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Abstract

Let X1,X2 denote positive heavy-tailed random variables with continuous

marginal distribution functions F1 and F2, respectively. The asymptotic be-

havior of the tail of X1 + X2 is studied in a general copula framework and

some bounds and extremal properties are provided. For more specific assump-

tions on F1, F2 and the underlying dependence structure of X1 and X2, we

survey explicit asymptotic results available in the literature and add several

new cases.
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1 Introduction and background

A qualitative and quantitative understanding of the probability of an overshoot of
a sum of heavy-tailed risks over a large threshold is of major importance in applied
probability and its applications in risk management, such as the determination of
risk measures for given portfolios of risks, evaluation of credit risk etc. Under the
assumption of independence among the risks, the situation is well understood. In
particular, from the very definition of subexponential distributions, given identi-
cal marginal distributions, the maximum among the involved risks determines the
distribution of the sum and, on the other hand, for non-identical marginals the dis-
tribution of the sum is determined by the component with the heaviest tail (see e.g.
Asmussen [3, Ch.IX]).
However, for practical purposes the independence assumption is often too restrictive
and there is a need for an understanding of the sensitivity of the distribution of sums
of risks on the dependence structure between them.
Over the last few years, several results in this direction have been developed. The
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purpose of this paper is to analyze the particular setting of two risk components,
both collecting relevant material from the literature under the same umbrella and
adding some additional explicit results. Some of the observations are of basic nature,
but may help to get a clearer intuitive picture of the matter.
That is, for positive random variables X1, X2 with absolutely continuous (heavy-
tailed) marginal distribution functions F1 and F2, respectively, we are interested in
the asymptotic behavior of

P(X1 + X2 > x) (1)

for large x and given type of dependence among X1 and X2. Let us assume that

the limit c = limx→∞
F 2(x)

F 1(x)
≤ 1 exists (in particular, w.l.o.g. X1 has the heavier

tail in case of non-identically distributed X1, X2). At some instances we will focus
on the (weighted) sum of exchangeable X1, X2, in which case the common marginal
distribution function will always be denoted by F . Particularly interesting questions
are when (1) is of the same order as for the independent case, and more generally,
when the asymptotics of (1) are of the order d · P(X1 > x) for some d ∈ (0,∞).

For identically distributed X1 and X2, if the joint distribution function of X1 and
X2 can be bounded below by some distribution function G(x1, x2) for any x1, x2 ≥ 0,
Denuit et al. [10] gave the following bounds:

1 − inf
y≥0

(
F

(
y

c1

)
+ F

(
x − y

c2

)
− G

(
y

c1
,
x − y

c2

))

≤ P (c1X1 + c2X2 > x) ≤ 1 − sup
y≥0

G

(
y

c1
,
x − y

c2

)
, (2)

where c1, c2 > 0 are arbitrary positive constants. For each x, these bounds are best
possible, although neither the lower nor the upper bound is the distribution tail of
a sum of random variables with marginal distribution F (in particular, the comono-
tone and counter-monotone copula do in general not provide bounds for the tail of
c1X1+c2X2, contrary to what one might expect at a first glance, see [10] for details).
For positive quadrant dependence (i.e. P(X1 > x, X2 > x) ≥ P(X1 > x) P(X2 > x)
for all x ≥ 0) we have G(x1, x2) = F (x1)F (x2). On the other hand, without any
knowledge of the underlying dependence structure, G(x1, x2) has to be replaced by
the counter-monotone copula CW (F (x1), F (x2)) = max{F (x1) + F (x2) − 1, 0}, in
which form the above result is due to Makarov [21]. For an extension to best-possible
bounds on the distribution of general non-decreasing functions of n dependent risks,
see for instance Cossette et al. [8], Embrechts & Puccetti [12] and Mesfioui & Quessy
[23].
However, the above approach is not well-suited for asymptotic considerations and
does not make use of the heavy-tail assumption directly. Moreover, one can get
more explicit results by specifying classes of dependence structures.

Let S denote the class of subexponential distributions and D the class of dom-
inatedly varying distributions (i.e. all distributions on the positive half-line for
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which lim supx→∞ F (x/2)/F (x) < ∞). Furthermore, let L denote the class of long-
tailed distributions (i.e. all distributions on the positive half-line with limx→∞ F (x−
y)/F (x) = 1 for all y > 0). We will use the notation F ∈ R if F (x) = 1 − F (x)
is regularly varying at infinity with some index −α < 0 (F ∈ R−α). Recall that
R ⊂ D ∩ L ⊂ S ⊂ L (see e.g. Embrechts et al. [11]). The tail probability of
weighted sums of independent random variables with regularly varying tails, where
the weights are dependent random variables, was studied in Goovaerts et al. [15],
see also Tang & Wang [30] for a generalization to the class D ∩ L. Asymptotic tail
probabilities for negatively associated sums of heavy-tailed random variables were
recently investigated in Wang & Tang [31] and Geluk & Ng [14].

For fixed continuous (and especially for identically distributed) marginals, a copula
representation of (1) may be considered as a natural tool to analyze the impact of
dependence, and we will take up this approach in what follows. For background
reading on copulae and their properties, we refer to Joe [17] or Nelsen [24]. Intu-
itively, there is a trade-off between dependence in the tail and heaviness of F1: the
heavier F1 is, the stronger the dependence in the tail has to be in order to affect the
tail behavior of X1+X2. In the paper, this relationship is formalized to some extent.

Recall that the (upper) tail dependence coefficient is defined by

λ := lim
u→1

P(F (X2) > u|F (X1) > u)

and actually can be interpreted as a property of the underlying copula. If λ = 0, then
X1 and X2 are called tail-independent. λ is a frequently used measure of extremal
dependence (for estimation procedures, see Frahm et al. [13]). For a comparison
of various tail dependence measures with a view towards financial time series, see
Malevergne and Sornette [22]. For non-identical marginal distributions F1, F2, it
will turn out more natural to consider the quantity

λ̂ := lim
x→∞

P(X2 > x|X1 > x).

