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RESUME 
Un élément essentiel de l’immunothérapie appliquée au cancer est l’identification de peptides liant les 
antigènes des leucocytes humains (HLA) et capables d’induire une puissante réponse T anti-tumorale. La 
spectrométrie de masse (MS) constitue actuellement la seule méthode non-biaisée permettant une analyse 
détaillée du panel d’antigènes susceptibles d’être présentés aux lymphocytes T in vivo. L’utilisation de cette 
méthode en clinique requiert toutefois des améliorations significatives de la méthodologie utilisée lors de 
l’identification des peptides HLA. 

Un consortium multidisciplinaire de chercheurs a récemment mis en lumière les problèmes actuellement liés 
à l’utilisation de la MS en immunopeptidomique, soulignant le besoin de développer de nouvelles méthodes 
et mettant en évidence le défi que représente la standardisation de l’immuno-purification des molécules HLA. 
La première partie de cette thèse vise à optimiser les méthodes expérimentales permettant l’extraction des 
peptides apprêtés aux HLA. L’optimisation de la méthodologie de base a permis des améliorations notables en 
terme de débit, de reproductibilité, de sensibilité et a permis une purification séquentielle des molécules de 
HLA de classe I de classe II ainsi que de leurs peptides, à partir de lignées cellulaires ou de tissus. En 
comparaison avec les méthodes existantes, ce protocole comprend moins d’étapes et permet de limiter la 
manipulation des échantillons ainsi que le temps de purification. Cette méthode, pour les peptides HLA 
extraits, a permis d’obtenir des taux de reproductibilité et de sensibilité sans précédents (corrélations de 
Pearson jusqu'à 0,98 et 0,97 pour les HLA de classe I et de classe II, respectivement). De plus, la faisabilité 
d’études comparatives robustes a été démontrée à partir d’une lignée cellulaire de cancer de l’ovaire, traitée 
à l'interféron gamma. En effet, cette nouvelle méthode a mis en évidence des changements quantitatifs et 
qualitatifs du catalogue de peptides présentés aux HLA. Les résultats obtenus ont mis en avant une 
augmentation de la présentation de longs ligands chymotryptiques de classe I. Ce phénomène est 
probablement lié à la modulation de la machinerie de traitement et de présentation des antigènes. Dans cette 
première partie de thèse, nous avons développé une méthodologie robuste et rationalisée, facilitant la 
purification des HLA et pouvant être appliquée en recherche fondamentale et translationnelle. 

Bien que les néoantigènes représentent une cible attractive, des études récentes ont mis en évidence 
l’existence des antigènes non canoniques. Ces antigènes tumoraux, bien que non mutés, sont aussi spécifiques 
aux cellules cancéreuses et semblent jouer un rôle important dans l’immunité anti-tumorale. La seconde partie 
de cette thèse a pour objectif le développement d’une méthodologie d’analyse permettant l’identification 
ainsi que la validation de ces antigènes particuliers. Les antigènes non canoniques sont d'origine présumée 
non codante et ne sont, par conséquent, que rarement inclus dans les bases de données des séquences de 
protéines de référence. De ce fait, ils ne sont généralement pas pris en compte lors des recherches de MS 
utilisant de telles bases de données. Afin de palier ce problème et de permettre leur identification par MS, le 
séquençage de l'exome entier, le séquençage de l'ARN sur une population de cellules et sur des cellules 
uniques, ainsi que le profilage des ribosomes ont été intégrés aux données d’immunopeptidomique. Ainsi, 
NewAnce, un programme informatique permettant de combiner les données de deux outils de recherche MS 
en tandem, a été développé afin de calculer le taux d’antigènes non canoniques identifiés comme faux positifs. 
L’utilisation de NewAnce sur des lignées cellulaires provenant de patients atteints de mélanomes ainsi que sur 
des biopsies de cancer du poumon a permis l’identification précise de centaines de peptides HLA non 
classiques, spécifiques aux cellules tumorales et communs à plusieurs patients. Le niveau de confirmation des 
peptides non canoniques a ensuite été testé à l’aide d’une approche de MS ciblée. Les peptides résultant de 
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ces analyses ont été minutieusement validés pour un des échantillons de mélanome disponibles. De plus, le 
profilage des ribosomes a révélé que les nouveaux cadres de lecture ouverts, desquels résultent certains de 
ces peptides non classiques, sont activement traduits. L’évaluation de l’immunogenicité de ces peptides a été 
évaluée avec des cellules immunitaires autologues et a révélé un épitope immunogène non canonique, 
provenant d'un cadre de lecture ouvert alternatif du gène ABCB5, un marqueur des cellules souches du 
mélanome. 

De manière globale, les résultats obtenus au cours de cette thèse soulignent la possibilité d’inclure ce type 
d’analyse de proteogénomique dans un protocole d’identification de néoantigènes existant. Cela permettrait 
d’inclure et prioriser des antigènes tumoraux non classiques et de proposer aux patients en impasse 
thérapeutique des immunothérapies anti-tumorales personnalisées. 
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SUMMARY 
A central factor to the development of cancer immunotherapy is the identification of clinically relevant human 
leukocyte antigen (HLA)-bound peptides that elicit potent anti-tumor T cell responses. Mass spectrometry 
(MS) is the only unbiased technique that captures the in vivo presented HLA repertoire. However, significant 
improvements in MS-based HLA peptide discovery methodologies are necessary to enable the smooth 
transition to the clinic.  

Recently, a consortium of multidisciplinary researchers presented current issues in clinical MS-based 
immunopeptidomics, highlighting method development and standardization challenges in HLA immunoaffinity 
purification. The first part of this thesis addresses improvements to the experimental method for HLA peptide 
extraction. The approach was optimized with several new developments, facilitating high-throughput, 
reproducible, scalable, and sensitive sequential immunoaffinity purification of HLA class I and class II peptides 
from cell lines and tissue samples. The method showed increased speed, and reduced sample handling when 
compared to previous methods. Unprecedented depth and high reproducibility were achieved for the 
obtained HLA peptides (Pearson correlations up to 0.98 and 0.97 for HLA class I and HLA class II, respectively). 
Additionally, the feasibility of performing robust comparative studies was demonstrated on an ovarian cancer 
cell line treated with interferon gamma. Both quantitative and qualitative changes were detected in the cancer 
HLA repertoire upon treatment. Specifically, a yet unreported and interesting phenomenon was the 
upregulated presentation of longer and chymotryptic-like HLA class I ligands, likely related to the modulation 
of the antigen processing and presentation machinery. Taken together, a robust and streamlined framework 
was built that facilitates peptide purification and its application in basic and translational research. 

Furthermore, recent studies have shed light that, along with the highly attractive mutated neoantigens, other 
non-mutated, yet tumor-specific, non-canonical antigens may also play an important role in anti-tumor 
immunity. Non-canonical antigens are of presumed non-coding origin and not commonly included in protein 
reference databases, and are therefore typically disregarded in database-dependent MS searches. The second 
part of this thesis develops an analytical workflow enabling the confident identification and validation of non-
canonical tumor antigens. For this purpose, whole exome sequencing, bulk and single-cell RNA sequencing and 
ribosome profiling were integrated with MS-based immunopeptidomics for personalized non-canonical HLA 
peptide discovery. A computational module called NewAnce was designed, which combines the results of two 
tandem MS search tools and implements group-specific false discovery rate calculations to control the error 
specifically for the non-canonical peptide group. When applied to patient-derived melanoma cell lines and 
paired lung cancer and normal tissues, NewAnce resulted in the accurate identification of hundreds of shared 
and tumor-specific non-canonical HLA peptides. Next, the level of non-canonical peptide confirmation was 
tested in a targeted MS-based approach, and selected non-canonical peptides were extensively validated for 
one melanoma sample. Furthermore, the novel open reading frames that generate a selection of these non-
canonical peptides were found to be actively translated by ribosome profiling. Importantly, these peptides 
were assessed with autologous immune cells and a non-canonical immunogenic epitope was discovered from 
an alternative open reading frame of melanoma stem cell marker gene ABCB5.  

This thesis concludes by highlighting the possibility of incorporating the proteogenomics pipeline into existing 
neoantigen discovery engines in order to prioritize tumor-specific non-canonical peptides for cancer 
immunotherapy. 
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RESUME GRAND PUBLIC 
Maladie très hétérogène et multifactorielle, le cancer représente à ce jour la seconde cause de décès dans le 
monde. Bien que le système immunitaire soit capable de reconnaître puis d’éliminer les cellules 
cancéreuses, ces dernières peuvent à leur tour s’adapter et accumuler des mutations leur permettant 
d’échapper à cette reconnaissance.  

L’immunothérapie anti-tumorale démontre le rôle clé de l’immunité dans l’éradication des tumeurs. 
Cependant, ces thérapies prometteuses ne sont efficaces que chez une petite proportion des patients traités. 
Une étape majeure dans l’établissement d’une réponse immunitaire anti-tumorale est la reconnaissance 
d’antigènes associés aux tumeurs. Des études récentes ont montré que les antigènes tumoraux issus de 
régions non-codantes du génome (antigènes non-canoniques) peuvent jouer un rôle clé dans l’induction de 
réponses immunitaires. Ainsi, l’identification de ces antigènes tumoraux particuliers permettrait de guider le 
développement d’immunothérapies anti-cancéreuses personnalisées telles que la vaccination ou encore le 
transfert adoptif de lymphocytes T reconnaissant ces cibles. La spectrométrie de masse (MS) est une technique 
non biaisée permettant l’identification et l’analyse du répertoire des antigènes présentés in vivo. Cependant, 
cette technique nécessite d’être optimisée et standardisée afin d’être utilisée en clinique. 

Ainsi, la première partie de ces travaux de thèse a été dédiée à l’optimisation expérimentale de cette méthode 
à partir d’échantillons de tissus et de lignées cellulaires. En comparaison avec les protocoles standards, cette 
technique permet une couverture plus complète, rapide et reproductible du répertoire de peptides apprêtés 
aux HLA. 

La seconde partie de cette thèse a été consacrée au développement d’une méthode permettant 
l’identification d’antigènes tumoraux non-canoniques via le séquençage d’ARN cellulaire, ribosomique et 
l’utilisation de notre méthode d’immunopeptidomique optimisée. Afin de contrôler l’identification de faux 
positifs, nous avons élaboré un nouveau module computationnel. Ce module a permis l’identification de 
plusieurs centaines de peptides-HLA non-canoniques, partagés et spécifiques au mélanome et au cancer du 
poumon. Le séquençage des ARN ribosomiques a mis en évidence la traduction de nouveaux cadre ouverts de 
lecture desquels sont traduits de nouveaux peptides non-canoniques. Cette technique nous a permis de 
mettre en évidence un épitope immunogène issu du gène ABCB5, un marqueur de cellules souches 
cancéreuses préalablement identifié dans le mélanome. 

De manière globale, ces travaux de thèse, alliant immunopeptidomique et protéogénomique, ont permis la 
mise au point d’une méthode expérimentale permettant une meilleure identification d’antigènes tumoraux. 
Nous espérons que ces résultats amélioreront l’identification et la priorisation de cibles pertinentes pour 
l’immunothérapie anti-cancéreuse en clinique.   
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ABBREVIATIONS 
 

ABCB5   ATP-binding cassette sub-family B member 5 

ACT   Adoptive cell therapy 
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FDR   False discovery rate 
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HLA-I   HLA class I 

HLA-II   HLA class II 

HLAIp   HLA class I peptides 

HLAIIp   HLA class II peptides 

HPLC   High performance liquid chromatography 

IEDB   Immune epitope database 
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ipMSDB   Immunopeptidomics mass spectrometry database 

LC-MS   Liquid chromatography – mass spectrometry 

lncRNAs   Long non-coding RNAs 
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MS   Mass spectrometry 

MS/MS   Tandem mass spectrometry 

NewAnce  A new analytical approach for non-canonical element identification 

NGS   Next generation sequencing 

noncHLAp  Non-canonical HLA peptides 

noncHLAIp  Non-canonical HLA-I peptides 

ORF   Open reading frame 

PBMC   Peripheral blood mononuclear cell 
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PD-1   Programmed cell death protein 1 

PD-L1   Programmed cell death protein ligand 1 

PLC   Peptide loading complex 

PTM   Post-translational modification 

PRM   Parallel reaction monitoring 

protHLAIp  Proteome-derived HLA-I peptides 
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Ribo-Seq  Ribosome profiling 

RNA-Seq  RNA sequencing 

RT   Retention time 

scRNA-Seq  Single cell RNA sequencing 

SRM   Selected reaction monitoring 

TAA   Tumor-associated antigen 

TAP   Transporter associated with antigen processing 

TCGA   The cancer genome atlas 

TCR   T cell receptor 

TECs   Thymic epithelial cells 

TE   Transposable element 

TILs   Tumor infiltrating lymphocytes 

TIMS   Trapped ion mobility spectrometry 

TOF   Time-of-flight 
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Chapter 1 INTRODUCTION 
The presented work aims to advance the field of cancer immunotherapy through the integration of both large-
scale and multidisciplinary approaches. As such, this introduction provides the required background into the 
various related fields. Briefly, the relationship between cancer and the immune system, as well as existing 
cancer immunotherapies, are discussed. Following this, the antigen processing and presentation machinery, 
and the different types of presented antigens, are outlined. Subsequently, a separate class of antigens, the 
non-canonical antigens, are covered in detail. Several routinely applied methods for antigen identification and 
tumor immunogenicity assessment are described. Thereafter, MS-based immunopeptidomics is introduced as 
an advanced tool for large-scale antigen discovery, followed by the fundamentals of the required MS 
techniques. Finally, to unravel the breadth of non-canonical epitopes, proteogenomics approaches are 
outlined, along with their statistical and computational challenges that hinder their robust identification. When 
combined together, the integration of the multidisciplinary topics covered in this introduction have the 
potential to advance cancer immunotherapy at a systems-level. 

1.1 Cancer Immunity 

Undoubtedly, the immune system plays a significant role during cancer development [1-3]. Due to genetic and 
molecular alterations that occur during cancer progression, the immune system has the capability to recognize 
cancer cells as non-self and foreign. In this manner, the immune system surveils the body for pre-cancerous 
cells and should eradicate these before they can properly become transformed. However, sadly, the immune 
system does not fully protect most individuals from the growth of cancerous cells. A plethora of factors 
ultimately dictate whether an effective anti-tumor immunity can be initiated and maintained, either 
spontaneously or through therapeutic intervention. This is described in the cancer immunity cycle, which 
depicts a series of steps that must be engaged in order to allow the effective elimination of cancer cells [4] 
(Figure 1).  

