chemo-radiotherapy.

The intrinsic radiosensitivity of the two colorectal cell lines, HT-29 and HCT-116 was determined by the colony-forming assay. The two cell lines mentioned above have differences in their p53 status and hence considered to have different radioresistance. HT-29 with null p53 has previously been shown to be more radioresistant than HCT-116 with a functional p53 (Williams et al., 2008).

We tested the survival capacity of these two intestinal cell lines on exposure to different doses of gamma-irradiation ranging from 0-10Gy. In order to determine proper plating efficiency two different protocols were initially tested. In the first, cells were first irradiated and then seeded for the colony-forming assay. The second protocol involved irradiation of the cells after they were seeded and continued for survival assay (Williams et al., 2008). The cells responded better in terms of plating efficiency when they were irradiated after being seeded (data not shown). Hence, this protocol was used for further set of experiments (Pomp et al., 1996; Franken et al., 2006).

On exposure to different doses of gamma-irradiation ranging from 0-10 Gy, it was evident that HCT 116 was a sensitive cell line showing a survival fraction of only 50% at a dose level of 2Gy, whereas HT-29 showed 70% survival at the same dose (Fig. 50). At 4Gy, HCT116 showed very low survivability (15%) in comparison to HT29 that had close to 40% survival fraction at this dose. More importantly HT29 cells could survive maximally till 6Gy though with a very low survival fraction (14%) whereas, HCT-116
cells were unable to survive at all at this high dose indicating their sensitivity towards irradiation. These results are in accordance with previous findings reporting enhanced radiosensitivity in HCT in comparison to HT-29 (Williams et al., 2008).

We then tested if pretreatment with PPARβ agonist or antagonist could promote survival of HT-29 and HCT cell types upon challenge with irradiation and thus a modulation of their intrinsic radiosensitivities.

To test this hypothesis, we pretreated the two cell types with the previously validated doses of the agonist and the antagonist and then exposed them to different doses of gamma-irradiation ranging from 0-10 Gy.

It was clearly evident that the ligand treatments (both agonist and the antagonist) did not bring much expected differences in the radiosensitivity of HCT 116, a sensitive cell line that showed a survival fraction of only 58% at a dose level of 2Gy (Fig. 51), which is very similar to the DMSO control group. On the other hand HT-29 showed a 74% survival at a dose level of 2Gy that is quite comparable to the DMSO control group.

This similar pattern was observed in the two cell types at the several different doses tested suggesting clearly that the ligands for PPARβ had little effects in modulating the radiosensitivity of the two cell types. In addition, no conclusion can be drawn from their p53 status as they likely diverge in many different aspects apart from their p53 status.
Fig. 50 | Survival curves for HT-29 (dashed line) and HCT-116 (continuous line) cells irradiated with graded doses (0-10Gy) of gamma rays. The letters R (resistant), S (Sensitive) refers to the radiosensitivity group to which these cell lines belong as defined by Williams et al. (2007). HT-29 and HCT-116 single cell suspensions were seeded at very low densities and cells were irradiated with graded doses (0-10Gy) after overnight incubation. After irradiation, HCT-116 cells were cultured for 8 days and HT-29 for 12 days to form colonies. At the end of this period, cells were fixed and stained and the colonies formed were counted. Colonies with less than 50 cells were not counted. Colonies counted were used to arrive at percentage survival using formula described. (See Materials and Methods). Data expressed are mean ± SEM. Means at each point represent 6 replicates from two independent experiments and the error bars represent the standard error of the mean when they are larger than the symbol.

Fig. 51 | Comparison of changes in percentage survival as an effect of pretreatment with ligands for PPARβ in HCT-116 and HT-29 cells after irradiation with graded doses of gamma rays. HT-29 and HCT-116 single cell suspensions were seeded at very low densities in media with agonist (GW) and antagonist (GSK) for PPARβ, with DMSO treated and untreated cells serving as control. Cells were irradiated with graded doses (0-10Gy) after overnight incubation. After irradiation, HCT-116 cells were cultured for 8 days and HT-29 for 12 days with or without GW, GSK, and DMSO to form colonies. At the end of this period, cells were fixed and stained and the colonies formed were counted. Colonies with less than 50 cells were not counted. Colonies counted were used to arrive at percentage survival using formula described. (See Materials and Methods). Data expressed are mean ± SEM. The slopes represent the treatments with irradiation and either the PPARβ agonist (GW), antagonist (GSK) or the vehicle control (DMSO). Each data point represents the mean of two independent experiments and the error bars represent the standard error of the mean when they are larger than the symbol.
3.6 Role of PPARβ in H₂O₂ mediated damage in intestinal cell lines

The lack of activity of PPARβ in radiosensitization was unexpected for two main reasons. First, the observations in vivo clearly showed that PPARβ null mice are more severely affected by irradiation than their WT counterpart. Second, our group had previously demonstrated in two different models the important role of PPARβ in cell survival. In a first instance, PPARβ promotes keratinocyte survival in the context of inflammation (Di-Poï, et al., 2002). Even more dramatic is the protection conferred by PPARβ to kidney epithelial cells in the context of acute ischemic renal failure. This was demonstrated in vivo, by performing acute renal ischemia in PPARβ null mice and PPARβ+/− mice, pretreated or not with a PPARβ agonist (Letavernier et al., 2005). Along this study, in vitro tests demonstrated again the pro-survival activity of PPARβ agonist on kidney epithelial cells exposed to high doses of H₂O₂.

Previously, it has been reported that irradiation results in an oxidative stress by the generation of reactive oxygen metabolites, which have been implicated in causing epithelial cell injury. Watson et al., 1994 have generated a model of oxidant injury using the intestinal epithelial cells HT-29 and treating them with graded concentrations of H₂O₂. Therefore we tested the role of PPARβ in this model of oxidant injury induced by the production of reactive oxygen metabolites by administration of H₂O₂ to in the two intestinal cell lines, HT-29 and HCT-116.

Graded concentrations of hydrogen peroxide (0.1mM-5mM) were administered to both these cell lines and the extent of damage was characterized by MTT test. The MTT test is a validated assay for cytotoxicity. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole) measures the mitochondrial dehydrogenase activity as it is reduced to purple formazan in living cells. The amount of purple formazan produced by cells treated with an agent (in this case H₂O₂) is compared with the amount of formazan produced by untreated control cells, thus giving an index of the effectiveness of the agent in causing death, or changing metabolism of cells, that can be deduced through the production of a dose-response curve. In our experiments, we measured the O.D of the purple formazan product formed and normalized it with the untreated cells and correlated it to the cell survivability upon treatment with H₂O₂.
In HT-29 cells, we observed that H₂O₂ dose dependently decreased the survivability of the cells, with 5mM H₂O₂ showing approximately 50% survivability (Fig. 52a). However, on pre-treatment with PPARβ agonist (GW), we did not observe any significant change in the survivability percentage of the cells (Fig. 52b).

Interestingly, HCT cells had a survivability of only around 25% at the highest dose, much less than that observed in HT-29 at the same concentration of H₂O₂ (Fig. 53a). We also observed a significant increase, ~ 50% in the percentage of survivability of these HCT cells on pre-treatment with PPARβ agonist (GW), when compared to the H₂O₂ treated cells (Fig. 53b).

Fig. 52 | Assay of cell survivability with MTT test after treatment of HT-29 cells with H₂O₂

HT-29 cells untreated or pretreated with PPARβ agonist (GW501516) for 24h were treated with graded doses of H₂O₂ (100µM- 5mM) for 1h after which an MTT assay was performed. The absorbance at O.D 550nm is inversely proportional to the cytotoxicity. The absorbance values obtained for untreated cells (φ) were used as control and all data were normalised to control to obtain percentage survival. **52a:** Cell survivability upon different doses of H₂O₂ in comparison to untreated cells. **52b:** Cell survivability upon treatment with PPARβ agonist (GW) or the vehicle control DMSO. Data presented represent data from three independent experiments. Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Dunnett’s multiple comparison tests. (* Statistically significant at p< 0.05, ** p< 0.01 and *** p<0.001 when compared to untreated cells).
Chapter II: Results

Fig. 53 | Assay of cell survivability with MTT test after treatment of HCT cells with H$_2$O$_2$. HCT-116 cells untreated or pretreated with PPARβ agonist (GW501516) for 24h were treated with graded doses of H$_2$O$_2$ (100µM- 5mM) for 1h after which an MTT assay was performed. The absorbance at O.D 550nm is inversely proportional to the cytotoxicity. The absorbance values obtained for untreated cells (φ) were used as control and all data were normalised to control to obtain percentage survival. 53a: Cell survivability upon different doses of H$_2$O$_2$ in comparison to no treatment (φ). 53b: Cell survivability upon treatment with PPARβ agonist (GW) or the vehicle control DMSO. Data expressed are mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by Dunnett’s multiple comparison tests. (* Statistically significant at p< 0.05, and ** p< 0.01 when compared to untreated cells).

In the protective function of PPARβ in the skin wound healing model (Di Poi et al., 2003), PPARβ acts in response to inflammatory signals by activation of Akt1 pathway that increases the survival of keratinocytes. Also, it has been shown that PPARβ plays a protective role in a renal ischemia/reperfusion model by activating the Akt pathway (Letavernier et al., 2005).

In order to test if HT-29 cells are resistant to oxidative stress induced by H$_2$O$_2$ and hence to radiotherapy as well, we checked the levels of activation of PI3kinase/Akt signaling pathway. We tested for p-Akt levels and found that upon 5mM H$_2$O$_2$ treatment, Akt was phosphorylated at Ser473 and this phosphorylation was reduced upon GW pretreatment (Fig. 54 a, b).
Fig. 54 | Akt1 phosphorylation and the role of PPARβ in H₂O₂ mediated stress response. HT-29 cells untreated or pretreated with PPARβ agonist (GW501516) for 24h were then treated with 5mM H₂O₂ for 1h after which total cellular proteins were isolated from these cells. PPARβ agonist (GW) or DMSO as vehicle for GW treatment was diluted in serum free media (SFM) and hence there were two sets of control cells. One set consisting of cells treated without 10% serum in media that served as control for treatment with GW and cells treated with serum media as control for SFM.

(a) Equal concentration (20µg) of cellular proteins from various groups was analysed for Akt1 and phospho-Akt1 expression by western blot. (b) Bands obtained by Western blot for Phospho- Akt1 normalized to Akt-1 [Quantity One 1-D software analysis (Bio-Rad)]. Data represent the mean ± SEM of two independent experiments.

Thus in our hands, we do not see phosphorylation of Akt1 in untreated HT-29 cells but we see phosphorylation of Akt1 upon H₂O₂ treatment.
CHAPTER III:

DISCUSSION AND PERSPECTIVES
DISCUSSION

Radiotherapy for cancers can affect organs in the vicinity of the tissue affected. Small intestine has the highest turnover rate in terms of cell proliferation and differentiation and thus is one of the key radiosensitive organs of the abdomen. Studies have highlighted the importance of PPARβ as a therapeutic target for gastrointestinal complications (He et al., 1999). However, the role of PPARβ in intestinal damage after radiation exposure has not been deciphered so far. In the present study, we tried to elucidate the mechanism through which PPARβ might influence events post irradiation. Both, in vitro and in vivo approaches were utilized to confirm the potential effects of PPARβ activation in intestinal cells in response to irradiation. When PPARβ−/− mice were exposed to whole-body irradiation, we observed that irradiation aggravated mesenchymal cell death in duodenum of PPARβ−/− compared to the PPARβ+/+ mice and also defect in the adhesion between epithelia and mesenchyme indicating the involvement of PPARβ in irradiation-mediated intestinal damage. Microarray analysis of PPARβ+/+ and PPARβ−/− mice showed downregulation of the entire set of genes involved in the cholesterol biosynthesis pathway after irradiation in PPARβ−/− mice when compared to the PPARβ+/+.

To confirm these observations, we established an in vitro model system in HT-29 cell lines to evaluate the effect of PPARβ specific ligand post irradiation. Upon irradiation, we observed changes in the expression levels of genes involved in the cell cycle regulation through microarray analysis, but with ligand treatment we failed to observe any differences between the agonist treated and the vehicle treated cells post irradiation. On treatment with PPARβ agonist, we observed upregulation of its target genes and genes involved in lipid metabolism and fatty acid oxidation for which the role of PPARβ has already been established.

We also tested if PPARβ activation can alter the radiosensitivity of the intestinal cells in both radioresistant and radiosensitive cell lines, but did not observe any significant difference with PPARβ activation indicating that it is not involved in the radiosensitization mechanism.
1. **The late effects observed in gamma-irradiated PPARβ⁻/⁻ mice**

1.1 **Alteration of the mesenchymal compartment**

Previous observations from our lab has revealed a delay in the regenerative proliferation in the small intestine and the colon of the PPARβ⁻/⁻ mice on exposure to irradiation when compared to the wild type counterpart at 3.5d post-irradiation. This was attributed, at least in part, to a significant increase in the apoptotic bodies observed in the crypts of the PPARβ⁻/⁻ mice in comparison to the PPARβ⁺/⁺ at 4h post-irradiation. This increased apoptosis was observed in the cell position 4 (position of intestinal stem cells) from the bottom of the crypts that indicate that the delay in the regenerative proliferation observed at 3.5 d post-irradiation might be partly due to an increased apoptosis in the stem cell compartment (i.e, immediate effects).

At 8d post-irradiation, the observed phenotype was a reduction in the mesenchymal cells in PPARβ⁻/⁻ mice. This could arise from a differential rate of cell death or cell renewal in the two compartments of epithelia and the mesenchyme that occurred at an early time point after irradiation, i.e., 3.5d. Observations from our *in-vivo* studies indicate increased apoptosis of not only the epithelial cells but also the mesenchymal cells occupying the intra-villus region of the small intestines of PPARβ⁻/⁻ mice at 3.5 and 8 days post-irradiation respectively. The mesenchymal cells in PPARβ⁻/⁻ mice are more sensitive to irradiation than the epithelia as evident from Tunel assay and thus responds stronger to the damaging effects of irradiation than the epithelia.
1.2 Alteration of the extra-cellular matrix of the mesenchymal compartment

We also observed detachment of the mesenchymal layer from the epithelial layer in the PPARβ−/− mice, indicative of weak ECM. Literature supports the role of Ihh and Foxf genes as critical regulators of epithelial-mesenchymal interactions and extracellular matrix production respectively (Ormestad et al., 2005; Van Dop et al., 2010). Deletion of the intestinal epithelial Ihh has been shown to result in the loss of the muscularis mucosae, deterioration of the ECM, and reductions in numbers of the crypt myofibroblasts hence leading to the disruption of the intestinal mesenchymal architecture (Kosinski et al., 2010).

Further, Foxf2 mutants result in striking deficiency of fibrillar (type I) as well as sheet-forming (type IV) collagens throughout the intestine (Ormestad et al., 2005). They also reported that in these mutants the basal laminae surrounding smooth muscle cells as well as the basement membrane underneath the epithelium were indistinct and frequently replaced by gaps of extracellular space and mesodermal cells of the colon had poorly developed endoplasmic reticulum (Kosinski et al., 2010).

Earlier from our group a role of PPARβ in the proper organization of the secretory pathway of the paneth cells has been shown as the PPARβ−/− mice had less compact endoplasmic reticulum in the intestinal cells, suggesting a role in the differentiation of the paneth cells (Varnat et al, 2006). In that study it was identified that Ihh is negatively controlled by PPARβ in the small intestine as its expression was significantly higher in the PPARβ−/− than the PPARβ+/+ mice with a corresponding increase in the expression of BMP-4, a well established target of the hedgehog signaling. But these observations were made without any irradiation challenge to the mice and hence, it will be difficult to speculate the role of any of these genes, if any, in our present context. Thus the mechanism behind the phenotype observed in PPARβ−/− mice showing damage in the mesenchymal ECM on irradiation exposure needs further elucidation.
1.3 The epithelial-mesenchymal cross-talk

One of the key questions raised for the delayed effects seen in the mesenchymal compartment in irradiated PPARβ⁻⁻ mice is whether this was a cell autonomous effect or was it due to a defective crosstalk between epithelia – mesenchyme. In other words, what is the source of the signals that cause these delayed effects?