Unlike λ, the quantity λ̂ ∈ [0, 1] is not solely a function of the dependence structure,
but also of the marginal behavior. The only exception is the case of identically
distributed X1, X2, where clearly λ = λ̂.
In fact, many available joint tail dependence models have been developed in the
framework of bivariate extreme value theory and are based on max-stability (for
estimation procedures in this context we refer to Abdous et al. [1]). Except for the
independent case, all bivariate extreme value distributions have a λ > 0. On the
other hand, as pointed out in Coles et al. [7], several classical estimation procedures
for λ from a data set might lead to the conclusion λ > 0 where in fact tail inde-
pendence is present (see [7] for details and suggestions to overcome this problem).
For another model of joint tail dependence in extreme value theory that allows for
asymptotic independence, see Ledford & Tawn [20]. An alternative extremal de-
pendence measure feasible for multivariate regularly varying tails is discussed in
Resnick [27]. The approach pursued in this paper is related to, but not contained
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in the extreme value framework. We are rather interested in the question: Given
F1, F2, what types of asymptotic behavior of P(X1 + X2 > x) are possible and what
assumptions on the marginal distributions and the underlying dependence structure
admit an explicit description of that behavior?

Although tail dependence provides a rather restrictive description of the depen-
dence in the tail (for identical marginals, one basically looks at the dependence
behavior along the line X1 = X2 in the tail), in the exchangeable case λ already
gives some crude information about the distribution of the sum. Moreover, as will
be shown in Section 3.1.2, for F ∈ R tail independence is a sufficient condition for
insensitivity of tail asymptotics of the sum with respect to dependence, whereas for
F ∈ S ∩MDA(Gumbel) (i.e. subexponential distributions in the maximum domain
of attraction of the Gumbel distribution) this is not true, as will be shown in Section
2.2.
For certain classes of copulae among X1 and X2 (including those of Archimedean
type), Juri & Wüthrich [18, 19] established a distributional limit result of condi-
tional dependence in the tail, which in particular refines the description through the
coefficient λ. For Archimedean copulae this result could be exploited in Wüthrich
[32] and Alink et al. [2] to give sharp asymptotics of the tail of X1 +X2, see Section
3.3. Another related refinement of the coefficient λ based on so-called tail copulae
is discussed in Schmidt & Stadtmüller [29].

In Section 2, some general bounds and a copula representation of P(X1 + X2 > x)
are discussed. Section 3 then gives explicit results under more specific assumptions
on F and the underlying dependence structure. This should be viewed as an outline
of several partial answers to the question raised above, setting the stage for further
research towards a full understanding of the matter, including the extension to sums
of arbitrarily many risks.

2 Some general considerations

Let us first collect some preliminary facts. Recall that c = limx→∞
F 2(x)

F 1(x)
.

Lemma 2.1. c λ ≤ λ̂ ≤ min(c, λ).

Proof. We have:

λ̂ = lim
x→∞

1 − F1(x) − F2(x) + C(F1(x), F2(x))

1 − F1(x)
≤ lim

x→∞

1 − F2(x)

1 − F1(x)
= c.

Consider c < 1 first. Since there exists an x0 > 0 such that F2(x) > F1(x) for all
x > x0, we have C(F1(x), F2(x)) − C(F1(x), F1(x)) ≤ F2(x) − F1(x) for all x > x0

(cf. [24]). Thus

λ̂ ≤ lim
x→∞

1 − F1(x) − F1(x) + C(F1(x), F1(x))

1 − F1(x)
= λ.
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In the case c = 1, for every ǫ > 0 there exists an x0 > 0 such that F1(x) ≤ F2(x) +
ǫF 1(x) for all x > x0 and hence C(F1(x), F2(x))−C(F1(x), F1(x))−(F2(x)−F1(x)) ≤
ǫF 1(x). We get λ̂ ≤ λ + ǫ and the upper bound follows for ǫ > 0.
For the lower bound, just note that for F2(x) > F1(x) one has C(F2(x), F2(x)) −
C(F1(x), F2(x)) ≤ F2(x) − F1(x) and the result follows analogously. 2

Lemma 2.2. (a) P(max(X1, X2) > x) ∼ (1 + c − λ̂)F 1(x)

(b) lim
x→∞

P(X1 > x|max(X1, X2) > x) = 1

1+c−λ̂

Proof. Assertion (a) follows from

P(max(X1, X2) > x) = P(X1 > x) + P(X2 > x) − P(X1 > x, X2 > x)

= F 1(x) + F 2(x) − F 1(x) P(X2 > x|X1 > x)

and (b) is a direct consequence of (a). 2

The following trivial bounds can be given:

P(max(X1, X2) > x) ≤ P(X1 + X2 > x) ≤ P(max(X1, X2) > x/2),

leading to

1+c−λ̂ ≤ lim inf
x→∞

P(X1 + X2 > x)

F 1(x)
and lim sup

x→∞

P(X1 + X2 > x)

F 1(x/2)
≤ 1+c−λ̂. (3)

These bounds are determined by the dependence structure through λ̂. In the absence
of any information on the dependence structure, one is left with the ”worst case”
bounds

F 1(x) ≪ P(X1 + X2 > x) ≪ (1 + c) F 1(x/2).

At the same time, the bounds (3) cannot be improved without any further assump-
tions, since for very heavy tails with F 1(x/2) ∼ F 1(x) we have

lim
x→∞

P(X1 + X2 > x)

F 1(x)
= 1 + c − λ̂,

so that both bounds are attained (for any value of λ̂). For such heavy tails, the
dependence structure obviously only affects the tail behaviour through λ̂ and the
sum X1+X2 is essentially determined by the maximum of the two random variables.
But also for distributions with lighter tails than above, the bounds (3) are sharp:
The upper bound is attained for comonotone dependence and arbitrary identical
marginals (note that in this case λ̂ = c = 1), whereas the lower bound is attained
for independence and subexponentiality of X1.
For identically distributed X1, X2 one can use (2) with G(x, y) = C(F (x), F (y)) and
y = c1x/(c1 + c2) to get

λ ≤ lim inf
x→∞

P(c1X1 + c2X2 > x)

P(X1 > x/(c1 + c2))
and lim sup

x→∞

P(c1X1 + c2X2 > x)

P(X1 > x/(c1 + c2))
≤ 2−λ. (4)

Note that both bounds are attained when λ = 1.

5



2.1 A copula representation

Proposition 2.3. Let the random variables X1 and X2 be dependent according to
an arbitrary absolutely continuous copula function C(a, b) with partial derivative

ca(a, b) := ∂C(a,b)
∂a

. Then

P(X1 + X2 > x)

F 1(x)
= 1 +

∫ x

0

1 − ca(F1(z), F2(x − z))

F 1(x)
F1(dz). (5)

Proof. From the identity

P(X1 + X2 > x)

F 1(x)
= 1 +

F1(x) − P(X1 + X2 ≤ x)

F 1(x)

= 1 +

∫ x

0

1 − P(X2 ≤ x − z|X1 = z)

F 1(x)
F1(dz),

relation (5) follows from the copula representation of the conditional distribution
function

P(X2 ≤ x2|X1 = x1) = P(F2(X2) ≤ F2(x2)|F1(X1) = F1(x1)) = ca(F1(x1), F2(x2)).