1.1.1 The Cancer Immunity Cycle 

In an ideal and simplified self-propagating cancer immunity cycle, dying cancer cells release antigens that can 
be taken up by dendritic cells (DCs) at the cancer site. These DCs travel back to the lymphoid organs, where 
they act as professional antigen presenting cells (APCs) to prime and activate T cells through engagement with 
cognate T cell receptors (TCRs). In the right context, and upon other stimulatory signals, activated T cells can 
traffic to the tumor, infiltrate into the tumor bed and interact specifically with cancer cells. Lastly, the T effector 
cells kill the cancer cells, leading to more tumor antigens being released and the propagation of the cycle. 
However, in every step, there is delicate balance between stimulatory and inhibitory factors that ultimately 
dictates whether the cycle progresses, or halts altogether. Critically, tumors have evolved multiple 
mechanisms to evade destruction by the immune system [5]. The cycle may stop due to tumor antigens not 
being readily accessible, for example, through their downregulated expression on the cell surface, or the 
impairment of antigen uptake by immune cells. Alternatively, this stalling can also be caused by the incomplete 
activation and homing of T cells to the tumor. Furthermore, many factors in the tumor microenvironment are 
highly immunosuppressive, such as through the upregulation of inhibitory signals, and the recruitment of 
suppressor immune cells [6, 7]. Overall, the objective of cancer immunotherapy is to trigger the propagation 
and amplification of a halted cycle, ultimately resulting in the efficient elimination of cancer cells. 
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Figure 1 – The cancer immunity cycle is depicted above, and specific therapies that target particular steps are 
shown in bold. For example, in Step 1, the release of tumor antigens from the cancer cells can be induced by 
chemo-, radiation-, or targeted therapies (such as epigenetic modulators). Vaccines act in Step 2 to boost 
antigen presentation and stimulate T cell responses. In Step 3, Anti-CTLA4 antibodies leads to priming and 
activation of T cells in the lymph nodes to enable their trafficking into the tumor. In Step 6, the recognition of 
cancer cells by T cells is enhanced by introducing genetically-modified T cells directed towards the tumor. Lastly, 
in Step 7, anti-PD-L1 or PD-1 antibodies lift immunosuppression in the tumor bed and activate T cells to kill 
cancer cells. Adapted from Chen and Mellman, Immunity, 2013 [4]. 

 

1.1.2 Cancer Immunotherapy 

Promising immunotherapies exist for both hematological and solid cancer malignancies, and many of them 
have received considerable attention due to their undisputed potential in re-invigorating a patient’s immune 
system to target cancer [8-10]. It is therefore unsurprising that “cancer immunotherapy” was regarded 
“Breakthrough of the Year” by the Science journal in 2013 [11]. To this end, with approximately 2,600 clinical 
trials listed on www.clinicaltrials.gov as of November 2019, cancer immunotherapy is a recent, yet established 
area in the fight against cancer. The existing approaches to cancer immunotherapy can be broken down into 
therapies that involve the blockade of immune checkpoints, adoptive cell therapy (ACT), and the use of cancer 
vaccines, as well as their combinational approaches (Figure 1). 

  

TCRs
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IMMUNE CHECKPOINT BLOCKADE THERAPY 

In an effective immune system, multiple inhibitory pathways dampen the activation of immune cells to limit 
detrimental autoimmune reactions to normal tissues and organs. These checkpoints are often over-activated 
in the context of cancer, and targeted therapies focus on blocking these checkpoints to induce a successful T 
cell-based immune response [12-15]. For example, the binding of ligand Cytotoxic T-lymphocyte-associated 
Protein 4 (CTLA4) on T cells to B7.1/B7.2 on APCs constitutes a T cell inhibitory signal in the peripheral lymphoid 
tissues. Anti-CTLA4 monoclonal antibodies block this interaction, thereby allowing T cell activation and 
subsequent expansion. Another important checkpoint is the inhibitory programmed cell death protein (PD)-1/ 
PD Ligand 1 (PD-L1) axis. The receptor PD-1 can be found on activated effector cells, whereas the PD-L1 resides 
on tumor cells and other immune cells. When engaged, this axis blocks T cells’ ability to produce and secrete 
cytotoxic modulators. As such, anti-PD-1 and anti-PD-L1 antibodies have been developed to intervene and 
prevent this inhibitory signal. Targeting the PD-1/PD-L1 inhibitory signaling pathway was demonstrated to be 
less toxic than the CTLA4/B7 axis, likely due to the specific stimulation of T cells that reside in the tumor bed 
[16]. 

The profound potential of this therapy has been shown in many clinical trials, which report durable responses 
[8, 9, 15]. Importantly, immune checkpoint blockade therapy is approved for several solid cancer types, such 
as melanoma, non-small cell lung cancer, and renal cell cancer. However, although highly promising in these 
malignancies, many patients don’t respond, or respond incompletely to these inhibitors.  

ADOPTIVE CELL THERAPY 

In ACT, specific cells are infused into the patient to help the body combat a variety of diseases, often T cells in 
the case of cancer [17, 18]. T cells can be harvested in two ways: either from the patient’s own blood, or 
directly from their solid tumor which results in tumor infiltrating lymphocytes (TILs) [19]. These cells are grown 
to large amounts (>1 × 108), can be selected for specific traits, such as antigen specificity and molecular state, 
and then re-infused back into the patient to confer anti-tumor immunity. ACT has shown remarkable tumor 
regression in melanoma patients, especially when using TILs.  

Extending this approach, T cells can be genetically modified, for example through the introduction of antigen-
specific TCRs, or chimeric antigen receptors (CARs) [20]. TCR-transduced T cells recognize specifically a tumor 
antigen in association with HLA molecules on the cancer cell [21, 22]. A CAR, on the other hand, is constituted 
of a chimeric receptor that is directed against a non-HLA restricted surface tumor antigen, along with an 
intracellular T cell signaling domain. In this manner, the genetically engineered T cells are deployed towards 
the tumor when re-infused. TCRs can be engineered to target a variety of intra- and extra-cellular processed 
cancer-specific antigens, whereas CARs are limited to those surface proteins that are inherently cancer 
specific. The use of CAR T cells has been shown to have successful outcomes when treating hematological 
malignancies. In comparison, therapies using TCR-transduced T cells have been effective in treating solid 
tumors, and are currently being evaluated in multiple ongoing clinical trials. These trials mostly target 
metastatic melanoma, with over half considering cancer-testis antigens such as NY-ESO-1 [21]. 

Generally, current limitations surrounding the applicability of genetically modified T cells include the existing 
toxicity issues, the sustainability of the cells in vivo, and the delivery system to optimally find, invade and 
survive in the solid tumor. However, strategies to both control and enhance the activity and specificity of CAR 
T cells in the tumor microenvironment are being extensively researched [23]. For example, by incorporating 
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chemically disruptable heterodimers into a CAR, the safety of CAR T cell therapy can be improved as their 
activity can be halted through small molecule disrupters [24]. In addition, systems can be designed that allow 
controlled and enhanced CAR T cell function, such as through the inducible activation of co-stimulatory 
molecules [25]. Furthermore, CAR T cells can be genetically engineered to locally secrete immune modulatory 
factors that could enhance both T cell expansion and anti-tumor effects in the tumor microenvironment [26-
29]. Lastly, the advent of utilizing allogeneic TCR-transduced or CAR T cells is particularly intriguing, offering 
the potential of generic treatments, as well as circumventing the laborious processing of autologous T cells 
[30]. For this purpose, the CRISPR/Cas9 system has proven to be a valuable technology in the genetic re-
engineering of allogeneic T cells. This tool can be applied to disrupt the genes encoding endogenous TCRs and 
HLA molecules, which reduces the rejection risk of these cells in the host immune system [30].  

CANCER VACCINES 

The recent establishment that, following immune checkpoint inhibition, the recognition of specific 
immunogenic peptides presented on a tumor cell triggers T cell activation has led to the renewed interest in 
cancer vaccines [31, 32]. The goal of cancer vaccines is to allow the presentation of tumor antigens on HLA 
molecules for recognition by immune cells, thus driving an anti-tumor immune response. These vaccines can 
be based on either peptides, DNA or RNA, cells or virus vectors. 

Peptide vaccines, as an example, are safe for administration to patients, however, the peptides used need to 
be personalized to the patient due to inherent HLA restrictions, and adjuvants are required for efficient T cell 
priming through co-stimulation. The selected peptides should be of non-self and foreign origin, and are ideally 
not presented in any other normal cells in the body. The use of long peptides containing multiple HLA class I 
(HLA-I) and HLA class II (HLA-II) ligands could allow stimulation of both CD8+ and CD4+ T cells, and superior T 
cell priming through their uptake and processing by DCs. Such multi-peptide targeting would ideally overcome 
tumor escape mechanisms, and are regarded as an attractive approach to tackle the heterogeneity imposed 
by the tumor [33].  

In a cellular approach, lysed whole tumor product can be used as a vaccination to boost antigen levels and 
exposure of immunogenic antigens to T cells [34]. Here, the advantage is that antigens do not need to be pre-
defined, and rather result in the presentation of a broad range of epitopes to the immune system. Often, this 
leads to antigen spreading and the expansion of other subsets of T cells that work synergistically against the 
tumor. Consequently, cancer vaccines are envisioned to be particularly potent in multimodality treatment 
options, such as in combination with checkpoint blockade therapy [35-37].  

COMBINATIONAL APPROACHES FOR IMMUNOTHERAPY  

Combinations of immunomodulatory treatments tackling different steps of the cancer immunity cycle are 
being tested in order to improve patient outcome [9, 38]. In particular, many modes of therapies are being 
combined with PD-1/PD-L1 inhibition, including CTLA4 inhibition, peptide vaccinations and CAR T cells. 
Additionally, concomitant chemo- or radiotherapy with PD-1/PD-L1 targeting has shown promising results in 
tumor regression in small cell lung, head and neck squamous cell, and breast cancer [39]. 

Furthermore, recent studies have shown that epigenetic modulators, in combination with checkpoint blockade 
therapy, can prime tumors towards an efficient immune attack [40-42]. For example, DNA methylation 
processes are often exploited by cancer, either to activate oncogenes through de-methylation or to silence 
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tumor suppressor genes through hyper-methylation of promoter regions. DNA methyltransferase inhibitors, a 
class of epigenetic modulators, trigger gene re-expression by intervening with the methylation process on 
gene promoter regions [43, 44]. Specifically, Decitabine (DAC), a 5-aza-2'-deoxycytidine, is an epigenetic drug 
that elicits anti-tumor activity by inducing the widespread re-expression of genes previously silenced through 
DNA methylation in the cancer. Recent genomic studies have additionally shown that DAC can lead to the 
transcription of thousands of non-canonical transcription start sites [45]. Further, two separate reports have 
indicated that DAC induces the expression of endogenous retroviral (ERV) elements [46, 47]. Together, these 
findings demonstrate that applying DAC can revive the tumor to re-express potentially immunogenic features 
that contribute towards re-shaping T cell responses in the tumor. 

1.1.3 Current Focus In Cancer Immunotherapy  

Based on the amount of data gathered across the last years, the most successful immunotherapies are in the 
area of checkpoint inhibitors (often in combinational approaches) and CAR T cells [9, 10, 48]. Although shown 
to be very promising, immunotherapy is not successful in all patients. Strikingly, only approximately 13% of 
patients with various cancer types respond to checkpoint blockade therapy [49]. Predictive biomarkers that 
are being investigated include the expression of PD-L1 in the tumor, microsatellite instability, as well as tumor 
mutational burden [50, 51]. Especially the latter has received widespread consideration as it was found to be 
linked to tumor immunogenicity and can positively predict the efficacy of anti-PD-1 treatment [52, 53]. 
However, difficulties remain in defining more accurate predictive biomarkers for tumor classification, patient 
outcome and tumor resistance, as well as, ultimately, to determine the most efficient therapeutic strategy. 
Consequently, significant research is being undertaken to develop robust biomarkers for cancer 
immunotherapy. 

A complementary aim of cancer immunotherapy strategies is to converge towards a completely personalized 
approach, where only certain antigen-specific T cells are activated against tumor cells. For this purpose, 
significant research is focused on identifying and selecting the most immunogenic antigens that would allow 
the targeting of the tumor cells with high specificity, envisioned to greatly diminish toxicity and on-target off-
tumor effects [54]. In particular, there is a need for further research into boosting the immune response by 
simultaneously targeting multiple immunogenic antigens, and lifting tumor immunosuppression [33]. 
Furthermore, tumor heterogeneity poses a threat to successful cancer immunotherapy, and the accurate 
identification of tumor antigens that can be expressed on cancer stem cells, or a clonal population, could help 
unleash T cell specific responses to attack the cancer at its core [55, 56].  
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1.2 The Antigen Presentation System 

The presentation of HLA binding peptides on the cell surface plays a central role in any T cell-based immune 
response. Therefore, the repertoire of presented antigens must represent the surrounding extra- and intra-
cellular processes at any given time in order to properly convey a threat to the immune system. This endeavor 
is performed via two distinct systems, both described in this section: the HLA-I (Figure 2) and HLA-II antigen 
presentation pathways [57, 58]. This is followed by discussing deviations to the classical pathways, as well as 
the impact of antigen presentation in the context of cancer.  

1.2.1 HLA-I And -II Antigen Presentation  

The two types of HLA molecules, class I and class II, bind antigens for presentation to immune cells. HLA-I 
molecules are ubiquitously expressed in nearly all nucleated cells. In contrast, HLA-II molecules are found on 
professional APCs, including B cells, monocytes, macrophages and DCs, as well as in other cell types upon 
inflammatory stimuli. The modes of presentation differ between the classes: HLA-I molecules present 
processed peptide fragments from inside the cells, while HLA-II molecules present exogenously-derived 
antigens. Further, peptide-bound HLA-I and -II complexes are presented to CD8+ cytotoxic T cells, or CD4+ 
helper T cells, respectively.  

There are three classical HLA-I genes (HLA-A, HLA-B, and HLA-C in humans) and six HLA-II genes (HLA-DPA1, 
HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, and HLA-DRB1). These genes are extremely polymorphic, with 
more than 19,000 different HLA-I and 7,000 HLA-II alleles reported to date: 
http://hla.alleles.org/nomenclature/stats.html. 

