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On (in)validating environmental models. 1. Principles for formulating a Turing-

like Test for determining when a model is fit-for purpose? 

 

 

Abstract 

 

Model invalidation is a good thing.   It means that we are forced to reconsider either model 

structures or the available data more closely, that is to challenge our fundamental 

understanding of the problem at hand.   It is not easy, however, to decide when a model 

should be invalidated, when we expect that the sources of uncertainty in environmental 

modelling will often be epistemic rather than simply aleatory in nature.   In particular, 

epistemic errors in model inputs may well exert a very strong control over how accurate we 

might expect model predictions to be when compared against evaluation data that might also 

be subject to epistemic uncertainties.  We suggest that both modellers and referees should 

treat model validation as a form of Turing-like Test, whilst being more explicit about how the 

uncertainties in observed data and their impacts are assessed. Eight principles in formulating 

such tests are presented.  Being explicit about the decisions made in framing an analysis is one 

important way to facilitate communication with users of model outputs, especially when it is 

intended to use a model simulator as a ‘model of everywhere’ or ‘digital twin’ of a catchment 

system.  An example application of the concepts is provided in Part 2. 

 

 

 

You know the famous line that [philosopher] Isaiah Berlin borrowed from a Greek 

poet, "The fox knows many things, but the hedgehog knows one big thing"? The 

better forecasters were like Berlin's foxes: self-critical, eclectic thinkers who were 

willing to update their beliefs when faced with contrary evidence, were doubtful of 

grand schemes and were rather modest about their predictive ability. The less 

successful forecasters were like hedgehogs: They tended to have one big, beautiful 

idea that they loved to stretch, sometimes to the breaking point. They tended to 



  

be articulate and very persuasive as to why their idea explained everything. The 

media often love hedgehogs. 

Philip E. Tetlock, 2006 

 

  

 

1. Background: On model validation 

 

In modelling environment systems such as river catchments we know only too well that we 

can reproduce the complexity of catchment response with only limited accuracy (see, for 

example, Beven, 2001, 2002; 2012, 2019a,b).   There are very good reasons for this, 

particularly a lack of full knowledge about the inputs and outputs for the part of the system 

being represented, even the spatial limits of the system itself (e.g. Khan et al., 2014; Kauffeldt 

et al., 2015; Beven and Smith, 2015), and a lack of full knowledge about the representation of 

the (usually nonlinear and interacting) processes that control the responses (e.g. Wagener et 

al., 2021; Beven and Chappell, 2021).  These knowledge, epistemic or deep uncertainties may 

well be different in the future that we are trying to predict than they were in the past where 

we might have some observed data that can be used for model evaluation, a problem of 

inference that also limits the application of purely data-based methods (Beven, 2020; 

Wagener et al., 2022).   They should be distinguished from the aleatory uncertainties that can 

be treated as random variability and to which the full power of statistical theory can be 

applied. 

 

It is the epistemic uncertainties that make model validation, in the opinion of some, 

impossible (see, for example, Stephenson and Freeze, 1974; Oreskes et al., 1994; Oreskes, 

1997; Beven, 2013, 2015; Rougier and Beven, 2013). But, following George Box (1979), we 

might still like to know if some models might be useful or fit-for-purpose in some sense, even 

when we expect them to be wrong in some way perhaps not yet known.  This is particularly 

important when a model simulator is to be used as a ‘model of everywhere’ or ‘digital twin’ 

of a catchment system to make predictions of how that catchment might behave under 

possible future conditions.  In such cases, we wish to try to get the ‘right results for the right 

reasons’ (Kirchner, 2006) and to avoid using models that should not be considered fit-for-



  

purpose (e.g. Hrachowitz et al., 2014).  Thus, model invalidation is an important part of the 

modelling as a learning process that underlies the ‘models of everywhere’ concept (e.g. Beven, 

2007; Blair et al., 2019).  

 

Our aim is to show how model validation should be really a process of model invalidation, 

through an extended and pro-active form of a necessarily subjective Turing-like Test. We 

develop our argument through our primary expertise in hydrological and hydraulic modelling, 

but we suggest that the discussion has wider relevance to a range of environmental models.   

In what follows we provide an overview of concepts of model validation; discuss the 

importance of observed data in model hypothesis testing and invalidation; and discuss the 

concept and conditionality of fitness-for-purpose.   The idea of a Turing-like Test for fitness-

for-purpose is then introduced as a way of framing our expectations about model 

performance, with suggestions for some principles underlying such a concept in application 

to environmental models.   In Part 2 of this study we show how these concepts might be 

implemented in an illustrative case study and discuss how we might learn from model 

invalidation to make advances in knowledge and understanding of hydrological processes. 