Analysis of the results from the PPARβ villin-cre conditional KO mice at 8 days post-irradiation show that the villin Cre⁺ mice, i.e. with a deletion of PPARβ alleles restricted to the epithelial cells, have the similar kind of defect like that of the PPARβ⁻⁻ mice with detachment of the mesenchyme from the basement membrane and separation from epithelia and reduction in the number of mesenchymal cells. The PPARβ L2/L2 control group does not show any defect. Albeit the Villin Cre⁻ group also shows some damages, it was not seen in all animals and thus is not fully penetrant unlike the Villin Cre⁺. Thus we can speculate that PPARβ in the epithelia is essential for the process of healing in the absence of which is there is a defect. It is therefore interesting to understand the mechanisms by which PPARβ in the epithelia mediates survival signal for the recovery of both the epithelia and the mesenchyme.

1.4 The unexplored role of the endothelial microvasculature

The intra-villus region is made up of mesenchymal cells as well as endothelial microvasculature. According to a previous report (Paris et al., 2001) endothelial vascular damage precedes the epithelial damage and it is the earliest event even prior to the crypt damage at 4-6h post irradiation. This signifies endothelial dysfunctions to be one of the important factors contributing to epithelial lethality. Moreover, microvascular function regulates expression of radiation-induced crypt stem cell clonogenic alteration (Maj, et al., 2003). The mechanism for this involves the inhibition of radiation-induced crypt shrinkage but not the enhancement of crypt regeneration. These studies provide evidence that microvascular endothelial apoptosis is ordered upstream of the mitotic dysfunction of the clonogenic compartment that occurs during the early phase of radiation-induced damage to the intestines. As the microvascular endothelium and the mesenchymal cells are placed spatially in the same intravillus mesenchymal compartment, thus we could speculate that
the mesenchymal damage like the microvascular endothelium damage could be responsible for the radiation induced crypt stem cell clonogen damage in the PPARβ⁻/⁻ mice as evidenced by the observed defects at 4h post-irradiation in comparison to the PPARβ⁺/⁺.

2. New information gained from microarray data

2.1 Irradiation induces the cholesterol biosynthetic pathway

Microarray experiment comparing the PPARβ⁺/⁺ and PPARβ⁻/⁻ in response to 4 hrs post irradiation showed modulation of large number of genes of which the most significant being those involved in the cholesterol biosynthesis pathway which were also validated through qPCR. These observations were further tested in in-vitro conditions using adenocarcinoma cell line, HT-29, on exposure to irradiation. In HT-29, at 24hr post irradiation we observed significant upregulation of two of the genes involved in cholesterol biosynthesis, FDFT1 and LSS, that were also upregulated in PPARβ⁺/⁺ mouse intestine at 4h post-irradiation. A previous report on elucidating the mechanism involved in the regulation of cholesterol synthesis in human intestinal cells (Caco-2), has shown that levels of HMG-CoA reductase mRNA were increased under conditions of cholesterol efflux (Field et al., 1991). Furthermore, it has also been shown that ionizing radiation induces cholesterogenesis in different cells of mammalian organism as an early reaction to the harmful effect necessary for restoration of biomembranes (Kolomiĭtseva, 1986).

We also observed similar induction of genes including the one encoding for the rate-limiting enzyme, HMGCR, in the PPARβ⁺/⁺ mice on irradiation. Also, up-regulation of several genes encoding the key enzymes in the cholesterol biosynthesis pathway in the HT29 cell line in response to irradiation was observed, thus allowing us to speculate for a possible increment in the cellular cholesterol efflux in response to irradiation. This is presumably because of the increase in the requirement of cholesterol for synthesis of new membranes in response to the injury to radiosensitive cells in order to make them recover and compensate for their functions.

Since we observed a decrease in the levels of gene expression of these enzymes involved in cholesterol biosynthesis pathway in PPARβ⁻/⁻ mice post-irradiation in
comparison to the PPAR\(\beta^{++}\), this might attenuate cellular cholesterol increase indicating to the involvement of PPAR\(\beta\) in irradiation mediated intestinal damage.

2.2 \textit{PPAR}\(\beta\)-independent responses of HT29 to irradiation

Our global analyses of the microarrays obtained form HT29 cells, pretreated or not with agonist and antagonist of PPAR\(\beta\), revealed little interference if any of PPAR\(\beta\) activity in the radiation-induced responses.

Following exposure to 10Gy irradiation, as an effect of irradiation, we observed a total of 418 genes modulated at 6h and 1168 genes at 24h. This is in accordance with previous reports (Rødningen et al., 2005; Tachiiri et al., 2006) where they observe a higher number of genes modulated at a later timepoint post exposure than an early timepoint.

Genotoxic stress can activate or suppress a variety of genes and pathways. In our experiments, 10 Gy irradiation induced increase in the expression levels of NF\(\kappa\)B2, CDKN2B and several other genes at 6h post-irradiation (Table 3). We observed that the upregulation of the cyclin dependent kinase inhibitors (CDKN2B) lead to the downregulation of cyclin dependent kinases (Cyclin B1 and B2) thereby regulating the cell cycle in the G2/M phase. This data correlates with the previously reported studies that cells respond to irradiation by modulation of the cell cycle regulators (Schmidt-Ullrich et al., 2000; Pawlik et al., 2004). We also observed increase in the expression of NF\(\kappa\)B2 – a known marker of inflammation at 6h post irradiation and decrease at 24h post irradiation. This fits well with previously reported observation in human KG-I myeloid leukemia cells, that as an effect of 20Gy, there was a detectable increase in NF\(\kappa\)B expression at 3 and 6h post irradiation. This effect was transient and levels of NF-KB transcripts returned to that in control cells by 15h. These findings indicated that ionizing radiation regulates NF-KB expression at the mRNA level (Brach et al., 1991).

At the same time at 24h post irradiation, we see decrease in various histone proteins (Table 4) that suggests that the cell cycle is in the G2 phase as reported by Heintz 1991; Osley 1991. Thus, these above results clearly indicate that the cell cycle has been
stalled at the G2/M phase as a protective response mechanism of the cells against irradiation mediated damage (Pawlik et al., 2004).

2.3 **PPARβ dependent responses of HT-29 to irradiation**

In our experiments, the effect of irradiation upon the treatment with the agonist for PPARβ clearly show an increase in the expression of some known PPARβ target genes, e.g. PDK4 and ANGPTL4, in a time dependent manner. However, these genes modulated in response to the agonist treatment upon irradiation belong to the various lipid metabolic processes that are one of the main well-known functions of PPARβ in the cells (Bedu et al., 2005; Desvergne et al., 2009). This clearly indicates that the agonist treatment is functional in this set of experiments. However, we did not see modulation of any other genes relevant to cell cycle regulation, apoptosis and survival. This was unexpected but consistent with the caspase assays and clonogenic assays which revealed that PPARβ activity did not modify the radiation-induced response of HT29 and HCT116 cells.

Intriguingly, pre-treatment with an antagonist for PPARβ provoked an increase in few genes that are not found down-regulated in the presence of an agonist as could have been expected. The AKR1B10 was regulated at both 6hr and 24 hrs. It is a aldose reductase and data from literature suggest that AKR1B10 affects cell survival through modulating lipid synthesis, mitochondrial function, and oxidative status, as well as carbonyl levels, thereby being an important cell survival protein in colorectal cancers (Tammali et al., 2007; Wang et al., 2009). However, in the absence of any other genes of AKR1B10 mediated survival pathway being modulated it is hard to confirm the above mechanism in this cell model. Thus, from the present set of experiments, it is hard to decipher the function of PPARβ on irradiation-mediated damage.

3. **How to reconcile in vivo and in vitro data?**

It has been shown by Bonnau et al., 2010 that despite an enhancement of crypt survival and an inhibition of crypt epithelial cell mitotic catastrophy by S1P (Sphigosine-1
phosphate), direct protection of irradiated epithelial cells by S1P seems to be excluded in *in-vitro* studies using IEC-6 cells, as well as in transformed intestinal T84, colonic tumor Caco2, and HCT116 epithelial cell lines. Thus, S1P enhances crypt radioprotection but not *in-vitro* epithelial cell radioresistance. It is very similar to what we see in our in-vivo data where PPARβ is seen to bring about a crypt radioprotection in the PPARβ*+/+* mice but we do not see any enhancement of radioresistance in *in-vitro* studies using HCT-116 cells.

Edwards et al., 2002 have shown that phospho-AKT staining was untraceable in small intestine sections from untreated mice and AKTi (inhibitor) treatment did not modulate death of 15 Gy–irradiated mice. From their studies, they considered this as a first proof of the specificity of the AKT inhibition strategy in tumor but not in normal tissue endothelium. This correlates with our data where we do not see phosphorylation of AKT1 in untreated HT-29 cells but we see phosphohorylation of AKT1 upon H2O2 treatment.

As a summary, experiments in *in-vitro* cell lines did not show any response to pre-treatment of PPARβ agonist in modulating the expression levels of radiation induced genes or radiosensitivity or H2O2 induced oxidative stress. Thus there is no clear evidence for a protective effect of PPARβ in various contexts of cell damages tested *in-vitro*. Of quite significance is the fact that the crosstalk between the epithelia and the mesenchyme is necessary for the proper development of the crypt-villus unit (reviewed in Crosnier et al., 2006). Thus, this could probably explain why we do not see any defects in *in-vitro* model where we have only the intestinal crypt phenotype and lack the crosstalk with the mesenchyme.

We propose that *in-vivo* PPARβ affects the crosstalk between the mesenchyme and the epithelium consistent with the observed delay in tissue repair in the PPARβ−/− mice. These observations indicate the possible involvement of PPARβ in radiation-induced injury. The exact molecular mechanism of PPARβ action still demands further exploration to better understand its physiological role in this regard. Particularly, a better understanding of the mechanism by which PPARβ controls epithelial and mesenchymal crosstalk in normal and tumor tissue responses to radiation need further development such as elaborating an *in-vitro* model of a co-culture of epithelia and mesenchyme to better mimic *in-vivo* conditions.
CHAPTER IV:

MATERIALS AND METHODS
1. Animal experiments

All animals had free access to a standard laboratory chow diet with a 12 hour light and dark cycle. PPARβ−/− and their control PPARβ+/+ were bred on a mixed genetic background (Sv129 and C57BL/6) and were used at 12 weeks of age unless otherwise mentioned. All animal procedures were performed with authorization from the cantonal veterinary service of the Canton of Vaud.

1.1 Generation of PPARβ−/− mice

(i) Construction of a replacement vector for PPAR. Nine overlapping mouse PPAR genomic clones were isolated from an Sv129 mouse embryonic stem (ES) cell genomic library (gift from F. Conquet), and their restriction maps were established (Fig. 55). A targeting vector was designed to delete the two exons encoding the DNA binding domain (i.e., exons 4 and 5), according to the organization of the Xenopus PPARβ/δ gene. The targeting vector (derived from TK-NEO-UMS, a vector comprised of the thymidine kinase gene, neomycin resistance sequence, and upstream mouse sequence; a gift from Charles Weissman) contained 1.7 kb of homologous sequence at the 5’ end, 7 kb of homologous sequence at the 3’ end, and a phosphoglycerate kinase-neomycin (PGK-neo) cassette (Fig. 55A).

(ii) ES cell transfection. D3 ES cells were cultured as previously described (Guillemot et al., 1993), and electroporation was performed as previously reported (Van der Hoeven et al., 1996). Twenty-four hours after electroporation, positive selection by G418 at 350 µg/ml (geneticin) was performed for 9 days. Resistant clones were then transferred onto 48-well plates (Costar) and subsequently grown to confluence on duplicate 24-well plates for either genomic analysis or storage of master plates at -80°C.

(iii) Genotyping. Genomic DNA was prepared from ES cells, yolk sacs of embryos, or tail samples following the classical procedures. A first round of genotyping was performed by two independent PCRs. Primers b19 (5’-ATCCA GAGTGTTCGTATGAC-3’) and UMS1 (5’-TCTTATGCTCCTGAAGTCCAC-3’) amplified a 2.2-kb fragment from the recombinant allele, whereas the primers b3 (5’-AGCCTCAACATGGAATGTCG-3’) and b4 (5’-GATCGCAC TTCTCATACTCG-3’)

113
amplified a 1.6-kb product from the wild-type (wt) allele. Five percent of the neomycin-resistant ES cell clones were positive for homologous recombination. All mutant clones and/or embryos or mice were subsequently confirmed by Southern analyses using a digoxigenin-labeled probe (CDP-Star protocol; Boehringer Mannheim), located 160 bp upstream of the 5’ homology region. Digested genomic DNA samples were blotted on a Zetaprobe GT membrane and processed following the manufacturer’s protocol (Bio-Rad). Probes, restriction digestion, and hybridized fragments from wt and recombinant alleles are indicated in Fig. 55.

(iv) Generation of chimeric mice and germ line transmission. Positive D3 clones were microinjected into the blastocoel of 3.5-day-old embryos at the blastocyst stage and isolated from C57BL/6 females (10 to 15 ES cells per blastocyst). Between five and seven injected blastocysts were reimplanted into each uterine horn of pseudopregnant foster mothers. Male chimeric animals were mated for germ line transmission with Sv129 mice. One chimeric male transmitted the mutation from which the colony of mice has been obtained.
Fig. 55 | Targeted disruption of the PPARβ gene in mouse. The PPARβ gene was disrupted in ES cells by homologous recombination with a replacement-type vector, using an approach based on positive-negative selection (A). In this vector, PPARβ genomic sequences containing the exons encoding the DNA-binding domain of the receptor (exon 4 and part of exon 5) were replaced with a PGK-neo cassette. Homologous recombination at the PPARβ locus in ES cells led to the deletion of both exon 4 and part of exon 5 encoding the two zinc fingers of the DNA-binding domain. ES cells carrying the mutant allele were confirmed by Southern blot analysis (B). Two independent positive ES cell clones were injected into blastocysts to generate chimeras, and heterozygous mice were obtained from a germ line transmitter chimera. Panel A shows the structure of the wt PPARβ allele, targeting vector, and recombinant PPARβ allele. The exons as well as locations of restriction sites and probes for PCR and southern blot are indicated. B, BamHI; E, EcoRI; K, KpnI; N, NotI; X, XhoI. Panel B shows a Southern blot analysis of genomic DNA digested with BamHI and KpnI from E9.5 embryos produced by a PPARβ heterozygous intercross. (C) PCR analysis of yolk sac DNA derived from E9.5 embryos. (D) Western blot analysis performed on nuclear extracts with a specific PPARβ antibody. The nuclear protein c-Jun was used as an internal control. In order to obtain a sufficient amount of material, the control at the protein level was performed on pups obtained from homozygous matings.

(From Nadra et al., 2006).
1.2 Gamma-irradiation model

In the gamma-irradiation protocol, the PPARβ^{+/+} and PPARβ^{+/−} mice were exposed to whole body irradiation at a dose of 10Gy (two doses of 5Gy) and the animals were sacrificed at different time-points: 4hr, 3.5d and 8d post irradiation (Fig. 56). After death by cervical dislocation, the abdomen was opened and the duodenum, jejunum, ileum and colon were dissected out and flushed with cold phosphate buffered saline (PBS). Tissue samples were frozen in liquid nitrogen for subsequent RNA and protein analysis or processed for histological analyses after fixing in 4% paraformaldehyde (PFA)-PBS for 2hours at 4°C.

![Diagram of gamma-irradiation model](image)

Fig. 56 | Schematic representation of gamma-irradiation model (adapted from Somosy et al.2002; Potten 2004).