THE HLA-I SYSTEM 

All humans express up to six different HLA-I alleles. Their bound peptides are mostly of amino acid length 8-
12, with an average of 9 amino acids. The majority of HLA polymorphisms are found in the peptide-binding 
groove of the HLA-I molecule. This leads to constraints which result in the binding of peptides that harbor 
specific residues at amino acid position 2, and at the C-terminus. These anchor residues differ between HLAs, 
and therefore capture the specificity of the HLA allele through particular peptide binding motifs (Figure 2B) 
[59-61]. The immense diversity of HLA binding specificities result in very different HLA repertoires underlined 
by an individual’s haplotype. By allowing for effective and varied sampling of peptide fragments, the likelihood 
for the binding and presentation of non-self peptide fragments is increased. This is shown by the fact that 
heterozygosity in HLA alleles can confer greater protection towards some pathogens and in cancer, in 
comparison to homozygosity [62-65]. That being said, the inheritance of specific HLA-I alleles has also been 
linked to susceptibility to autoimmune diseases and infections [66-68].  

The classical HLA-I antigen presentation pathway (Figure 2A) starts with the degradation of nuclear and 
cytosolic self- and non-self-proteins by the ubiquitin-proteasome system, which is composed of a 20S core 
catalytic unit and two 19S caps [69]. The catalytic core usually degrades proteins into peptides of 3 to 22 amino 
acids, and specifies the C-terminus of peptide fragments [70]. The immunoproteasomes, another type of 
proteasomes, are constitutively expressed in immune cells, or induced upon stress and inflammation in non-
immune cells [71, 72]. Due to molecular changes in the catalytic subunits, the immunoproteasomes harbor 
altered peptide cleavage preferences and have higher levels of activation in comparison to the constitutive 
proteasome [73, 74]. It has been shown that immunoproteasomes, upon inflammatory signals, are more suited 
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to process large substrate pools, leading to the faster and greater presentation of peptides on the cell surface, 
and may ultimately change the repertoire of antigens presented [74-76].  

Peptides processed by the proteasome are thereafter subjected to a variety of aminopeptidases in the cytosol 
[57]. Peptides with sufficient length (typically 9-16 amino acids) that have survived the proteasome and the 
plethora of aminopeptidases are brought to the endoplasmic reticulum (ER) via the transporter associated 
with antigen processing (TAP). These peptides can be further trimmed at the N-terminus by ER 
aminopeptidases ERAP1 and ERAP2. HLA-I molecules, consisting of a heavy chain and the light chain, 
specifically beta-2-microglobulin (b2m), are assembled in the ER and are associated with calreticulin ERp57, 
protein disulphide isomerase PDI, the chaperone tapasin and TAP. Together, they form the peptide loading 
complex (PLC). Once a peptide with an appropriate length and sufficient affinity has bound to the HLA 
molecule, the complex is stable and the chaperones are released. If a peptide fails to associate with the HLA 
molecule, it returns to the cytosol for degradation. A complete HLA-peptide complex is transported from the 
ER to the plasma membrane for presentation. This entire process is limited by many factors, ranging from the 
half-life of proteins and peptides, to the concentration of proteasomes, and cytosolic and ER associated 
peptidases. Ultimately, more than 99% of the intracellularly generated peptides do not survive for 
presentation to the immune system [77]. 

The majority of presented antigens are generally linked to the level of source protein expression, however, 
studies have shown that the link with protein translation offers a more accurate representation [78]. As shown 
in the case of defective ribosomal products (DRiPs), translation of numerous mRNAs can be tightly coupled to 
protein degradation and their presentation [79-83]. These occur through several mechanisms. For example, 
translation errors can lead to truncated or misfolded proteins which are rapidly degraded and potentially 
presented. Additionally, proteins may harbor degradation signals, such as disordered regions, facilitating their 
immediate degradation and funneling through the antigen presentation pathway. Lastly, translation products 
with pre-termination codons are guided through the nonsense-mediated decay pathway, thereby further 
contributing to the antigenic repertoire.  
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Figure 2 – The HLA-I processing and presentation pathway. (A) Intracellular peptide generation for HLA-I 
presentation begins with (1) the transcription of genomic regions and their translation into proteins. (2) Proteins 
are eventually degraded by the proteasomes and only a small fraction of the peptides escape complete 
degradation, and they are further (3) trimmed by a multitude of aminopeptidases in the cytosol, resulting in 
differing lengths of peptides. (4) Peptides of specific lengths can be funneled through the TAP, which is part of 
the PLC. (5) These peptides may associate with the HLA-I molecule either directly, through the PLC, or after 
further trimming by the ERAP1/2 and other ER resident aminopeptidases. (6) A HLA-I complex bound to a 
peptide is stable, released from the PLC, and transported through the Golgi to the plasma membrane for (7) 
interaction with CD8+ T cells. (B) In the top-right box, the interaction of the HLA-I peptide-bound complex with 
the TCR is magnified. It depicts the binding of a HLA-I peptide with the anchor residues (P2 and C-terminus) that 
are specific to the different peptide-binding grooves of HLA-I molecules. Three examples of HLA allele-specific 
motifs are shown. Inspired by Neefjes et al., Nature Reviews Immunology, 2011 [57].  

 

THE HLA-II SYSTEM 

Peptides that are bound to HLA-II molecules vary from those associated with HLA-I molecules. The average 
peptide fragment length is 15 amino acids, and therefore generally longer than HLA class I peptides (HLAIp) 
[84]. Their peptide binding grooves are more flexible, with specificities at the 9-mer core, while 
accommodating longer peptides through extensions outside of the binding pocket. The origin of the associated 
peptides additionally differ from that of HLA-I, as these are sampled from outside the cell (i.e. from 
extracellular proteins), as well as from self-proteins that have been degraded via the endosomal pathway. HLA-
II molecules (consisting of alpha and beta chains) together with its stabilizing invariant chain Ii, are assembled 
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in the ER and brought to the endosomal pathway. In the endosomes, cathepsins S and L digest Ii, leaving a 
class II-associated Ii peptide (CLIP) in the binding groove. CLIPs are later exchanged by higher affinity HLAIIp 
that have been degraded in the endosomal pathway, aided by the HLA-DM chaperone. Thereafter, the 
completed HLA-II antigen complex is transferred by vesicular transport, or through tubules, to the plasma 
membrane for presentation.  

CROSS-PRESENTATION 

As with every dogma, there are exceptions to the general rule. In the case of antigen presentation by HLA-I 
molecules, a crucial part of immune surveillance is formed by the cross-presentation found in phagocytes, for 
example, DCs. Cross-presentation occurs when phagocytes sample and process extracellular antigens and 
present them via the HLA-I pathway [58, 85-87]. The peptides are presented on HLA-I molecules and prime 
CD8+ T cells in the lymph nodes. The pathway that enables exogenous antigens to be processed and loaded 
onto HLA-I molecules is complex, and is still being unraveled. Current research shows that it may involve the 
movement of antigens from the phagosome to the cytosol, and their processing by the proteasome [88, 89]. 
On the other hand, antigens could also be degraded by lysosomal proteases and loaded onto recycling HLA-I 
molecules, similar to the HLA-II pathway [90]. Interestingly, the antigens that are presented on phagocytes to 
T cells can differ from those antigens that are ultimately found in the tumor bed. Whether, and how, this truly 
shapes antigen-specific T cell-based anti-tumor responses is still being extensively researched.  

1.2.2 Antigen Presentation In Cancer 

Antigen presentation is a crucial mechanism in alerting the immune system to infected cells [91, 92]. However, 
pathogenic conditions, such as viral infections, and cancer can manipulate the cellular antigen presentation 
and processing machinery in multiple ways, mostly at the genetic and epigenetic level, and evade recognition 
by the immune system.  

Tumor cells can modulate the antigen presentation machinery through the mutation, silencing or loss of HLA 
genes, and the introduction of defects in the proteasomal and aminopeptidase components [92]. Any 
perturbations along the antigen presentation pathway leading to lower, altered or a lack of antigen 
presentation makes a successful immune escape more likely. For example, many tumors downregulate the 
expression of HLA-I on their cell surfaces. This is linked to a higher rate of tumor progression, a decreased 
number of T cells found in the tumor bed, and poor patient survival [91, 93-95]. Furthermore, the 
downregulation of either ERAP1/2 or TAP1/2 has been shown to reduce the antigen repertoire on the surface 
of cells, and has been directly linked to tumor progression [92]. Lastly, in order to avoid immune recognition, 
tumor cells can adapt their antigenic repertoire dynamically, a feature which can be further shaped with the 
application of certain drugs [96].  

Due to the potential of cancer induced antigenic changes, it is vital to deduce the range of antigens presented 
by each tumor. The field of cancer immunotherapy is ultimately fueled by the knowledge of these antigens, 
and they aid in the development of peptide vaccination strategies and antigen-specific T cell-based therapies. 
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1.3 Tumor Antigens 

The knowledge surrounding the origin, classification and characterization of tumor antigens is key to the 
development of efficient immuno-therapeutic approaches, and discussed in this section. Specifically, mutated 
neoantigens, which currently represent the greatest opportunity in immunotherapy, will be described in more 
detail. A separate class of antigens, typically presumed to be non-protein-coding, will then be thoroughly 
outlined. Finally, this is followed by the approaches that are routinely utilized for the identification and 
prioritization of tumor antigens for clinical applications. 

1.3.1 Canonical Tumor-Associated Antigens 

There are six broad classes of canonical tumor antigens: differentiation, overexpressed, cancer-
testis/germline, post-translationally modified (PTMs), viral, and tumor-specific [97-101]. The properties for 
each of these antigen classes are discussed below and summarized in Table 1.  

DIFFERENTIATION ANTIGENS 

Differentiation antigens are derived from proteins typically expressed during cellular differentiation, such as 
in melanosome biogenesis. In the case of melanoma, these differentiation antigens have been found to be re-
expressed, presented, and tumor-associated. Examples of differentiation antigens include peptide sequences 
from MART1 and gp100, which were both discovered by MS-based approaches [102]. Their clinical application 
has shown modest success so far, in part due to central tolerance mechanisms eliminating high affinity and 
self-reactive T cell clones [103].  

 

Table 1 - Summary of the different canonical tumor-associated antigen types. The advantages and 
disadvantages for use in cancer immunotherapy of each tumor antigen type are outlined, along with some 
antigen examples and their incidence in different cancer types. Information was derived from multiple sources: 
Schmidt and Lill, Journal of Proteomics, 2019, [99], Smith et al., Nature Reviews Cancer, 2019 [100] and Ilyas 
and Yang, Journal of Immunology, 2015 [98].  

Canonical tumor-

associated antigen type Pros Cons Antigen examples  Cancer examples 

Differentiation • Potential for off-the-shelf 
therapy 

• Potentially expressed in 
normal tissues 

• Lower immunogenicity as 
self-antigen 

• PMEL 
• TYRP1 
• MART1 
• gp100 

• Melanoma 

Overexpressed 

• Potential for high peptide 
abundance 

• Potential for off-the-shelf 
therapy 

• Expressed in normal 
tissues 

• Lower immunogenicity as 
self-antigen 

• HER2 
• Mesothelin 
• EGFR 
• hTERT 

• Melanoma 

Cancer-Testis 

• High prevalence across 
tumor types and patients 

• Potential for off-the-shelf 
therapy 

• Potentially expressed in 
normal tissues 

• Lower immunogenicity as 
self-antigen 

• MAGE 
• PRAME 
• NY-ESO-1 

• Melanoma 

Post-translational 

modification 

• Potential of tumor-
specific deregulated 
pathway 

• Potentially expressed in 
normal tissues 

• Lower immunogenicity as 
self-antigen 

• pNCOA-Phosphopeptide 
[104] • Leukemia 
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OVEREXPRESSED ANTIGENS 

Overexpressed antigens come from proteins that are normally found in a healthy state, such as EGFR, hTERT, 
p53, and carbonic anhydrase IX. However, their overexpression can serve as markers for tumorigenic cells [98, 
105]. Their downregulation is often not possible, as cells require their expression to survive, therefore, they 
can generally serve as good target candidates for immunotherapy. However, there are often undesired on-
target off-tumor and toxicity issues when targeting these antigens, as they are inherently self-proteins [106, 
107]. These drawbacks also apply to the class of tumor differentiation antigens mentioned above.  

CANCER-TESTIS ANTIGENS 

The first cancer-testis antigens were discovered by Boon and colleagues, and encompass the MAGE families 
of cancer-testis derived proteins [108-110]. To date, hundreds of cancer-testis antigen families have been 
discovered, albeit their function remains largely unknown. These proteins are expressed only in testes, which 
do not produce HLA molecules and therefore their antigens are never presented on the surface of these cells. 
In the case of the tumor, re-expression of these genes can result in their presentation, and consequently their 
detection by the immune system. Such cancer-testis antigens have been found in several malignancies, ranging 
from lung, breast, ovarian, colon cancer, multiple myeloma and melanoma [111]. Given its widespread 
expression in tumors, their immunotherapeutic potential is being tested in several clinical trials, especially for 
the well-studied MAGEs in melanoma [112-114].  

POST-TRANSLATIONAL MODIFICATIONS 

PTMs on proteins are crucial for dictating protein-protein interactions and downstream signaling processes, 
and the dysregulation of these pathways represents a hallmark of cancer pathogenesis. MS uniquely allows 
the comprehensive screening of global PTM protein signatures, including phosphorylation, glycosylation, 
acylation, and ubiquitination [115-117]. In particular, aberrant phosphorylation has been implicated in 
oncogenesis, and can survive the antigen processing and presentation machinery to generate cancer-specific 
phosphorylated HLAIp [118, 119]. Importantly, these phosphorylated HLAIp have been shown to elicit immune 
responses in primary leukemia samples [104]. Similarly, glycopeptides, such as O-linked β-N-acetylglucosamine 
peptides, have also been reported to be immunogenic in leukemia [120]. Collectively, PTM peptides further 
expand the scope of available antigens to explore for cancer immunotherapy.  

ONCOVIRAL ANTIGENS 

Oncoviral antigens are those found in virus-associated cancers, such as in head and neck cancer caused by 
human papilloma virus HPV-16, cervical and anal cancers caused by HPV-18, and hepatocellular cancer caused 
by hepatitis B and C [121-123]. These proteins and their resulting peptides are truly “non-self”, therefore, they 
represent very promising tumor-specific antigen targets (Table 2). However, this benefit is only applicable to 
a fraction of cancers that are associated with the incidence of viral infection. 

