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Abstract

In this paper we show that it is possible to write the Laplace transform of the Burr
distribution as the sum of four series. This representation is then used to provide a
complete asymptotic expansion of the tail of the compound sum of Burr distributed
random variables. Furthermore it is shown that if the number of summands is fixed,
this asymptotic expansion is actually a series expansion if evaluated at sufficiently
large arguments.
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1 Introduction

Consider the compound sum SN = X1 + . . .+XN , where (Xi)i≥1 is a sequence of indepen-
dent and identically distributed random variables with distribution function F and N is
an integer-valued random variable with probability function P(N = n) = pn (independent
of the Xi). The determination of approximations for the tail probability

G(u) := P(SN > u).

is a classical problem in applied probability. It occurs for instance in risk theory as the
probability that the total claim amount in the collective risk model exceeds a certain
threshold (cf. Klugman et al. (2008)) or in various applications in queueing theory (cf.
Asmussen (2003)). Also, the probability of the maximum of a random walk with negative
drift to overshoot some given level can be expressed in the above way in a variety of mod-
els (cf. Rolski et al. (1999)). For subexponential distribution functions F , a first-order
asymptotic approximation is provided in e.g. Embrechts and Veraverbeke (1982). Under
certain further conditions on F , higher-order asymptotic expansions have been derived, see
e.g. Grübel (1987), Baltrūnas and Omey (1998), Borovkov and Borovkov (2002), Barbe
and McCormick (2005, 2009); Barbe et al. (2007), Geluk (1992, 1996); Geluk et al. (2000)
and Albrecher et al. (2010). All these results have the drawback that, for regularly vary-
ing distributions, the asymptotic expansion ends after a finite number of terms. On the
other hand, in Brennan et al. (1968) an infinite order expansion for G(u) was provided
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for the special case of Pareto summands with F (x) = 1 − F (x) = x−α and deterministic
N = n ( Blum (1970) later showed that this expansion converges and equality holds).
The main tool there was to invert the Laplace transform of the Pareto distribution, which
contains an incomplete Gamma function, and its available series expansion. In Albrecher
and Kortschak (2009) an infinite order expansion for G(u) was identified (in the context
of ruin probabilities) for a geometric compound sum with summands whose integrated tail
is Pareto distributed. From Section 4 of Albrecher and Kortschak (2009) it becomes clear
that this procedure can also be generalized to other compounding distributions.

In this paper we will show that if the summands (Xi)i≥1 follow a Burr distribution (which
constitutes another family of regularly varying distributions with F (x) = (1 + xγ/θ)−α,
x > 0), then one can extend the above described procedure and obtain the complete
asymptotic expansion ofG(u) under quite mild assumptions on the distribution ofN . After
establishing some properties of the Laplace transform of a Burr distribution in Section 2,
we derive the asymptotic expansion of G(u) in Section 3. In Section 4 we consider the case
of a deterministic N and show that then for u > N the asymptotic expansion converges
and is equal to G(u). In Section 5, we provide some numerical illustrations and Section 6
contains some final remarks.

2 A series expansion for the Laplace transform of the Burr
distribution

Consider the Burr distribution with F (x) = (1 + (x/θ)γ)−α. W.l.o.g. we choose the scale
parameter θ = 1. Assume further that

h(n) :=
1

infk≥0,n+1−(k+α)γ 6=0 |n+ 1− (k + α)γ| = O(nd)

for some d > 0 (where k and n are integers) and note that this condition is always fulfilled
if α and γ are rational numbers. We will now provide a series expansion for L̂F (s) that is
valid on D := C\(−∞, 0].
For the Laplace transform of the tail F we have

L̂F (s) =
∫ ∞

0
e−sx(1 + xγ)−αdx =

∫ R

0
e−sx(1 + xγ)−αdx+

∫ ∞

R
e−sx(1 + xγ)−αdx.

Note that ∫ R

0
e−sx(1 + xγ)−αdx =

∞∑

n=0

(−s)n

n!

∫ R

0
xn(1 + xγ)−αdx.