1.3 Histological analysis

Intestines were fixed in 4% paraformaldehyde- in phosphate buffer saline (PFA-PBS), dehydrated and embedded in paraffin according to standard procedures. Sections of 4µm were processed for staining or immunohistological analysis. For immunohistochemistry, paraffin sections were hydrated and boiled for 15 minutes in 0.01M sodium citrate, pH=6. Sections were subsequently washed in PBS. Sections were
incubated in 1% bovine serum albumin (BSA) before incubation with the primary antibody. For immunofluorescence, sections were further incubated with a fluorescein isothiocyanate (FITC)-coupled secondary antibody. Sections were then counterstained with DAPI to stain the nuclei. Primary anti-Ki-67 was purchased from Abcam (ab 15580).

1.4 Detection of apoptosis

Apoptosis detection was performed using TUNEL assay. This assay was performed on paraffin sections as described by the manufacturers instructions (In situ cell death detection kit, Fluorescein, Roche).

1.5 Generation of PPARβ villin- Cre conditional KO mice

The Cre protein is a site-specific DNA recombinase that recognizes a 34-bp loxP sequence and, in the presence of two directly repeating loxP sites, excises the intervening DNA sequence (Abremski and Hoess, 1984). The use of the Cre/lox system involves both mice expressing Cre enzyme (villin- Cre-ERT2) and mice with loxP sites (PPARβ L2/L2) inserted at a selected transgenic locus of interest. The mating of the two strains generates progeny in which Cre is expressed and excises the sequences between the loxP sites.

To specifically inactivate PPARβ in intestinal epithelia in-vivo, we combined this powerful site-specific recombination system with the tissue specificity of the murine villin promoter. A 9-kb regulatory region of the villin gene has been shown to target stable and homogeneous expression of transgenes in small and large intestine along the crypt-villus axis, in differentiated enterocytes, as well as in the immature, undifferentiated cells of the crypt (Janssen et al., 2002; Pinto et al., 1999; Robine et al., 1997). The approach used here allowed recombination of target genes in the intestinal epithelia, at any time during postnatal life. We have generated transgenes containing a tamoxifen-dependent recombinase (vil-Cre-ERT2), shown schematically in Figure 57. The vil-Cre-ERT2 construct is based on a fusion of the Cre recombinase with a mutated ligand-binding
domain of the human estrogen receptor, resulting in a tamoxifen-dependent Cre recombinase (Feil et al., 1996; Metzger and Chambon, 2001, Metzger et al., 2003).

To generate PPARβ villin- Cre conditional KO, we crossed the PPARβ L2/L2 with the villin- Cre- ERT2. The Cre-mediated deletion is obtained by induction through tamoxifen. For experimental purpose, we had three groups: PPARβ L2/L2, which served as wild type controls, PPARβ L2/L2 villin- Cre+ and the PPARβ L2/L2 villin- Cre−. Each of the three groups was treated with tamoxifen and vehicle. Chemical treatments were administered to 12 weeks old mice. Tamoxifen (Sigma) solubilized in sunflower oil was administered intraperitonally at a dose of 1mg/ml/kg per day for 5 consecutive days. For the vehicle treated group, equal volume of sunflower oil was administered. The tamoxifen-mediated deletion was allowed for one week and after one week the animals were irradiated and then sacrificed at 3.5 days post irradiation. RNA, protein and tissue samples for histology were collected as described in later sections.
2. Experiments with Cell cultures

2.1 Cell cultures (HT-29 and HCT-116)

The HT-29 cells are human colon adenocarcinoma cells that were originally isolated from carcinoma of the human colon and hence have retained some characteristics, including expression of hormone receptors (Jan Mester et al., 1989). There is a G-> A mutation in codon 273 of the p53 gene resulting in an Arg-> His substitution. The p53 antigen is thus overproduced in these cell lines. The line is also positive for expression of c-myc, K-ras, H-ras, N-ras, Myb, Sis and fos oncogenes. They have the ability to grow as monolayers and under special culture conditions, they can differentiate to form mucus secreting and/or absorptive cells. When cultured in high glucose media and 10% FCS, the cells remain undifferentiated and grow as multilayers but when glucose is absent or replaced they undergo differentiation after confluence.

For our experiments, HT-29 cells were cultured in DMEM + Glutamax I (Gibco) containing 4.5mg/L glucose supplemented with 10% fetal bovine serum (FBS). HCT-116 cells are also human colon adenocarcinoma cells and were cultured in DMEM + Glutamax I (Gibco) containing 4.5mg/L glucose supplemented with 10% FBS.

2.2 Transfections

HT-29 cells were cultured in DMEM + Glutamax I (Gibco) containing 4.5mg/L glucose supplemented with 10% FBS. The cells were seeded at a density of 0.5million/ml per well of a 12 well plate and allowed to grow to 30% confluency before transfection. Transfections were carried out using Lipofectamine LTX (Invitrogen) in low serum media using OptiMEM 1X (GIBCO) and allowed to incubate at 37°C for 4h. At this point, the cells were incubated with serum media for a period of 4 hours followed by serum free media for those requiring agonist or antagonist treatment. Appropriate doses of specific agonist/antagonist of PPARβ were given in DMEM + Glutamax I without serum and incubated at 37°C for 24hrs. The cells were then washed once with PBS and processed further for luciferase assay.
2.3 Luciferase assays

After cells were transfected with the luciferase constructs, cells were either untreated or treated with agonist and/or antagonist for 24h. The cells were washed with PBS before lysis using 1X passive lysis buffer (Dual luciferase assay Kit, promega) and samples were further processed according to the manufacturer’s instructions and analysed using a luminometer (Promega corporation).

2.4 Agonist/ Antagonist treatments

PPARβ specific agonist GW501516 was used at a concentration ranging from 100-1000nM in DMSO. Two types of antagonist were used – GSK0660 (shearer et al., 2008) and a new candidate VP80. Both were used at concentrations ranging from 1-10µM in DMSO. For transfection experiments, agonist or antagonist treatment were given in serum free media but for microarray experiment, it was given in normal serum media to avoid variations arising from serum free treatment.

3. Gamma-irradiation experiments

For our in-vivo studies, we used a Caesium-137 (Cs-137) gamma-irradiator under the guidance of Prof. Werner Held at the Ludwig Institute of Cancer Research (LICR), Lausanne. The PPARβ+/+ and PPARβ−/− mice were exposed to whole body irradiation at a dose of 10Gy (two doses of 5Gy) at room temperature and the animals were sacrificed at different time-points: 4hr, 3.5d and 8d post irradiation.

For our in-vitro studies, we used an irradiator (RS2000, Rad Source Technologies Inc.) that is specially designed for cell and small animal studies with the irradiation source being non-isotope, an alternative to traditional radioactive isotope based irradiators but with the capacity to produce a dose, equivalent to gamma-irradiator. Dose-dependent studies using different doses, ranging from 0-30 Gy (in accordance to informations from literature) were performed to identify the effective dose. Furthermore, different timepoints
post-irradiation were also assessed with the effective dose, at which the cell death could be observed indicating the levels of injury mediated by irradiation.

For irradiation of HT-29 cells, we cultured them on six or twelve well plates to confluence and had two groups: one that was irradiated with a dose of 10 Gy and the other was a sham-irradiated control group. The sham-irradiated group received all treatments similar to the irradiated group in terms of culture media and transport from the incubators to irradiators but with the exception of not receiving gamma-irradiation. We isolated the RNA samples at different timepoints post irradiation- 4 hr, 24 hr, 48 hr and 72 hr and checked for the alterations in the gene expression levels of various genes by Q-PCR at these time-points and compared them to the sham irradiated control group.

4. Extraction of Total RNA

Total RNA from tissues was extracted using TRIzol LS reagent (Invitrogen). Tissues were homogenized at medium speed with a polytron apparatus for 30 sec on ice in TRIzol reagent (800 ul/100 mg of tissue). After 10 minutes of incubation on ice, the samples were centrifuged at 4°C and 13,000 rpm. The supernatants were then subjected to chloform extraction and incubated 5 minutes on ice and centrifuged at 13,000 rpm for 20 minutes at 4°C. Total RNA was precipitated using isopropanol during 20 minutes at 4°C followed by a centrifugation at 13,000 rpm at 4°C. The pellets were washed twice in cold 70% ethanol-DEPC treated and resuspended in DEPC treated water. OD measurements were done using a Nanodrop (Nanodrop®) and the integrity of RNA was assessed by capillary electrophoresis (Bio-analyzer, Agilent Biotechnology). For extraction of total RNA from cells in culture, we used the RNeasy plus mini kit from Qiagen and followed the manufacturers instructions.

5. RT and Q-PCR

One microgram of the total RNA was reverse transcribed with random hexamer primers (Promega) using Superscript™ II reverse transcriptase (Invitrogen). Real-time PCR was performed with SYBR® Green PCR matermix (Applied Biosystems) using ABI PRISM® 7900 PCR machine (Applied Biosystems). Primers were designed to generate a PCR amplification product of 100-200 bp. Expression was related to the control
housekeeping genes: mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Tata-box binding protein (TBP) for mouse tissue samples and human eukaryotic translation elongation factor α1 (EEF1A1) and Glucuronidase β (GusB) for HT-29 samples. The expression of the housekeeping genes- EEF1A1 and GusB did not change under the experimental conditions studied. The primers for NFκB2, CCNB1, PDK4, ANGPTL4, PLIN2/ADRP were obtained from Qiagen’s QuantiTech® primer assay. The other primer sequences are as follows:

Human primer sequences

EEF1A1_Hs:
Hs_EEF1A1-1039F: CTGAACCATCCAGCCAAAT
Hs_EEF1A1-1097R: GCCGTGTGGCAATCCAAAT

GusB_Hs:
Hs_GusB-544F: CCACCAGGGACCATCCAAAT
Hs_GusB-622R: AGTCAAAATATGTGTTCTGGACAAAGTAA

FDFT1_Hs:
H_FDFT1_F: CCCTTGAGTTTAGAAATCTGGCT
H_FDFT1_R: CCACTCCTGTTCAGAGGTCAC

LSS_Hs:
H_LSS_F: CTGCCAGCCGGATACAGAG
H_LSS_R: TCCCAAAACACGGTGACACAA

MVD_Hs:
H_MVD_F: GCTGACAGGCAGTGATCG
H_MVD_R: GCATTGAGGAAGAGATGGGC

PPARβ_Hs:
H_PPARβ_F: GCATGAAGCTGGAGTACGAGAAG
H_PPARβ_R: GCATCCGACCAAAACGGATA

PDK1_Hs:
H_PDK1_F: TGTAACCAGAGCTGGGATGT
H_PDK1_R: TTTTGGCATAACTAAGGGCGAA

CASP8_Hs:
H_CASP8_F: GGCTTTGACCAGCAAGCTTTGA
H_CASP8_R: AGTGAACCTGAGATGTCCAGCTCAT
Mouse primer sequences

Ms_F_Fdft1: TCC CAC TGC TGT GTA ACT TCC
Ms_R_Fdft1: TGT CTA CAA ATT CTG CCA TCC C

Ms_F_Lss: TCG TGG GGG ACC CTA TAA AAC
Ms_R_Lss: CGT CCT CCG CTT GAT AAT AAG TC

Ms_F_Mvd: ACC AGC TAA AAA CGA CCA CAA
Ms_R_Mvd: CTG AGG GGT AGA GTG TCC C

Ms_HMGCR:
Ms_HMGCR_F: TCGTCATTCATTTCCTCGACAAA
Ms_HMGCR_R: GATTGCCATTCCACGAGCTAT

Ms_HMGCS1:
Ms_HMGCS1_F: AACTGGTGCAGAAATCTCTAGC
Ms_HMGCS1_R: GGTTGAATAGCTCAGAACTAGCC

Ms_PPARβ:
Ms_PPARβ_F: CGGCAGCCTCAACATGG
Ms_PPARβ_R: AGATCCGATCGCAGTCATC

6. Microarray experiments

A global gene expression analysis using microarray was performed to identify the effect of irradiation at 10Gy in an in-vitro intestinal cell line model of HT-29. The experimental design is as described in Fig. 42. For all the five groups of samples, total RNA was extracted from quadruplicate experiments using RNeasy Plus mini Kit (Qiagen, USA) according to manufacturer’s instructions. cDNA was synthesized from 1µg total RNA using the WT expression kit Ambion (Applied biosystems). After fragmentation, 10µg cRNA was hybridized with the Human Gene 1.0 ST arrays (Affymetrix,SC,USA).

Gene chips were then scanned in an Affymetrix Scanner, and gene expression was analyzed using the Software Expression Console. The data was submitted to one-way ANOVA (a value of p<0.05 was considered significant). Clustering analysis of the microarray results was performed using ‘R’ for quality control. Analysis of the microarray data was done using the GeneGO Metacore pathway analysis software to determine the cellular pathways affected upon Irradiation.
7. **Extraction of proteins from cells**

Cells were first washed gently with ice-cold PBS (1X). Cells were then lysed by scraping and pipetting in ice-cold RIPA lysis buffer (50 mM Tris pH=7.4, 150 mM NaCl, 0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS) supplemented with proteases and phosphatases inhibitors (1mM Na$_3$VO$_4$, 1mM PMSF, 10µg/ml Aprotinin, 10µg/ml Leupeptin) just before use. Cell lysis was continued by agitation on the spin wheel at 4°C for 40 minutes. The samples were then centrifuged for 15min, 14,000rpm at 4°C. The supernatants were collected and stored at -80°C for further protein analysis.

8. **Western blot**

Proteins extracted from cells using RIPA lysis buffer were denatured for 5 min at 95°C. Equal amounts of protein extracts were then resolved by 10% SDS-PAGE gel. Electrophoresis of proteins onto nitrocellulose membrane was done in 10 min using the iBlot™ device (Invitrogen). Membranes were then blocked for 1h at room temperature (RT) with 5% of milk powder in Tris buffered saline (TBS) with 0.1% Tween-20 and incubated at 4°C overnight with the primary antibodies diluted (1:1000 for all antibodies) in primary antibody dilution buffer (1X TBS, 0.1% Tween-20 with 5% Bovine serum albumin (BSA). The membranes were then washed in 1X TBST (TBS with 0.1% Tween-20) thrice and incubated for 1 h at RT with anti- IgG, HRP-conjugated secondary antibody in 1X TBST with 5% milk powder and detected by chemiluminescence (GE Healthcare). Blots were then analysed using the Quantity-1® software from BIORAD. Primary anti-Akt and anti-Phospho-Akt (Ser473) (from Cell signaling) and Anti-GAPDH antibodies were purchased from Sigma.

9. **PPARβ silencing using lentivirus**

A lentivirus based vector construct carrying silencing sequence for PPARβ (pLVTHSi PPARβ) [Nadra et al., 2006], was available in the lab. We first amplified the vector pLVTHSi PPARβ, the control vector- pLVTHSi PPARβ ctrl along with pCMV-ΔR8.74 and pMD2G-VSVG that encode for the viral envelope and the packaging genes respectively. These vectors were used further to transfect 293-T cells to produce the
lentivirus. The biological titer of the lentivirus produced was then estimated by FACS analysis. Further, this lentivirus was tested in different concentrations in the HT-29 cell system in order to identify the appropriate Multiplicity of infection (MOI) of virus required to obtain the maximal silencing of our target gene. The knockdown efficiency was also tested at different time-points post infection to ascertain the desired silencing of our gene of interest.