 

2. Model validation: an overview 

 

The concept of model validation has been a concern in hydrological modelling (and other 

areas of environmental modelling) for a long time (e.g. Stephenson and Freeze, 1974; Konikow 

and Bredehoeft, 1992; Oreskes et al., 1994; and the papers in Anderson and Bates, 2001, and 

Beisbart and Saam, 2019).   Vit Klemeš (1986) proposed a hierarchical approach to model 

validation that would test both the applicability of a model at a site and the transferability of 

a model to other sites or other climatic conditions.  The former involved a split-sample test, 

the latter differential split-sample, proxy-basin tests.  

 

There have been few reported studies that have gone beyond the simple split-sample test.  

Perhaps the best known in hydrology is that of Jens-Christian Refsgaard (1997; Refsgaard and 

Knudsen, 1996) who showed that model calibration could not entirely compensate for 

differences between sites and sample characteristics (see also Seibert et al., 1996).  Ewen and 

Parkin (1996) also proposed a “blind” validation test for hydrological models when treating 



  

catchments as if ungauged so that no calibration is possible. In their study, a variety of tests 

were set prior to making model runs using a version of the SHE model.   Even allowing for 

uncertainty in model parameters, not all tests were passed (Parkin et al., 1996; Bathurst et al. 

2004).   This has not, however, prevented the SHE model from continuing to be widely used 

(e.g. Refsgaard et al., 2010), and raises the question as to what is being falsified: is it only the 

particular conditions under which the model was being applied, since the model and its 

framework as a whole have continued to be used in later applications?   

 

Another widely used model, the Soil Water Assessment Tool (SWAT, Arnold et al., 1998) has, 

in various forms been applied to hundreds of catchments world wide (Gassman et al., 2007). 

SWAT is provided with a database of parameter values such that it can be applied in ungauged 

basins, but it can also be calibrated against historic data. Arnold et al. (2012) discuss a 

framework for calibration and validation of SWAT.  Validation of a model in their sense is when 

the outputs are “sufficiently accurate” in a split-sample sense; “sufficiently accurate” being 

purpose specific (see also Van Griensven et al., 2008, as an example of using split-sample tests 

for fitness-for-purpose of the SWAT model). In a recent application of SWAT, however, 

Hollaway et al. (2018a) showed that SWAT could not provide sufficiently accurate simulations 

of both hydrograph and phosphorus outputs from a catchment even after conditioning on a 

calibration period and allowing for uncertainties in the evaluation data.   The model did not 

appear to be fit-for-purpose in this case.    

 

Similar model failures have been reported for the INCA-P quality model by Dean et al. (2009), 

for the WEPP erosion model by Brazier et al. (2001) and for TOPMODEL in predicting saturated 

areas (Beven and Kirkby, 1979; Güntner et al., 1999), flood frequency (Blazkova and Beven, 

2009), streamflow in all flow conditions in a small catchment (Choi and Beven, 2007), and the 

storm to storm variability in stream chloride concentrations (Page et al., 2007).  These failures 

raise again the question as to whether they are due to an incorrect model structure, an 

incorrect parameterisation, or the suitability of the boundary conditions and auxilliary 

relations involved in the application.  This might be particularly the case when conditions are 

changing in either the forcing or catchment characteristics.  Fowler et al (2016) and Wagener 

et al. (2022) show how split sample testing represents a challenge for climate change impact 

studies because the validity of predictions depends on the validity of both the model and its 



  

parameterisation, something that may not hold if tested under changed conditions.  It is then 

necessary to be careful not to confound rejection of a parameterization with rejection of the 

model structure. 

 

It has also been suggested that some failures might be the result of inadequate sampling of 

the model space (e.g. Vrugt and Beven, 2018).   This might be more likely when the models 

considered have many parameter values to be estimated by calibration and where we rely, to 

a greater or lesser extent, on specific assumptions or the theory of a model to interpret data 

in ways that can be used in calibration or testing.   This is referred to as the theory-ladenness 

of data and reflects the point that when we compare data with a model we are not comparing 

a theoretically-based model of the world directly with reality, but rather with a data-based 

model of the world  (Oreskes, 1997; Odoni and Lane, 2010): both data and numerical models 

are representations of the world (see also the statistical theory of reification in Goldstein and 

Rougier, 2009, and the critique of reification in Briggs, 2014).  

 

Young et al. (1996) proposed and illustrated an alternative modelling approach that is based 

upon using data-based mechanistic models to identify the dominant modes of behavior in a 

system based upon analysis of observations; it is these dominant modes that a simulation 

model needs to be able to reproduce (see also Young, 2013; and the hydrological signatures 

approach in Hrachowitz et al., 2014). This is nicely illustrated by Nearing et al. (2016b) who 

have proposed a methodology for testing models relative to a purely data-based approach by 

considering measures of information in explaining the test data.   This allows a model to be 

assessed in terms of the entropy of the observations of interest relative to the information 

that can be extracted using only data-based models.   Where the data-based methods can be 

shown to explain more information than a theory-based model then that might be a reason 

to reject the theoretical model and explore the reasons why the data-based model performs 

better.  Their work has shown that many models fail such a test (though this could be because 

data-based models can better compensate for physical inconsistencies in the observations, 

such as those shown in Beven and Westerberg, 2011, Beven and Smith, 2015, and Beven, 

2019a).   