2

Formula (5) can also be interpreted geometrically:

P(X1 + X2 > x) = P(max(X1, X2) > x) + P(X1 + X2 > x, max(X1, X2) ≤ x), (6)

where the second summand is the integral of the copula density function cab(a, b) =
∂2C(a,b)

∂a∂b
over the shaded area in Figure 1, so that one obtains

P(X1 + X2 > x)

= 1 − C(F1(x), F2(x)) +

∫ F1(x)

u1=0

∫ F2(x)

u2=F2(x−F−1

1
(u1))

cab(u1, u2) du2 du1,

= 1 −
∫ F1(x)

u1=0

∫ F2(x−F−1

1
(u1))

u2=0

cab(u1, u2) du2 du1,

which is equivalent to (5).
Since the first summand in (6) is given by Lemma 2.2(a), it suffices to study the
contribution of the shaded area in Figure 1 for the tail behavior of the sum. Note
also that the lower bound in (3) is sharp whenever the contribution from the shaded
area is asymptotically negligible compared to the probability mass in the two stripes
to the right and above of it. On the other hand, the upper bound in (3) is sharp
whenever the area between the two dashed lines and the lower-bounding curve of
the shaded area in Figure 1 is asymptotically negligible to the contribution of the
domain above that curve. The latter is in particular fulfilled for comonotonicity and
F1(x) = F2(x), since then there is only probability mass along the diagional. Note
that the latter does not imply that comonotonicity provides an upper bound for
the tail of the sum among all possible dependence structures, see Section 3.1 for a
counter-example.
Denote ĉ = lim infx→∞

f2(x)
f1(x)

(which coincides with c in case the latter limit exists).
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Figure 1: The domain of the copula density function

Proposition 2.4. Let F1 ∈ L be absolutely continuous with density f1, F2 be ab-
solutely continuous with density f2 and X1 and X2 be dependent according to an
absolutely continuous copula function C(a, b) where cab(a, b) is continuous at b = 1
a.s. (with respect to the Lebesgue measure). Then

lim inf
x→∞

P(X1 + X2 > x)

F 1(x)
≥ 1 + ĉ

∫ ∞

0

cab(F1(z), 1) F1(dz). (7)

Proof. From (5), Fatou’s lemma and de l’Hopital, we obtain

lim inf
x→∞

P(X1 + X2 > x)

F 1(x)
≥ 1 +

∫ ∞

0

lim inf
x→∞

1{z≤x} (1 − ca (F1(z), F2(x − z)))

F 1(x)
F1(dz)

= 1 +

∫ ∞

0

cab(F1(z), 1) lim inf
x→∞

f2(x − z)

f1(x − z)

f1(x − z)

f1(x)
F1(dz).

From the definition of a long-tailed distribution, it immediately follows that
limx→∞

f1(x−z)
f1(x)

= 1 for all z > 0, so that we are left with (7). 2

Remark 2.1. In the exchangeable case we have for the tail dependence coefficient in
terms of (absolutely continuous) copulae

λ = lim
u→1

1 − 2u + C(u, u)

1 − u
= 2 − 2 lim

u→1
cb(u, u) = 2 − 2 lim

u→1

∫ 1

0

1{z≤u}cab(z, u) dz.

If for the integral interchanging integration and limit is justified. then we get

lim
x→∞

P(X1 + X2 > x)

P(X1 > x)
≥ 1 +

∫ 1

0

cab(z, 1) dz ≥ 2

∫ 1

0

cab(z, 1) dz = 2 − λ,

and the bound (7) is indeed an improvement over the trivial bound (3) whenever
λ > 0 (in Section 3.3 we will see cases where interchanging integration and limit is
not justified).

If interchanging limits in (5) is justified, then the r.h.s. of (7) gives the correct
asymptotic behavior of the limit. This is in particular the case for independence,
where cab(a, b) = 1. The latter gives rise to a sufficient criterion for interchanging
limits in (5):
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Proposition 2.5. Let both F1 ∈ S and F2 be absolutely continuous and X1 and
X2 be dependent according to an absolutely continuous copula function C(a, b) with
cab(a, b) < M for all (a, b) ∈ [0, 1] × [b0, 1], b0 < 1. Assume that c exists. Then

lim
x→∞

P(X1 + X2 > x)

F (x)
= 1 + c

∫ ∞

0

cab(F1(z), 1) F2(dz). (8)

Proof. Consider representation (5). For the independent case we obviously have

lim
x→∞

∫ ∞

0

1{z≤x}F 2(x − z)

F 1(x)
F1(dz) = c. (9)

The numerator in (5) can be replaced by

1 − ca(F1(z), F2(x − z)) =

∫ ∞

x−z

cab(F1(z), F2(y)) F2(dy) ≤ M F 2(x − z),

where the last inequality holds for F2(x − z) > b0. If F2(x − z) ≤ b0 we have:

1 − ca(F1(z), F2(x − z)) ≤ 1 ≤ F 2(x − z)

1 − b0

.

Hence (9) for the independent case serves as an upper bound for which interchanging
limits is justified. The assertion then follows by virtue of Pratt’s Lemma (cf. [25]).

2

Lemma 2.6. Let X1 and X2 be dependent random variables with absolutely con-
tinuous marginals F1 and F2 according to an absolutely continuous copula C(a, b)
such that there exist constants x0 < 1 and M < ∞ with cab(a, b) < M for all
(a, b) ∈ [x0, 1]2, then λ̂ = 0.

Proof. Denote with X∗
1 and X∗

2 independent random variables with the same marginal
distributions as X1 and X2. For min(F1(x), F2(x)) > x0 we have:

λ̂ = lim
x→∞

P(X2 > x|X1 > x) = lim
x→∞

P(X2 > x, X1 > x)

P(X1 > x)

= lim
x→∞

1

P(X1 > x)

∫ ∞

x

∫ ∞

x

cab(F1(u1), F2(u2)) F1(du1)F2(du2)

≤ M lim
x→∞

1

P(X1 > x)

∫ ∞

x

∫ ∞

x

1 F1(du1)F2(du2)

= M lim
x→∞

P(X∗
2 > x, X∗

1 > x)

P(X∗
1 > x)

= M lim
x→∞

P(X∗
2 > x) = 0.