TUMOR-SPECIFIC ANTIGENS 

Lastly, tumor-specific antigens are a category that are exclusively found in the tumor and arise from somatically 
acquired genomic alterations, and are not found in any healthy tissues (Table 2). They include antigens derived 
from nonsynonymous single nucleotide variants, frameshifts through nucleotide insertions or deletions, and 
gene fusions [101]. Such tumor-specific neoantigens show the most promising potential for use in targeted 
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immunotherapy due to their absolute tumor specificity, and are described in more detail in Section 1.3.2 
below.  

1.3.2 Mutated Neoantigens 

The first discoveries of mutated cancer peptides were found in the genes MUM1 and beta-catenin [124, 125]. 
They were confirmed to be presented on HLA molecules, and recognized by T cells. With the advent of next 
generation sequencing (NGS) technology in 2005, the possibility to map the tumor mutational landscape and 
to search for immunogenic mutated antigens both increased markedly, especially for nonsynonymous single-
nucleotide variant antigens [126, 127]. Landmark publications included the use of NGS and advanced T cell 
assays, have showed the significance of mutated antigens in both mouse models and, shortly after, in cancer 
patients using similar techniques [128-131]. Neoantigen-specific T cell responses were retrospectively 
observed in TIL products of melanoma and also across other cancer malignancies. Moreover, such responses 
can be positively correlated with the efficacy of immune checkpoint blockade and TIL therapy, providing 
further evidence that mutated neoantigens play an important role in efficient tumor control [52, 101, 131, 
132]. The potential number of mutated neoantigens that are presented in the tumor can be extrapolated from 
the tumor mutational burden [133-135]. This has been used as a marker to predict tumor immunogenicity and 
measure the success of checkpoint blockade treatment. Unfortunately, it was shown that neoantigen burden 
is a weak marker when considered alone. This is due to only a minute fraction of mutations leading to 
actionable antigens, while the contribution from alternative factors, such as other types of antigens, or 
immunosuppressive mechanisms, likely play an equally important role [136].  

 

Table 2 – Summary of the different canonical tumor-specific antigen types. Abbreviations are as follows: HCC: 
Hepatocellular carcinoma, MSI: Microsatellite instability, RCC: Renal cell carcinoma, CML: Chronic myelogenous 
leukemia. Information was derived from multiple sources: Schmidt and Lill, Journal of Proteomics, 2019, [99], 
Smith et al., Nature Reviews Cancer, 2019 [100] and Ilyas and Yang, Journal of Immunology, 2015 [98]. 

Canonical tumor-

specific antigen type Pros Cons Antigen examples  Cancer examples  

Oncoviral • Likely shared between 
patients 

• Only in virally-infected 
tumors 

• HPV E6/E7 
• EBV 
• MCC 

• Head and neck cancer 
• Cervical/anal cancer 
• HCC 

Mutations  

(single nucleotide variants) 

• Private to the patient 
• Potential targeting of 

shared driver/pathogenic 
mutations  

• Usually specific to 
individual tumor 

• “Off-the-shelf therapy” 
limited to a few frequent 
mutations, reaching a 
small fraction of patients 

• KRAS (truncal) 
• TP53 (truncal) 

• Melanoma 
• Glioblastoma 
• Lung cancer 
• Bladder cancer 

Insertion/deletion 

frameshift 

• Potentially many targets 
per mutation 

• Private to the patient 
• Potential targeting of 

shared driver/pathogenic 
mutations 

• Lower prevalence • TGFBR2 
• MSI high tumors 
• RCC 

Fusion protein 
• Potential driver gene 
• Likely shared between 

patients 

• Usually specific to a tumor 
type • BCR-ABL • CML 

 



Chapter 1 

 22 

Other underlying cancer-associated genomic changes can result in sequence insertions and deletions, or in the 
generation of fusion genes [100]. Specifically, insertion and deletions that trigger frameshifts in the tumor 
genome leading to novel open reading frames (ORFs) that harbor an array of entirely unique peptide 
sequences not found in normal tissue [137-141]. For example, this occurs in microsatellite instability high 
tumors, such as renal cell carcinomas, where there are mutations in DNA mismatch repair proteins. Clinical 
relevance has been shown from a shared neoantigen that resulted from a frameshift mutation of the gene 
TGFBR2 [100, 142]. On the other hand, gene fusions, such as the BCR-ABL in chronic myelogenous leukemia, 
give rise to altered proteins and novel antigens that cover the breakpoint, and can be shared across patients 
[143]. In general, only modest clinical efficacy has been shown with fusion peptides in various malignancies. 
However, due to the importance of fusion genes in tumor progression, especially in the case of driver genes, 
there is ongoing research in the hope to generate universal off-the-shelf treatments [144].  

While there had been huge strides in identifying and validating neoantigens and their induced T cell responses, 
the number of mutated epitopes that were found to be immunogenic in patients are still disappointingly low 
[101]. They are also mostly unique to the patient’s cancer and therefore, fully personalized approaches are 
required. Furthermore, substantial research focus is currently limited to highly somatically mutated cancers, 
such as melanoma and lung cancer. Therefore, the search for immunogenic tumor antigens beyond the 
canonical remains necessary to increase the range of targetable epitopes [145]. 

1.3.3 Non-Canonical Antigens  

Non-canonical antigens are those derived from regions outside of the canonical proteome-derived space, and 
could expand the options available for cancer immunotherapy [145]. The potential of non-canonical sources 
of immunogenic tumor antigens is being increasingly recognized, primarily thanks to traditional targeted and 
reductionist approaches. Importantly, these alternative sequences may be shared across cancers, and could 
offer generalized treatment to a larger cohort of patients.  

The historical timeline of non-canonical peptide research stretches over the last 30 years. In 1989, the Boon 
group first hypothesized that existence of non-proteome-derived immunogenic epitopes [146]. Remarkably, 
the first non-canonical antigen derived from an intronic region of MUM1 was also the first mutated neoantigen 
to be identified [124]. Following this, Malarkannan et al., in 1995, identified a non-ATG ORF that resulted in 
the identification of a non-canonical major histocompatibility (MHC) class I peptide bound to the Kb MHC 
molecule [147]. The groups of Boon and Rosenberg later described the existence of intronic and alternative 
ORF-derived sequences found on HLA molecules in melanomas [148-151]. Reverse strand mRNA transcription 
can also give rise to antigens as discovered in 1999 [152], and, in 2008, the group of Stevanovic utilized MS to 
determine a non-canonical vascular endothelial growth factor T cell epitope from an alternative start codon 
[153]. Many publications have since reported non-canonical peptides derived from presumed untranslated 
regions of mRNAs, such as through post-transcriptional events, (long) non-coding RNAs, pseudogenes and 
transposable elements (TEs), and which, importantly, can be recognized by T cells (Table 3). Below, a broad 
overview of these findings is provided.  
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Table 3 - Summary of the different non-canonical antigen types. Abbreviations are as follows: RCC: Renal cell 
carcinoma, ccRCC: Clear cell renal cell carcinoma. Information was derived from multiple sources, including: 
Schmidt and Lill, Journal of Proteomics, 2019, [99], Smith et al., Nature Reviews Cancer, 2019 [100] and Ilyas 
and Yang, Journal of Immunology, 2015 [98]. 

Non-canonical  

antigen type Pros Cons Antigen examples  Cancer examples 

Proteasome-generated 

spliced 

• Potentially many targets 
per type 

• Could be shared between 
patients 

• Difficulties in validation of 
translation products 

• Potentially expressed in 
normal tissue 

• gp100 [154] 
• FGF-5 [155] 

• Melanoma 
• RCC 

Transposable element • HERV-E 
• ccRCC 
• Low grade glioma 
• Testicular cancer 

Alternative ORF 

• gp75 
• NY-ESO-1 
• VEGF 
• M-CSF 
• TRP1 
• BING4 

• Melanoma 
• RCC 
• Kidney tumor 

(long) ncRNAs • MELOE [156] • Melanoma 

Reverse strand • RU2 [152] • Kidney tumor 

Intronic 

• GnT-V [148] 
• TRP-2 [157] 
• gp100 [150] 
• MUM1 [124] 

• Melanoma 

Pseudogene • NA88-A [158] • Melanoma 

 

 

Post-transcriptional events, such as alternative splicing, intronic retention, non-canonical translation initiation, 
and codon read-through, can result in the generation of non-canonical antigens. For example, an antigen 
derived from a splice variant from the gene WT1 has been previously reported in leukemias, lung cancer, and 
kidney cancer, however, it has not yet been clinically validated [100, 159]. In large-scale analyses using The 
Cancer Genome Atlas (TCGA) dataset, splice variants were found to be enriched in tumors, and potentially 
expand the pool of non-canonical antigens to be explored [160].  

In the family of (long) non-coding RNAs (lncRNAs), pseudogenes and reverse transcriptions, some were shown 
to have translation potential and can generate peptides that stimulate T cell responses [152, 158, 161]. In a 
study involving melanoma patients, antigens were found from the long “non-coding” RNA meloe [156, 162, 
163]. Meloe is typically transcribed in a tissue specific manner in the melanocytes, however, the researchers 
found that translation of this lncRNA occurred in melanoma cells. Evidence was also provided of T cell 
responses against these non-canonical antigens in melanoma patients and healthy individuals.  

Lastly, TEs make up 60% of the genome and were once classified as junk DNA [164]. Of that, ERV elements 
make up 8% of the genome. They are essential contributors in evolution through DNA insertions, leading to 
gene mutations, transcriptional modulation, dispersion of regulatory sequences and genomic recombination. 
Although TEs are usually silenced via epigenetic modulation, these mechanisms might be dysregulated in the 
context of cancer, or can be induced with epigenetic modulators. Of the retrotransposons, long interspersed 
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nuclear elements (LINEs) have been found to impact cancer biology, as have human ERVs (hERVs) in the 
context of for example melanoma, ovarian and prostate cancer [100, 165-167]. The dysregulation of TEs can 
lead to double stranded DNA sensing and inflammatory responses, and their peptide products have been 
shown to lead to B and T cell activation. In clear cell renal cell carcinoma (ccRCC), a T cell clone targeting a 
hERV peptide was found and described in two separate publications [168, 169]. Currently, the clinical studies 
for this hERV peptide is ongoing in ccRCC for usage in ACT. 

1.3.4 Methodologies For Antigen Discovery And Validation 

The discovery and validation of tumor antigens is currently achieved in multiple ways. Traditionally, antigen 
discovery techniques have utilized antibodies and patients’ T cells for identification, and more recently, routine 
reverse immunology and MS-based approaches [106, 170]. Regardless of the technique, the selection and 
prioritization of any antigen of interest can be performed by HLA binding prediction tools, and should be 
thoroughly evaluated for immunogenicity in downstream analyses. 

COMPUTATIONAL PREDICTION OF (NEO) ANTIGENS  

Many HLA binding prediction tools exist that are trained on experimental HLA binding affinity data, collected 
in the Immune Epitope Database (IEDB) [171]. More recently, these tools, especially for HLA-I, have started to 
incorporate cleavage specificities dictated by the proteasome [172], or take into account TAP transport 
efficiency [173], immunogenicity scores, or eluted ligand information [174-177]. Especially the latter has 
shown to greatly improve epitope prediction. The reliability of the tools related to HLA-I prediction have far 
outreached those of HLA-II, due to the greater availability of training data for HLA-I, as well as more distinct 
binding constraints. However, recent advances in the HLA-II binding predictors have been reported with 
improved accuracy [178-180], achieved through the use of MS-based eluted ligand information, along with 
the application of neural networks and sophisticated algorithms. 

With the growing interest in pinpointing targetable antigens, HLA binding prediction tools are being used to 
predict and prioritize those that might bind to the patient HLA [127, 175, 176, 181-183]. Specifically, for 
mutated neoantigens, the nonsynonymous somatic mutations can be identified through whole exome 
sequencing (WES) and RNA-Seq, performed on the tumor and healthy matched counterpart (such as 
peripheral blood mononuclear cells; PBMCs). From the generated information on somatic mutations, the 
prediction tools provide a list of potential neoantigens that encompass the mutation, ordered by their 
predicted affinities (or ranks) to bind to respective HLA-I or –II allotypes. By leveraging information on gene 
expression, RNA-Seq data can further help prioritize antigens that are likely to be presented. 

Almost all antigen discovery pipelines rely heavily on HLA binding predictions, which define the antigens that 
are evaluated for tumor control. Overall, immunogenicity screening techniques are extensive, and, therefore, 
the further development of in silico tools for antigen prioritization is crucial to narrow down targets for cellular 
validation. However, across the field, there is currently no standardized approach to perform this process, and 
some drawbacks in HLA prediction tools exist. For example, training data is limited for some rarer alleles, which 
could negatively impact the predictions for those alleles substantially [182]. Furthermore, binding predictions 
typically do not take into account all integrative parts of HLA processing [184]. The most comprehensive 
method to achieve an accurate in vivo representation of HLA repertoire is by MS (see Section 1.4). 
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EVALUATION OF PEPTIDE IMMUNOGENICITY 

Regardless of whether HLA binding prediction tools, MS analyses, or a combination of both are used, the 
resulting peptides should be screened for immunogenicity, a key success indicator for clinical interventions 
[185]. A variety of in vitro screening techniques exist to evaluate the immunogenicity of a (neo) antigen. 
Traditionally, researchers worked extensively in screening CD8+ T cells for recognition of target cells 
transfected with tumor cDNA library pools and HLA restriction elements. This technique led to the 
identification of the first mutated neoantigen by Coulie et al [124]. Since the dawn of NGS, researchers are 
facing new challenges, with large numbers of peptides that need to be interrogated for antigen reactivity with 
limited sample material.  