 



  

It is also the case that the supposed validation of a model in one test does not mean that it is 

applicable generally, or that it will be valid for all possible model applications (see the 

discussion of SWAT applications above).  This is a form of Hume’s Problem of Induction (e.g. 

Beven and Lane, 2019) in the sense that a model that performs well at a site for one set of 

conditions (in time and space) cannot be expected to perform well for all possible future 

boundary conditions.  The past is not necessarily a guide to future performance, especially 

when there are epistemic uncertainties about future initial and boundary conditions, a point 

first made in hydrological modelling by Stephenson and Freeze (1974) (see also Konikow and 

Bredehoeft, 1992, in respect of groundwater models and Lane et al., 2005, for hydraulic 

models of channel and floodplain flows).   In the case of models with large numbers of 

parameters, such as SWAT and WEPP, it is likely that even if successful models could be found 

they might be over-fitted to the calibration data, with a danger of poor performance in 

prediction when the data uncertainties may be quite different. 

 

There has been significant discussion of validation concepts in other domains of 

environmental science.   A philosophical discussion is provided by Oreskes et al. (1994), 

following on the papers by Konikow and Bredehoeft (1992) and Anderson and Woessner 

(1992) in groundwater modelling.  Oreskes et al. suggest that validation (implying strength of 

belief from its Latin root) is preferable to verification (also from the Latin, implying truth) since 

no model can ever be considered as a true representation of reality; it can only be considered 

an approximation (although the French title of the Klemeš 1986 paper uses the noun 

vérification to translate operational testing).  Verification should only be used in the sense of 

some proof (preferably using formal mathematical methods that are not generally used in 

environmental modelling) that a computer code is correct in its implementation.  In ecological 

modelling, Rykiel (1996) uses verification and validation in a similar way and also points to the 

conditionality of model validation, a qualification of the conditions under which a model might 

be considered validated based on past performance and method of evaluation.  

 

Thus, verification is a necessary (and perhaps often over-looked) precursor of validation but a 

verified model in this formal mathematical sense does not necessarily mean that it is valid as 

fit-for-purpose. Verification requires us to show that our model predictions are internally 

consistent and reproducible (Hutton et al., 2016, see also Imbert, 2019) even before they are 



  

confronted by and shown to be in some sense consistent with the observations (or not). This 

type of verification may occur at a number of different levels, the most basic being that 

decisions regarding the computational solution taken by a modeler (spatial discretization; 

time steps, convergence criteria, relaxation coefficients etc.) are not inadvertently impacting 

model predictions (see, for example, Kavetski and Clark, 2010; 2011; Metcalfe et al., 2015; 

Smith et al., 2021).   This may extend to reproducibility between modelers using the same 

model; or even between models of the same system produced by the same modeler or 

different modelers.  None of these evaluations need make redress to observations, such that 

a model may be verified but not yet validated and Hutton et al. (2016) suggest that this type 

of verification needs a community level shift in how we make our code transparent and usable 

by others.  

   

In environmental hydraulics, there has been much emphasis upon the importance of 

verification of computer codes as a necessary precursor to validation. Lane and Richards 

(2001) drew attention to the existence of very different interpretations of the status of a 

numerical model: according to the American Society of Mechanical Engineers (ASME), the 

predictions of a model should be taken as verified or correct if its application has followed a 

series of controls on the numerical accuracy of the associated model solution, that is, it is 

verified in the sense of Oreskes et al. (1994). For the ASME, testing against observational data 

should not be a substitute for verification nor should such testing be a necessary requirement 

for labelling a model as acceptable and usable. Lane et al. (2005) argue against this position 

in relation to channel and floodplain flows, noting that these criteria fail to capture the 

conditionality of model applications that follows from the dependence on boundary 

conditions, geometry and the need for auxiliary relations to make models solvable (e.g. 

turbulence closure; wall treatments) that themselves may have a restricted range of 

applicability.  The determination of model acceptability cannot be reduced to simply 

verification that a computer code is a proper solution of the underlying nonlinear 

mathematical equations (as already recognised by Stephenson and Freeze in 1974).   Similar 

arguments will apply to models based on the approximate solution of dynamic nonlinear 

equations in other domains, such as atmospheric and ocean circulation models and 

subsurface flow models with their own requirements of boundary and auxiliary conditions. 