2

If the copula density function is bounded in some box anchored in [1, 1], then we
get the following strengthening of Proposition 2.5:
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Lemma 2.7. Let X1 and X2 be dependent random variables with absolutely contin-
uous marginals F1 ∈ S and F2 such that c exists and absolutely continuous copula
C(a, b) such that there exist constants x0 < 1 and M < ∞ with cab(a, b) < M for all
(a, b) ∈ [x0, 1]2, then

lim
x→∞

P(X1 + X2 > x)

P(X1 > x)
= 1 + c.

Proof. Denote with a(x) a function with limx→∞ a(x) = ∞ and

lim
x→∞

P(X1 > x − a(x))

P(X1 > x)
= 1.

From (3) we see that we only need to show that

lim sup
x→∞

P(X1 + X2 > x)

P(X1 > x)
≤ 1 + c.

We have

P(X1 + X2 > x) ≤ P(X1 > x − a(x) ∪ X2 > x − a(x))

+ P(X1 + X2 > x, max(X1, X2) ≤ x − a(x)) (10)

Let X∗
1 and X∗

2 be independent random variables with the same marginal distribu-
tions as X1 and X2. For infy>x Fi(a(y)) > x0 (i = 1, 2), we have

P(X1 + X2 > x, max(X1, X2) ≤ x − a(x))

= P(X1 + X2 > x, max(X1, X2) ≤ x − a(x), min(X1, X2) > a(x))

=

∫

{X1+X2>x,max(X1,X2)≤x−a(x),min(X1,X2)>a(x)}

cab(F1(u1), F2(u2)) F1(du1)F2(du2)

≤ M

∫

{X1+X2>x,max(X1,X2)≤x−a(x),min(X1,X2)>a(x)}

1 F1(du1)F2(du2)

= M P(X∗
1 + X∗

2 > x, max(X∗
1 , X

∗
2 ) ≤ x − a(x), min(X∗

1 , X
∗
2 ) > a(x))

≤ M P(X∗
1 + X∗

2 > x, max(X∗
1 , X

∗
2 ) ≤ x).

Together with F1 ∈ S we get:

lim
x→∞

P(X1 + X2 > x, max(X1, X2) ≤ x − a(x))

P(X1 > x)
= 0.

For the first summand in (10) we have

lim
x→∞

P(X1 > x − a(x) ∪ X2 > x − a(x))

P(X1 > x)

≤ lim
x→∞

P(X1 > x − a(x)) + P(X2 > x − a(x))

P(X1 > x − a(x))

P(X1 > x − a(x))

P(X1 > x)
= 1 + c,

from which the assertion follows. 2
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2.2 A remark on the role of the mean excess function

In this section we focus on exchangeable copulas and identically distributed random
variables X1 and X2 with common distribution function F . As already mentioned,
the tail dependence coefficient λ is a rather rough measure of the dependence in the
tail. The following result uses a somewhat finer criterion of conditional exceedances
and can be applied for any type of dependence structure between X1 and X2. Recall
the definition of the mean excess function e(x) of F given by

e(x) = E(X − x |X > x) =

∫ ∞

x

F (u)

F (x)
du

and note that e(x) → ∞ for x → ∞ for every F ∈ S (see e.g. [11]).

Proposition 2.8. If the mean-excess function e(x) is self-neglecting, i.e.

lim
x→∞

e(x + a e(x))

e(x)
= 1 ∀ a ≥ 0, (11)

and if
inf
a>0

lim inf
x→∞

P(X2 > a e(x) |X1 > x) > 0, (12)

then

lim inf
x→∞

P(X1 + X2 > x)

F (x)
= ∞.

Proof. The self-neglecting property (11) implies

lim
x→∞

F (x + a e(x))

F (x)
= e−a

(see e.g. [3, p.258]) and we have

F (x)

F (x − a e(x))
∼ F (x + a e(x))

F (x + a e(x) − a e(x + a e(x)))

∼ F (x + a e(x))

F (x)
,

also due to (11). Hence, together with (12),

P(X1 + X2 > x) ≥ P(X1 > x − a e(x), X2 > a e(x))

= P(X1 > x − a e(x)) P(X2 > a e(x) |X1 > x − a e(x))

∼ P(X1 > x − a e(x)) P(X2 > a e(x) |X1 > x)

≥ ε P(X1 > x − a e(x))

∼ ε P(X1 > x) ea

for some ε > 0 and any a > 0. Hence

lim inf
x→∞

P(X1 + X2 > x)

F (x)
≥ ε ea

and the latter is unbounded for a → ∞. 2
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Remark 2.2. A sufficient condition for (12) to hold is

lim inf
x→∞

P(X2 > e∗(x) |X1 > x) > 0

for any e∗(x) with e∗(x)/e(x) → ∞. Condition (11) is satisfied for all subexponential
distributions which lie in the domain of attraction of the Gumbel distribution (cf.
[6], [11]) (like the lognormal and the Weibull distribution).

In the following we will show that for all F ∈ S ∩ MDA(Gumbel) there exists a
copula such that condition (12) is satisfied. Let δ(x) = C(x, x) be the diagonal
section of a copula C. One can show that

Cδ(a, b) = min(a, b, 1/2(δ(a) + δ(b)) (13)

defines another copula with diagonal section δ(x) (cf. [24]).

Proposition 2.9. Let X1 and X2 be random variables with copula Cδ(a, b) =
min(a, b, 1/2(δ(a) + δ(b))) and marginal distribution F ∈ S ∩ MDA(Gumbel). If
for all a > 0 there exists an x0 > 0 such that for all x > x0

min(F (x), F (ae(x)), 1/2(δ(F (x)) + δ(F (ae(x))))) = F (ae(x)), (14)

then
lim

x→∞
P(X2 > ae(x)|X1 > x) = 1, ∀a > 0,

and hence (12) is fulfilled.

Proof. For x > x0 we have:

lim
x→∞

P(X2 > ae(x)|X1 > x) = lim
x→∞

P(X2 > ae(x), X1 > x)

P(X1 > x)

= lim
x→∞

1 − F (x) − F (ae(x)) + Cδ(F (x), F (ae(x)))

1 − F (x)

= lim
x→∞

1 − F (x)

1 − F (x)
= 1.

2

Hence it remains to find distributions and diagonal sections which fulfill the condi-
tions of Proposition 2.9.
Let F (x) be a distribution with left endpoint xL ≥ 0, right endpoint ∞ and inverse
distribution function F [−1]. Let g(x) be a monotone function with g(xL) = 1 and
g(∞) = ∞. Then we can define the functions:

h(x) =
1

g(F [−1](x))
,

h1(x) = 2x +

∫ 1

x

h(t) dt − 1.