9.1 Lentivirus production

All recombinant lentiviruses were produced by transient transfection of 293T cells according to standard protocols. Briefly, subconfluent 293T cells were cotransfected with 112.5 µg of the control vector pLV-THsiPPARβ ctrl or the PPARβ-targeted vector pLV-THsiPPARβ, 73 µg of pCMV-ΔR8.4, and 39.55 µg of pMD2G-VSVG (where CMV is cytomegalovirus and VSVG is vesicular stomatitis virus protein G) by calcium phosphate precipitation. The medium was changed after 16 h, and recombinant lentiviruses in the supernatant were harvested two or three times every 8-12h. The Supernatant were stored at 4°C until used for ultracentrifugation. The pooled supernatant was filtered using a 0.22-µm filter unit. Ultracentrifuge 120 min at 50,000 x g, 16°C. Resuspend the pellet (not always visible) with PBS1X. Clear the final concentrate by a brief centrifugation (around 5 seconds) at maximum speed on a bench top centrifuge. Aliquot the supernatant and store at 80°C.

10. MTT assay

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole), is a dye that is reduced to purple formazan in living cells. MTT assay is a colorimetric assay for measuring the activity of enzymes that reduce MTT to formazan dye, giving a purple color. A main application allows assessing the viability (cell counting) and the proliferation of cells (cell culture assays). It can also be used to determine cytotoxicity of potential drugs, since those agents would stimulate or inhibit cell viability and growth. MTT assay is based on the inverse relation between the absorbance and the cytotoxicity. The higher the absorbance the lesser the cytotoxicity and vice-versa.
Chapter IV: Materials and Methods

We used the MTT assay to assess cytotoxicity in response to PPARβ agonist and antagonist treatment at different doses in HT-29 and HCT-116 cells.

MTT (Sigma) stock solution was prepared at a concentration of 5mg/ml. After the treatment with the agonist or antagonist for appropriate time, the medium was removed and the diluted MTT working solution (0.5mg/ml) was added. The cells were incubated at 37°C for 3 hrs and were observed by phase contrast microscopy for color development at regular intervals. At that point, the MTT working solution was eliminated and the solubilization solution (90% isopropanol + 10% DMSO) was added and incubated at 37°C for 20 min. After this, 100ul of the colored solution was transferred to a 96well plate and the absorbance was read at 550nm.

11. Caspase-3/7 assay

The Caspase-3/7 assay Kit (Promega) provides a proluminescent caspase-3/7 DEVD-aminoluciferin substrate and a thermostable luciferase in a reagent optimized for caspase-3/7 activity, luciferase activity and cell lysis. To assay Caspase activity, an equal volume of Caspase-Glo® 3/7 reagent is added to the sample in the assay well and after mixing well, results in cell lysis. This is followed by caspase cleavage of the substrate that liberates free aminoluciferin, which is consumed by the luciferase, generating a "glow-type" luminescent signal. And this light generated is measured with a luminometer (Promega corp.). The signal is proportional to caspase-3/7 activity.

HT-29 cells were seeded in 96 well plates and cultured overnight at 37°C, 5% CO₂. They were irradiated with different doses ranging from 0-30Gy and samples were prepared according to the manufacturer’s instructions in Caspase–Glo 3/7 assay kit (Promega). Luminescence emitted due to caspase-3/7 cleavage of the luminogenic substrate was measured for each dose at 6h and 24h post irradiation. Luminescence measured was proportional to the caspase activity present and the signal from no cell control was subtracted from the signal from the treated and untreated controls. The fold change values were calculated with Sham irradiated cells (Sh.I) as control group for statistical calculations.
12. **Clonogenic assay**

Clonogenic assays are considered gold standards to determine the cytotoxic effect of radiotherapy using ionizing radiations and chemotherapy using several chemical agents and also the latest intervention of dual treatments of chemo-radiotherapy. The intrinsic radiosensitivity of the two colorectal cell lines, HT-29 and HCT-116 was determined by this colony-forming assay. We tested two different protocols as outlined below and found that the seeding before irradiation protocol gave better results and thus used it for all our experiments.

12.1 **Seeding after irradiation protocol:**

Seed several T-25cm² flasks with appropriate number of cells and incubate them at 37°C in the incubator so as to have cells in the logarithmic growth phase after 2 days in culture. Irradiate these cells at the appropriate doses. Remove media from these flasks and wash them with PBS. Trypsinize each flask with 1 ml of 0.05% Trypsin-EDTA. Observe under microscope and make a single cell suspension in warm culture media (DMEM-10 + 10% FCS). Serially dilute and seed appropriate dilutions onto six well plates. Mix well for uniform distribution of cells and incubate at 37°C, 5% CO₂. For HCT-116 cells, we allowed them to grow for 8 days post-irradiation and for HT-29 cells we allowed them to grow for 12 days post-irradiation.

12.2 **Seeding before irradiation protocol:**

Label all the six-well plates (TPP) appropriately and add 2ml of media (DMEM-10 + 10% FCS) with or without the ligands for PPARβ and let it warm at 37°C in the incubator. Trypsinize a T-25cm² flask with 1ml of Trypsin and make a single cell suspension. Serially dilute in media with or without PPARβ ligands and seed appropriate dilutions on respective plates so as to have 100, 200, 400, 800 cells per well. Incubate overnight at 37°C, 5% CO₂ and four hours before irradiation add fresh media. Irradiate at the desired doses and culture at 37°C, 5% CO₂ for the desired time post-irradiation to allow colony formation. For HCT-116 cells, we allowed them to grow for 8 days post-irradiation and for HT-29 cells we allowed them to grow for 12 days post-irradiation.
12.3 Counting of colonies

We followed the standard procedure to count the colonies using the stereobinocular microscope. The number of colonies in each set of treatment for the different grades of irradiation doses was counted, with untreated and non-irradiated group serving as control. The plating efficiency (PE) is the ratio of the number of colonies to the number of cells seeded and was calculated as follows:

\[
PE = \frac{\text{Number of colonies counted}}{\text{Number of cells plated}} \times 100
\]

The number of colonies that arise after treatment of cells, expressed in terms of PE, is called the surviving fraction (SF):

\[
SF = \frac{\text{no. of colonies formed after treatment}}{\text{no. of cells seeded}} \times \text{PE}
\]

We determined the PE of control cells, that is, the fraction of colonies from cells not exposed to irradiation and ligand treatments. The surviving fraction of cells after any treatment was always calculated taking into account the PE of control cells (For details, see Franken et al., 2006).

13. H₂O₂ assays

We tested the role of PPARβ in a model of oxidant injury induced by the production of reactive oxygen metabolites by administration of H₂O₂ to intestinal cell lines, HT-29 and HCT-116.

HT-29 cells were seeded at a density of 0.01 X 10⁶ cells per well of a 96 well plate in media containing DMEM-10 with 10% FBS. HCT-116 cells were seeded at a density of 0.05 X 10⁶ cells per well of a 24 well plate in media containing DMEM-10 with 10% FBS. Both the cell types were incubated for 24h at 37°C, 5% CO₂ in an incubator. Further they were pre-treated with the PPARβ ligands for 24h in serum free media. The liganded media was then replaced with different concentrations of H₂O₂ (500µM – 5mM) prepared in serum free media and allowed to incubate at 37°C, 5% CO₂ for 1 hour. The media was
then removed and an MTT assay was performed as mentioned previously. The O.D reading at 550 nm was directly linked to the used to calculate the surviving fraction with cells without H₂O₂ serving as controls.

14. **Statistical analysis**

Data are expressed as mean ± S.E.M. All analysis was performed with Graphpad Prism version 5.0 software using one-way analysis of variance (ANOVA) followed by Newman–Keul’s multiple comparison tests, and paired two-tailed t-test where applicable. p<0.05 was considered to be statistically significant.
Chapter IV: Materials and Methods
REFERENCES

Anno GH, Baum SJ, Withers HR, Young RW. Symptomatology of acute radiation effects in humans after exposure to doses of 0.5-30Gy. Health Phys 1989; 56:821-838.

Barcellos-Hoff MH. How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 1998; 150: S109-S120.

Barker N, Clevers H. Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 2007; 133: 1755-1760.

References

Cimini A, Benedetti E, Cristiano L, Sebastiani P, D'Amico MA, D'Angelo B, Di Loreto S. Expression of peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RXRs) in rat cortical neurons. Neuroscience 2005; 130: 325-337.

Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 1997;94:4312-4317.

References

References

Kolomiitseva IK. Activation of cholesterogenesis in response to ionizing irradiation of the animal body. Radiobiologiiia 1986;26:3-10.

Potten CS. Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine. Radiat Res 2004;161:123–136.

Schug TT, Berry DC, Shaw NS, Travis SN, Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 2007;129:723-733.

Van den Brink GR. Hedgehog signaling in development and homeostasis of the gastrointestinal tract Physiol Rev 2007;87:1343–1375.

References

ANNEXES
Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon

Laurens Peyrin-Biroulet, Julia Beisner, Guoxing Wang, Sabine Nuding, Sahij Thottathil Oommen, Denise Kelly, Erika Parmentier-Decruyena, Rodrigue Desseina,j,k,l, Emilie Meroura, Philipe Chavattem, Teddy Grandjeana,l,k,i, Aude Bressenotn, Pierre Desreumauxa,i, Jean-Frédéric Colombela,i, Béatrice Desvergneg, Eduard F. Stange, Jan Wehkamp, and Mathias Chamaillard

*Institut National de la Santé et de la Recherche Médicale, U795, F-59037 Lille, France; †Institut National de la Santé et de la Recherche Médicale U954, F-54505 Vandoeuvre-lès-Nancy, France; ‡Faculté de Médecine, Nancy-Université, F-54505 Vandoeuvre-lès-Nancy, France; ‡Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; ‡University of Tübingen, 70376 Stuttgart, Germany; ‡Department of Internal Medicine I, Robert Bosch Hospital, Stuttgart, Germany; ‡Center for Integrative Genomics, Genopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland; ‡Gut Immunology Group, Rowett Institute of Nutrition & Health, University of Aberdeen, Aberdeen AB21 9SB, Scotland, United Kingdom; ‡Univ Lille Nord de France, F-59000 Lille, France; ‡Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille, France; ‡Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; ‡Institut National de la Santé et de la Recherche Médicale, U1019, Team 7, Equipe FRM, F-59019 Lille, France; ‡Univ Lille Nord de France, EA1043, F-59000 Lille, France; and ‡Service de Pathologie, Hospital Central, CHU Nancy, F-54035 Nancy, France

Edited by Richard A. Flavell, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT, and approved March 25, 2010 (received for review May 3, 2009)

Crohn’s disease (CD), a major form of human inflammatory bowel disease, is characterized by primary immunodeficiencies. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is essential for intestinal homeostasis in response to both dietary- and microbiota-derived signals. Its role in host defense remains unknown, however. We show that PPARγ functions as an antimicrobial factor by maintaining constitutive epithelial expression of a subset of β-defensins in the colon, which includes mDefB10 in mice and DEFB1 in humans. Colonic mucosa of Pparγ mutant animals shows defective killing of several major components of the intestinal microbiota, including Campylobacter jejuni, Bacteroides fragilis, Enterococcus faecalis, and Escherichia coli. Neutralization of the colicidal activity using an anti-mDefB10 blocking antibody was effective in a PPARγ-dependent manner. A functional promoter variant that is required for DEFB1 expression confers strong protection against Crohn’s colitis and ileocolitis (odds ratio, 0.559; P = 0.018). Consistently, colonic involvement in CD is specifically linked to reduced expression of DEFB1 independent of inflammation. These findings support the development of PPARγ-targeting therapeutic and/or nutritional approaches to prevent colonic inflammation by restoring antimicrobial immunity in CD.

β-defensin | Crohn’s disease | microbiota | nutrition | PPAR-γ

Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory disorders of the gastrointestinal tract that are influenced by both genetic and environmental factors. As many as 1.4 million persons in the United States may suffer from these forms of inflammatory bowel disease (IBD) (1). No curative treatment is available for these lifelong and disabling disorders. Although UC lesions are limited to the colon and the rectum, CD lesions can affect any portion of the gastrointestinal tract. Anti-inflammatory lesions in both experimental and spontaneous models of colitis (5) and might be effective in UC (6). Consequently, we evaluated the role of PPARγ in host defense through regulation of antimicrobial peptides in the intestinal mucosa of patients with IBD.

Results

PPARγ Directly Regulates DEFβ1 Expression in Human Colonocytes

We first searched for potential binding sites of PPARγ within the promoter of human β-defensins expressed primarily in the colon, namely the β-defensin 1–4 (DEFB1–4) (3, 7). In silico approaches were performed within the 5’ vicinity to the starting codon of the DEFB1–4 encoding genes. We failed to determine putative PPRE within the 0.3-kb downstream untranslated region of DEFB2-4. In contrast, the promoter region of DEFB1 had four sites with a potential binding affinity to PPARγ (Fig. L4). Next, by combining two in silico approaches, we identified five additional putative PPREs within the promoter region of DEFB1 (Fig. L4). Among the total of nine potential PPREs, three were of DR1 motif and six were of DR2 motif (Table S1). We then systematically and formally assessed the binding activity of RXRα/PPARγ heterodimer to each of these potential PPREs through an electrophoretic mobility shift assay. Four potential sites bound avidly to recombinant RXRα and PPARγ protein (Fig. L8). Up to a 2-fold increase in luciferase

Author contributions: L.P.-B., J.W., and M.C. designed research; L.P.-B., J.W., and M.C. wrote the paper. L.P.-B., J.B., and G.W. contributed equally to this work.

The authors declare no conflict of interest.

This Direct Submission article had a prearranged editor. Freely available online through the PNAS open access option.

Author contributions: L.P.-B., J.B., and G.W. contributed equally to this work.

1To whom correspondence may be addressed. E-mail: mathias.chamaillard@inserm.fr or jan.wehkamp@kbp-stuttgart.de.

2This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.0905745107/-/DCSupplemental.

Author contributions: L.P.-B., J.W., and M.C. designed research; L.P.-B., J.W., and M.C. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freedly available online through the PNAS open access option.

1L.P.-B., J.B., and G.W. contributed equally to this work.

2To whom correspondence may be addressed. E-mail: mathias.chamaillard@inserm.fr or jan.wehkamp@kbp-stuttgart.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.0905745107/-/DCSupplemental.

Author contributions: L.P.-B., J.W., and M.C. designed research; L.P.-B., J.W., and M.C. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freedly available online through the PNAS open access option.

1L.P.-B., J.B., and G.W. contributed equally to this work.

2To whom correspondence may be addressed. E-mail: mathias.chamaillard@inserm.fr or jan.wehkamp@kbp-stuttgart.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.0905745107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.0905745107
activity of the DEFBI promoter was consistently observed in Caco-2 cells after cotransfection with a DEFBI reporter plasmid vector and a pSG5-PPARγ1 or pSG5-PPARγ2 expression construct (Fig. 1C). Treatment of Caco-2 cells with the synthetic thiazolidinedione rosiglitazone caused a significant increase in mRNA levels in both DEFBI and ADRP, a known PPARγ target gene, compared with mock-treated cells. In contrast, IL-8 and TNF-α expression was unaffected by PPARγ activation in vitro (Fig. 1D). Collectively, these in vitro results suggest that certain exogenous and endogenous signals might be involved in the regulation of epithelial expression of DEFBI through PPARγ activation.

PPARγ Is Essential for Colonic Expression of a Subset of β-Defensins in Mice. To further assess the regulatory role of PPARγ in β-defensin expression in vivo, we used two mice models of PPARγ deficiency. Among the 21 mouse β-defensin encoded in the *Mus musculus* C57BL6/J genome reference assembly (build 37.1), the colonic mucosa of both Pparγ+/− and Pparγ−/− mice showed significantly reduced expression of certain β-defensins, including mDefB10 (Fig. 2 A and B), compared with WT littermates. The in silico analyses consistently revealed seven putative PPREs within the promoter region of mDefB10 (Fig. 2C and Table S2). The mDefB10 gene expression pattern remained broadly unchanged along the colon (Fig. 2B). In contrast, we found that the colonic expression of other β-defensins, including mDefB1, was regulated independently of PPARγ (Fig. 2B). Rosiglitazone given orally or rectally for 14 days induced a 6- to 12-fold induction of mDefB10 mRNA expression throughout the colon compared with untreated mice, whereas mDefB1 mRNA expression was unaffected by rosiglitazone treatment (Fig. 2D). Taken together, these findings indicate that PPARγ activation by both exogenous and endogenous signals may be required to maintain the constitutive physiological expression of certain β-defensins in the colon.