Addressing this challenge, one very common and invaluable high-throughput method is to screen for certain 
responses in (autologous) immune cells by enzyme-linked immunospot (ELISpot) assays [186, 187]. ELISpot 
assay plate surfaces are coated with cytokine specific monoclonal antibodies, incubated with cells and 
stimulant, and the secretion of specific cytokines are captured. Unspecific interactions are washed away, 
before a cytokine specific detection antibody fused to an enzyme conjugate is added. Lastly, the addition of 
the substrate allows for spot visualization. In this manner, the frequency of reactive cells can be measured 
quantitatively, and with high sensitivity, by counting the spots formed. Of the variety of molecules that can be 
measured, interferon gamma (IFNγ) is by far the most common, especially when interrogating activated CD4+ 
and CD8+ T cells upon antigen stimuli. Some protocols may require in vitro expansion and stimulation of 
immune cells in order to amplify low frequency responses to detectable levels compatible with ELISpot. Spot 
counting can be performed manually, but throughput and reproducibility has been significantly increased with 
the development of semi- or fully automated plate readers [188]. This straightforward approach led to the 
successful identification of immunogenic neoantigens in melanoma, non-small cell lung, and ovarian cancer 
[189-192].  

In parallel, antigen specificity can be interrogated by screening T cells with peptide-HLA multimers [185, 193, 
194]. These assays are used to detect, quantify and isolate T cells that bind to a certain antigen of interest. 
Multimers come in a variety of subtypes, such as in the form of tetramers, pentamers and dextramers. These 
consist of HLA molecules each bound to a specific peptide, with which antigen-specific T cells can be extracted 
from a pool of diverse T cell specificities using fluorochrome-based techniques. This multimer assay relies on 
the a priori knowledge of the minimally processed epitope, often determined through HLA binding prediction 
algorithms. To accommodate multiple peptide screenings in one sample, fluorochrome-based combinatorial 
staining techniques have been optimized in TILs [195]. Alternatively, to allow for high-throughput screening of 
over a thousand of peptide specificities within a single sample, DNA barcoded peptide-HLA multimers have 
been designed and exploited for T cell recognition profiling [196]. While the exploration of peptide-HLA-II 
multimers currently lags behind HLA-I, this gap may be closed with the growing development of HLA-II binding 
prediction tools.  

In contrast, unbiased evaluation of mutated epitopes can be performed without the need for HLA binding 
prediction algorithms [170, 185, 197-199]. For each nonsynonymous mutation detected, a gene fragment is 
designed, where the mutation is flanked by their original sequences, and up to twenty-four mutations in 
minigenes can be accommodated within an ORF. These genes are in vitro transcribed to RNA, transfected into 
APCs, and then used to screen for immunogenicity via T cell responses. Any responses are subsequently 
deconvoluted to pinpoint the minimal epitope. The advantages of this technique are that prior knowledge of 
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HLA restriction, and the minimal epitope, is not needed, and epitopes presented have been naturally 
generated through the cellular antigen processing and presentation pathways.  

In parallel to existing methodologies for antigen discovery, MS-based techniques uniquely allow the unbiased 
exploration of exact epitopes that are naturally presented in vivo on tumor cells. Thus, this intensive area of 
research offers a complementary approach to perform high-throughput antigen discovery.  
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1.4 Immunopeptidomics For Antigen Discovery  

With the rise of MS-based technologies, the field of immunopeptidomics has emerged that aims to map the 
thousands of peptides presented on cells’ transmembrane HLA molecules. Due to the strong link between HLA 
genomic regions and the incidence of immune diseases, the importance of charting the HLA peptide 
repertoire, termed the immunopeptidome, is widely accepted [200]. Critically, both the qualitative, and 
quantitative traits of the immunopeptidome have been associated with a range of disorders. In this section, a 
brief background of MS-based immunopeptidomics studies are outlined, followed by the existing 
methodologies for the enrichment of HLA peptides and the associated challenges. 

1.4.1 Immunopeptidomics Background 

Nearly three decades ago, the field of immunopeptidomics was established with seminal studies conducted 
by the groups of Hans-Georg Rammensee and Donald Hunt [61, 201]. Importantly, the presence of different 
HLA binding motifs was observed. Thereafter, the first mutated MHC-I peptides were sequenced by MS in 
1997 by the group of Hunt [202]. Further, sample-specific collective representation of tumor HLA peptides in 
vivo was generated using immunoaffinity purification and liquid chromatography coupled with MS [203, 204].  

Since then, MS-based instrumentations have advanced rapidly, allowing the sensitive evaluation and 
sequencing of tens of thousands of peptide sequences from a given sample (Figure 3). The widespread 
research and publications in the field of MS-based immunopeptidomics have been enabled by the 
development of both the mass analyzer Orbitrap, discussed in Section 1.5.3, and sophisticated statistical and 
computational tools [200, 205]. These advances have led to the MS-based identification of many presented 
TAAs [102, 203, 206-208]. Importantly, the identification of mutant epitopes in melanoma [189, 190, 209] and 
glioblastoma [210] has been achieved using customized protein sequence databases incorporating patient-
specific mutation information. Furthermore, significant research has been focused on the identification of HLA 
peptides that harbor PTMs [104, 116, 211], or are of non-canonical origin [145].  

Recently, MS-based immunopeptidomics data is being capitalized to train HLA binding predictors, and thus 
improve antigen prioritization strategies for both HLA-I and HLA-II [175, 178]. Similarly, leveraging 
immunopeptidomics data, HLA binding predictors have been developed for peptides with PTMs [212]. Thus, 
the growing field of MS-based antigen discovery is an exciting prospect for advancing personalized 
immunotherapy [200, 205, 213, 214].  

1.4.2 HLA Peptide Extraction From Biological Samples 

A prerequisite for MS-based immunopeptidomics is the robust extraction of HLA peptides from biological 
samples [215]. There are two main methods that are commonly used: mild acid elution (MAE) and 
immunoaffinity purification [205, 216].  

MAE is a straightforward technique that only requires the treatment of the sample with acid, and leads to the 
direct release of peptides from the cell surface. However, this method is largely unspecific and not feasible to 
perform with tissue samples. Due to this unspecific “stripping” of cells, the contribution of contaminating 
peptides is high. An advantage of this approach is that cells remain intact and therefore allows for studies that 
follow HLA presentation kinetics. 
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Figure 3 –MS-based immunopeptidomics for cancer immunotherapy. (1) Tumor tissue is harvested from a 
cancer patient, and processed to extract HLA peptides. Alternatively, tumor derived cell lines or organoids can 
be established and used for immunopeptidomics. (2) HLA immunoaffinity purification is performed, traditionally 
using chromatography columns, and peptides are separated from HLA complexes through reverse phase C18 
extraction. (3) Purified peptides are further separated in a HPLC and (4) directly injected into the mass 
spectrometer to acquire MS/MS spectra. In parallel to this process, (5) tumor and healthy matched DNA and 
RNA are extracted, (6) sequencing performed, and (7) the results analyzed to generate protein reference 
databases personalized to the patient. (8) This is used to interpret MS data and can lead to the identification 
of TAAs, along with mutated, or other types of non-canonical antigens. (9) The antigens-of-interest are 
validated for immunogenicity downstream, and (10) if proven to be relevant, may direct vaccine strategies and 
antigen-specific adoptive T cell therapy for the cancer patient.  

 

Immunoaffinity purification, on the other hand, employs anti HLA antibodies to capture specific HLA-peptide 
complexes. Aside from the commonly used anti pan-HLA-I and pan-HLA-II antibodies, a variety of allele-specific 
antibodies exist that give flexibility for investigating a range of biological questions. After cell or tissue lysates 
are incubated with the antibodies that have been crosslinked to beads, the bound HLA peptides are dissociated 
with acid denaturation. Peptides are separated from the heavy chains and in the case of HLA-I, b2m, via 
molecular weight cut-off spin filters and C18 reverse phase extraction. Depending on the complexity of the 
peptide mixture, further fractionations can be performed prior to injection into the mass spectrometer. While 
immunoaffinity purification is typically chosen over the two methods, a disadvantage is that the sample is lost 
during the HLA extraction process, in contrast to MAE.  
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Importantly, researchers utilizing these sample preparation methods face a range of challenges, including 
uncertainty in peptide yield quantity, the need for large amounts of initial sample material, as well as low 
throughput and low reproducibility issues [215]. Not only do existing processes need to be improved, but the 
limitations of the current approaches need to be thoroughly evaluated. For example, the uncertainty in 
peptide yield has been tested by the group of van Veelen [217]. Experimental losses during peptide purification 
were measured via isotopically labelled peptide-MHC monomers spiked into the cell lysate, prior to 
immunoaffinity purification. The results showed that immunoaffinity purification is accompanied by loss of up 
to 99% of the original HLA complexes. Furthermore, an important limitation of pre-fractionation procedures 
is the creation of extraction bias, which should be taken into account when drawing conclusions on the 
immunopeptidome [218]. Due to these known issues, quantitative analyses of the immunopeptidome are 
lagging behind qualitative studies. Moreover, some peptides will never be detected by MS due to high 
hydrophobicity and poor ionization efficiency. Therefore, as the immunopeptidomics community grows, and 
the relevance of immunopeptidomics for cancer immunology has become undisputable, there is a need to 
further develop and standardize these existing HLA extraction processes [200, 215]. Only when HLA extraction 
methodologies are both robust, and provide high coverage and reproducibility, can they form a good 
foundation for the exploration of novel antigens and thus help dictate the success of cancer immunotherapy.  
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1.5 Mass Spectrometry For Peptide Identification 

To measure, identify and quantify HLA peptides from biological samples, relevant MS techniques are required. 
These techniques, along with their corresponding data interpretation processes and the varied acquisition 
options, are illustrated in this section. Thereafter, MS-based proteomics approaches are introduced, along 
with their use alongside immunopeptidomics.  

Historically, peptide sequencing was performed by Edman degradation, which is time consuming and allows 
the analysis of only one protein at a time [219]. The method requires a homogenous protein sample as a 
starting point and the amino acid sequence is identified based on sequential cleavages from the amino 
terminus end of the protein. In contrast, the development of MS hyphenated with liquid chromatography (LC-
MS) enables high-throughput information on the quality, and the quantity of a complex peptide mixture [220]. 
Thus, LC-MS is undoubtedly the state-of-the-art instrumentation for identifying and determining the 
abundance of peptides, and their source proteins.  

There are a variety of mass spectrometers that detect and identify the mass-to-charge ratios (m/z) of ions. 
These contain core components, including a sample introduction device, a source to produce ions, one or 
more mass analyzers, a detector to measure ion abundance, and a computer for data processing. While there 
are a variety of different MS techniques tailored to specific disciplines, these are generally beyond the scope 
of this thesis and are extensively explained elsewhere [221]. The focus here will be on the techniques that are 
routinely employed to analyze biologically complex peptide mixtures by two stages of mass analysis (tandem 
mass spectrometry; MS/MS). The typical peptide separation technique prior to MS analyses is high 
performance liquid chromatography (HPLC), and is directly followed by electrospray ionization (ESI). Upon 
ionization, tandem mass spectrometry is performed to measure the m/z’s of biomolecular ions with a simple 
scan (MS1). Subsequently, ion activation using collision-induced dissociation (CID) results in ion fragmentation. 
From this, a product ion scan (MS/MS) is generated and the structural information of the ion can be 
determined [222, 223]. 

1.5.1 High Performance Liquid Chromatography  

HPLC is a liquid sample separation technique, and an invaluable tool for the field of proteomics by greatly 
simplifying the complexity of a sample and facilitating unambiguous downstream peptide and protein 
identification [224]. While there are separation approaches that exploit different physico-chemical peptide 
properties, such as separation through ion exchange, hydrophilic interaction and affinities, the most common 
is reverse phase chromatography based on hydrophobicity. This latter approach utilizes a liquid 
chromatography microscale capillary column consisting of a stationary phase, for example, silica covalently 
bound to C18 alkyl chains. The mobile phase, that is more polar than the stationary phase, is composed of a 
mixture of water with various water-miscible organic solvents, such as methanol, acetonitrile and isopropanol. 
Before separation, the analyte is dissolved in an acidified solution and added to the mobile phase. Interactions 
between the stationary phase and the mobile phase with the analyte occur. The analyte distribution is 
dependent on the type of stationary phase, composition of mobile phase, and hydrophobicity of the analyte 
itself. In gradient elution, as the concentration of the organic solvent in the mobile phase increases over time, 
analytes are separated and eluted from the stationary phase based on their increasing hydrophobicity.  
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1.5.2 Ionization 

In order for an analyte to be measured by MS, it first needs to be ionized into a stable gas phase ion. There are 
different techniques of ionization depending on the molecule of interest. For large biomolecules, such as 
peptides, the preferred ionization method for MS analyses is by “soft” ionization. Analytes are transferred 
from the solid or liquid phase to stable gas-phase ions without extensive fragmentation during ionization, 
either through matrix laser desorption/ionization (MALDI) or ESI, respectively. In MALDI, the laser heat is 
absorbed by the matrix and the energy is conveyed to the fixed analytes, resulting in their release as gas phase 
ions. In ESI, a potential is applied between the ESI source and the counter electrode, which produces an 
electrospray that is aided by the nebulization of an inert gas or by high temperature [225]. The charged 
droplets reduce their size by coulomb explosions, until ions are ejected from very small droplets as gas phase 
ions, following either the ion evaporation model or charge residue model. Typically, the ions are multiply 
charged, however, this largely depends on the peptide sequence and the properties of the amino acids. These 
are thereafter transferred into the near-vacuum system of the mass spectrometer. 

1.5.3 Mass Analyzer 

A mass analyzer is an ion detector that measures the abundance of a gas-phase ion by its m/z. A mass spectrum 
is generated where x and y axes correspond to m/z and ion abundance, respectively. The mass analyzers can 
be grouped into three different operation modes: continuous (magnetic sector, quadrupole), pulsed (time-of 
-flight (TOF)) and ion trapping devices (ion trap, Fourier transform ion cyclotron resonance and Orbitrap) [221, 
223]. One of the most sophisticated instruments incorporates an Orbitrap, which achieves an unprecedented 
high resolution and accuracy in determining m/z. The Orbitrap is a spindle-like shaped electrode enclosed by 
a barrel-shaped outer electrode. An electrostatic field is generated in the Orbitrap, thereby allowing the ions, 
in a manner dependent on their m/z, to orbit the electrode and oscillate in an axial direction. The signals are 
processed by Fourier transformation to determine the m/z of ions. A mass spectrometer can come in a hybrid 
form consisting of at least two mass analyzers to enable tandem MS.  