11



It is easy to see that h is decreasing and h(0) = 1, h(1) = 0. We can now define the
diagonal section:

δ(x) = max (0, h1(x)) (15)

To see that this indeed defines the diagonal section of a copula we have to prove
four properties (cf. [24]):

• δ(1) = 1, which is obviously true.

• δ(x) ∈ [0, 1]: this holds because h′
1(x) = 2−h(x) ≥ 1 so that δ(x) is increasing,

δ(0) ≥ 0 and δ(1) = 1.

• 0 ≤ δ(x2) − δ(x1) ≤ 2(x2 − x1) for any x2 > x1. The first inequality is true
because δ is increasing and the second follows with:

δ(x2) − δ(x1) ≤ h1(x2) − h1(x1) ≤ h′
1(η)(x2 − x1)

for some η ∈ [0, 1] and h′
1(x) ≤ 2 ∀x ∈ [0, 1].

• δ(x) ≤ x. It suffices to show h1(x)−x ≤ 0; since h1(1)−1 = 0 and d
dx

(h1(x)−
x) = 1 − h(x) ≥ 0, this holds.

For the tail dependence coefficient of this copula we get:

λ = lim
x→1

1 − 2x + δ(x)

1 − x
= lim

x→1

−2 + 2 − h(1)

−1
= 0.

We want to show that for suitable g condition (14) holds. For sufficiently large x
this amounts to:

F (ae(x)) ≤ 1

2

(
δ(F (x)) + δ(F (ae(x)))

)

≤ 1

2

(
2F (x) + 2F (ae(x)) +

∫ 1

F (x)

h(y) dy +

∫ 1

F (ae(x))

h(y) dy − 2

)

or equivalently

F (x) ≤ 1

2

(∫ 1

F (x)

h(y) dy +

∫ 1

F (ae(x))

h(y) dy

)
.

It suffices to show

lim
x→∞

∫ 1

F (ae(x))
h(y) dy

F (x)
= ∞.

Consider

lim
x→∞

∫ 1

F (ae(x))
h(y) dy

F (x)
≥ lim

x→∞

∫ 1−F (ae(x))/2

1−F (ae(x))
h(y) dy

F (x)

≥ lim
x→∞

h(1 − F (ae(x))/2)
F (ae(x))

2F (x)

= lim
x→∞

1

g
(
F [−1]

(
1 − F (ae(x))/2

)) F (ae(x))

2F (x)
. (16)

12



Since limx→∞ F (ae(x))/(2F (x)) = ∞ we can choose g in such a way that (16) tends
to ∞. So we have proven:

Theorem 2.10. Let X1 and X2 have marginal distribution function F ∈ S ∩
MDA(Gumbel). Then there exists a copula for X1 and X2 with λ = 0 such that

lim
x→∞

P(X1 + X2 > x)

P(X1 > x)
= ∞. (17)

3 Some specific cases

3.1 Regularly varying marginal distribution

3.1.1 An upper bound

Proposition 3.1. Let F 1 ∈ R−α with α > 0. Then

lim sup
x→∞

P(X1 + X2 > x)

F 1(x)
≤
{ (

λ̂
1

α+1 + (1 + c − 2λ̂)
1

α+1

)α+1

, 0 ≤ λ̂ ≤ 1+c
3

2α(1 + c − λ̂), 1+c
3

< λ̂ ≤ 1.
(18)

Proof. For any 0 < δ < 1/2 we have

P(X1+X2 > x) ≤ P({X1 > (1−δ)x}∪{X2 > (1−δ)x}∪({X1 > δx}∩{X2 > δx}))
≤ F 1((1−δ)x)+F 2((1−δ)x)+P(X1 > δx, X2 > δx)−2P(X1 > (1−δ)x), X2 > (1−δ)x)

so that

lim sup
x→∞

P(X1 + X2 > x)

F 1(x)

≤ lim sup
x→∞

(
(1 − 2λ̂)

F 1((1 − δ)x)

F 1(x)
+

F 2((1 − δ)x)

F 1(x)
+

F 1(δx)

F 1(x)
P(X2 > δx |X1 > δx)

)

=
1 + c − 2λ̂

(1 − δ)α
+

λ̂

δα
.

Within the defined range of δ, this upper bound is minimized for

δ∗ =






1

1+( 1+c

λ̂
−2)

1
α+1

, 0 ≤ λ̂ ≤ 1+c
3

1
2
, 1+c

3
< λ̂ ≤ 1,

which yields (18). 2

Note that this upper bound is sharp for both independence and comonotone de-
pendence when X1 and X2 are identically distributed. In particular, together with
assertion (a) of Lemma 2.2, we obtain (see also [9])

Corollary 3.2. If F1 ∈ R and λ̂ = 0, then P(X1 + X2 > x) ∼ (1 + c)F 1(x).
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Thus for regularly varying tails of the marginals, tail independence suffices to guar-
antee that the tail of the dependent sum behaves asymptotically as if X1 and X2

were independent. From the proof of Proposition 3.1, it becomes clear that this also
holds true for any F ∈ S with heavier tail than regularly varying. On the other
hand, for light-tailed distributions tail independence clearly does not imply such
an insensitivity (for instance, consider a bivariate normal distribution, where the
dependence is described by the (tail independent) Gaussian copula; in this case, the
variance of the sum is a function of the correlation coefficient ρ and the value of ρ
does affect the asymptotic behavior of the sum). This gives rise to the question of
”how heavy” the marginal tails have to be in order to dominate the ”dependence
effect” in the tail of the sum, given λ = 0. Theorem 2.10 of Section 2.2 clarifies this
issue by showing that F ∈ S ∩ MDA(Gumbel) is not a sufficient condition for that
behavior.

For fixed marginals, it was already pointed out by Denuit et al. [10] that, unlike the
case of stop-loss premiums, the comonotone dependence structure does not always
provide an extremal case for the asymptotic behavior of the sum of the tail. The
following simple example demonstrates this fact:

Example 3.1. Let F 1 ∈ R−α with α > 0 and F1(x) = F2(x). Then for indepen-
dence between X1 and X2, by standard subexponential theory, limx→∞ P(X1 +X2 >
x)/F 1(x) = 2. On the other hand, for comonotone X1 and X2 (which due to identical
marginals is equivalent to X1 = X2 a.s.), we have limx→∞ P(X1 + X2 > x)/F 1(x) =
2α. Thus, for α < 1 the comonotone case does not provide an upper bound.

Intuitively, if the marginal distribution tail is heavy enough, then the two random
sources for a possibility of a large sum caused by one of the summands outweighs
the effect of summing two large components from one random source.