PPARγ Deficiency Impairs Innate Antimicrobial Immunity in the Mouse Colon. Human colon coexists in intimate contact with up to 100 trillion microorganisms (8). Imbalance in the gut microbiota has
been implicated in the pathogenesis of CD. PPARγ is thought to be involved in the innate immune response to microbial infection, but the mechanisms remain poorly understood (9, 10). Thus, we investigated the antimicrobial activity of PPARγ against microbes linked to IBD pathogenesis (8). Interestingly, cationic peptides extracted from colonic mucosa of Pparγ^{−/−} mice exhibited defective killing of cultured *Bacteroides fragilis, Enterococcus faecalis*, and *Candida albicans* compared with WT animals (Fig. 3A). The viability of a clinical isolate of *Escherichia coli* also was significantly decreased after a 90-min exposure to colonic biopsy extracts of controls compared with *Pparg* mutant animals (Fig. 3A). We then evaluated the regulatory role of PPARγ on the mDefB10-mediated mucosal antibacterial activity. Most of the colicidal activity of colonic cationic extracts isolated from WT mice was blocked using an anti-mDefb10 antibody (Fig. 3B). Conversely, the blocking activity of anti-mDefb10 on colonic biopsy extracts isolated from *Pparg^{+/−}* mice was decreased significantly (Fig. 3B), providing a link between the mDefB10 expression deficiency and impaired antimicrobial immunity in the colon of *Pparg* mutant mice.

PPARγ Is Dispensable for Innate Antimicrobial Immunity in the Mouse Ileum. Given our previous results and the fact that PPARβ regulates Paneth cell differentiation (10), we next explored the hypothesis that reduced expression of PPARγ might be linked to Crohn’s ileitis by failing to regulate antimicrobial immunity in the ileum. In contrast to the expression of Defb10 in the colon, the expression of Paneth cell–derived antimicrobial peptides remained unaffected in *Pparg^{+/−}* mice (Fig. S1). Moreover, no significant difference in small intestine antimicrobial activity was seen between the WT and *Pparg* mutant mice (Fig. S2). Similarly, the diversity of the fecal-associated microbiota was similar in *Pparg^{+/−}* and control littermates (Fig. S3), as determined by real-time quantitative PCR (qPCR) on bacterial 16S rDNA of the major bacterial phyla of the fecal flora (9). Collectively, these results demonstrate that PPARγ is essential for maintaining optimal expression of a subset of β-defensins in the mouse colon, providing a possible mechanism for the impaired microbial killing of the colon in *Pparg*-deficient mice and mucosal adherence of certain microorganisms in CD (11).

DEFB1 Expression Is Reduced in CD with Colonic Involvement. We next measured the mucosal level of DEFB1 in patients with CD, patients with UC, and controls. DEFB1 expression was specifically reduced at the mRNA level in the macroscopically and histologically noninflamed colonic mucosa of patients with colonic involvement (L2 and L3) (*P < 0.001* by one-way ANOVA) (Fig. 4A), resulting in decreased protein expression of DEFB1 (Fig. 4C). The colonic expression of DEFB1 in colonic biopsy specimens from patients with pure ileal CD (L1) or UC did not differ significantly from that in controls (Fig. 4A). No correlation between DEFB1 and IL-8 transcript levels was observed in colonic biopsy specimens from control and CD subjects (Fig. 4B), suggesting that impaired DEFB1 expression in colonic CD is not linked to inflammation-associated tissue damage. In contrast, and as reported previously (3), constitutive DEFB1 expression was unchanged in noninflamed colonic mucosa of UC patients expressing low transcript levels of PPARγ (5). These results indicate PPARγ-independent regulatory mechanisms of colonic DEFB1 expression in UC that remain to be identified.

Colonic Involvement in CD Is Associated with a Functional Variant of DEFB1 Promoter. To test the hypothesis that the reduced DEFB1 expression in L2 and L3 patients may be related to the CD-

Fig. 3. PPARγ activation is required for microbiocidal activity in the colon. (A) Cationic proteins were extracted from colonic mucosal biopsy specimens from *Pparg^{−/−}* mice (*n* = 6) and controls (*n* = 5). Values represent the mean and normalized antimicrobial activity of each sample against *B. fragilis* (ATCC 25285), *E. faecalis* (clinical isolate 404), *E. coli* (clinical isolate 304446), and *C. albicans* (clinical isolate 526). (B) Anti-mDefb10 antibody was used to inhibit the antimicrobial activity of the colon of *Pparg^{−/−}* mice (*n* = 4) and their WT littermates (*n* = 6) against *E. coli* (clinical isolate 304446). All experiments were performed in duplicate, and *P* values were determined by the Mann-Whitney test. NS, not significant.

Fig. 4. Reduced expression of DEFB1 is specifically linked to colonic involvement in CD. (A) Relative gene expression in macroscopically noninflamed colonic biopsy specimens from ileal (*n* = 21), colonic (*n* = 16), and ileocolonic (*n* = 21) CD patients compared with UC patients (*n* = 8) and controls (*n* = 17) who underwent colonoscopy. Values represent the mean of normalized data ± SEM, as measured by real-time qPCR. NS, not significant. *P* values were determined by the nonparametric Kruskal-Wallis and Mann-Whitney tests. (B) Correlation between DEFB1 and IL-8 transcript levels in CD. *P* values were determined by the nonparametric Spearman test. (C) Immunohistochemical localization of DEFB1 in control (Left) and Crohn’s colitis patients (Right). (Scale bar: 10 μm.)
associated variants within the promoter of DEFB1 (12), we next performed a genotype-phenotype analysis in CD. No significant differences were observed between the allele frequencies in the Hungarian cohort (13) and our French cohort of CD patients (Table 1). Consistently, we confirmed that the genetic promoter variation in DEFB1, namely rs1800972, was solely associated with colonic involvement in CD (13) (Table 1). Notably, the rs1800972 G allele had a significantly lower frequency in patients with pure colonic disease (L2) compared with L1 patients [odds ratio (OR), 0.524; 95% confidence interval (CI), 0.286–0.961; \(P = 0.035 \)], as well as in patients with colonic involvement (L2 + L3) (OR, 0.559; 95% CI, 0.344–0.909; \(P = 0.018 \)). Unlike rs1800972, the SNP rs11362 G allele was found with a lower frequency in patients with colonic involvement, but this effect was not statistically significant (OR, 0.710; 95% CI, 0.473–1.064; \(P = 0.096 \)).

Discussion

Taken together, our findings suggest a key role of PPARγ in the maintenance of DEFB1 expression, thus contributing to the bacterial and candidacial activity of the colonic mucosa (4). In CD with colonic involvement, constitutive deficiency of DEFB1 expression might contribute to diminished microbial killing by the colonic mucosa that subsequently results in increased mucosal adherence of certain microorganisms (11), excessive inflammation, and enhanced antibody response to microbial antigens in CD (14) (Fig. 5). Finally, in line with previous in vitro findings (15–17), DEFB1 expression was inversely correlated with the carriage of *C. albicans* (18) and the humoral response to mannan, a major epitope for anti-*Saccharomyces cerevisiae* antibody (ASCA) production (17). *C. albicans* colonization was significantly increased in CD patients and was identified as an immunogen for ASCA (19), a serologic marker associated mainly with colonic involvement in CD (23). In line with the findings of a recent study (20), we provide a mechanism whereby the rs1800972 G allele might be linked to transactivation of DEFB1 expression through PPARγ. It also might account for the inefficacy of PPARγ-based therapy, such as 5-aminosalicylates, in the colon of CD patients with colonic involvement compared with UC patients. Whether a maintained DEFB1 expression level might be necessary to account for the protective effect of PPARγ on the development of colorectal cancer will require additional investigation (21, 22). In summary, we believe that restoring PPARγ-dependent antimicrobial barrier function might prevent and/or cure inflammatory lesions in the colon of patients with CD.

Materials and Methods

Patients. Through colonoscopy, human colonic biopsy specimens were obtained from macroscopically noninflamed colonic mucosa of healthy individuals (controls, \(n = 17 \)), CD patients with pure ileal disease (L1 according to the Montreal classification; \(n = 21 \)) (Table 54), CD patients with solely colonic involvement (L2; \(n = 16 \)) (Table S5), CD patients with ileocolitis (L3; \(n = 21 \)) (Table 56), and UC patients (\(n = 8 \)). The diagnoses of CD and UC were based on standard criteria using clinical, radiologic, endoscopic, and histopathologic findings. All clinical investigations were conducted according to the principles expressed in the Declaration of Helsinki.

Dysbiosis

Medical Sciences

Table 1. Genotype and allele frequencies of DEFB1 rs1800972 and rs11362 in CD

<table>
<thead>
<tr>
<th>SNP</th>
<th>Crohn’s disease, (n (%)</th>
<th>Ileal (L1), (n (%)</th>
<th>Colonic (L2), (n (%)</th>
<th>Ileocolonic (L3), (n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1800972</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>170 (68.27)</td>
<td>40 (58.82)</td>
<td>77 (71.30)</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>70 (28.11)</td>
<td>23 (33.82)</td>
<td>19 (26.03)</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>9 (3.61)</td>
<td>1 (1.37)</td>
<td>3 (2.78)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>410 (82.33)</td>
<td>125 (85.62)</td>
<td>182 (84.26)</td>
<td>34 (15.74)</td>
</tr>
<tr>
<td>G</td>
<td>88 (17.67)</td>
<td>33 (23.46)</td>
<td>21 (14.38)</td>
<td>15.74</td>
</tr>
<tr>
<td>rs11362</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>82 (33.06)</td>
<td>24 (32.88)</td>
<td>31 (28.70)</td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>113 (45.56)</td>
<td>34 (46.58)</td>
<td>50 (46.30)</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>53 (21.37)</td>
<td>15 (20.55)</td>
<td>27 (25.00)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>277 (55.85)</td>
<td>82 (56.16)</td>
<td>112 (51.85)</td>
<td>112 (51.85)</td>
</tr>
<tr>
<td>A</td>
<td>219 (44.15)</td>
<td>64 (43.84)</td>
<td>104 (48.15)</td>
<td>104 (48.15)</td>
</tr>
</tbody>
</table>
Electrophoretic Mobility Shift Assay. Gel mobility shift assays were performed as described previously (24). In brief, human PPARγ and RXRα protein were synthesized using pSG5-h-PPARγ-1, pSG5-h-RXRα-2, and pCDNA3.1-RXRα according to the protocol of the TNT T7 Quick-Coupled Transcription/Translation System (Promega). Nuclear response elements were prepared by annealing 10 μM each of two complementary oligonucleotide stocks (100 μM) in 180 μL of 25 mM NaCl, 25 mM Tris-HCl (pH 7.5), and 5 mM MgCl2. For radioactive labeling, 2 μL of the annealed oligonucleotides; 5 μL of 10× buffer [500 mM NaCl, 500 mM Tris-Cl (pH 7.5), and 100 mM MgCl2]; 25 μL of (α-32P)dCTP; 5 μL of 2 mM dATP, dGTP, and dTTP; 2 U of Klenow fragment; and water to a final volume of 50 μL were incubated at 37 °C for 1 h and purified through Sephacel columns (MicroSpin G-25; GE Healthcare). The binding reaction contained 10 mM Hepes (pH 7.8), 60 mM KCl, 0.2% Nonidet P-40, 6% glycerol, 2 mM DTT, 0.25 μg of (α-32P)dCTP, 5 μL of pDestMAD30(+), and 2 μL of 10× non-specific oligonucleotides (5′-AGC TTG CGA AAA TTG TCA CTT CCT GTG TAC ACC CA-3′), 50,000 cpm labeled probe, and 2 μL of full-length synthesized PPARγ and/or RXRα in a final volume of 20 μL. Samples were incubated on ice for 20 min after addition of the labeled probe. Protein–DNA complexes were resolved on a pre-electrophoresed 5% polyacrylamide gel in 44.5 mM Tris-borate (pH 8.3), 1 mM EDTA, at 400 V for 20 min after addition of the labeled probe. An ImageQuant (Amersham Biosciences) was used to analyze the gel and quantify the specific binding of the probe to the oligonucleotide labeled probe. Specific binding was calculated by subtracting the intensity of each lane from the intensity of the total intensity of the film. The specificity of the binding was determined by competitor studies with an excess of unlabeled competitor DNA.

Flow Cytometric Antimicrobial Extraction. Extraction of cationic proteins from colon and ileal tissue of Ppyr−/− (n = 6) and Ppyr+/+ (n = 5) mice was performed as described previously (24). C. albicans (clinical isolate 526; Institute of Laboratory Medicine, Klinik am Eichert), E. faecalis (clinical isolate 404), and E. coli (clinical isolate 304446) were grown aerobically at 37 °C, whereas B. fragilis (clinical isolate 52586) and E. coli (clinical isolate 404) were cultured anaerobically (AnaeroGen; Oxoid). All clinical isolates were kindly provided by the Institute of Laboratory Medicine, Klinik am Eichert. Then cell suspensions in Schaedler broth bouillon (1:6 dilution) were incubated at a concentration of 1.5 × 10^6 cells/mL with cationic proteins isolated from 10 μg total extract at 37 °C. After 90 min, 1 μg/mL of the membrane potential-sensitive dye bis-(1,3-dibutylbarbituric acid) trime-thine oxonol ([DBAC][3]) (Invitrogen) was added. After 10 min, the suspensions were centrifuged for 10 min at 4,500 × g, and then the bacterial or fungal pellets were resuspended in 300 μL of PBS (pH 7.4). For blocking experiments with anti-mDefB10 antibody, cationic extracts of colon tissue from WT and PPARγ−/− mice (35 μg/mL) were incubated for 1 h at 37 °C with or without anti-mDefB10 antibody resuspended in 0.1 M phosphate buffer at a concentration of 10 μg/mL. Subsequently, E. coli (clinical isolate 304446) was added in a concentration of 1.5 × 10^6 cells/mL in Schaedler broth bouillon (1:6) with aquea da. A total of 10,000 events were analyzed with a FACSCa-libar flow cytometer and Cell Quest software (BD) for light scattering and gating efficiency. Antimicrobial activity was determined as percentage of depolarized fluorescent cells with respect to the bacterial control incubated with solvent.

Genotyping. Genotyping for the DEF1 promoter polymorphisms rs11362 and rs1800972 was performed using TaqMan SNP Genotyping Assays (assay c_11636793_20 [rs11362] and assay c_11636794_10 [rs1800972]) on a Prism 7900 System (Applied Biosystems), according to the supplier’s instructions. Initial and postassay analyses were performed using the Sequence Detection System version 2.3 (Applied Biosystems). One-third of the samples were analyzed in duplicates as an internal control, and DNase-free water was used as a nontemplate control.

Statistics. Data were analyzed using Prism 4.0 (GraphPad Software). The unpaired Student t test was used to test for significant differences between activities of different promoter constructs. Statistical analysis was performed using the Spearman test for nonparametric correlation analysis and the Mann-Whitney test for normalized gene expression in mice and antimicrobial assays, and the Kruskal-Wallis test for normalized gene expression in humans. Differences were considered significant at P < 0.05. Values represent the mean of normalized data ± SEM.