Denote with En(x) :=
∫∞
1 e−xt/tndt the exponential integral, with Γ(α) the Gamma

function and with γ∗(a, x) := x−a/Γ(a)(Γ(a) − ∫∞
x e−tta−1dt) the incomplete Gamma

function (cf. (Abramowitz and Stegun, 1964, Equation 6.5.4)). For R > 1 we have
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∫ ∞

R
e−sx(1 + xγ)−αdx =

∞∑

n=0

(−1)nΓ(α+ n)
Γ(α)Γ(n+ 1)

∫ ∞

R
e−sxx−(n+α)γdx

=
∞∑

n=0

(−1)ns(n+α)γ−1Γ(α+ n)
Γ(α)Γ(n+ 1)

∫ ∞

sR
e−xx−(n+α)γdx

=
∞∑

n=0

(−1)ns(n+α)γ−1Γ(α+ n)
Γ(α)Γ(n+ 1)

Γ (1− (n+ α)γ, sR)

=
∞∑

n=0,(n+α)γ 6∈N

(−1)ns(n+α)γ−1Γ(α+ n)
Γ(α)Γ(n+ 1)

Γ(1− (n+ α)γ)

−
∞∑

n=0,(n+α)γ 6∈N

(−1)nΓ(α+ n)
Γ(α)Γ(n+ 1)

γ∗ (1− (n+ α)γ,Rs) Γ(1− (n+ α)γ)R1−(n+α)γ

+
∑

n=0,(n+α)γ∈N

(−1)ns(n+α)γ−1Γ(α+ n)
Γ(α)Γ(n+ 1)

(sR)1−(n+α)γE(n+α)γ (sR) .

Define ψ(n) := Γ′(n)/Γ(n). It then follows that

∫ ∞

R
e−sx(1 + xγ)−αdx =

∞∑

n=0,(n+α)γ 6∈N

(−1)ns(n+α)γ−1Γ(α+ n)
Γ(α)Γ(n+ 1)

Γ(1− (n+ α)γ)

−
∞∑

n=0,(n+α)γ 6∈N

(−1)nΓ(α+ n)
Γ(α)Γ(n+ 1)

∞∑

k=0

(−s)k

(k + 1− (n+ α)γ)k!
Rk+1−(n+α)γ

+
∑

n=0,(n+α)γ∈N

(−1)nΓ(α+ n)
Γ(α)Γ(n+ 1)

(
(−s)(n+α)γ−1

Γ((n+ α)γ)
(− log(sR) + ψ((n+ α)γ))

−
∞∑

k=0,k 6=(n+α)γ−1

(−s)k

(k + 1− (n+ α)γ)k!
Rk+1−(n+α)γ

)
.

From h(n) = O(nd) it follows that for R > 1 the above sums are absolutely convergent.
For |s| <∞ we have
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∫ ∞

0
e−sx(1 + xγ)−αdx = sαγ−1

∞∑

n=0,(n+α)γ 6∈N

(−1)nΓ(α+ n)Γ(1− (n+ α)γ)
Γ(α)Γ(n+ 1)

snγ

+ sαγ−1
∞∑

n=0,(n+α)γ∈N

(−1)n+(n+α)γ−1Γ(α+ n)
Γ(α)Γ(n+ 1)Γ((n+ α)γ)

snγ (ψ((n+ α)γ)− log(s))

+
∞∑

n=0

(−s)n

n!

(∫ R

0
xn(1 + xγ)−αdx

−
∞∑

k=0,k 6=n+1
γ
−α

(−1)kΓ(α+ k)
Γ(α)Γ(k + 1)(n+ 1− (k + α)γ)

Rn+1−(k+α)γ

−
(−1)

n+1
γ
−αΓ(n+1

γ )

Γ(α)Γ
(

n+1
γ − α+ 1

) log(R)Inn+1
γ
−α∈N

o
)
.

Dominated convergence and a complex mean value theorem (see Evard and Jafari (1992))
then yield that the function

g(R,n) :=
∫ R

0
xn(1+xγ)−αdx −

∞∑

k=0,k 6=n+1
γ
−α

(−1)kΓ(α+ k)
Γ(α)Γ(k + 1)(n+ 1− (k + α)γ)

Rn+1−(k+α)γ

is holomorphic for every Re(n) > −1 with infk∈N |n+ 1− (k+α)γ| > 0. Furthermore, the
computation of the derivative shows that, for infk∈N |n + 1 − (k + α)γ| > 0, g(R,n) is in
fact constant in R > 1. Consequently, for −1 < n < αγ − 1, we get by letting R→∞

g(R,n) = g(∞, n) =
∫ ∞

0
xn(1 + xγ)−αdx =

1
n+ 1

E
[
Xn+1

]
=

Γ
(

n+1
γ

)
Γ

(
αγ−(n+1)

γ

)

γΓ(α)
.