3.1.2 Multivariate regularly varying tails

A well-known specific way to couple regularly varying marginals is by multivariate
regular variation. In our bivariate setting it can be defined as follows: The vector
X = (X1, X2) is regularly varying with index −α < 0, if there exists a probability
measure S on S

1 (the unit sphere in R
2 with respect to the Euclidean norm | · |)

such that for all t > 0

P(|X| > tu,X/|X| ∈ ·)
P(|X| > u)

v→ t−α S(·) as u → ∞,

where
v→ stands for vague convergence in S

1 (see for instance Resnick [28]). S is
often referred to as the spectral measure of X.
With positive random variables X1, X2, an equivalent formulation is that there exists
a probability measure S(·) on S

1
+ (the restriction of S

1 to the first quadrant) and a
function b(x) → ∞ such that

b−1(x) P

(( |X|
x

,
X

|X|

)
∈ ·
)

v→ a να × S (19)
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in the space of positive Radon measures on
(
(0,∞] × S

1
+

)
, where a > 0 and

να(t,∞] = t−α, (t > 0, α > 0) (cf. Resnick [27]).
The above implies in particular that on every ray from (0,0) into the positive
quadrant, we have a regularly varying tail with index −α. Moreover, the tail of
c1X1+c2X2 for constants c1 ≥ c2 > 0 is also regularly varying with the same index (in
fact the relationship between regular variation of X = (X1, X2) and one-dimensional
regular variation of linear combinations of its components is much deeper, see Bas-
rak et al. [5]).
So for this specific dependence structure among regularly varying marginals, the
asymptotic behavior of the sum can be given explicitly. To that end, considering
in (19) the events |X|/x > t for t = 1

c1 cos ϕ+c2 sinϕ
and t = 1

c1 cos ϕ
, with ϕ ∈ [0, π/2]

denoting the angle corresponding to X/|X|, we obtain

b−1(x) P(c1X1 + c2X2 > x) → a

∫ π/2

0

(c1 cos ϕ + c2 sin ϕ)α S(dϕ)

for some constant a > 0 (where in an obvious way we have identified S
1
+ with [0, π/2])

and

b−1(x) P(c1X1 > x) → a

∫ π/2

0

cα
1 cosα ϕ S(dϕ),

so that

P(c1X1 + c2X2 > x) ∼ F 1(x/c1)

∫ π/2

0
(c1 cos ϕ + c2 sin ϕ)α S(dϕ)
∫ π/2

0
cα
1 cosα ϕ S(dϕ)

.

For exchangeable X1 and X2 and c1 = c2 = 1, we have S(dϕ) = S(d(π/2 − ϕ)) and
hence

P(X1 + X2 > x) ∼ 2 F (x)

∫ π/2

0
(cos ϕ + sin ϕ)α S(dϕ)

∫ π/2

0
(cosα ϕ + sinα ϕ) S(dϕ)

.

In particular, the quotient on the right hand side is larger than 1 for α > 1, smaller
than 1 for α < 1 and equal to 1 for α = 1 (irrespective of the value of λ). The
comonotone case is retrieved when S is concentrated at ϕ = π/4 which indeed gives
P(X1 + X2 > x) ∼ 2αF (x). For asymptotic independence, S is concentrated on
the two axes, so that P(X1 + X2 > x) ∼ 2 F (x). A natural extremal dependence
measure in this setting is

ρ := 1 − 1

(π/4)2

∫ π/2

0

(
ϕ − π

4

)2

S(dϕ),

see Resnick [27]. Finally, the tail dependence coefficient λ as defined in Section 1
can in this case be obtained by considering the event |X|/x > t for t = 1

min{cos ϕ,sinϕ}

in (19), yielding

λ = lim
x→∞

P(X1 > x, X2 > x)

P(X1 > x)
=

2
∫ π/4

0
sinα ϕ S(dϕ)

∫ π/4

0
(sinα ϕ + cosα ϕ) S(dϕ)

.
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Under further restrictions on the shape of X, the spectral measure S may be ex-
plicitly computable (for instance, in case of elliptical distributions with regularly
varying tail, see Hult & Lindskog [16]; however, the latter class is not relevant for
the present purpose due to our restriction to positive random variables).

Remark 3.1. While in this specific setting, clearly λ is a rougher measure for depen-
dence in the tail than ρ, both measures identify the same distributions as asymp-
totically independent, i.e. ρ = λ = 0. In the latter case there are refinements for
the study of multivariate regularly varying distributions available, cf. Resnick [26].

3.2 Lognormal marginal distribution

Asmussen & Rojas-Nandayapa [4] considered X1 + · · · + Xn where X1, . . . , Xn are
lognormal with a multivariate Gaussian copula. That is, Xi = eYi where Y1, . . . , Yn

are jointly multivariate Gaussian(µ, Σ) for some mean vector µ and some covariance
matrix Σ; exchangeability is not required. Their results state that the tail of the
sum is asymptotically the same as for the independent case Σ = (σ2

i )diag. Note that
for lognormal distributed X1 a multiplication with c1 is equivalent to changing µ1

to µ1 + log c1. When specialized to the present setting with c1 = c2 = 1, this means:

Proposition 3.3. Let X1, X2 be bivariate normal with the same mean µ, the same
variance σ2 and covariance ρ ∈ [−1, 1). Then

P(X1 + X2 > x) ∼ 2 P(X1 > x) ∼
√

2/π

σ log x
exp

{
−(log x − µ)2/2σ2

}
.

A short heuristical argument (different from the rigorous, more technical proof of [4])
supporting this result goes as follows. We take µ = 0, σ2 = 1, ρ > 0 for simplicity.
Then we can write

Y1 = U + V1 , Y2 = U + V2 ,

where U, V1, V2 are independent univariate Gaussian with mean zero and variances
a2, b2, b2, respectively, where a2 + b2 = 1, a2 = ρ. Given U = u, X1 and X2 are
independent lognormals with log-variance b2, so by subexponential limit theory

P
(
X1 + X2 > x

∣∣U = u
)

= P(eV1 + eV2 > xe−u)

∼
√

2/π

b(log x − u)
exp

{
−(log x − u)2/2b2

}
.