 



  

It follows that a model, which is apparently acceptable in one situation, is not necessarily 

acceptable in another, even after allowing for model calibration or modification of the other 

auxiliary conditions required to make a model run (Morton, 1993). Key here is recognition that 

some realisations of a model may be more or less acceptable than others, depending on the 

ways in which uncertainties in input data/parameters propagate through to model 

predictions.  The aim then might be to set some plausibility criteria or limits of acceptability 

that help to identify those simulations that are ‘acceptable’ or 'behavioural'. This is the basis 

of inferential approaches to parameter estimation, such as with the set-theoretic approaches 

of Keesman and van Straten (1991), the GLUE methodology (e.g. Beven, 2006, 2009, 2012, 

2016; Beven and Binley, 2013; Vrugt and Beven, 2018) or the analogous concepts in 

Approximate Bayesian Computation (Nott et al., 2012; Vrugt and Sadegh, 2013; Sadegh and 

Vrugt, 2014).  Here, limits of acceptability are used to define plausible model simulations and 

then the uncertainty that remains is quantified and presented as part of the primary model 

outputs.   

 

To make progress we suggest that it is necessary to replace the notion of model validation, 

and all the debates around it, with the complementary notion of model invalidation (see also 

Beven, 2018; Beven and Lane, 2019).  It is an important consideration as to when a model 

should be considered as not fit-for-purpose, but this will depend on both the requirements of 

the purpose, and the quality of observed data available for model evaluation.  There are a 

growing number of studies of the uncertainties associated with hydrological data that could 

form the starting point for model invalidation (e.g. Harmel et al., 2009, 2014; Khan et al., 2014; 

Krueger et al., 2010; McMillan et al., 2012; Beven et al., 2011; Westerberg et al., 2011; Beven 

and Smith, 2015; Coxon et al., 2015; McMillan and Westerberg, 2015; Westerberg and 

McMillan, 2015; Hollaway et al., 2018b; Kiang et al., 2018; Ehlers et al., 2019; McMillan et al., 

2022).   

 

A critical measure that might then be used is whether there is any overlap at all between the 

distribution of uncertain observations, and the distribution of model predictions.   If there is 

no overlap, then this might be considered as a reason for invalidating that model and finding 

something better.   Even then, however, any particular observation might be considered as an 

outlier or not very important to the purpose of the application (Harmel et al., 2014).  It has 



  

been suggested that the use of a limited set of more extreme events might be of greatest 

value in model evaluation and testing (e.g. Singh and Bardossy, 2012) since they are more 

likely to reveal model deficiencies.  This then raises the question, however, as to which events 

are truly informative, which might be disinformative (Beven and Smith, 2015) and how many 

such outliers should be allowed before a model is invalidated.  This latter will be necessarily a 

subjective decision since it might be difficult to construct robust significance tests for 

epistemic errors rather than the random errors of statistical theory (see e.g. Frigg et al., 2014).   

In particular, making an analogy with statistical theory, we could perhaps allow failure on no 

more than 5% of the observations, but this might not be appropriate when the observational 

data that are of most interest for an application might make up that 5%, such as when a 

hydrological model consistently under predicts the largest peaks when used in assessing flood 

risk but does well in predicting the other 95% of the observational series (see Part 2 of this 

paper and also Colquhoun, 2014, Briggs, 2014, for critiques of this approach in statistical 

hypothesis testing).  

 

This then suggests that there should be an expectation that it will not be possible to be entirely 

objective about model validation when faced with epistemic sources of uncertainty and error.  

However, good practice should entail being transparent about how uncertainties in model and 

observations are assessed, what quality measures are used, and how a model invalidation or 

rejection is to be defined (Beven et al., 2018).  It has been proposed before that the subjective 

assumptions that underlie an analysis should be recorded in a condition tree or audit trail to 

facilitate communication with users of any model predictions (e.g. Beven and Alcock, 2012; 

Beven et al., 2014a,b).   Here, we suggest extending that concept to include the conditions for 

model (in)validation.   Invalidation implies that it is necessary to do better in some way: either 

to find a better model structure that is fit-for-purpose, or to better represent the 

environmental (i.e. boundary) conditions to which the model is being applied, or to improve 

the evaluation data (Beven and Lane, 2019).  

 

This is then a way of progressing understanding rather than continuing to rely on model 

predictions that have not been evaluated as fit-for-purpose. If we follow philosopher of 

science Isabelle Stengers (2005) finding that our model predictions are not fit-for-purpose may 

be just one way of arriving at statements that do not “say what is, or what ought to be, but 



  

[to] provoke thought, a proposal that requires no other verification than the way in which it is 

able to “slow down” reasoning and create an opportunity to arouse a slightly different 

awareness of the problems and situations mobilising us” (Stengers, 2005, 994). That is, 

showing that something is not fit-for-purpose has the potential to advance science through 

forcing us to search for other approaches, model structures, data etc., rather than to simply 

accept the model and observed data that we have if it is still associated with large and 

nonstationary prediction errors even after some form of calibration or conditioning on the 

observations (see also Thompson and Smith, 2019).  