(1)
By analytic continuation in n we can drop the restriction −1 < n < αγ − 1 on n and get
for infk∈N |n+ 1− (k + α)γ| > 0

g(R,n) :=
Γ

(
n+1

γ

)
Γ

(
αγ−(n+1)

γ

)

γΓ(α)
. (2)

This means that if we consider E
[
Xn+1

]
as a function in n (−1 < n < αγ − 1), then

the analytic continuation of this function is given by (n+ 1)g(R,n). So it makes sense to
define E [Xn] := ng(R,n− 1), which for values of n with −1 < n < αγ − 1 coincides with
the usual definition of E [Xn], but now can be evaluated for n > αγ − 1. At last we have
to discuss the case of n = n0, when there exists a k0 ∈ N with k0 = (n0 + 1)/γ − α. We
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have

g(R,n0) = lim
n→n0

g(R,n) +
(−1)k0Γ(α+ k0)

Γ(α)Γ(k0 + 1)(n+ 1− (k0 + α)γ)
Rn+1−(k0+α)γ

= lim
n→n0

Γ
(

n+1
γ

)
Γ

(
−k0 − n−n0

γ

)

Γ(α)γ
+

(−1)k0Γ
(

n0+1
γ

)

Γ(α)Γ(k0 + 1)(n− n0)
Rn−n0

=
(−1)

n0+1
γ

−α+1Γ
(

n0+1
γ

)

γΓ(α)Γ
(

n0+1
γ − α+ 1

)
(
ψ

(
n0 + 1
γ

)
− ψ

(
n0 + 1
γ

− α+ 1
)
− γ log(R)

)

from which it follows that

L̂F (s) =sαγ−1
∞∑

n=0,(n+α)γ 6∈N

(−1)nΓ(α+ n)Γ(1− (n+ α)γ)
Γ(α)Γ(n+ 1)

snγ

+ sαγ−1
∞∑

n=0,(n+α)γ∈N

(−1)n+(n+α)γ−1Γ(α+ n)
Γ(α)Γ(n+ 1)Γ((n+ α)γ)

snγ (ψ((n+ α)γ)− log(s))

+
∞∑

n=0, n+1
γ
−α 6∈N

(−s)n

n!

Γ
(

n+1
γ

)
Γ

(
αγ−(n+1)

γ

)

γΓ(α)
(3)

+
∞∑

n=0, n+1
γ
−α∈N

(−s)n

n!

(−1)
n+1

γ
−α+1Γ

(
n+1

γ

)

γΓ(α)Γ
(

n+1
γ − α+ 1

)
(
ψ

(
n+ 1
γ

)
− ψ

(
n+ 1
γ

− α+ 1
))

.

On the other hand, one can obtain an asymptotic expansion for L̂f (s) for |s| → ∞ and
Re(s) > −t0 for a t0 > 0. If |γφ| < π, then we have that for | arg(s)− φ| < π/2 (cf. Olver
(1997))

L̂f (s) :=
∫ ∞

0
e−sxf(x)dx = e−ιφ

∫ ∞

0
e−se−ιφxf(xe−ιφ)dx.

By an application of Watson’s Lemma (see e.g. Olver (1997)), we arrive at

L̂F (s) := e−ιφ

∫ ∞

0
e−se−ιφxF (xe−ιφ)dx ∼

∞∑

n=0

(−1)nΓ(α+ n)Γ(γn+ 1)
Γ(α)n!

s−(nγ+1). (4)

3 Complete asymptotic expansion of the tail of a compound
sum with Burr distributed random variables

Denote the probability generating function of the number N of summands by QN (z) :=
E

[
zN

]
, then

L̂G(s) =
1
s
− 1
s
QN

(
L̂f (s)

)
,

and for an s0 > 0 we get

G(u) = 1− 1
2πι

∫ s0+ι∞

s0−ι∞
eus 1

s
QN

(
L̂f (s)

)
ds, (5)
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where L̂f (s) denotes the Laplace transform of the probability density function of the Xi.
At first we consider the case that n + 1 − (k + α)γ 6∈ N for all k ≥ 0 and n ≥ 0. Due to
(4), we can apply Lemma 2.9 of Albrecher and Kortschak (2009) to

g(s) := QN

(
L̂f (s)

)

to obtain the following result (see also Theorem 4.1 of Albrecher and Kortschak (2009)).