We make the guess

P(X1 + X2 > x) ≈ max
u

1

a
√

2π
e−u2/2a2

P
(
X1 + X2 > x

∣∣U = u
)

(20)

and ignore everything not in the exponent and constants. Then we have to find the
u minimizing

u2

2a2
− u logx

b2
+

u2

2b2
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which (using a2 + b2 = 1) is easily seen to be u = a2 log x. Substituting back in (20),
we get

P(X1 + X2 > x) ≈ exp
{
−a4 log2 x/2a2 − (1 − a2)2 log2 x/2b2

}

= exp
{
− log2 x/2

}
(21)

in agreement with Proposition 3.3 (we have used ≈ to indicate aymptotics at a
rough level, that is, rougher than ∼ or even logarithmic asymptotics as used in large
deviations theory).
Note that the argument contains some information on how X1 + X2 exceeds x: U
must be approximately u = a2 log x = ρ log x and either V1 or V2 but not both large.
Translated back to X1, X2, this means that one is larger than x and the other of
order eu = xρ.

The above proposition provides an example of lognormal marginals and tail inde-
pendence (through the Gaussian copula), in which the tail asymptotics of the sum
are insensitive to increasing dependence. From Theorem 2.10 we know that lognor-
mality of the marginals is in general not sufficient to guarantee this insensitivity
for arbitrary dependence structures. In the following we provide an alternative con-
struction to the one in the proof of Theorem 2.10 of a tail-independent exchangeable
random vector (X1, X2) with lognormal marginals and

lim inf
x→∞

P(X1 + X2 > x)

F (x)
= ∞,

which is tailored to the lognormal setting:

Lemma 3.4. There exists a tail-independent exchangeable random vector (Y1, Y2)
with standard normal marginals and

∣∣Y1−Y2

∣∣ = d whenever Y1 +Y2 > y0 for a given
d > 0 and y0 > 0.

Proof. For y1 + y2 < 0 simply define the joint distribution as the restriction of the
bivariate standard normal distribution with independent marginals to {y1 + y2 < 0}.
For y1 + y2 > 0, let f(y) denote the density of Y1 +Y2. The problem is to determine
f such that ∫ ∞

0

f(y) dy =
1

2
(22)

and

ϕ(y) =
1

2
f(y − d) +

1

2
f(y + d) , (23)

where ϕ(y) denotes the density of the standard normal distribution. Let us rewrite

f(y) = ϕ(y)e−dyg1(y) (24)

for some function g1(y). Using ϕ(y + d) = ϕ(y)e−d2/2−dy, (23) then becomes

1 =
1

2
e−d2/2

[
edye−d(y−d)g1(y − d) + e−dye−d(y+d)g1(y + d)

]
,
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that is
2e−d2/2 = g1(y − d) + e−2d2

e−2dyg1(y + d) .

Trying the solution g1(y) =
∑∞

n=0 rne−2ndy, we obtain

2e−d2/2 =
∞∑

n=0

rne
−2nd(y−d) + e−2d2

e−2dy
∞∑

n=0

rne−2nd(y+d)

=
∞∑

n=0

rne
2nd2

e−2ndy + e−2d2

∞∑

n=1

rn−1e
−2(n−1)d2

e−2ndy.

Identifying coefficients yields r0 = 2e−d2/2 and

rn = −e−4nd2

rn−1, n ≥ 1,

leading to
rn = (−1)n2e−2d2(n+1)n−d2/2, n ≥ 0.

Hence

g1(y) = 2e−d2/2

∞∑

n=0

(−1)n e−2d2(n+1)n e−2ndy,

which is a convergent series for every y ≥ 0, since it is alternating with coeffi-
cients decreasing to zero monotonically. Moreover, limy→∞ g1(y) = 2e−d2/2, so that∫∞

0
ϕ(y)e−dyg1(y) dy < ∞ and the integrand can be normalized in such a way that

(22) holds. Finally, from (24) we see that f(y + d) = o (f(y − d)) as y → ∞ and
thus λ = limy→∞ P(Y2 > y|Y1 > y) = 0. 2

Since the copula of a bivariate distribution stays invariant under strictly increasing
transformations of the marginals and the tail dependence coefficient is a function of
the copula only, Lemma 3.4 can be carried over to the random vector (X1, X2) =
(eY1 , eY2) with lognormal marginals. In particular, for large x we then either have
X1 = X2 ed or X2 = X1 ed. Hence

P(X1 + X2 > x) ∼ P(X1 + X2 > x, X1 = X2 ed) + P(X1 + X2 > x, X2 = X1 ed)

= 2 P
(
X1 > x/(1 + ed)

)
.

As for a lognormal random variable X1 = eY1 with Y1 ∼ N(0, 1), the tail is asymp-
totically

F (x) ∼ 1√
2π log x

e− log2 x,

which establishes the alternative counter-example.

3.3 Archimedean copulae

Archimedean copulae are of the form

C(a, b) = φ[−1](φ(a) + φ(b)), 0 ≤ a, b ≤ 1, (25)
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where the generator φ(t) is a continuous, convex and strictly decreasing function
from [0,1] to [0,∞] such that φ(1) = 0 and φ[−1] denotes the pseudo-inverse of φ
defined by

φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) ≤ t ≤ ∞.

If φ(0) = ∞, then φ is called a strict generator.

Lemma 3.5. Let F1 ∈ S with X1 and X2 being dependent according to an Archimedean
copula with generator φ being twice differentiable with φ′(1) = m < 0 and φ′′(x) ≤ M
and |φ′(x)| ≤ M on [x0, 1] for some M < ∞ and 0 < x0 < 1, then

lim
x→∞

P(X1 + X2 > x)

P(X1 > x)
= 1 + c.

Proof. Choose x1 < 1 such that C(x, x) ≥ x0 for all x ≥ x1. For (a, b) ∈
[max(x0, x1), 1]2 we have

cab(a, b) = −φ′′(C(a, b))φ′(a)φ′(b)

(φ′(C(a, b)))3
≤ M3

m3
< ∞.

The assertion now follows from Lemma 2.7 2

Proposition 3.6. Let C(a, b) be an Archimedean copula with twice differentiable
generator φ and λ > 0, then limb→1 cab(a, b) = 0 and hence the lower bound in (7)
is 1.

Proof. Definition (25) implies

cb(a, b) =
φ′(b)

φ′(φ[−1](φ(a) + φ(b)))
.

The tail dependence coefficient λ is given by

λ = 2 − 2 lim
u→1

φ′(u)

φ′(φ−1(2φ(u)))
. (26)

Now λ = 0 unless φ′(1) = 0, in which case we have

lim
b→1

cab(a, b) = lim
b→1

−φ′′(C(a, b))φ′(a)φ′(b)

(φ′(C(a, b)))3
= −φ′′(a)φ′(a)φ′(1)

(φ′(a))3
= 0.