1.5.4 Ion Activation By Collision Induced Dissociation 

As the knowledge of the precursor ion m/z is insufficient to distinguish between the thousands of peptides 
potentially found in the same sample, the fragmentation of peptides is required to deduce sequence 
information [226, 227]. A commonly used fragmentation technique is (lower-energy) CID, where precursor 
ions at a given m/z are accelerated in a trap containing inert gas. The ion collisions with the gas cause kinetic 
energy to be partially transformed into internal energy that break lower energy amide bonds within peptides. 
In higher-energy collisional dissociation (HCD), CID is separately performed in an HCD cell, before the product 
ions are introduced into the Orbitrap, allowing the determination of their m/z’s. The main difference between 
CID and HCD is the amount of energy being delivered to the ions. For CID, it ranges in the dozens of eV, whereas 
HCD can go up to keV levels and result in more information-rich spectra.  

The resulting fragmentation pattern depends on multiple factors, such as the use of CID or HCD, the peptide 
charge and the position of basic and bulky residues, including proline. B- and y-ions are designated based on 
where their charge is retained, either on the amino- or on the carboxy-terminal part of the peptide, 
respectively. Apart from CID and HCD, other fragmentation techniques exist that increase the internal energy 
level of molecules, such as via electron capture dissociation (ECD), electron transfer dissociation (ETD), or 
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pulsed Q CID [223]. These methods generate distinct fragmentation patterns that need to be considered 
during peptide sequencing.  

1.5.5 Database-Dependent Search 

Theoretically, a resulting MS/MS spectrum can be manually annotated and the underlying sequence 
determined. However, with the thousands of spectra generated from a fast and high-resolution MS, this 
attempt is impractical in reality. As such, MS search tools and sophisticated statistical algorithms exist to assign 
MS/MS spectra to specific sequences [228, 229]. A database-dependent search is a category of MS search 
tools that requires a protein sequence database as input (Figure 4). The protein sequence database routinely 
used for MS-based searches is derived from the Uniprot Knowledgebase (UniprotKB) [230]. This database is 
enriched with manual annotation and highly detailed functional information on proteins. Sequence 
assignment occurs in a relatively straightforward manner: the provided protein database is processed in silico 
to generate a list of peptides determined by user-given parameters, such as peptide length specifications and 
enzyme specificity, and the theoretical m/z of peptide precursor ions is calculated. Peptides are retained in 
the list when the theoretical precursor m/z matches the experimental m/z, within a user-defined mass 
tolerance. Following this, the tool generates ideal fragment ions (depending on the fragmentation strategy) 
along with m/z, which are then compared to the experimentally acquired tandem MS.  

 

 

 

Figure 4 –Data acquisition and database-dependent search with immunopeptidomics data. (A) An experiment 
in immunopeptidomics starts with the immunoaffinity purification of HLA complexes and HLA peptide 
extraction from tissue specimens or cell lines. The peptides are injected into the LC-MS, and can be fragmented, 
leading to the generation of MS/MS spectra. (B) A MS/MS search tool is used for peptide identification, where 
a protein sequence reference database is provided as input. For immunopeptidomics, unspecific in silico 
digestion is enabled, and peptides are filtered based on the m/z of the precursor ions. Theoretical fragment ion 
masses are calculated for every peptide. (C) A score that determines the similarity between the theoretical and 
experimental spectra is calculated, and statistical algorithms are applied to identify the best-matching peptide 
sequence and adjust the false discovery rate. Inspired by Eng et al., Molecular and Cellular Proteomics, 2011 
[229].  
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DATABASE SEARCH SCORING ALGORITHMS 

There are several database search scoring algorithms that have been developed, which essentially score 
peptides based on the similarity of the in silico generated and experimentally measured MS/MS spectra. These 
algorithms can assess similarity in various ways [231, 232]. For example, cross-correlations are used in the 
Comet tool, where a similarity score is computed for each peptide through pattern recognition of theoretical 
versus experimental MS/MS spectra [233]. In contrast, the tools for Mascot, or the Andromeda engine within 
MaxQuant [234], calculate the probability of the observed number of experimental versus theoretical matches 
of fragment masses occurring by chance. 

Ultimately, many sequences within a given database could theoretically match a spectrum by chance. 
Therefore, it is crucial to assign any match with a statistical significance, in order to have confidence that the 
matching did not occur at random. For this purpose, statistical methods exist that can estimate the level of 
false discoveries in a dataset. One approach is to utilize decoy databases, such as the original protein database 
in the reverse or scrambled form, together with the actual peptide sequences, in order to estimate the level 
of false discoveries [235]. This estimation is then used as a guideline to further filter the sequences based on 
certain criteria, for example, score threshold, to retain only those in the final dataset that are below the user-
specified false discovery rate (FDR).  

Additionally, delta scores are computed, where the highest ranked peptide that matched a specific spectrum 
is compared to a pool of peptides which also match the same spectrum, albeit with lower scores [229]. The 
differences in the score distributions provide confidence on whether the highest-ranked peptide was correctly, 
or incorrectly, determined. Therefore, it is crucial that a sufficient number of peptides is provided from the 
database and pass the search filter criteria, so that these comparisons can occur. Thus, if a database of 
insufficient size is used, the statistical significance of these calculations may be negatively impacted.  

DE NOVO SEQUENCING 

In addition to database-dependent searches and spectral library analyses (see Section 1.5.6), MS results can 
be analyzed by de novo sequencing algorithms [236, 237]. This method does not require prior input from 
protein sequence databases or libraries, and sequences are reconstructed directly from the MS/MS spectra. 
Therefore, de novo sequencing is thought to be particularly useful to increase the range of peptides that can 
be identified in immunopeptidomics samples [237, 238]. However, as this method relies upon low 
interferences, the quality of MS spectra provided must be very high, and thus there is currently limited 
adoption of de novo sequencing. Furthermore, in order to eventually define the source protein, the peptide 
sequence is then mapped back to a reference.  

1.5.6 Mass Spectrometry Acquisition Techniques For Immunopeptidomics 

DATA DEPENDENT ACQUISITION 

There are different acquisition techniques with which a peptide sample can be measured by MS. The data-
dependent-acquisition (DDA) method selects the top most abundant ions (often between top10-top20) for 
fragmentation, with dynamic exclusion for a few seconds to avoid the oversampling of abundant ions (Figure 
5) [205]. This method accurately reveals a snapshot of complex protein/peptide samples, called shotgun-
proteomics or –immunopeptidomics, and is typically analyzed via database-dependent searches. A drawback 
of DDA is that it suffers from the under-sampling of low abundance ions and low reproducibility between 
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sample injections. The method can therefore lack “completeness”, especially when analyses of specific 
pathways are of interest [205]. That being said, features such as sensitivity, mass accuracy and resolution (in 
TOF and Orbitrap mass analyzers) are being continuously improved and should lead to more robust results 
from shotgun methodologies. Overall, the DDA method is the most commonly used approach by the 
immunopeptidomics community, and represents an indispensable method for generating novel biological 
discoveries [209, 239, 240]. 

DATA INDEPENDENT ACQUISITION 

An alternative approach, data independent acquisition (DIA), isolates and fragments all precursor ions in an 
unbiased manner within shifting and overlapping isolation windows [205, 241, 242]. Here, highly complex 
spectra are generated that incorporate signals from multiple peptides, and thus these results are not easily 
compatible with database-dependent searches. As such, tools that allow sequence identification from DIA rely 
on the prior construction of peptide spectral libraries generated initially through extensive DDA analyses. 
When using the DIA approach, the number of peptide identifications can be boosted by many factors 
compared to DDA. This is especially beneficial for low abundance peptides, and greatly enhances peptide 
reproducibility and quantification across multiple samples. Over a wide range of samples, this approach can 
advance the monitoring of both biomarkers for treatment stratification and predictors to specific responses. 
DIA has been recently optimized for immunopeptidomics, facilitating comparative analyses across biological 
samples, and importantly, reducing the need for large amounts of sample input due to higher sensitivity [205, 
241].  

While many spectral libraries are being made available from proteomics studies (www.swathatlas.org) [243], 
there still remains a significant need to generate large and high quality libraries for HLA peptides. A community-
driven endeavor is currently being undertaken to achieve this, and should reflect the immense diversity of 
peptides bound by the different HLA allotypes [200, 215]. Importantly, a tissue-based atlas of the healthy 
murine MHC class I immunopeptidome has demonstrated the possibility of generating spectral libraries at a 
large scale [244]. Needless to say, this method presents various technical difficulties, and relies upon both 
comprehensive expertise and advanced data processing methodologies.  
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Figure 5 – In a data dependent acquisition mode using the Q Exactive HF-X instrument, ions are filtered through 
the quadrupole, and a full MS1 scan is performed to deduce the m/z of precursor ions. Then, the most abundant 
N precursor ions (usually N=10-20) are selected for further fragmentation through dependent MS/MS scans, 
completing one cycle. The acquisition cycles are repeated throughout the LC gradient. MS/MS database search 
tools can be used to identify the sequences from the generated MS/MS spectra. 

 

TARGETED TANDEM MASS SPECTROMETRY 

Aside from DDA and DIA, selected or parallel reaction monitoring (SRM or PRM, respectively) are hypothesis-
driven methodologies to selectively target and track a defined set of ions in complex peptide mixtures. These 
methods can reproducibly profile and quantify desired peptides over a period of MS acquisitions [245]. SRM 
is a more traditional approach in targeted proteomics, and is employed in triple quadrupole MS. Here, both 
the precursor, and the product ions are pre-defined for targeting. In PRM, only the precursor ion needs to be 
defined in advance, and all ensuing product ions are measured on hybrid quadrupole-Orbitrap instruments 
[246, 247]. PRM has now become the state-of-the-art approach for targeted proteomics, and offers several 
advantages over SRM, such as high sensitivity, the unambiguous confirmation of target sequences, and in ease 
in experimental execution as the prior determination of fragment m/z’s is not required (Figure 6). 
Furthermore, the high accuracy of Orbitrap MS instrumentations enables PRM techniques to be less prone to 
interference from background noise, and thereby can better distinguish peaks, especially for low abundance 
ions.  

Targeted MS techniques have been applied in immunopeptidomics in various ways and are considered the 
most robust method to validate a peptide sequence [78, 217, 238, 248-250]. For example, targeted MS is used 
in sequence-specific validation, in quantifying the abundance and copy number of specific antigens on cells’ 
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surfaces over time, and in monitoring peptide losses during immunoaffinity procedures. Importantly, while 
some antigens may be below the identifiable threshold in discovery approaches, targeted MS techniques can 
identify pre-defined predicted neoantigens that are of low abundance [251]. 

1.5.7 MS-Based Proteomics In Combination With Immunopeptidomics 

In MS-based proteomics, different strategies, such as top-down, or bottom-up approaches are employed to 
identify and deduce the abundance of proteins. The most commonly used technique is the bottom-up 
approach, which first requires the enzymatic digestion of proteins into peptide fragments, usually using 
trypsin. The digested peptides are then analyzed by MS, and protein inference is performed post-
measurement. Specifically, significant peptide-spectrum-matches can provide support for the presence of the 
same source protein. Generally, accurate protein inference takes into consideration situations where a peptide 
matches to different proteins, the occurrence of single-peptide-evidence, and incomplete tryptic signatures. 
In top-down approaches, intact proteins are measured and analyzed without prior digestion in specific mass 
spectrometers that allow the direct measurement of large molecules.  

Aside from protein identification, MS and related technologies allow the accurate quantification of the 
proteome. This particularly powerful approach enables the analysis of proteins in different conditions, such as 
in disease or upon stimuli. Often, for relative abundance comparisons, proteins from different samples are 
distinctly labelled and simultaneously analyzed by MS, for example, through stable isotope labeling of amino 
acids. On the other hand, search tools for proteomics can include label-free analysis options, enabling larger-
scale studies. Importantly, the high resolution, as well as high mass accuracy, of MS measurements are 
required for accurate label-free quantification [252]. A detailed explanation of the label-free quantification 
technique applied in MaxQuant is given by Cox et al., where the intensity-based precursor signals are used for 
quantification [253]. These steady advances in MS have enabled vast steps in proteomics research [254]. 
Including, but not limited to, generating the first human draft of the proteome [255], mapping the diverse 
roles of proteins in disease states [256], elucidating organelle-specific functions [257], studying protein folding 
[258], and unraveling the dynamic roles of protein PTMs [259].  

By combining proteomics with immunopeptidomics, it becomes possible to explore the rules that govern 
peptide selection and presentation from cellular proteins, i.e. to study how the proteome can shape the 
immunopeptidome. However, studies incorporating proteomics to support immunopeptidomics findings have 
reported contradicting results to date [96, 260-265]. Factors such as protein abundance, turnover, degradation 
and translation are recognized to dictate the presented immunopeptidome, but lack clear consensus on their 
specific contributions. Interestingly, several targeted studies have shown that abundant proteins may not 
generate HLA peptides, while lower expressed proteins might [81, 266]. Therefore, the rules that dictate 
proteome sampling for HLA presentation remains to be properly dissected. Evidently, such insights will 
advance our understanding of the sampling of mutated and pathogen-derived proteins, and novel translation 
products. 

1.5.8 Additional Considerations For MS-based Immunopeptidomics 

As MS-based technologies were originally optimized on proteomics samples, several considerations arise when 
applying the technology for immunopeptidomics, as samples inherently differ in terms of their nature, 
required preparation and methods for identification [238]. For example, HLA peptides are typically shorter, 
often singly charged, and have a lower prevalence for basic residues. These features usually cause HLA peptide 
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fragmentation to be more challenging than enzymatically digested (often tryptic) peptides. This issue results 
in a lower percentage of spectra being identified when compared to proteomics experiments, creating a 
bottleneck that needs to be considered in any antigen discovery endeavor. Notably, while the use of HCD is 
compatible with most MS/MS database search algorithms, other (complementary) fragmentation techniques 
performed on HLA peptides have been reported to significantly improve identification rates in 
immunopeptidomics. Specifically, the use of a combination of electron-transfer/higher-energy CID generated 
dual-fragment ion series and resulted in highly information-rich spectra [267, 268]. This was shown to improve 
the identification of HLA peptides by approximately three-fold, and led to the superior localization of HLA-
associated PTMs. However, due to the complex nature of these alternative techniques, the analyses of their 
different fragmentation patterns require more advanced computational infrastructure.  