Proposition 3.1. Let X1, X2, . . . be independent and identically distributed Burr random
variables with distribution tail F (x) = (1 + xγ)−α and let N be an integer-valued random
variable independent of Xi such that there exists an ε > 0 with

E
[
(1 + ε)N

]
=

∞∑

n=0

P(N = n)(1 + ε)n <∞.

Then there exists a t0 > 0 with

G(u) ≈ − 1
π

∫ t0

0

1
x
e−uxIm

(
QN

(
L̂f (−x)

))
dx,

where for two functions a(x) and b(x) the symbol a(x) ≈ b(x) means that there exists a
δ > 0 with a(x) = b(x) +O(e−δx).

This result can now be used to get an asymptotic expansion for G(u). At first, write

QN (z) =
∞∑

n=0

qn(z − 1)n.

Note that for n > 0

qn =
1
n!

∂QN (z)
∂(z)

∣∣∣∣
z=1

=
E [N(N − 1) · · · (N − n+ 1)]

n!
.

Further we have from (3)

L̂f (s) = 1− sαγ
∞∑

n=0

(−1)nΓ(α+ n)Γ(1− (n+ α)γ)
Γ(α)Γ(n+ 1)

snγ +
∞∑

n=1

(−s)n

n!
E [Xn] ,

where for n > αγ we used the analytic continuation of E [Xn] defined by equations (1)
and (2). Define am

n such that
( ∞∑

n=1

(−s)n

n!
E [Xn]

)m

=
∞∑

n=m

am
n (−s)n,

and bmn such that
(
−sαγ

∞∑

n=0

(−1)nΓ(α+ n)Γ(1− (n+ α)γ)
Γ(α)Γ(n+ 1)

snγ

)m

=
∞∑

n=0

bmn s
(n+mα)γ .
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It follows that

(L̂f (−s)− 1)m =
m∑

k=1

(
m

k

) ∞∑

l=0

∞∑

n=m−k

am−k
n bkl s

(l+kα)γ+neιπ(l+kα)γ .

We have that for s in the neighborhood of 0:

Im
(
QN

(
L̂f (−s)

))
=

∞∑

m=0

qm

m∑

k=1

(
m

k

) ∞∑

l=0

∞∑

n=m−k

am−k
n bkl s

(l+kα)γ+n sin(π(l + kα)γ).

Inserting this formula into the integral of Proposition 3.1, another application of Watson’s
Lemma (e.g. Olver (1997)) yields

∫ t0

0

1
x
e−uxIm

(
QN

(
L̂f (−x)

))
dx

∼
∞∑

m=0

qm

m∑

k=1

(
m

k

) ∞∑

l=0

∞∑

n=m−k

am−k
n bkl sin(π(l + kα)γ)u−((l+kα)γ+n)Γ((l + kα)γ + n)

∼
∑

l,n≥0,k≥1

u−((l+kα)γ+n)bkl sin(π(l + kα)γ)Γ((l + kα)γ + n)
k+n∑

m=k

am−k
n qm

(
m

k

)
. (6)

Note that for n < αγ

k+n∑

m=k

am−k
n qm

(
m

k

)
=
E

[
N(N − 1) · · · (N − k + 1)Sn

N−k

]

k!n!
,

and for k = 1, u > 1 we get

−
∞∑

l=0

u−((l+kα)γ+n)b1l sin(π(l + α)γ)Γ((l + α)γ + n) = π(−1)nF
(n)(u), (7)

where F (n)(u) is the n-th derivative of F (u).
By equation (6) we have, up to a constant, provided an asymptotic expansion for G(u) if
there exist no positive integers k and n with n + 1 − (k + α)γ ∈ N. In case there exist
positive integers k and n with n+1− (k+α)γ ∈ N, we can find real constants an, bn, and
cn such that (3) reads:

L̂f (−s)− 1 =
∞∑

n=1

ans
n +

∞∑

n=0

bns
(n+α)γeιπ(n+α)γ +

∞∑

n=1

cns
(n+α)γ(log(s) + ιπ).