2

Example 3.2. Consider the generator φ(t) = log(1 − θ log t), where θ ∈ (0, 1] is a
dependence parameter (with the limiting case θ = 0 representing independence).
The copulae in this family are usually referred to as Gumbel-Barnett copulae, see
for instance Nelsen [24, p.97]. It is easily checked that φ(t) fulfills the conditions of
Lemma 3.5 and hence for F1 ∈ S we have

lim
x→∞

P(X1 + X2 > x)

P(X1 > x)
= 1 + c.

2
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Recall the definition of a survival copula

Ĉ(a, b) = a + b − 1 + C(1 − a, 1 − b), 0 ≤ a, b ≤ 1,

corresponding to the copula C(a, b) (cf. [24]). Ĉ(a, b) is itself a copula and exchanges
the role of upper and lower tails. Representation (5) can then be rewritten in the
form

P(X1 + X2 > x)

F 1(x)
= 1 +

∫ x

0

ĉa(F 1(z), F 2(x − z))

F 1(x)
F1(dz). (27)

For survival copulae of certain Archimedean type, Alink et al. [2] recently derived
the following remarkable explicit result, which in our setting, for a weighted sum,
reads:

Proposition 3.7 (Alink et al. 2004). Let the survival copula be Archimedean with

generator φ̂ regularly varying at 0+ with index −α < 0, let Yα denote a positive
random variable with density fα(y) = (1 + yα)−1/α−1 and c1 ≥ c2 > 0.

(a) If F ∈ R−β with β > 0, then

P(c1X1 + c2X2 > x) ∼ cβ
1

(
1 + c2E

(
c2/c1 + Y −1/β

α

)β−1
)

F (x).

(b) If F ∈ S and for any a ∈ R the relation

lim
x→∞

F (x + a e(x))/F (x) = e−a (28)

holds, where e(x) is again the mean excess function corresponding to F , then

P(c1X1 + c2X2 > x) ∼ c1

Γ
(
1 + c1

(c1+c2)α

)
Γ
(
1 + c2

(c1+c2)α

)

Γ
(
1 + 1

α

) F

(
x

c1 + c2

)
.

(29)

Remark 3.2. The assumptions on the generator in the above proposition enforce a
strictly positive tail dependence coefficient. More explicitly,

λ = lim
u→1

Ĉ(1 − u, 1 − u)

1 − u
= 2 lim

u→0
ĉa(u, u) = 2 lim

u→0

φ̂′(u)

φ̂′(φ̂−1(2φ̂(u)))
= 2−1/α. (30)

Remark 3.3. Assumption (28) is equivalent to F ∈ MDA(Gumbel) (cf. Embrechts et
al. [11] and also Section 2.2). Hence the conditions in assertion (b) are in particular
fulfilled for the lognormal and the Weibull distribution with parameter τ < 1. The
constant from (29) (which increases to 1 as α → ∞) can be compared with the
trivial upper bound from (4) in view of (30), cf. Figure 2. In particular, it becomes
visible that, roughly, for large α (e.g. strong dependence among X1 and X2), the
dominating contribution for the sum to be large comes from both variables being
large.
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Figure 2: F ∈ MDA(Gumbel): exact value from (29) vs. trivial upper bound
(c1 = c2 = 1)

Remark 3.4. Assertion (a) above can be rewritten as

P(c1X1 + c2X2 > x)

∼
(

c1

c1 + c2

)β
(

1 + c2

∫ ∞

0

(
c2

c1
+ y−1/β

)β−1

(1 + yα)−1−1/α dy

)
F

(
x

c1 + c2

)
,

which, in view of

lim
β→∞

c2(c1/(c1 + c2))
β
(
c2/c1 + y−1/β

)β−1
=

c1c2

c1 + c2
y−c1/(c1+c2),

converges to (29) for β → ∞. Figure 3 illustrates that already for values of β around
10, the asymptotic behavior of the regularly varying case and the one of the Gumbel
case are almost indistinguishable.

0.5 1 1.5 2 2.5 3
Α

0.2

0.4

0.6

0.8

1

Figure 3: Comparison of constants: F ∈ R−β with β = 2 and β = 10 and F ∈
MDA(Gumbel) (from top to bottom, c1 = c2 = 1)

3.4 Farlie-Gumbel-Morgenstern copula

This family of copulae is defined by

C(a, b) = a b (1 + 3ρS(1 − a)(1 − b)), −1/3 ≤ ρS ≤ 1/3,

where ρS denotes Spearman’s rank correlation coefficient. Here cab(a, b) = 1 +
3ρS (1 − 2a) (1 − 2b) and Lemma 2.7 applies giving

P(X1 + X2 > x) ∼ (1 + c)F 1(x).
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Remark 3.5. Note that the Farlie-Gumbel-Morgenstern copula is tail-independent,
providing another example of a dependence structure, for which the first order tail
asymptotics of the sum is insensitive to the degree of dependence (measured in terms
of ρS) irrespective of the heaviness of the marginal tails, as long as F ∈ S.

3.5 Linear Spearman copula

Finally, we briefly mention the simple case of convex combinations of independence
and comonotone dependence, which admits an explicit solution as well. The positive
linear Spearman copula is defined by

C(a, b) = λ min(a, b) + (1 − λ) a b, 0 ≤ a, b ≤ 1,

where the dependence parameter λ ∈ [0, 1] is indeed the tail dependence coefficient.
Assuming F ∈ S and c̃ = limx→∞ F (x/c2)/F (x/c1) exists, we get

P(c1X1 + c2X2 > x) = λP(c1X1 + c2X2 > x|CM) + (1 − λ)P(c1X1 + c2X2 > x|CI)

∼ λF (x/(c1 + c2)) + (1 + c̃)(1 − λ)F (x/c1).

For F ∈ R−α with α > 0, we obtain P(c1X1 + c2X2 > x) ∼ ((cα
1 + cα

2 )(1 − λ) +
λ (c1 + c2)

α)F (x). In particular, for α = 1 the tail of the sum is asymptotically
equivalent to the independent sum for all λ ∈ [0, 1] (a comparison with Proposition
3.1 shows that in this example the upper bound (18) is quite rough for larger val-
ues of α). On the other hand, for distributions with F (x/c1) = o(F (x/(c1 + c2))),
P(c1X1 + c2X2 > x) ∼ λF (x/(c1 + c2)) scales with the tail dependence coefficient λ.
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[10] M. Denuit, C. Genest, and É. Marceau. Stochastic bounds on sums of dependent
risks. Insurance Math. Econom., 25(1):85–104, 1999.
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[32] M. V. Wüthrich. Asymptotic value-at-risk estimates for sums of dependent
random variables. Astin Bull., 33(1):75–92, 2003.

24