 

We stress that how fitness-for-purpose is evaluated will depend on the purpose. This will be 

different for models that might be used for a limited purpose (e.g. flood forecasting, where 

empirical adequacy might be sufficient), and models that aim to demonstrate a scientific 

understanding of how a catchment responds to rainfall (where conflicts with qualitative 

perceptual process understanding might be significant, see, for example, Beven and Chappell, 

2021; Wagener et al., 2021, 2022).  Defining invalidation criteria might be quite different for 

different cases.   In particular, we should not confuse empirical adequacy with fitness-for-

purpose.  We should aim to get the ‘right results for the right reasons’ (Kirchner, 2006; Lane 

et al., 2011; Lane, 2012; Beven and Chappell, 2021), but this will depend on the purpose.   In 

flood forecasting, for example, a model that predicts water levels rather than discharges and 

which therefore does not maintain mass balance but which uses adaptive updating to 

compensate for lack of knowledge of catchment inputs and flood discharges during flood 

events will generally be more fit-for-purpose than a model constrained by mass balance in 

predicting peak levels and timing.   A model aimed at understanding, however, will require 

quite different criteria for evaluation (such as getting the patterns and amounts of overland 

flow correct, or the ’young water fraction’ correct where tracer data are available).     

 

 

3. Model (in)validation and hypothesis testing 

 

Validation has long been considered as a form of hypothesis testing (Overton, 1977; Rykiel, 

1996; Sornette et al., 2007; Clark et al., 2011; Baker, 2017; Pfister and Kirchner, 2017; Beven, 

2018).  Holling (1978) takes a strong Popperian falsification position on this, suggesting that 



  

models can never be validated, they can only be invalidated (see also Beven and Lane, 2019).  

That is in line with the discussion of this paper, but we note that if multiple models satisfy 

some basic limits of acceptability (i.e. survive invalidation) they might still be associated with 

differing strengths of validation, analogous with Popper’s varying degrees of verisimilitude in 

theory testing.  Methods for hypothesis testing are well developed in statistical theory, based 

on treating errors as if they were fundamentally aleatory (after allowing for possible structure 

in the error series such as bias, heteroscedasticity, and covariation). In fact, statistical theory 

does not ever reject a model as a hypothesis, it will only give it a diminishingly small likelihood. 

It does, however, provide tools for deciding whether one model has a significantly higher 

likelihood than another (such as the use of Bayes Ratios and various information criteria).  

Thus, although a model is not necessarily rejected it might be superseded by another that 

could be considered as more valid in the sense of higher likelihood or belief.  

 

The question then is how to assess the likelihood when the model uncertainties are primarily 

epistemic rather than aleatory in nature.  Sornette et al. (2007) provide an iterative 

methodology for updating the degree of belief in a model as more data become available. The 

approach uses a statistical likelihood but also a subjective weighting parameter to weight the 

contribution of any new error information in a way that might depend on the framing of a 

particular application and expectations about the uncertainties associated with particular 

types of observations.   This will be most applicable when the number of observations is small.   

As the number increases (as with discharge time series in hydrology) the assumption of a 

statistical error model tends to stretch the likelihood surface unreasonably (see discussion is 

Beven and Smith, 2015, and Beven, 2016).   In such cases, a different approach will be 

necessary. 

 

This will especially be the case when even the model with the highest likelihood or belief might 

be associated with significant error. Assessing the structure and parameters of an error model 

is, in fact, an important part of statistical hypothesis testing in that it will inform the type of 

likelihood function to be used. Such a framework does not itself, however, allow the user to 

decide whether any model is good enough or fit-for-purpose. It is often (even if not always) 

the case in hydrological modelling (and undoubtedly in other environmental domains) that 

models that appear to do well in calibration, do not do so well when applied to another period 



  

of data or another data set (e.g. Choi and Beven, 2007; Blazkova and Beven, 2009; Coron et 

al., 2012; Hrachowitz et al., 2014), even when adding a statistical error model.   This is a strong 

indication that either the model structure or the data are subject to epistemic errors, such 

that the structure of the errors is not stationary and therefore not well represented by a 

stationary statistical error model.    

 

This raises another issue in model testing and validation.   As in statistical hypothesis testing 

it will be possible to make both Type I and Type II errors, either accepting a model that will 

provide poor predictions or rejecting a model that would have provided good predictions just 

because of errors in the calibration data.  Any assessment of fitness-for-purpose is therefore 

necessarily conditional on the decisions and assumptions made in the evaluation. This reflects 

the conditional nature of any validation exercise, but when carried out in the context of 

invalidation allows for the interesting case of all models tried being invalidated.  The question 

then, of course, is why? 