Define ai
n, bin and cin analogously as above and define

Cl,k,n,h :=
k−h∑

j=0

l∑

i=0

n+k∑

m=k

(
m

k, j, h

)
sin

(
π(i+ jα)γ +

π

2
(k − j − h)

)
πk−j−hqma

m−k
n bji c

k−j
l−i .

After some algebraic manipulations one gets

Im
(
QN

(
L̂f (−s)

))
=

∑

l,n≥0,k≥1

k−1∑

h=0

Cl,k,n,h(log(s))hs(l+kα)γ+n.
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Define finally

C̄(m,n) :=
∫ ∞

0
e−x log(x)nxm−1dx and

Ĉl,k,n,h :=− 1
π

k−1∑

m=h

(
m

h

)
(−1)hCl,k,n,mC̄((l + kα)γ + n,m− h).

It then follows (analogously to the case n + 1 − (k + α)γ 6∈ N for all positive integers k
and n) that

G(u) ∼
∑

l,n≥0,k≥1

k−1∑

h=0

Ĉl,k,n,h(log(u))hu−(l+kα)γ−n.

4 The case of deterministic N

In this section we will assume that N is deterministic. We will only consider the case that
n + 1 − (k + α)γ 6∈ N for all k ≥ 0 and n ≥ 0. We will show that then the series (6)
converges for u > N . At first note that for deterministic N

qm =
(
N

m

)
,

so that qm = 0 for m > N . Consequently the sum over the k in (6) is finite and hence we
can consider a fixed 1 ≤ k ≤ N . For all ε > 0 there exists a constant C1 such that for all
n ≥ 0

|a1
n| =

1
n!

∣∣∣∣∣∣
nπΓ

(
n
γ

)

γΓ(α) sin
(
π

(
α− n

γ

))
Γ

(
n
γ − α

)(
n
γ − α

)
∣∣∣∣∣∣
≤ C1

(1 + ε)n

n!

(note that we have assumed that h(n) = O(nd)). It follows that |am
n | ≤ Cm

1 ((1+ε)m)n/n!.
Hence there exists a constant C2 such that for all n

k+n∑

m=k

∣∣∣∣am−k
n qm

(
m

k

)∣∣∣∣ ≤ C2
((1 + ε)(N − k))n

n!
.

Since for x < 1 and c > 0 ∞∑

n=0

Γ(c+ n)xn

n!
(1− x)−cΓ(c),

we get that for u > (1 + ε)(N − k) and l ∈ N0

∞∑

n=0

∣∣u−n sin(π(l + kα)γ)Γ((l + kα)γ + n)
∣∣

k+n∑

m=k

∣∣∣∣am−k
n qm

(
m

k

)∣∣∣∣

≤ C2Γ((l + kα)γ)
(

u

u− (1 + ε)(N − k)

)(l+kα)γ

.
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It is left to show the convergence for
∞∑

l=0

|bkl |Γ((l + kα)γ)
(

1
u− (1 + ε)(N − k)

)(l+kα)γ

. (8)

Note that for all ε > 0 there exists a constant C3 such that for all l ∈ N0

|b1l | =
∣∣∣∣

πΓ(α+ l)
Γ((l + α)γ) sin((l + α)γ)Γ(α)Γ(l + 1)

∣∣∣∣ ≤ C3
(1 + ε)γl

Γ((l + α)γ)
.

We want to show that |bkl | ≤ C4(l+1)k−1((1+ ε)k)γl/Γ((l+α)γ). For that purpose define
b̂kl such that ( ∞∑

l=0

sl

Γ((l + α)γ)

)k

=
∞∑

l=0

b̂kl s
l.

Obviously |bkl | ≤ Ck
3 (1+ε)γlb̂kl and we have to show that b̂kl ≤ Ck−1

5 (l+1)k−1kγl/Γ((l+α)γ).
At first note that for all 1 ≤ m ≤ l − 1 there exists a constant C5 > 1/Γ(αγ) such that

Γ((l + α)γ)
Γ((m+ α)γ)Γ((l −m+ α)γ)

≤ C5
lγl

mmγ(l −m)(l−m)γ
.

Further note that
lγl

kγmmmγ(l −m)(l−m)γ
≤

(
k + 1
k

)lγ

.