Acknowledgments. We thank C. Winkler and A. Coutts for their excellent technical assistance; T. Ganz and P. Chavatte for kindly providing the anti-DefB10 antibody and Rosiglitazone; I. Zlotnik for critical reading of the manuscript; and L. Dubruy for helpful discussion. This work was supported by the Association des chefs de service du CHU de Nancy and by grants from the Fondation pour la Recherche Médicale, UCB Pharma, and Sanofi-Aventis. The study was also supported by the Robert Bosch Foundation, the Deutsche Forschungsgemeinschaft Emmy Noether program (WE 436/1-1), and Sonderforschungsbereich 685 (Immunotherapy; Project A9).

The content is presented in a readable and organized manner, with proper formatting and layout. The text is free of errors and maintains the original meaning and structure of the source material.

Evolutionarily Conserved, Growth Plate Zone-Specific Regulation of the Matrilin-1 Promoter: L-Sox5/Sox6 and Nfi Factors Bound near TATA Finely Tune Activation by Sox9

Andrea Nagy,† Erzsébet Kénesi,†‡ Otgonchimeg Rentsendorj,†‡ Annamária Molnár,† Tibor Szénási,† Ildiko Sínkó,† Agnes Zvara,‡ Sajit Thottathil Oommen,§ Endre Barta,³ László G. Puskás,² Veronique Lefebvre,⁴ and Ibolya Kiss¹*

Institute of Biochemistry¹ and Institute of Genetics,² Biological Research Center of the Hungarian Academy of Sciences, Szeged 6701, Hungary; Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical and Health Sciences Center, University of Debrecen, Debrecen 4010, Hungary; and Department of Cell Biology, Rheumatologic and Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195

Received 8 January 2010/Returned for modification 1 March 2010/Accepted 15 November 2010

To help uncover the mechanisms underlying the staggered expression of cartilage-specific genes in the growth plate, we dissected the transcriptional mechanisms driving expression of the matrilin-1 gene (Matn1). We show that a unique assembly of evolutionarily conserved cis-acting elements in the Matn1 proximal promoter restricts expression to the proliferative and prehypertrophic zones of the growth plate. These elements functionally interact with distal elements and likewise are capable of restricting the domain of activity of a pancartilaginous Col2a1 enhancer. The proximal elements include a Pe1 element binding the chondrogenic L-Sox5, Sox6, and Sox9 proteins, a SI element binding Nfi proteins, and an initiator Ine element binding the Sox trio and other factors. Sox9 binding to Pe1 is indispensable for functional interaction with the distal promoter. Binding of L-Sox5/Sox6 to Ine and Nfib to SI modulates Sox9 transactivation in a protein dose-dependent manner, possibly to enhance Sox9 activity in early stages of chondrogenesis and repress it at later stages. Hence, our data suggest a novel model whereby Sox and Nfi proteins bind to conserved Matn1 proximal elements and functionally interact with each other to finely tune gene expression in specific zones of the cartilage growth plate.

Sox proteins play critical roles in lineage specification during development (18, 21, 25). They have an Sry-related high-mobility-group (HMG) box domain, which binds the minor groove of DNA with low affinity. They may act as architectural proteins to organize transcriptional complexes (25). Three Sox proteins direct chondrocyte specification and differentiation, but it is still unclear how they orchestrate the sequential induction of cartilage-specific genes in developing endochondral bones.

Endochondral bones form through tightly intertwined morphogenetic and differentiation events (11, 20, 24, 37). First, mesenchymal cells condense, commit to the chondrocyte lineage, and undergo chondrocyte early differentiation to form cartilage primordia of future bones. They then sequentially differentiate into proliferating, prehypertrophic, hypertrophic, and terminal cells and ultimately die to allow replacement of cartilage by bone. Importantly, the multiple layers of cells that comprise cartilage primordia proceed through the multiple steps of differentiation in a staggered manner. They thereby establish growth plates (GP), i.e., a series of adjacent tissue zones comprising cells at progressively more advanced stages of maturation. The process is tightly regulated both spatially and temporally to allow GP to continue to grow in one end and to be progressively replaced by bone in the other end throughout fetal and postnatal growth (24). Bone growth is determined by the number of cells proliferating in the columnar zone and progressing toward hypertrophy. It involves complex functional interactions between fibroblast growth factor (FGF), Ihh, parathyroid hormone-related protein (PTHrP), and other factors and signaling pathways that allow chondrocytes to constantly modify their gene expression profile (11, 20, 37). Mutations in these factors and pathways cause severe forms of dwarfism and skeletal malformation diseases (20, 33). Elucidating the transcriptional mechanisms involved in specifying gene expression in specific GP zones has thus special importance to allow development of suitable therapies for such diseases.

The composition of the cartilage extracellular matrix (ECM) progressively changes from one GP zone to the next. This is largely due to staggered expression of the genes encoding the specific components of this matrix (8, 24, 39). Col2a1 (collagen-2 gene) is activated as soon as prechondrocytes differentiate, whereas Agc1 (aggrecan gene) and most other cartilage ECM genes are turned on in early chondroblasts (24). In contrast, Matn1 (matrilin-1 gene) exhibits a narrower spatiotemporal activity (30, 31, 39, 42). It has the unique feature of being
expressed exclusively in the overtly differentiated chondroblasts of the columnar and prehypertrophic GP zones (4, 5, 19). Chondrocytes turn all these genes off as they undergo hypertrophy and then activate Col10a1 (collagen-10 gene).

Sox9, L-Sox5, and Sox6 form a trio of transcription factors that are both required and sufficient to induce chondrogenesis (2, 7, 14, 38). Their main functions are to bind and thereby directly induce activation of Col2a1, Acan, and several other cartilage ECM genes (1, 13, 23–26). Sox9 features a family-specific HMG box DNA-binding domain and a homodimerization domain, which mediate its binding to pairs of inverted Sox motifs (13, 26). It also features a potent transactivation domain. L-Sox5 and Sox6 are highly related to each other but only distantly related to Sox9 through their HMG box domain. They feature a dimerization domain, distinct from that of Sox9, and lack a transactivation domain. They bind more-variable Sox motifs on cartilage-specific enhancers and cooperate with Sox9 in transactivation by increasing the efficiency of Sox9 binding to its own sites on DNA (13). It remains unknown, however, whether and how the activity of this Sox trio is controlled to confer markedly different expression patterns on the various cartilage ECM genes. We used here the Matrilin-1 promoter as a model to reach deeper insight into gene regulation orchestrated by the Sox trio.

Matrilin-1 (also called cartilage matrix protein [CMP]) belongs to a family of multidomain adaptor proteins (10, 22, 44). It facilitates assembly of the cartilage ECM by forming collagen-dependent and -independent filaments and interacting with aggrecan. It also forms complexes with biglycan, and decorin, linking collagen-6 microfibrils to aggrecan and collagen-2 (45). We previously showed that the Matrilin-1 promoter features several blocks of sequences highly conserved in anniiotes (34). A 334-bp short promoter is insufficient to direct reporter gene activity in cartilage in transgenic mice (34) but can be activated at a low level in the Matrilin-1-specific GP zones upon addition of an intronic enhancer (19). Stronger activity is obtained by using a 2-kb promoter with or without the intronic enhancer (19). These data suggest that the proximal promoter may contain the cis-acting elements driving Matrilin-1 expression in the growth plate but requires distal and intronic enhancers to be activated. This short promoter features highly conserved promoter element 1 (Pe1), recognized by the Sox trio, and two silencer elements (SI and SII) binding Nfı proteins (34, 41).

Here we demonstrate that the short promoter has a central role in conferring on Matrilin-1 its restricted spatiotemporal expression pattern. We show the respective roles of the Sox-binding sites in the Pe1 and the Ine elements and Nfı-binding sites in the SI element. We show that L-Sox5/Sox6 and Nfı differentially modulate promoter activation by Sox9, according to the relative levels of the proteins. Our data thereby provide new insights into the transcriptional mechanisms that underlie staggered gene expression in the cartilage GP.

MATERIALS AND METHODS

Cell culture. Chicken embryonic chondroblasts (CEC) and fibroblasts (CEF) and mesenchyme were prepared and cultured as described previously (41). Low-density mesenchyme (LDM) and high-density mesenchyme (HDM) cultures were made similarly, by plating 1 × 10⁶ cells and 5 × 10⁶ cells, respectively, in 35-mm plates containing F-12 medium–Dulbecco’s modified Eagle medium (DMEM) (1:1; HyClone Laboratories) supplemented with 10% fetal bovine serum (FBS; Sigma and Gibco Laboratories). COS-7 cells were cultured under standard conditions. HDM cultures consisting of early proliferative (stage Ia) chondroblasts and CEC cultures rich in late proliferative (stage Ib) chondroblasts express Matrilin-1 at low and high levels, respectively (31, 41, 42). LDM, CEF, and COS-7 cells served as Matrilin-1-negative controls.

Oligonucleotides and plasmid constructions. Nucleotide sequences for wild-type and mutant versions of Pe1 and SI and consensus HMG and Sox9 competitors were described previously (34, 41). Sequences of oligonucleotides for wild-type Ine, Ine derivatives, and mutant versions of Ine are depicted in Fig. 3B. All positions are given in bp from the first T of the chicken Matrilin-1 TATA motif. The TR70 (−201 to +67) and NAD1 (−334 to +67) Matrilin-Luc constructs were reported previously (19, 34). PS-NAD1 was produced by inserting the −201 to −948 Matrilin sequence upstream of NAD1. Eight tandem copies of a 48-bp Col2a1 enhancer element (ECol2a1) were inserted upstream of NAD1 to obtain 8×ECol2a1-NAD1. ΔNme1-TR70 was made by replacing the NAD1 promoter with the −201 to −67 fragment of ΔNme1-AC8Luc (see below).

Luciferase reporters FO15Luc and AC8Luc, driven by the short and long Matrilin promoters, respectively, as well as ΔPe1M1-FO15Luc and ΔPe1M1-AC8Luc, carrying point mutations in the Sox motif and spacer of Pe1, respectively, were described (34). To produce 8×ECol2a1-FO15Luc, eight copies of ECol2a1 were inserted upstream of FO15Luc. Mutations were introduced into Pe1, Inc, and SI elements of reporters by PCR-based QuikChange site-directed mutagenesis (Stratagene) using oligonucleotides carrying the desired mutations. All constructs were verified by restriction enzyme analysis and DNA sequencing.

Generation and histological analysis of transgenic mice. All animal experiments were conducted according to the ethical standards of the Animal Health Care and Control Institute, Csongrád County, Hungary, C57BL/6, CBA, CD-1, and FVB mice were obtained from Charles River Laboratories, Hungary. Transgenic mice were generated essentially as described previously (19). On embryonic day 15.5 (E15.5), foster mothers were sacrificed by cervical dislocation and the transgenes were detected by PCR in founder (G0) embryos. These embryos were stained with X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) and photographed as whole mounts with a Leica MZFLIII stereomicroscope equipped with a DC300F camera. Cryosections were counterstained with 0.5% crystal violet and analyzed using a Nikon Eclipse E800 microscope equipped with a Spot RT Slider camera as described previously (19). Figures were made with Adobe Photoshop 8.0 and CorelDraw X4 software.

EMSA and supershift experiments. Full-length cDNAs for L-Sox5 and Sox6 were inserted in frame into the pGEX expression vector. Glutathione X-transferrase (GST)-tagged L-Sox5, Sox6, and Sox9 were expressed and purified, and crude cell extracts were made as described previously (34). Twenty to 30 fmol end-labeled DNA probes was incubated with 1 to 2.5 μg GST-SOX9 or GST-L-Sox5 or 3 μg crude CEC or CEF cell extracts in the presence of 100 to 500 ng poly(G-dC)·(dG-dC) and separated on prerun 5% or 6.6% PAGE gel. In competition electrophoretic mobility shift assays (EMSA), 50- and 500-fold molar excesses of cold competitors were added. Supershift experiments were performed as described previously (34) using Sox9, L-Sox5, and Sox6 antisera (26).

Genomic footprinting. CEC and CEF cells and CEC cell cultures were treated with dimethylsulfate (DMS) or irradiated with UV light and subjected to genomic footprinting as described previously (34). Briefly, 30 μg of in vivo- and in vitro-transduced DNA samples cleaved with piperidine were amplified by ligation-mediated PCR (LM-PCR) (32) between +227 and +140 using linker primers LP11 and LP25 and gene-specific nested primers PU1 and PU2 (upper strand), PL1 and PL2 (lower strand), and PU3 or PL3 (hybridization probe) (34) (see Fig. 4A).

Transient expression assay. CEC, CEF, and COS-7 cells were transfected with the Ca-phosphate coprecipitation method 4 to 6 h after plating (34, 41). HDM and LDM cultures were transfected similarly, but 24 h after plating. Briefly, 2 μg (CEC and CEF) or 5 μg (HDM, LDM, and COS-7) reporters was added with 0.5 μg pRL-TK vector (Promega) as an internal control to correct for transfection efficiency. Control plates were transfected with FO15Luc. Firefly and Renilla luciferase activities were measured using Luminoscan Ascent (ThermoLab system 2.6) and luciferase assay systems (Promega) 72 h (HDM and LDM) or 48 h (other cells) posttransfection.

Unless indicated otherwise, cotransfections were performed with 2 μg or 5 μg AC8Luc and increasing amounts (50 to 250 ng) of effector plasmids pcDNA3/UT-FLAG-L-Sox5 (pSox5) and pcDNA3/UT-FLAG-Sox6 (pSox6) (26) or with 250 ng pcDNA-SOX9 (pSox9) (26). In a typical experiment, 250 ng pSox9 and 125 ng each of pSox5 and pSox6 effector plasmids were used. Other experiments were performed with 0 to 300 ng effector plasmids expressing human CTF-1 (pCTF-1) (36) or mouse Nfia, Nfib, Nfic, and Nfix (pNfia, pNfib, pNfic, and pNfix), homologous to chicken Nfia1, Nfib2, Nfic2, and human NFIX2, respectively (9). Transfection mixtures were adjusted with
empty vectors to the same amount of total DNA. Luciferase activities were expressed as fold values relative to that for FO15Luc, taken as 1, unless noted otherwise. Transfections were performed in duplicate or triplicate and repeated 3 to 10 times with at least two different DNA preparations. Results are presented as means ± 2 standard errors of the means (SEM).

Combined forced expression and Western analysis. To estimate the relative expression levels of Sox and Nfi proteins, we used pcDNA5-UT-FLAG-SOX9 (pFSON9) (26) and we made pFNfib by inserting fragments of Ni expression plasmids (9) into pcDNA5-UT-FLAG. COS-7 cells were cotransfected as described above with ACSLuc, 1 μg pFSON9, and increasing amounts of effector plasmids pFSox5 and pFSox6 or pFNfib. Transfected cells were lysed in 100 μl buffer containing 14 mM HEPES (pH 7.9), 1.5 mM MgCl2, 6 mM KCl, 0.44 mM NaCl, 0.08 mM EDTA, 2.3 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride, 10% glycerol, and a protease inhibitor cocktail (Sigma-Alrich, P2714). Supernatants were used to measure luciferase activities and in Western blots with rabbit anti-FLAG (Sigma) antisera.

Statistical analysis was carried out using one-way analysis of variance (ANOVA) with KyPlot version 2.0 beta 15.

QRT-PCR. Total RNA was isolated from cultured cells using an RNA isolation kit (Machery-Nagel). Quantitative real-time PCR (QRT-PCR) was performed on a RotorGene 3000 instrument (Corbett Research) with gene-specific primers and the SYBR green protocol (16). Briefly, 2 μg of DNAse-treated RNA was reverse transcribed using the High-Capacity cDNA Archive kit (Applied Biosystems). Reactions were done with FastStart SYBR green Master mix (Roche Applied Science) at a primer concentration of 250 mM as follows: 15 s at 95°C and 45 cycles of 95°C for 15 s, 60°C for 25 s, and 72°C for 25 s. The quality of the reaction was checked by melting temperature analysis. Individual threshold cycle (Ct) values were normalized to the average Ct values of three internal control genes (glyceraldehyde 3-phosphate dehydrogenase [GAPDH], 18S rRNA, and 28S rRNA genes). The final relative gene expression ratios were calculated as ΔΔCt values (comparison of the normalized ratios). Gene-specific primer sequences are shown in Table S1 at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf.