Furthermore, compared to proteomics, immunopeptidomics generally utilizes larger protein reference 
sources for database-dependent searches. Notably, the increased database size has implications on the 
confidence of the statistical calculations used in MS/MS search tools for peptide identification [200, 205, 238]. 
In proteomics searches, an enzyme specificity is set, resulting in a more restricted list of in silico digested 
peptides. In contrast, for immunopeptidomics, enzyme specificity cannot be set and thus a significantly larger 
list of theoretical peptides is generated for comparison to experimental data (Figure 4). Additionally, the 
identification of HLA peptides is more challenging due to the high similarity of peptide sequences, when 
compared to enzymatically digested samples. For statistical calculations, decoy-target searches are routinely 
applied [269, 270]. However, due to the larger database size, the probability of a randomly assigned false 
match increases, and can ultimately lead to an underestimation of the FDR [271-273].  

These important considerations in MS-based immunopeptidomics must be taken into account as the search 
for mutated neoantigens continues, and remain especially critical when exploring novel sources of antigens.  

 

 

Figure 6 – Parallel reaction monitoring. Selected peptides are synthesized in their heavy-labelled forms (SIL 
peptides) and spiked back into the original sample. The mass spectrometer selects precursor ions of interest in 
a fixed scan mode, fragment these, and monitors all transitions. To confirm the existence of the endogenous 
peptide, co-elution of the «heavy» and «endogenous» peptides must be found. Further, the fragmentation 
patterns should be highly similar, except for the characteristic mass shift derived from the stable isotope 
labelling. Abbreviations are as follows: SIL: stable isotope labelled  
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1.6 Proteogenomics  

Identifying novel, yet un-annotated, antigens from biological samples by MS is not a trivial task. For antigen 
discovery, one key fact to be considered in any MS database-dependent search is that only peptide sequences 
already provided in the database can be identified. Importantly, a routinely used protein sequence database, 
such as UniprotKB, potentially lacks many peptide sequences, for example due to mis- or non-annotation. 
Therefore, novel peptides would never be discovered in this way. That being said, in recent years, thanks to 
the acceleration of advances in high-throughput DNA-, RNA- and Ribo-Seq techniques, a new field, termed 
proteogenomics, has emerged [274]. Proteogenomics essentially involves the integration of either MS-based 
proteomics or immunopeptidomics data with information from genomics and/or transcriptomics. The aim of 
proteogenomics is to expand the interpretation of MS-based data and provide protein evidence from gene-
level studies. In this last section, the background of proteogenomics is discussed, followed by a summary of 
MS-based discoveries in the area of non-canonical peptides. Lastly, the current challenges surrounding the 
discovery of non-canonical peptides via proteogenomics are summarized. 

1.6.1 Proteogenomics Background 

Since its initial introduction in 2004 [274, 275], proteogenomics approaches have led to various scientific 
discoveries. For example, using database-dependent searches, mutated neoantigens were found by including 
information on nonsynonymous somatic mutations derived from WES [209], and proteasome-generated 
spliced peptides from the inclusion of predicted splice variants [276].  

However, the challenges associated with the often immense size of the non-canonical space has to be tackled 
in any proteogenomics approach. In an attempt to specify the search space for MS-based analyses, RNA 
expression data is often used to predict the potentially translated peptide products in silico. In a regular RNA-
Seq experiment, the original mRNA strand information is lost. Strand-specific RNA-Seq circumvents this issue 
and allows more accurate transcript expression analysis and the determination of read direction. In this 
manner, using strand-specific RNA-Seq reduces 6-frame translation on both strands to 3-frame translation on 
one strand [277, 278]. Despite this, incorporating novel sequences using 3- or 6-frame translations to existing 
protein sequences results in a significant enlargement of the search space [274, 279]. Thus, data processing 
strategies and statistical analyses for proteogenomics have become challenging, with the associated risks 
discussed in Section 1.6.3. Depending on the biological question in hand, researchers are forced to evaluate a 
trade-off between database completeness, and increased search time and higher FDRs. Therefore, novel 
peptides should always be treated carefully, and compared to other reference databases to test whether they 
fit another “known” sequence, or contaminant. These peptides should be further validated by complementary 
experimental, analytical and targeted MS-based approaches. 

1.6.2 MS-Based Non-Canonical Peptide Discovery  

In this section, a number of publications are discussed that have applied in-house bioinformatic workflows to 
generate customized databases and search MS data for the identification and validation of (tumor-specific) 
non-canonical peptides (Figure 7). This is in contrast to Section 1.3.3, where non-canonical antigens were first 
introduced and the majority found in single case targeted, and reductionist studies.  
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CONCEPTUAL NON-CANONICAL PEPTIDE DISCOVERY  

With the advent of “omics” and bioinformatic developments, several groups have identified alternative 
translation products at a larger scale, potentially increasing the pool of non-canonical antigens to explore. For 
example, indirect evidence showing the potential of generating HLA peptides include investigations into short 
ORFs, which have previously been largely disregarded due to difficulties in their annotation. Thus far, hundreds 
of potentially coding short ORFs, including those with alternative start codons derived from coding genes and 
non-coding RNAs, have been identified with computational, MS-based proteomics and RNA-Seq approaches 
[280-283].  

Conversely, direct evidence of non-canonical peptides at a larger-scale was reported, such as proteasome-
generated spliced peptides in cis, where distant peptide fragments from the same protein are linked [276]. 
These peptides were identified by MS using a customized database of predicted spliced protein sequences 
concatenated to the normal proteome. Using lymphoblastoid and lymphoid cell lines, Liepe et al. reported 
approximately 30% of the immunopeptidome to be of spliced origin. Trans spliced peptides, i.e. linked peptide 
fragments from different proteins, were interrogated by the group of Purcell, using mono-allelic cell lines and 
an extensive bioinformatics workflow employing a combination of de novo sequencing and library (re)-
searches [284]. The researchers found the number of trans spliced peptides to be similar to the levels reported 
previously for cis spliced peptides. This was challenged shortly after by Mylonas et al., by discerning that the 
identified cis spliced peptides had low HLA binding affinities and poor binding motifs [271]. Therefore, an 
alternative workflow was recommended employing de novo sequencing and multiple search tools, at 1% FDR. 
Consequently, the proposed number of cis-proteasome-generated spliced peptides were estimated to make 
up at most 2-6% of the entire immunopeptidome. 

Moreover, B cell lines were used to identify cryptic peptides derived from non-canonical reading frames [285]. 
The protein sequence database used was constructed from 6-frame translation of non-coding regions of 
sample-matched RNA-Seq data. Notably, a 9% FDR was reported, and 10% of the entire B cell 
immunopeptidome was estimated to be of non-canonical origin. Although an intriguing finding, the 
significance of the peptides’ contribution to the immunopeptidome remains unclear, primarily due to the high 
FDR reported. 

Furthermore, ribosome profiling (Ribo-Seq), which pinpoint transcript regions of active translation through 
sequencing of ribosome-protected fragments, has shown that pervasive translation occurs outside of protein-
coding genes [286-288]. Going beyond protein sequence databases inferred from RNA-Seq data, databases 
assembled via Ribo-Seq information for MS searches have been used for benchmarking the accuracy of Ribo-
Seq protocols. Specifically, it was shown that an advanced Ribo-Seq pipeline enabled the identification of 
cryptic translation events, which were validated by MS in fibroblast samples [287].  

NON-CANONICAL PEPTIDE DISCOVERY IN DISEASE STATES 

The variety of conceptual studies indicating the existence of non-canonical peptides at a systems-level has led 
to a number of researchers evaluating the relevance of non-canonical peptides in disease states, especially in 
cancer [145]. This concept is of particular interest, as non-canonical antigens could arise from the tumor-
related aberrant translation of non-coding regions and be shared across patients. This is in contrast to mutated 
neoantigens, which are mostly private and thus require individual interrogation per patient. Thus, the potential 
pool of shared tumor-specific non-canonical peptides could outcompete mutated neoantigens for off-the-
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shelf cancer treatments [289]. Below, a selection of studies identifying disease-specific non-canonical peptides 
are outlined.  

Through a combination of an in silico approach supported with MS validation, Smart et al. reported the 
presence of intron-retained neo-epitopes in cancer cell lines and across patient datasets [290]. The customized 
database included the prediction of intron-retained epitopes from RNA-Seq data, which were further filtered 
for patient HLA restrictions prior to MS-based search.  

Shortly after, Laumont et al. utilized two murine cancer cell lines CT26 and EL4 in mouse models to validate 
the existence and relevance of tumor-specific non-canonical peptides [250]. The researchers built the 
customized database by only taking into account sequences that were predicted MHC binders. Furthermore, 
sample specific thresholds were applied, rather than a global FDR. Tumor specificity was set by removing 
normal RNA-Seq reads of matched murine thymic epithelial cells (TECs) from the tumor transcriptome. 
Ultimately, tumor-specific non-canonical peptides were shown to elicit anti-tumor responses in mice after 
vaccination.  

Furthermore, researchers have recently focused on the discovery of RNA edited neoepitopes [291]. For this 
purpose, a computational pipeline was developed to annotate editing sites and concatenate the RNA editome 
to the canonical protein sequence database. MS/MS spectra from human tumors were used to screen for the 
existence of these peptides with a non-personalized database, and five were found to be derived from RNA 
editing processes. RNA edited neoepitope specific CD8+ T cells were present in human tumors, and initiated 
killing in tumor cells presenting these epitopes.  

Finally, TE-derived antigen discovery was tackled by the group of Chen-Harris through the robust annotation 
of TEs using RNA-Seq data and subsequent interrogation of MS data [292]. Initially, TE-derived transcription 
was found across TCGA samples, and validated in glioblastoma cells. When DNA demethylating agents were 
applied to a glioblastoma cell line, TE-derived peptides were found to be upregulated. Notably, the protein 
sequence database for MS search was tailored to only include overexpressed TE elements upon treatment, 
along with 6-frame translation.  

1.6.3 Current Challenges In Proteogenomics For Non-Canonical Peptides 

Collectively, the findings above provide direct and indirect evidence that alternative peptides represent 
untapped sources of immunogenic antigens for cancer immunotherapy. However, as 75% of the genome is 
transcribed and could therefore theoretically be translated, the resulting search space is incredibly vast [293]. 
This presents a significant and overarching challenge when identifying non-canonical peptides. While the 
strategies described in Section 1.3.4 for peptide identification, prioritization and evaluation have been applied 
specifically to tumor-associated and mutated antigens, these alone are currently not sufficient to determine 
the relevance of the large pool of potential non-canonical peptides.  

Although research into more robust experimental and computational developments is needed, gene 
expression and MS-based analyses offer a solution to narrow down the peptides being considered. However, 
there remain central issues when undertaking efforts to map the non-canonical immunopeptidome by MS. 
First and foremost, there are FDR issues inherent to MS-based searches that need to be thoroughly evaluated 
[270, 274, 279, 294]. This is especially true when 6-frame translations of RNA species are used for the MS 
search, which significantly increases the size of the database. Furthermore, there are large differences in the 
type of non-canonical peptides being explored, with very little consensus between studies. Moreover, pre-
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filtering options prior to MS-based searches, such as restricting the peptides based on HLA binding prediction 
or tumor specificity, could skew any downstream results obtained, and the basic biological significance of non-
canonical presentation would remain understudied. Additionally, while personalized approaches can 
potentially narrow down the novel targets specific to a patient, the existence of these peptides are rarely 
experimentally validated. Validation strategies, preferably directly on patient tumor tissue, are key in 
supporting the existence of any novel peptide. Ultimately, the immunogenicity of any non-canonical peptide 
should ideally be tested on autologous immune cells to determine its clinical relevance.  

 

 

Figure 7 – The processes that potentially generate non-canonical peptides are illustrated in blue, from the 
genomic level through to proteasomal splicing. For completeness, PTMs are included in the diagram and shown 
in grey, and are considered as canonical in this thesis. 
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Chapter 2 AIMS AND OBJECTIVES 
Despite the steady advance in the field of cancer immunotherapy, the search for the “ideal” tumor antigen 
that can be exploited in combination with other immunotherapy modalities remains a key challenge. Many 
researchers are integrating a variety of sequencing technologies and rapidly-evolving neoantigen prediction 
tools in order to pinpoint targetable antigens. In comparison, MS-based immunopeptidomics allows the direct 
characterization of the tumor antigenic repertoire, and is thus highly attractive for the screening of presented 
tumor antigens. However, a significant number of issues need to be addressed before the research can be 
effectively translated to the clinic. Therefore, the focus of this thesis is to offer solutions to the gaps that are 
hindering the advancements of immunopeptidomics. Specifically, this endeavor is performed with two 
overarching aims, as illustrated in detail below. 

AN IMMUNOPEPTIDOMICS PLATFORM FOR BASIC AND TRANSLATIONAL APPLICATIONS 

Existing immunopeptidomics analysis pipelines continue to lack robustness and standardization. This 
translational gap was discussed among scientific representatives in the first international Human 
Immunopeptidome Project workshop in 2017, co-organized by the Bassani-Sternberg laboratory [215]. Based 
on the community’s opinion, one of the major caveats in current immunopeptidomics workflows is the HLA 
immunoaffinity purification. This is often impeded by low reproducibility and sample-throughput, uncertain 
peptide yields, and the dependency on large sample amounts for downstream analysis. 

Therefore, the initial aim of this thesis is focused on designing and optimizing a novel HLA immunoaffinity 
purification system that enables the streamlined extraction of HLA-I and –II peptides. When compared to the 
attributes of existing systems, the goal is to improve on multiple features ranging from increased speed, 
sensitivity, reproducibility and scalability, while systematically validating these improvements using patient-
derived cell lines and tissue samples. The applicability of this method for drug screening will be assessed at the 
peptide level upon treatment with inflammatory agents. A pipeline that addresses the current challenges 
should help accelerate MS-based immunopeptidomics implementations into clinical settings, and provide a 
reliable framework to explore further biological topics, such as the identification of non-canonical cancer 
epitopes. 

DISCOVERING NON-CANONICAL PEPTIDES IN TUMOR IMMUNOPEPTIDOMES 

Over the last 30 years, targeted molecular approaches have led to the identification of several immunogenic 
epitopes derived from alternative ORFs, intronic regions, and retroviral elements, with seminal studies 
published by the research groups of both Boon and Rosenberg [146, 148-150, 295-298]. These findings have 
motivated researchers to exploit alternative antigens for cancer therapies. With the advent of NGS, several 
studies have started large-scale investigations into the existence and relevance of HLA peptides derived from 
presumed non-coding genomic regions, especially in the context of cancer [250, 290, 292]. However, the 
presented workflows to perform this endeavor vary greatly between studies. Principally, both the 
computational and validation approaches typically employed require optimization to confidently evaluate the 
clinical significance of non-canonical peptides.  