We use induction over k to prove b̂kl ≤ Ck−1
5 (l + 1)k−1kγl/Γ((l + α)γ). This assertion is

true for k = 1. Assume further that it holds for a given k. Then, indeed for k + 1

b̂k+1
l Γ((l + α)γ)

Ck
5 (l + 1)k(k + 1)γl

=
Γ((l + α)γ)

Ck
5 (l + 1)k(k + 1)γl

l∑

m=0

b̂kl−m

Γ((m+ α)γ)

≤ Γ((l + α)γ)kγl

Ck
5 (l + 1)k(k + 1)γl

l∑

m=0

Ck−1
5 (l + 1−m)k−1

kγmΓ((m+ α)γ)Γ((l −m+ α)γ)

≤ kγl

C5(l + 1)(k + 1)γl

l∑

m=0

Γ((l + α)γ)
kγmΓ((m+ α)γ)Γ((l −m+ α)γ)

≤ kγl

C5(l + 1)(k + 1)γl

l∑

m=0

C5

(
k + 1
k

)lγ

= 1.

We now also get that |bkl | ≤ C4(l+ 1)k−1((1 + ε)k)γl/Γ((l+ α)γ). It follows from (8) that
(6) converges if

(1 + ε)k
u− (1 + ε)(N − k)

< 1 or equivalently u > (1 + ε)N.

Since ε > 0 was arbitrary we get that the sum in (6) converges for all u > N and hence
∫ ∞

0

1
x
e−uxIm

(
QN

(
L̂f (−x)

))
dx

=
∑

l,n≥0,k≥1

u−((l+kα)γ+n)bkl sin(π(l + kα)γ)Γ((l + kα)γ + n)
k+n∑

m=k

am−k
n qm

(
m

k

)
.
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Now it remains to show that for u > N (N deterministic) we do not only have the
approximation but the equality

− 1
π

∫ ∞

0

1
x
e−uxIm

(
QN

(
L̂f (−x)

))
dx

= − 1
π

∫ ∞

0

1
x
e−uxIm

((
L̂f (−x)

)N
)

dx = P(SN > u). (9)

From equation (7) we get that this equality holds for N = 1. It follows that

L̂f (s) =
∫ 1

0
e−sxf(x)dx− e−s

π

∫ ∞

0

1
s+ x

e−xIm
(
L̂f (−x)

)
dx.

From this we can deduce that for ε > 0, esN+ε 1
s L̂f (s)N → 0 for Re(s) bounded from above

and |s| → 0. Note that for u > N , 0 < ε < u−N and s0 > 0

P(SN > u) =
1

2πι

∫ s0+ι∞

s0−ι∞
e(u−(N+ε))se(N+ε)s

(
1
s
− 1
s
L̂f (s)N

)
ds.

Hence we can use the same contour integration as in Brennan et al. (1968) to establish
that (9) holds.

5 A numerical illustration

Let us choose N to be Poisson distributed with parameter λ = 10 and choose α = 0.7 and
γ = 2.3 for the parameters of the Burr distribution. In this case the first moment exists,
but the second moment does not exist. At first we provide three plots for the evaluation
of L̂f (s) for the Burr distribution. In Figure 1 we see the imaginary and real part of L̂f (s)
for s with −5 < Re(s) < 5 and −5 < Im(s) < 5. One can see the branch cut of L̂f (s)
on the negative real axis. Figure 2 depicts the relative error of L̂f (s), when using the
series expansion of equation (3). For the chosen set of parameters, one in fact only has
to evaluate two sums. One should note that the absolute value of these sums tends to ∞
when |s| → ∞. Since limRe(s)→∞ L̂f (s) = 0, this is numerically not a favorable situation.
Let us turn to the asymptotic expansion. Since infk≥0,n+1−(k+α)γ 6=0 |n + 1 − (k + α)γ| >
0, the asymptotic expansion is, up to a constant, given by (6). This expansion is not
convergent, so one can only use finitely many terms of the expansion for an asymptotic
approximation. As usual in such a situation, it is not so clear how many terms to take
for a useful approximation. Although there is no precise answer to this question, one can
state the following: In Section 4 we have seen that if one drops all terms with m > p,
then one obtains a convergent sum. We will use these ideas to get two types of asymptotic
approximations. In the first case we will sum only over those values of n and k with
n+ k ≤ p. Bounding l by p, this then leads to the approximation

ap(u) := − 1
π

p∑

l=0

p∑

k=1

p−k∑

n=0

u−((l+kα)γ+n)bkl

× sin(π(l + kα)γ)Γ((l + kα)γ + n)
k+n∑

m=k

am−k
n qm

(
m

k

)
.
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Figure 1: A plot of the real and imaginary part, respectively, of L̂f (s) in the complex
plane

Figure 2: Relative error of the evaluation of the L̂f (s)
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Figure 3: A log-log-plot for the relative error re= |ap(u)−G(u)|/G(u) of different asymp-
totic approximations ap(u) for G(u).