 

4. Fitness-for-purpose as a Turing-like Test 

 

The Turing Test is a well-known concept from Artificial Intelligence and here we propose it as 

a means of addressing the challenge of deciding when a model should be deemed as fit-for-

purpose.  Turing (1950) proposed that a suitable test for machine intelligence was whether a 

human interrogator could tell the difference between the responses of another human or a 

computer program.  As Turing posed the question: “Are there imaginable digital computers 

which would do well in the imitation game?”.  The concept has generated significant discussion 

in the field of artificial intelligence (e.g. French, 2000; Oppy and Dowe, 2016).  A similar 

challenge has been proposed as a Turing-like test for simulation models used in the 

environmental sciences in the form: “Can a group of experts tell the difference between a 

sequence of observations in space and/or time and a model simulation?” 1.   If not, then it 

might be concluded that a model should be considered as fit-for-purpose.  Of course, if we 

consider all journal referees to be experts of this type, then we would conclude that all 

                                                 
1 For example by Jonty Rougier, University of Bristol, David Harel (2005), and Tim Palmer 
(2016) in different areas of computer simulations. 



  

published model outputs should be considered as fit-for-purpose (although in some cases the 

comparison of model and observations can be obfuscated by, for example, already calibrating 

or bias-correcting model predictions using a set of past observations).   

 

The concept of a Turing-like Test for environmental models raises some interesting issues.   

The first recognises that any expert is partially or fully bound by their prior experience and the 

disciplines within which that experience has developed, a problem frequently identified in 

relation to environmental policy-making (e.g. Brock and Carpenter, 2007; Klaey et al., 2015). 

In such an instance, viewing a model as fit-for-purpose is clouded by a particular idea of what 

makes a model fit-for-purpose that is not simply informed by the model that is under 

consideration. This is the sense in which reviewers are often chosen because of their 

knowledge of a particular frame of reference, that is they are the right kind of hedgehog.  Past 

experience suggests that they can become rather prickly when their modelling concepts are 

questioned.  Such a hedgehog will have a strong tendency to assess the model within its own 

frame of reference, that is the extent to which the model conforms to the paradigm within 

which it has been built. Many declared model successes are of this type. But, if we return to 

the definitions of verification and validation, this is not based on any invalidation test but is 

rather analogous with code to code verification; that is a check of conformity with the basic 

established principles that guide the modelling strategy, not the extent to which the paradigm 

itself is right, and the real world is being adequately imitated. Hedgehogs can often be rather 

short-sighted. 

 

The second is whether a group of experts would be able to consider whether a model is sound 

or not, without access to at least some observations from the system under consideration (a 

catchment and its pertinent characteristics in the hydrological case).   Exercises in simulating 

the response of catchments treated as ungauged, with access to only soil, geology, topography 

and land use maps have not proven very successful in the past because of the difficulty of 

translating such information into values of model parameters (e.g. Refsgaard et al., 1997). 

Declaring success, of course, will also depend on just what measures we define to evaluate 

the model as being fit-for-purpose for a particular context: as, for example, in the Ewen and 

Parkin framework discussed earlier (see Parkin et al., 1996; Bathurst et al., 2004, for 

applications).  



  

 

Classically the Turing Test is a qualitative subjective decision (e.g. Palmer, 2016, in the context 

of climate models), but should ideally have the status of being auditable (Beven et al., 2014b).   

The subjectivity of such decisions will nearly always be the case for the refereeing of scientific 

papers that present modelling results in the academic literature, but also in the normal 

processes of internal and external refereeing in consultancy projects.   Referees will 

sometimes point out when a model or period of data should be rejected, perhaps even after 

publication (see, for example, Beven, 2009).  The basis for such decisions is not, however, 

always auditable given the information provided.   

 

There are also examples of model inter-comparison projects, where the performance of 

multiple competing models is assessed e.g.   1D (Environment Agency, 2005) and 2D 

(Environment Agency, 2010) hydraulic models; the PILPS intercomparison of land surface 

parameterisations (e.g. Henderson-Sellars et al., 1996); the MOPEX comparison of 

hydrological models of Duan et al. (2006);  the Distributed Model Intercomparison Project, 

(DMIP, Smith et al., 2013); or the benchmarking of land surface parameterisations of Nearing 

et al. (2016b). However, many of these models are often set up to test cases that they ought 

to be capable of reproducing and not cases that are representative of all possible applications 

of the model. For example, benchmarking of 1D flood inundation models in the United 

Kingdom (Environment Agency 2005) used 12 tests (e.g. subcritical flows, supercritical flows, 

triangular channel, Ippen wave, a looped flow divergence and convergence, weirs, side spills 

etc.) on the basis of either their suitability for analytical (i.e. direct) solution or because they 

represented important in-channel stream structures. The later study of 2D flood inundation 

models for the UK Environment Agency did not include a single evaluation against field scale 

data (there was a dam break case tested against laboratory scale data, and some tests 

involved field scale topographies but not level or velocity observations, see Environment 

Agency, 2013).  These did not prevent conclusions being drawn about the acceptability of 

different model codes for different purposes by the experts involved, even though the tests 

were based essentially only on model-to-model comparisons (i.e. more a verification than 

validation exercise for real applications).    