Genome sequence analysis. The MAF format 44-way vertebrate multiple alignment file of human chromosome 1 was downloaded from the University of California, Santa Cruz (UCSC), website (http://hgdownload.cse.ucsc.edu/downloads.html). The corresponding Matn1 promoter region was extracted from this file using the MAF2FASTA program of the MULTIZ package (http://www.bx.psu.edu/miller_lab/) using the corresponding human positions. The Ine and Pe1 region was extracted and further refined manually. The 75% majority rule consensus and the sequence logo were generated with the Geneious Pro program.

RESULTS

Proximal elements restrict spatiotemporal activation of the Matn1 promoter by homologous and heterologous enhancers. We previously reported that a LacZ transgene driven by a Matn1 short promoter (−334/+67; NAD1) exhibited low activity in mouse embryos (34). The addition of the Matn1−2011/−948 sequence (PS) markedly increased transgene activity (Fig. 1A and B), but this activity remained lower than the activity of a transgene harboring the full-length (PS) markedly increased transgene activity (Fig. 1A and B), but this activity remained lower than the activity of a powerful Sox-driven panchondrocytic Col2a1 promoter (19). The short promoter was therefore less severely reduced in other Sox-driven promoters. The Matn1−2011/−1134 region increased the short promoter activity less markedly than the Matn1−2011/−948 region but showed similar zonal and proximodistal specificity (see Fig. S1 at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf). We therefore concluded that elements in the Matn1−2011 to −334 region enhance the activity but not the tissue specificity of the Matn1 promoter.

Next we tested activation of the Matn1 short promoter by 8 tandem copies of the pancartilaginous Col2a1 minimal enhancer (8×E_Col2a1−NAD1). Interestingly, 8×E_Col2a1−NAD1 dramatically differed in its expression pattern from p3000i3020Col2a1, which contains the Col2a1 promoter and enhancer (47) (Fig. 2B and C). It was expressed exclusively in distal structures, like digits, caudal vertebral bodies, and nasal cartilage and only in columnar and prehypertrophic GP zones (Fig. 2D to N). Its sporadic or weak activity in epiphyseal and source chondroblasts and lack of activity in condensed mesenchymal cells, perichondrium cells, and prechondrocytes differed markedly from the high activity of the Col2a1 transgene in these cells (47, 48). Thus, the Matn1 short promoter inhibited the Col2a1 enhancer in proximal structures and at early chondrocyte differentiation stages. Even 16 copies of E_Col2a1 neither increased the transgene activity nor altered its restricted spatiotemporal expression (data not shown).

To sum up, the Matn1 short promoter plays a critical role in restricting cartilage-specific expression, and its activity is enhanced by distal elements. It is even capable of restricting the activity of a powerful Sox-driven panchondrocytic Col2a1 heterologous enhancer to distal structures and specific GP zones.

The Sox trio binds to the initiator element in vitro. To uncover the powerful mechanism employed by the Matn1 short promoter, we dissected its elements. We reasoned that Pe1, which is the most conserved element in amnions, could be involved in Sox-mediated functions, because it bears a palindromic resemblance resembling the preferred Sox9-binding site (29) (see Fig. S2B at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf) and because it is recognized by the Sox trio in vitro and protected in genomic footprinting (34).

In addition, we found two conserved pairs of inverted Sox motifs in the Ine element of mammals (Fig. 3A; see Fig. S2A at the URL listed above). The sequence is poorly conserved in the chicken, but the chicken promoter also features two pairs of Sox motifs and a conserved GTGCC motif in the Ine element and an Nfi site upstream of TATA (Fig. 3A). These motifs could thus also play conserved regulatory roles.

We delineated the Sox-binding sites of Ine by EMSA using purified Sox proteins (Fig. 3B to F). GST-fused SOX9, L-SOx5, and SOx6 efficiently bound Ine in vitro (Fig. 3C and D and data not shown). Mutations M2 and M5, which disrupted both inverted Sox motifs, abolished complex formation, whereas M1 and M3, which disrupted only one Sox motif, had partial effect. Probes carrying the 5′ Ine5′h1 or 3′ Ine3′h2 Sox motif showed weaker binding than Ine (Fig. 3E and F). Mutation M1 less severely reduced complex formation with L-SOx5 than with SOX9. This was possibly due to the presence of an upstream Sox-like motif, as mutations in this motif (M6), in the 5′ half site (M7), or in both sites (M6-7) had a more drastic consequence than M1 (Fig. 3E and F). Mutation M2-3 abolished Sox binding to the 3′ site. We concluded that both Sox sites might be functional and might act cooperatively.

CEC nuclear proteins formed three major complexes with Ine. Complexes I and II were supershifted with Sox9, L-SOx5, and SOx6 antibodies (Fig. 3G) and competed with HMG, SOx9, or E_Col2a1 probes (Fig. 3H). They thus likely contain the Sox trio. In contrast, complex III was not specific to chondrocytes and did not contain Sox factors (Fig. 3G to I).
former one was competed by the HMG probe. As complex I was neither efficiently disrupted nor formed with Ine3/H11032h1, we concluded that it likely formed on the 5/H11032Sox site. IneM1, which was mutated in the 5/H11032Sox site, decreased the formation of complex I (Fig. 3K), as judged by reduced supershift formation, especially with Sox9 antibody (compare Fig. 3G and L). Interestingly, a new complex, not supershifted with Sox antibodies, migrated close to or slightly below complex I with probes IneM1, IneM2, and IneM3 (Fig. 3K to N, arrowheads). As IneM1 and IneM3 carried an intact Sox site, they efficiently displaced both the Sox-specific and unrelated complexes of Ine (Fig. 3J). IneM3, which carried mutations in the 3/H11032Sox site, did not produce the Sox-specific complex II, but supershifts with L-Sox5 and Sox6 antibodies indicated that it formed complex I (Fig. 3K and N). IneM2, however, which carried mutations in both Sox sites and in the conserved GTGCC motif, neither formed complexes I to III (Fig. 3K and M) nor competed for those (Fig. 3J). Complex III may contain the unidentified factor binding to the GTGCC motif. Supporting this hypothesis, only complex III efficiently formed with IneM5, which carried mutations in both Sox sites but had part of the GTGCC motif intact (Fig. 3K and O).

We concluded that Sox factors cooperatively bind the Ine 5’ and 3’ Sox sites. SOX9 binds efficiently only when both sites are intact. Apart from two CEC-specific Sox complexes, an unrelated complex forms on the conserved GTGCC motif in mesenchymal cells. This motif is not listed in the TRANSFAC database and likely interacts with a non-chondrocytic factor.

Cartilage-specific in vivo occupancy of Ine and SI. To determine occupancy of the Matn1 promoter in intact cells, we performed in vivo footprinting. We treated CEC and CEF genomic DNA with DMS or UV light to modify G residues at the N-7 position or produce 6-4 photoproducts at TC and CC dinucleotides, respectively (Fig. 4). Bound proteins blocking these modifications appeared as footprints on LM-PCR genomic sequencing ladders compared to LM-PCR of naked CEC and CEF DNA treated with the same reagents in vitro. Differences in the modification patterns between the in vivo-
FIG. 3. Binding of Sox proteins to Ine in vitro. (A) Ine sequences of selected amniotes and the 75% majority rule consensus for amniotes (see the whole alignment in Fig. S2A at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf). TATA and the most conserved motif are boxed; NFI motifs are in boldface. Positions are given from TATA. Nucleotides fully conserved in mammals or in amniotes are marked by asterisks at the top and above the consensus sequence, respectively. Arrows and dotted arrows depict motifs similar to the preferred Sox9-binding site (29) and Sox consensus (21), respectively. Equus_cabal, Equus caballus; Canis_famili., Canis familiaris; Pteropus_v., Pteropus vampyrus; Myotis_lucif, Myotis lucifugus. (B) Sequences of Ine and its shorter or mutant derivatives. The conserved GTGCC motif, mutant nucleotides, the 5' (I) and 3' (II) paired Sox sites and unrelated factor-binding site (III) are denoted. (C to F) EMSA of nucleoprotein complexes formed with purified GST-fused Sox proteins on Ine and its derivatives. (G to O) Binding of CEC nuclear proteins to Ine and Ine mutants. (G) Supershift analysis with Sox antibodies (Ab). (H) Competition EMSA with 50-, 100-, and 500-fold molar excesses of the indicated cold competitors. (I) Comparison of CEC and CEF nucleoprotein complexes. (J) Competition EMSA on Ine and Ine3'h1 with the cold probes indicated. (K to O) EMSA (K) and supershifts (L to O) of the wild-type and mutant Ine. The supershifts (asterisks) and new complexes of Ine mutants (arrowheads) are marked. F, free probe; PI, preimmune serum.
and in vitro-treated samples indicated in vivo DNA-protein contacts at specific nucleotides in the promoter area in CEC cultures (Fig. 4B and C). Protection, combined with hyperactivity on the opposite strand, revealed protein binding to both Pe1 and Ine in CEC and CEF cultures (Fig. 4B and C). Protection, combined with hyperactivity on the opposite strand, revealed protein binding to both Pe1 and Ine in CEC and CEF cultures (Fig. 4B and C).

We concluded that the CEC-specific in vivo footprints at the Ine Sox sites are likely due to stage-specific binding of Sox proteins. The TGTGCC motif, the Nfi contact points, and other potential ubiquitous factor-binding sites near TATA were also occupied. Gradual protection at the Pe1 and Ine Sox sites and at SI and SII Nfi sites in HDM culture suggests that these elements participate in Main1 activation during chondrogenesis.

The Pe1 Sox site and SI Nfi site are indispensable for promoter activation in transiently transfected chondrocytes. To study the contribution of short promoter elements to promoter activity, we introduced point mutations into Ine, Pe1, and SI and measured their effect on the activity of short (FO15Luc) and long (AC8Luc) promoter constructs. IneM2, which carried mutations in the Sox- and ubiquitous factor-binding sites of Ine, and a double Pe1M1/IneM2 mutation most effectively reduced the activity of the short promoter in CEC (Fig. 6A and B). The −2011/−334 sequence enhanced the short promoter activity 19-fold in AC8Luc in CEC but hardly did so in lower nonexpressing cultures (Fig. 6C). IneM1, IneM2, and IneM3 cut the long promoter activity by one half or more in CEC. The effect of Pe1M4, which carried a mutation in a factor-binding site in Pe1 (34), was similar, but Pe1M1, in which the Sox site of Pe1 was disrupted, dropped the long promoter activity 13-fold, abolishing CEC-specific enhancement from upstream elements. Pe1M1/IneM2 decreased the activity (P < 0.05) to a level even closer to that of FO15Luc. Thus, the Sox sites in Pe1 and Ine are needed to mediate promoter activation from upstream elements.

Consideration of the SI element was protected in genomic footprinting in CEC culture (Fig. 4) and bound Nfi proteins in vitro (41), we also mutated its Nfi contact points. Mutation SI2dm, either alone or in combination with Pe1M1 or Pe1M4, markedly reduced the short promoter activity in mesenchymal cells (Fig. 6A and B). This mutation also dropped the long promoter activity 13-fold, abolishing CEC-specific enhancement from upstream elements. Pe1M1/IneM2 decreased the activity (P < 0.001) to the basal promoter level in mesenchymal cells, suggesting an additive or synergistic effect. Thus, disruption of the Nfi site of the SI silencer element abolished both the tissue- and stage-specific promoter activity.

We concluded that, although Ine recognition by Sox factors may be involved, Sox factor binding to Pe1 seems to be more crucial for promoter activation in CEC culture rich in late proliferative chondroblasts. In addition, binding of the ubiquitous Nfi to SI near the TATA box may be similarly crucial. The position-specific conservation of motifs similar to the NFI consensus (35) near TATA in amniotes (see Fig. S2A at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf) further supports the importance of SI in the regulation of the gene. The significant, but less dramatic, effect of other mutations suggests that the binding of factors to the Pe1 spacer and to the conserved motif of Ine may also be needed for full promoter activity.

Sox and Nfi sites of the short promoter are important for enhancement by ECollec. Next we tested the activation of the
short promoter by a heterologous cartilage enhancer. Eight copies of E_{Col2a1} robustly increased the short promoter activity in CEC but had no effect in CEF or in HDM cultures consisting of early proliferative chondroblasts (Fig. 6D). Lining up with transgenic mouse data, these results indicate that the Matn1 short promoter also restricted the broad cartilage-specific enhancement by E_{Col2a1} to late proliferative chondroblasts in tissue culture.

Mutations Pe1M1, IneM2, SI2dm, and Pe1M1/IneM2 decreased the relative activity of $8\times E_{\text{Col2a1}}$-FO15Luc by 43.6%, 46.6%, 64.9%, and 78%, respectively, in CEC culture (Fig. 6D). Thus, our data show that, whereas Sox factor binding to Pe1 is crucial for the interaction between the homologous distal and proximal promoter elements, Sox9 binding to Pe1 and Ine is less essential for mediating enhancement from E_{Col2a1}. Disrupting all three Sox sites of Pe1 and Ine or the Nfi site of SI, however, highly diminished the enhancement, supporting the hypothesis that the short promoter elements may also interact with the heterologous enhancer via the bound Sox and Nfi factors.

Dramatic decrease of transgene activity by mutation of the 5’ Sox site in Ine. A transgene carrying the IneM1 mutation displayed very low activity in founder embryos, but this activity remained restricted to the columnar and prehypertrophic GP zones, as with TR70 (Fig. 7). Thus, consistent with the reduced Sox-specific complex formation (Fig. 3L), the IneM1 mutation hampered promoter activation in vivo but did not alter the zone- and distal structure-dependent expression pattern of the promoter. The 5’ Sox site of Ine is thus needed for optimal promoter activation in vivo.

Accumulation of Nfi and Sox mRNAs during in vitro chondrogenesis. We compared the kinetics of expression of Matn1 and other genes in chondrogenic cultures by QRT-PCR. In CEFs, the steady-state mRNA levels of Matn1 and the Sox trio were very low, while those for Nfi, but not Nfic, were elevated relative to those in the committed mesenchyme (HDM, day 0)

FIG. 5. Slow gradual occupancy of the short promoter elements during chondrogenesis. Shown is a comparison of in vivo footprints formed with DMS in the vicinity of the Ine (A) and Pe1 elements (C) in CEC and in day 0, 2, and 4 HDM cultures. (B and D) Summary of in vivo footprinting on both strands. Other symbols are as in Fig. 4.
In HDM culture, the Col2a1 mRNA level slowly but continuously accumulated during differentiation, whereas the Matn1 mRNA level dramatically increased between days 2 and 4 (Fig. 8A). Upon differentiation of CEC, the Col2a1 and Matn1 relative mRNA levels rose to values of 181-fold and 2,057-fold, respectively. Sox9 and Col2a1 mRNAs accumulated with similar kinetics, but the low levels of L-Sox5 and Sox6 mRNAs increased sharply only in CEC culture, except for a small, transient boost of Sox6 mRNA at days 3 and 4 in HDM culture, just preceding the first peak in the Matn1 mRNA level (Fig. 8B). The relative Nfi mRNA levels also increased transiently by 2.6- to 22-fold, with two peaks at day 4 and days 6 and 7 in HDM culture, followed by a sharp decline in CEC culture to close to 1 (Nfia and Nfix) or below 1 (Nfib and Nfic) (Fig. 8C).

Thus, CEC culture, rich in late proliferative chondroblasts, is characterized by high Matn1 and Sox trio levels but low Nfi mRNA levels. However, day 4 HDM culture, consisting of early proliferative chondroblasts, exhibits high Nfi mRNA levels but lower Matn1, Sox9, and Sox6 mRNA levels and very low L-Sox5 mRNA expression. Sox6 and Nfi mRNA levels peaked in HDM culture at the time of Matn1 activation, suggesting a function in Matn1 regulation.