As a second choice one can use an approximation that is truncated at min(k + n,m), so
that one gets

âp(u) := − 1
π

3p∑

l=0

p∑

k=1

3p∑

n=0

u−((l+kα)γ+n)bkl

× sin(π(l + kα)γ)Γ((l + kα)γ + n)
min (k+n,p)∑

m=k

am−k
n qm

(
m

k

)
.

Note that the heuristic idea of both approximations is to use P(SN > u;N ≤ p) as an
approximation for P(SN > u), and use an approximation for P(SN > u;N ≤ p) which is
at the same time an asymptotic approximation for P(SN > u) of higher order. In Figure
3 we provide a log-log-plot of the relative error for the approximation of the G(u) for
different values of p. Concretely, on the x-axis we plot − log10(G(u)) and on the y-axis
we plot log10(|ap(u) − G(u)|/G(u)), where G(u) is the exact value that we obtained by
a sufficiently accurate (and correspondingly time-consuming) numerical inversion of the
Laplace transform as described in Abate and Valkó (2004). One can see that in this
example, the approximation a4(u) has for all considered values a relative error less than
10% and â13(u) has for all considered values a relative error less than 0.1%. Finally one
should note that a higher value of p need not lead to a better approximation for a given
u. Especially the choice p > u would not make sense since then the underlying sum does
not converge any more.

6 Conclusion

We derived a series expansion for the Laplace transform of the Burr distribution and
subsequently an asymptotic expansion of the tail of a compound sum with Burr distributed
summands in terms of uβi . The proofs exploided the property of the Burr distribution
that

F (x) =
∞∑

n=0

amx
−βm
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for all x > R0 and that the exponents βi are sufficiently bounded away from the integers.
Furthermore, it was useful that E [Xn] could be easily extended to all values of n (such
an extension was provided by the function ng(R,n − 1) for arbitrary R; however, in the
absence of an explicit expression for this function, its practical use may be limited).
In principle, the proposed method will hence also work for the transformed beta distribu-
tion with density

f(x) :=
Γ(α+ τ)
Γ(α)Γ(τ)

γ(x/θ)γτ

x(1 + (x/θ)γ)α+τ
,

which contains the Burr distribution as a special case (cf Klugman et al. (2008)) and for
the Fréchet distribution with F (x) = e−x−α

(cf. Embrechts et al. (1997)) as well as for
their integrated tail distributions and their shifted versions. The challenge then again con-
sists of identifying an appropriate analytic extension of E [Xn] for all n and establishing
properties of the asymptotic expansion of the Laplace transform of the summands along
certain complex contours in the vicinity of the imaginary axis.

Acknowledgements. The authors would like to thank Gordon Willmot for stimulat-
ing discussions on the topic and an anonymous referee for several helpful suggestions to
improve the presentation of the manuscript.
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Abate, J., Valkó, P. P., 2004. Multi-precision Laplace transform inversion. International
Journal for Numerical Methods in Engineering 60 (5), 979–993.

Abramowitz, M., Stegun, I. A., 1964. Handbook of mathematical functions with formulas,
graphs, and mathematical tables. Vol. 55 of National Bureau of Standards Applied
Mathematics Series. Washington, D.C.

Albrecher, H., Hipp, C., Kortschak, D., 2010. Higher order expansions for compound
distributions and ruin probabilities with subexponential claims. Scand. Actuar. J., to
appear.

Albrecher, H., Kortschak, D., 2009. On ruin probability and aggregate claim representa-
tions for Pareto claim size distributions. Insurance: Mathematics and Economics 45 (3),
362–373.

Asmussen, S., 2003. Applied probability and queues, 2nd Edition. Vol. 51 of Applications
of Mathematics. Springer-Verlag, New York.
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