 



  

Other model intercomparison exercises (such as DMIP and PILPS), however, have allowed for 

validation on an observed data set that was not available to the different modelling teams 

with and without prior model calibration.     The results of both these exercises were 

instructive.   In the DMIP project (Smith et al., 2013), a collection of distributed hydrological 

models was compared with a lumped conceptual model as a benchmark.  Performance of the 

distributed models based on prior estimates of the parameters was variable relative to the 

benchmark but was improved in all cases by calibration against observed discharge data 

(without assessment of data uncertainty). Some of the models performed poorly both in terms 

of long-term bias, reproduction of snow water equivalents and simulation of flood 

hydrographs.  The conclusion, however, was that the models satisfied the National Weather 

Service criterion of success (less than 5% bias in predicted discharges on average), low 

cumulative runoff errors and high values of modelling efficiency.   None of the models were 

explicitly rejected.  This represents a Turing-like Test based on the expertise of 32 authors as 

hydrological modelling experts and, presumably, some additional referees. 

 

To take one example from the series of PILPS inter-comparison experiments with land surface 

parameterisations, Nijssen et al. (2003) compare 21 different model formulations in an 

application to a large-scale catchment in Northern Scandinavia.   The models gave highly 

variable results, albeit capturing the “broad patterns of snowmelt and runoff”.   Some models 

showed improved performance after calibration on smaller catchment data.   One was 

rejected after failing a “consistency test” (a form of verification based on an internal water 

balance error of more than 3 mm per year).  The greatest differences occurred during the 

snowmelt period, but the authors noted the difficulty of interpreting the differences because 

of the complexity of the schemes and dependence on the chosen parameter sets.   In this case 

26 authors chose not to reject any of the remaining 20 models.  This, perhaps, demonstrates 

a greater allegiance to an epistemic community than to getting the right results for the right 

reasons.   A more recent study in the same region, however, showed that multiple land surface 

models failed to capture the information content of the observations (as captured in an 

entropy measure) to the same extent as a purely data-based method (Nearing et al., 2016b).  

The conclusion of that study was that the physical basis of these models added no information 

towards explaining the data.   

 



  

The above discussion implies that application of a Turing-like Test will need to evolve in a 

much broader and pro-active sense, beyond traditional model-data comparison. Identification 

of fitness-for-purpose implies a wide spectrum of influences on what is both fitness and 

purpose. That is, the expert judgement needs to happen ‘upstream’, and itself be subject to a 

Turing-like test (e.g. as part of defining the tender documents in commissioning research), 

before any kind of application of such a test to a model study. It may also be worth considering 

whether the idea of the Turing-like Test could be made more quantitative, even for cases 

involving significant epistemic uncertainties based on a formal expert elicitation of what might 

be expected in terms of model capabilities for a given application.   It may also require some 

reflection upon more than just the end point of the modelling process (when a modeller thinks 

that they have got the model as good as they can get). Turing (1950) did not deny that 

computers had to be made to imitate, at least until they were able to learn how to imitate 

themselves. A focus on imitation as an end point, then, overlooks the performative nature of 

modelling in hydrology (see Lane, 2012) where performance is not only the end point but also 

the all-too-rarely-documented steps that a modeller goes through to develop trust that their 

model is providing a correct imitation. 

 

 

5. Some principles for a Turing-like Test for model plausibility/(in)validation and 

fitness-for-purpose 

 

From this discussion of a set of issues surrounding the potential for model evaluation by 

(in)validation, it is possible to extract some principles for discussing and defining an 

appropriate Turing-like Test as a means of going beyond the types of assessment of model 

acceptability common in the current literature.  These principles are consistent with the 

Guidelines for Good Practice in dealing with epistemic uncertainties discussed in Beven et al. 

(2018).   

  

1. Definitions of ‘fitness’ for the purpose of a project should be agreed amongst the 

relevant stakeholders, taking expert advice as necessary, before a Turing-like Test 

is applied.  Criteria of fitness may be both quantitative, where observed data are 

available for model evaluation, and/or qualitative.   



  

2. Models should not be expected to perform better than the observed data on 

which runs are based and evaluated.   A critical evaluation of the data for 

consistency and uncertainties, independent of the model being studied, should 

therefore be a pre-requisite for model evaluation. 

3. Models should not contradict secure evidence on the nature of system response 

and still be considered fit-for-purpose. 

4. Evaluation should have the aim of getting the right results for the right reasons 

and not focus only on the need to make a decision. 

5. Evaluation should allow for the possibility that all models might be rejected 

(invalidated) using criteria that allow for input and other observational 

uncertainties. 

6. Past performance provides the only information about future performance, but 

the results of a Turing-like Test will always be conditional and the problem of 

induction and possibility of future surprises remain. 