Dose-dependent synergy of L-Sox5/Sox6 with SOX9. Next, we assessed activation of the Matn1 long promoter by cotransfected Sox proteins. While Sox9 doubled it, L-Sox5/Sox6 decreased the promoter activity by about one-half in mesenchymal cells (Fig. 9A). Coexpression of L-Sox5/Sox6 with SOX9
greatly or moderately increased the ability of SOX9 to activate the promoter in CEF and HDM cultures, respectively, but decreased it in CEC culture. This suggests synergy between Sox proteins at early differentiation stages. When we introduced a constant amount of pSOX9 and increasing amounts of pSox5 and pSox6 expression plasmids into CEF, LDM, and HDM cultures, synergistic activation peaked at a low ratio of L-Sox5/Sox6 versus pSOX9 and declined at an elevated ratio (Fig. 9B). Highest activation was seen in CEF (3.5-fold), followed by that in LDM and HDM cultures in inverse correlation with the endogenous Sox5 and Sox6 expression levels of these cultures (Fig. 8B), raising the possibility that L-Sox5/Sox6 may modulate the activation by SOX9 in a dose-dependent manner.

This hypothesis was confirmed by forced expression of the FLAG-tagged Sox trio in nonchondrocytic COS-7 cells and monitoring of protein expression in Western blots (Fig. 9C). Despite the small effect of SOX9 alone, L-Sox5/Sox6 synergized with SOX9 to activate the long promoter up to ~18- to 20-fold at low molar excess. The activation was high from a 1:1 to 4:1 molar ratio of L-Sox5/Sox6 to SOX9 in repeated experiments, but the synergy dropped above a 5:1 molar ratio (Fig. 9C). When tested individually, L-Sox5 and Sox6 had similar effects (see Fig. S3 at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf).

We concluded that L-Sox5/Sox6 may finely tune the activity of the Matn1 promoter by increasing transactivation by SOX9 at a low molar ratio relative to SOX9 (early stages of chondrogenesis) and by decreasing transactivation by SOX9 at a high ratio (late stage).

Pe1 mutation hampers transactivation by SOX9, and INe mutation decreases the synergy with L-Sox5/Sox6. Next we studied the effect of Pe1, Ine, and SI mutations on the activity of the Sox trio. In COS-7 cells forced to express L-Sox5/Sox6 in optimal ratio relative to SOX9, the Pe1M1/IneM2 mutation decreased the synergistic activation of the long promoter by 96.1%, followed by the SI2dm and Pe1M1 mutations (85.5 to 89%) (Fig. 9D). The former mutations also repressed SOX9-mediated activation by ~70%. Similar effects were obtained when L-Sox5/Sox6 was expressed in high excess relative to SOX9 in LDM and CEC cultures (Fig. 9D). Thus, disruption of the short promoter Sox sites abolished transactivation by the Sox trio even when upstream sites were intact. The effect of the Pe1M1 mutation was milder, suggesting that SOX9 binding to Pe1 is critical for transactivation by SOX9 in early and late stages of chondrogenesis.

Ine mutations diminished the synergistic activation of SOX9 with an optimal ratio of L-Sox5/Sox6 in COS-7 cells (Fig. 9D). In LDM culture, IneM1 and IneM3 abolished AC8Luc activation by SOX9, while IneM2 and IneM3 affected the synergistic activation by the Sox trio more drastically than IneM1. In keeping with the effect of Ine mutations in EMSA, this result indicates that the 3’ Sox site in Ine equally interacts with SOX9 and L-Sox5/Sox6, whereas the 5’ site preferably binds SOX9 in early chondroblasts. IneM1 also hampers activation by SOX9 in CEC culture (Fig. 9D). Notably, mutation of the SI Nfi site highly decreased SOX9- and Sox trio-mediated promoter activation in the cultures tested. The variable effect of Pe1M4 and the small effect of SOX9 in COS-7 cells suggest that ubiquitous and/or Sox partner factors may also bind the promoter elements.

We concluded that SOX9 binding to Pe1 likely plays a key role in mediating enhancement from distal elements. Based on the data, we suggest a model (see Fig. 10D). L-Sox5/Sox6 expressed at a low level and bound to Ine may synergistically increase activation by Pe1-bound SOX9 in early chondrogenesis. Later on, when produced in excess to SOX9, L-Sox5/Sox6 may decrease activation by SOX9, possibly by competing for binding to the same sites. In addition, Nfi binding to SI and binding of other factors to Pe1 and Ine may also be needed for efficient activation.

Nfi proteins modulate promoter activity. Next we studied the effect of Nfi on AC8Luc activity in cotransfection assays. In CEC culture, all Nfi proteins, except Nfia at low concentration, robustly inhibited long promoter activity (Fig. 10A). When Nfi and SOX9 were expressed at an optimal ratio, Nfb and Nfc decreased significantly transactivation by SOX9, but all Nfi proteins exerted 74% to 90% repression at higher ratio (see Fig. S4A at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf). Notably, CTF-1, an
isoform of NFIC, only slightly inhibited activation by SOX9 (see Fig. S4B at the URL listed above), suggesting that the various Nfi splice variants may have different effects. In COS-7 cells, Nfia and Nfib in optimal amounts indeed cooperated with SOX9 and potentiated its transactivation of the long promoter (Fig. 10B). The activation, however, declined at higher levels of Nfia and Nfib. Forced expression of FLAG-tagged proteins in COS-7 cells revealed that the activation increased up to an ~2:1 molar ratio of Nfib to SOX9 but significantly decreased above an ~4:1 molar ratio (Fig. 10C).
These data suggest that Nfi proteins may increase or decrease SOX9-mediated transactivation of Matn1 depending on their abundance relative to SOX9 (Fig. 10D). The conservation of Nfi sites near TATA and Pe1 (see Fig. S2 at the URL mentioned in the previous paragraph) underlines the importance of Nfi proteins in the restricted cartilage-specific expression of Matn1 in amniotes.

DISCUSSION

By dissecting the control mechanism that directs Matn1 expression to specific GP zones, this study sheds new light on a distinctive regulatory network orchestrated by the chondrogenic Sox trio. Focusing on the role of short promoter elements, the present work, in line with former reports (19, 34, 41), reveals the following unique features of Matn1 regulation. (i) Remarkable sequence and positional conservation of proximal (short) and distal promoter elements strongly suggests an evolutionarily conserved transcriptional mechanism in amniotes. (ii) Fundamentally, the proximal promoter is responsible for conferring spatiotemporal expression. It exerts such a dominant effect that it is even capable of restricting spatially and temporally the activity of the otherwise pancartilaginous Col2a1 enhancer. (iii) This effect is likely due to a unique set of conserved proximal elements. The Sox site in Pe1, located 95 to 195 bp upstream of TATA, preferably binds SOX9 and is most crucial for promoter activity, while Sox sites in Ine located at the transcription start sites preferably bind L-Sox5/Sox6 and are also important. An Nfi site in SI near TATA is also needed for promoter enhancement, and conservation of Nfi motifs in SII near Pe1 suggests an important function. (iv) The most highly conserved Pe1 element plays a key role in SOX9-mediated transactivation from distal DNA elements, and L-Sox5/Sox6 bound to Ine and Nfi proteins bound to SI.
may modulate transactivation by SOX9 in a dose-dependent manner and may thereby fine-tune stage-specific promoter activity.

Cartilage-specific control elements with functional Sox sites in other genes in various locations, e.g., intronic, far-upstream, 5’ untranslated, or proximal promoter regions, were described previously (13, 15, 26–28, 46), but none shows similarity to the
Matn1
control region. While the
Matn1
short promoter is sufficient to specify the expression pattern of the gene, the
Col2a1
promoter has no activity on its own and relies on an intronic enhancer capable of directing its activity, as well as that of a heterologous β-globin promoter, to all chondrocytic cells and each GP zone in transgenic mice (47, 48).

Comparison of orthologous promoter regions (known as phylogenetic footprinting) can reveal conserved motifs with important regulatory functions (6). As shown, e.g., for the Sox2 locus, conservation of extragenic sequences in amniotes can more reliably reflect their functional importance in development than the higher degree of conservation between mammals (17). A conserved cartilage-specific element has been identified, however, only in the far-upstream enhancer of the mammalian orthologs of
Age1
, but it is not conserved in amniotes (13). Such a high degree of sequence and positional conservation among chicken and mammalian orthologs (34) (see Fig. S2 at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf) has not been found for other cartilage ECM genes, strongly suggesting a distance-dependent important function for Pe1 and Ine in amniotes. Pe1 and Ine include one or two pairs of oppositely oriented motifs sharing 6/10 to 8/10 or 5/10 to 7/10 nucleotide identity, respectively, with the preferred Sox9-binding site (29), while Sox9 sites of cartilage enhancers share only 4 or 5 nucleotides with the Sox consensus T/AT/ACAAT/AG (13). In line with our former report (34), the present mutational and functional data confirm the key role of the highly conserved Pe1 in SOX9 binding and Sox9-mediated enhancement from distal elements. Ine is less conserved, but it is also needed for high transgene activity. The 3’ paired Sox site of Ine had been shifted to a head-to-head position in the chicken ortholog, and it seems to interact rather with L-Sox5/Sox6 in EMSA and forced-expression studies. Notably, the TATA box also showed similarity to the Sox consensus in most of the
Matn1
orthologs, indicating that, besides the conserved strong Sox9-binding site of Pe1, weaker Sox sites, which seem to be more diverged, are clustered near TATA, while the regulatory module might have been under evolutionary pressure and thus remained more conserved. To our knowledge, this is the first report on Sox sites clustered around the transcription start sites, strongly suggesting their importance in the assembly of the preinitiation complex (PIC).

Matn1
is regulated differently by the Sox trio than other cartilage genes (13, 24, 26). Whereas Sox9 is sufficient for the activation of
Col2a1
,
Age1
, and
Crtl1
, Sox5 and Sox6 are required to turn on
Matn1
, as
Matn1
mRNA was not detected in
Sos5
−/−; Sox6
−/− mice (38). Activation of Sox6 precedes that of
Matn1
in culture, underlining the importance of Sox6 in turning on
Matn1
. As in cartilage enhancers or the COMP promoter (13, 26, 27), L-Sox5 and Sox6 also synergize with Sox9 in the activation of the
Matn1
promoter, but only in the early stage or at low molar excess. Their role, however, turns to repression in the late stage or at elevated molar ratio. Thus, in large excess, L-Sox5 and Sox6 may compete with Sox9 for the same binding sites, as for oligodendrocyte-specific genes (40).

In agreement with the transient activation of Nfi genes during
in vitro
chondrogenesis, dominant negative mutation of Nfib interfered with chondrogenesis (43). Overexpression of Nfib increased Sox9 and
Col2a1
expression, but Nfi sites mediating this regulation have not been identified. By extending this and our former studies (41), here we provide the first evidence that, in addition to the Sox trio, Nfi proteins binding near TATA may also play a critical role in determining the chondrocyte stage-specific activity of the
Matn1
promoter.

According to our model (Fig. 10D), the special geometric arrangement of proximal elements may explain the unique regulation of
Matn1
, as it allows fine-tuning of the promoter activity by L-Sox5/Sox6 and Nfi, depending on their abundances relative to that of Sox9. At the onset of chondrogenesis, binding of Sox and Nfi proteins might be needed to open the chromatin structure around TATA (Fig. 10D, a and b). This hypothesis is based on our observations (34) that
in vivo
footprints were absent from the short promoter in the nonexpressing CEF and that they gradually appeared in differentiating HDM culture, strongly suggesting that activation of
Matn1
involves regulation at the chromatin level. In fact, the Nfi sites of SI and SII were not occupied in CEF, although the Nfi genes are expressed in CEF and Nfi proteins can bind SI and SII from CEF extracts in EMSA and
in vitro
footprinting (41). Based on their interaction with histones (3, 12), Nfi proteins may help disrupt the nucleosome structure during
Matn1
activation.

At the early stage of chondrogenesis, when occupancy of the sites is low and Sox9 is expressed at high molar excess relative to L-Sox5/Sox6, Sox9 preferably binds Pe1 and the Ine-bound L-Sox5/Sox6 synergizes with Sox9 by likely increasing its efficiency for binding Pe1 (Fig. 10D, b). L-Sox5/Sox6 similarly secures Sox9 binding to the
Age1
and
Col2a1
enhancers (13). Binding of Sox factors in the vicinity of TATA may bend the DNA and facilitate the binding of TATA-binding protein (TBP) and polymerase II during the assembly of PIC (see Fig. S5 at http://www.brc.hu/pub/Supplemental_Material_Nagy_et_al_MCB2010.pdf). Clustering of Sox motifs in Ine may increase the probability of L-Sox5/Sox6 binding and help recruit Sox9 to Pe1 and TBP to TATA. Bending the DNA may also promote the binding of unidentified factors to Pe1 and Ine. Based on preliminary analysis of mutations, these factors may affect proximodistal transgene activity (data not shown). Further, as NFI proteins can activate transcription through direct interaction with basal transcription factors (e.g., CTF-1 with TFIIB and TBP via its proline-rich transactivation domain) and various coactivators and corepressors (12), Nfi binding to SI (and also possibly to SII near Pe1) may also help the assembly of PIC and the enhanceosome, thus highly contributing to activated transcription (see Fig. S5 at the URL listed above). Pe1 likely plays central role in enhanceosome formation and in Sox9-mediated promoter activation from distal elements, but, due to the low abundance of transcription factors, the transcription activity is low in early proliferative chondroblasts (Fig. 10D, b). The promoter activity is highest in late proliferative chondroblasts, when
in vivo
occupancy is optimal, high at Pe1, and Ine, and moderate at SI (Fig. 10D, c). Nfib exerted activation at an early stage in this study and another
The unique molecular mechanism described here can facilitate the construction of GP zone-specific vectors and the development of biotechnological therapies for skeletal diseases.

ACKNOWLEDGMENTS

We are grateful to B. de Crombrugghe for providing plasmid p3000320Col2a1 and SOX9, L-Sox5, and Sox6 antisera, to P. Berta for the GST-SOX9 plasmid, to R. Gronostajski for Nfia, Nfib, Nfic, and Nfix expression plasmids, and to N. Mermod for the CTF1 expression plasmid. We thank P. Szabo for introducing O.R. to genomic footprinting, A. Simon, E. Horváth, I. Krajvár, and K. Kávi for excellent technical assistance, and M. Tóth for the artwork.

This work was supported by grant OTKA PD50006 to E.K., by grants OTKA T049608 from the Hungarian National Scientific Research Foundation, ETT 00/2006 from the Medical Research Council of Hungary, and GVOP-3.1.1.-2004-05/2005/3.0 from the Economic Competitiveness Operative Program of the National Development Plan to I.K., and by NIH/NIAID grant AR60016 to V.L. Á. Zvara and E. Barta were supported by János Bolyai fellowships from the Hungarian Academy of Sciences (BO/00381/07 and BO/00383/08). This work was also partly supported by grant AVINOMID from the Ányos Jedlik Programme of the National Office for Research and Technology (NKTH) to L.G.P.

REFERENCES

2. Akiyama, H., M.-C. Chaboissier, J. F. Martin, A. Schedl, and B. de Crombrugghe. 2002. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expres-
8. Canciedda, R., F. D. Canciedda, and P. Castagnola. 1995. Chondrocyte differen-
11. Goldring, M. B., K. Tsuchimochi, and K. Ijiri. 2006. The control of chon-
14. Ikeda, T., et al. 2004. The combination of SOX5, SOX6, and SOX9 (the SOX-

co-activators CREB-binding protein/p300 increase chondrocyte
Cartilage matrix protein gene expression by multiple mechanisms including seque-