7. Achieving objective evaluation of models in the face of epistemic uncertainties 

can be a challenge: evaluations and evaluators should themselves be evaluated in 

terms of their fitness-for-purpose. 

8. The basis for the definition of “fitness” should be recorded in an audit trail that 

will allow later review of the process, including the expected sources of 

uncertainty.  This audit trail should include an account of the activities the 

modeler has used to gain trust in the model they think is fit for purpose.  

 

6. So what should a Turing-like Test for models look like? 

 

These principles do not, however, provide a sufficient basis for an evaluation methodology.  

In particular, a model might be considered useful even if it explicitly omits some evidence 

about the nature of system response, to simplify model structure and implementation, while 

still providing an acceptable match to key observations.  Clearly, some types of evidence are 



  

more important than others in informally applying a Turing-like Test for a particular 

application so that what constitutes acceptable performance will be context dependent.  In 

particular, when the epistemic uncertainty of input data is likely to be significant, it will be 

very difficult to construct realistic realisations of the input uncertainties, and consequently 

any expectations of performance in reproducing observational data after the inputs are 

processed through a nonlinear model structure.   This is an important issue in many domains 

of environmental modelling, but one that is often ignored.   Thus, we need to think carefully 

about setting limits of acceptability in such cases.  This requirement for thoughtfulness is the 

most important aspect of this pro-active Turing-like Test methodology being proposed.  

 

To pass a Turing-like Test, a model must provide outputs that convince some set of relevant 

“experts” that it is an adequate, acceptable or a behavioural representation of the response 

of interest for a particular purpose.   This judgment should allow for uncertainties in the 

available data, and for the potential biases of the experts themselves and, in particular, their 

relative cognitive behaviour (that is their tendency to be fox-leaning or hedgehog-leaning 

after Tetlock, 2006).  It is relative because it depends on the stance of the expert to the wider 

modelling framework and approach, as well as its detail, that is being assessed.  This suggests 

a way for defining an appropriate Turing-like Test based on methods that have been 

developed for expert elicitation (see for example O’Hagan et al., 2006; Krueger et al., 2012; 

Cooke, 2014; Aspinall and Cooke, 2013; Aspinall and Blong, 2015). The Classical Model 

Structured Expert Judgment (SEJ) method (Cooke, 1991), for example, is based on weighting 

the judgment of experts based on a preliminary set of questions in the relevant domain of 

expertise before they give advice on a particular application.   This approach has been 

generally found to give better results than equal weighting.   In the Bayesian approach of 

O’Hagan et al. (2006) distributions associated with the required information can be updated 

as more information is obtained from experts and model evaluations.    Given the potential 

for epistemic uncertainties in observed data, models, and expert knowledge, however, fuzzy 

approaches to expert elicitation might also have value (e.g. Krueger et al., 2012).  Such 

approaches can provide a structured framework for setting limits of acceptability in model 

evaluation. 

 



  

In recent applications of the Generalised Likelihood Uncertainty Estimation (GLUE) 

methodology, model evaluations have been based on setting sensible limits of acceptability 

before viewing the model outputs.  The application of constraints in this way has much in 

common with the blind validation approach of Ewen and Parkin (1996) but can take more 

explicit consideration of the potential for epistemic uncertainties in the input and evaluation 

data.     Tests might include both data specific to the application catchment, and hydrological 

signatures for the expected behaviour in different climates, geologies and land uses, an 

approach that has been used within the Prediction of Ungauged Basins (PUB) framework (e.g. 

Gupta et al., 2008; Yilmaz et al., 2008; Wagener and Montanari, 2011; Kelleher et al., 2017) 

and in assessing climate impact models (Wagener et al., 2022).  Such an exercise will focus 

attention on both the potential sources of uncertainty and what we might realistically expect 

of a model given the data limitations in any modelling project (see Part 2 of this paper).   It 

also consistent with principle 5 above in that it does not preclude model invalidation (e.g. 

Parkin et al., 1996; Page et al., 2007; Dean et al., 2009; Graeff et al., 2009; Hollaway et al., 

2018a).  

  

7. Implementation of the Turing-like Test concept     

 

There is an interesting logical conflict here.   A scientific model is only ever conditionally valid, 

subject to further testing, but needs to provide reliable evidence if the model outputs are to 

be used in inferences or decision- and policy-making (e.g. Frigg et al, 2014; Roussos et al., 

2021).  Reliable evidence implies that a simulation model should be right for the right reasons 

or fit-for-purpose (rather than just demonstrating some success in reproducing how the 

system has worked in the past – a purely data-based model can usually do that, sometimes 

better, Young, 2013; Nearing et al., 2016a,b, 2021).  In Part II of this study the implementation 

of these concepts using limits of acceptability will be discussed and an illustrative example 

application will be developed in the context of hydrological and hydraulic modelling.  
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