As such, the core aim of this thesis is to develop a state-of-the-art integrated immunopeptidomics and 
proteogenomics framework, robustly identifying and characterizing presented non-canonical HLA peptides 
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(noncHLAp) in patient-derived melanoma cell lines and lung cancer tissue samples. Patient-specific non-
canonical peptides will be identified by combining immunopeptidomics with genomics, transcriptomics and 
translatomics analyses. Further, a MS-based computational module will be developed to control for the 
identification error of non-canonical peptides and limit false positives due to large search spaces. Following 
this, identifications can be validated through complementary analytical and targeted MS-based experimental 
methods. The clinical relevance of the non-canonical peptides will be investigated by examining their tumor 
specificity via comparison against publicly available healthy tissue RNA-Seq data. Moreover, the potential of 
re-identifying shared actionable antigens, beneficial for faster “off-the-shelf” therapies, will be investigated 
both across the patient samples by targeted MS, and within a large in-house generated immunopeptidomics 
database. Finally, in vitro cellular assays will be performed to validate the immunogenicity of the identified 
non-canonical peptides.  

Overall, the combined work presented in this thesis aims to contribute to the research field of personalized 
antigen discovery for cancer immunotherapy in two ways. First, by facilitating the implementation of 
immunopeptidomics in translational research by providing an improved step-by-step guide for HLA 
immunoaffinity purification. Second, by systematically assessing non-canonical peptide identification with a 
MS-based immunopeptidomics, proteogenomics and analytical approach, furthering the surge of interest in 
determining immunogenic tumor non-canonical peptides.
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Chapter 3 SUMMARY OF RESULTS 
Two central manuscripts present and discuss the results of my thesis work, and are summarized in this chapter. 
The first, Manuscript 1, highlights the immunopeptidomics platform, and the second, Manuscript 2, discusses 
the proteogenomics workflow for tumor non-canonical peptide identification. Below, the results are outlined 
for each manuscript, followed by copies of the published Manuscript 1 (Molecular and Cellular Proteomics, 
2017 [299]) and accepted Manuscript 2 (Nature Communications, 2020). Figure references in this chapter 
refer to the original articles, and the supplementary tables and datasets for Manuscript 1 can be found online. 
Supplementary Information for each of the manuscripts are included in the Appendix.  

3.1.1 Manuscript 1 

MS-based immunopeptidomics is the only unbiased method allowing the interrogation of the repertoire of 
naturally presented HLA peptides and the most critical step in this approach is the sample preparation, as it 
determines the coverage and reproducibility. Commonly, immunoaffinity purification of HLA complexes has 
been performed with anti-HLA antibody-crosslinked beads in relatively large individual chromatography 
columns. Samples were lysed and incubated with these beads from several hours to overnight at 4°C. 
Thereafter, the beads were washed and the HLA complexes eluted. The HLA peptides were then separated 
from the HLA molecules by a molecular weight cut-off size filter and concentrated by applying once or twice 
C18-based reversed-phase extraction ([299], Table S5). In our experience, this method is both time-consuming 
and involves extensive sample handling. Moreover, it suffers from low-throughput issues and is composed of 
many steps that result in the significant loss of both quality and quantity of HLA peptides. These challenges 
represent severe bottlenecks for the implementation of immunopeptidomics in robust clinical antigen 
discovery applications. 

A HIGH-THROUGHPUT PLATFORM FOR HLA IMMUNOAFFINITY PURIFICATION 

With these existing issues in mind, a high-throughput platform for HLA immunoaffinity purification was 
designed, using 96-well plates operated with a customized positive pressure instrument (Fig. 1). With the 
implementation of this system, several technical refinements to the traditional protocol were achieved. First, 
due to the streamlined application of positive pressure and plate stacking, the sequential purification HLAIp 
and HLAIIp was enabled, and substantially reduced pipetting steps and the time of traditional HLA 
immunoaffinity purifications to just a few hours. Second, the column volume was reduced, due to the 
purification in 2 mL plate wells as opposed to >10 mL columns. This significantly reduced the amount of 
expensive material used, such as the antibody-crosslinked beads. Third, the plate format allows up to 96 
samples to be processed simultaneously, thereby increasing the speed, as well as the reproducibility of HLA 
peptide extraction.  

Multiple validations were performed to support the superiority of the presented purification framework and 
the quality of the acquired immunopeptidome. Through LC-MS-based analyses and from 21 simultaneously 
processed samples, approximately 50,000 unique HLAIp and HLAIIp derived from human B and T cell lines and 
meningioma tissue samples were obtained at a 1% FDR (Fig. 2A-B). Bona fide HLA peptide characteristics, such 
as their length properties (Fig. 2C-D) and HLA binding motifs (Supplemental Fig. S2) were confirmed, and a 
high intra- and inter-plate reproducibility was observed (Pearson correlation coefficients “r” ranging from 0.89 
to 0.98) across biological and technical replicates (Fig. 3 and Supplemental Fig. S3). In addition, to evaluate 
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both peptide recovery and the potential risk of carry-overs between the plate wells, 15 heavy-labelled 
synthetic peptides were spiked into the B cell line CD165 prior to the desalting step. No synthetic peptides 
were detected in neighboring samples, and all 15 heavy-labelled peptides, along with their endogenous 
counterparts, were re-identified in CD165 replicates (Supplemental Table S3 and S4).  

Furthermore, considerable obstacles in immunopeptidomics stem from sensitivity issues, and therefore, large 
sample amounts are required which is often not feasible for precious clinical material. Cell number dilution 
experiments were performed to compare the amounts of HLA peptides obtained through our high-throughput 
extraction method. Significant improvement on the sensitivity of HLA peptide extraction (1,846 HLAIp and 
2,633 HLAIIp from 10 million cells) was seen when compared to other methods (Supplemental Table S5), 
mainly due to the reduced column volume and sample handling (Fig. 2E-F). 

HIGH REPRODUCIBILITY FACILITATES THE EXPLORATION OF THE DRUG-MODULATED PEPTIDOME 

To test the robustness of our pipeline for label-free comparative and quantitative immunopeptidomics 
analyses, the IFNγ modulated peptidome on UWB.1 289 ovarian cancer cells was mapped, and the overall 
properties of the presented peptide repertoire upon stimulation was explored. The inflammatory cytokine 
IFNγ enhances surface presentation of HLA complexes that could lead to increased peptide presentation and 
a higher probability to discover immunogenic epitopes. High biological reproducibility within the control 
(r=0.97) and IFNγ replicates (r=0.95) was observed, and the increased repertoire and abundance in HLA 
presentation upon IFNγ treatment was noted (Fig. 4A-C, Supplemental Fig. S4). The results showed the 
differential presentation of peptides from source proteins that were upregulated, such as STAT1 and STAT2, 
WARs, and importantly, peptides derived from the immunoproteasome subunits (Fig. 4D). Furthermore, these 
observations were supported at the proteomics level (Fig. 4E).  

As a result of the high quality immunopeptidomics repertoire obtained upon IFNγ treatment, further 
interesting and novel aspects were found, potentially related to the IFNγ-induced proteasome to 
immunoproteasome switch. Notably, the proteasome determines the C-terminal cleavage specificity of HLAIp. 
While the constitutive proteasome exhibits both tryptic and chymotryptic-like activities, the IFNγ-induced 
immunoproteasome demonstrates quantitatively higher chymotryptic-like activity [73]. In line with these 
findings, IFNγ led to enhanced presentation of peptides that bind HLA-B*07:02, displaying C-terminal 
chymotryptic-like amino acid specificity (Fig. 5A-C). The presentation of longer peptides harboring C-terminal 
chymotryptic-like amino acids were also induced, and showed a significant preference of these peptides over 
their shorter tryptic counterparts (p-value <0.01) (Fig. 5D-E). To this end, these comparative 
immunopeptidomics analyses allowed insights into both the well-known quantitative changes associated with 
the immunopeptidome, as well as the more sophisticated fine-tuning of peptide processing upon IFNγ 
treatment. 

Finally, this optimized method formed the basis to the second part of this thesis work, which focuses on the 
exploration of the non-canonical space for novel alternative antigens. 
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3.1.2 Manuscript 2 

Recent clinical data provide clear evidence that due to molecular genomic alterations, tumors express unique 
mutated antigens, the so-called neoantigens, that could play a key role in tumor immune recognition, and 
have been implicated in the therapeutic efficacy of immune checkpoint inhibitor antibodies [101]. The exon-
coded proteome has provided limited opportunities to identify tumor neoantigens that are shared across 
patients, especially in tumors with low to moderate mutational burden. On the other hand, alterations within 
non-coding regions, if expressed, could represent a rich source of tumor-specific neoantigens. Such alternative 
non-canonical antigens are widely regarded to have relevance and potential to increase the breadth of 
targetable epitopes for cancer immunotherapy. Although this area of research has rapidly expanded over the 
last years, the systematic identification and evaluation of non-canonical peptides remains a challenge due to 
limitations in sensitivity and specificity, and thus their clinical relevance is still questionable.  

AN INTEGRATED PROTEOGENOMICS WORKFLOW FOR NON-CANONICAL PEPTIDE IDENTIFICATION 

In order to determine and characterize non-canonical peptide presentation in patient-derived melanoma cell 
lines and matched tumor/healthy lung tissues, a systems-level approach was adopted by integrating 
immunopeptidomics, genomics, transcriptomics and translatomics (Fig. 1a and Supplementary Data 1). The 
approach was specifically focused on non-canonical sources derived from (long) non-coding RNAs, 
pseudogenes, 5’ and 3’ untranslated regions, novel ORFs, and TEs. The personalized information of expressed 
non-canonical elements for every sample was derived from RNA-Seq data and subsequently in silico translated 
into three forward ORFs. Finally, Ribo-Seq was performed for the representative melanoma sample 0D5P.  

A systematic challenge in proteogenomics studies, which utilize RNA-Seq information to generate translation 
products for MS-based approaches, stems from the use of large database search spaces [274]. This is especially 
true when all potential 6- or 3-frame translation products are constructed for transcripts that are presumed 
non-coding. Probabilistic-based algorithms for peptide-spectrum-matches in MS-based searches applied to 
large databases inherently cause a higher proportion of incorrect identifications. To overcome this FDR issue 
for large search spaces, a computational module, NewAnce (A new analytical approach for non-canonical 
element identification), was developed, which combines two MS-based search tool results (MaxQuant and 
Comet) (Fig. 1c and Supplementary Fig. 1a). Specifically, FDRs were calculated separately for proteome-derived 
HLA peptides and noncHLAp and only the consensus (intersection) peptide-spectrum-matches from both 
Comet and MaxQuant were retained. This strategy was applied to reliably identify noncHLAp from large 
sample-specific databases that included all potential 3-frame translations of expressed non-coding genes or 
TEs.  

The accuracy of peptide identification was assessed for all samples using the following two methods. First, 
immunoaffinity purified peptides should be enriched with ligands that are predicted to bind the expressed HLA 
allotypes, and can be assessed using HLA binding prediction tools [175]. Typically, more than 90% of the 
identified proteome-derived HLA-I peptides (protHLAIp) are predicted as HLA binders, thus, similar levels for 
non-canonical HLA-I peptides (noncHLAIp) are expected. Second, as peptides elute from the analytical HPLC 
system with acetonitrile according to their hydrophobic properties, true peptide sequences should display a 
strong positive correlation between their observed retention time (RT) and the calculated hydrophobicity 
index (HI) [300].  
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When applying NewAnce, up to 148 novel noncHLAIp per individual sample were identified, with a combined 
total of 452 unique noncHLAIp (Supplementary Data 2 & 3). These peptides were evaluated based on both 
their HLA binding specificities and sequence-specific hydrophobicity, and demonstrated that the results 
derived from NewAnce were significantly superior over using either MS search tool alone (Fig. 2, 
Supplementary Fig. 2).  

NON-CANONICAL PEPTIDE VALIDATION 

MS-based targeted analyses were further performed to experimentally validate the proportion of true non-
canonical peptide identifications in the representative melanoma sample 0D5P. For this purpose, peptide 
candidates of interest were synthesized in their heavy isotope-labelled forms through the incorporation of 
carbon-13 and nitrogen-15. Synthetic peptides were mixed, spiked into the sample of eluted HLA peptides 
from 0D5P cells and measured by targeted MS. Co-elution of heavy-labelled and endogenous peptides, along 
with nearly identical MS/MS fragmentation patterns, was used to confirm the existence of a novel sequence. 
With this technique, the targeted analyses were executed for the noncHLAIp identified with NewAnce, and 
directly compared to selected tumor-associated (protHLAIp) antigens. PRM for the different peptide classes 
showed that the rate of protHLAIp confirmation was superior to that of noncHLAIp (78.5% for TAAs versus 
55.2% for lncRNAs and 27.7% for TEs) (Fig. 3a and Supplementary Data 6 & 7).  

Furthermore, the Ribo-Seq method pinpoints actively translated regions, hence, it could circumvent the need 
to utilize RNA-Seq data and large databases for MS-based searches. An investigation into whether Ribo-Seq 
could detect active translation of noncHLAIp-derived ORFs (from RNA-Seq inferred immunopeptidomics data) 
showed that 22.2% of TE- and 21.3% of lncRNA-derived peptides were translated in the correct frame encoding 
the novel peptide sequences, compared to 100% of TAAs (Fig. 3b). 

INSIGHTS INTO TRANSLATION AND EXPRESSION LEVELS OF NON-CANONICAL ELEMENTS 

An independent MS-based discovery method was adopted using Ribo-Seq data with the representative sample 
0D5P. Here, all actively translated ORFs were extracted, in silico translated, and included into the MS-based 
search. Using the smaller Ribo-Seq inferred database, in comparison to RNA-Seq inferred database, led to the 
conclusion that the overall immunopeptidome is better captured by the translatome than the transcriptome. 
With NewAnce, the Ribo-Seq inferred database led to a deeper coverage of the immunopeptidome, as well as 
the additional identification of novel HLAIp derived from currently un-annotated ORFs in coding genes (Fig. 
4e-j).  

As a limited proportion of noncHLAIp were re-confirmed by targeted MS, the expression patterns of source 
non-coding genes were investigated. Many of these source non-coding genes were observed to be lowly 
expressed, and treatment with either IFNγ or DAC did not significantly upregulate non-canonical peptide 
presentation (Fig. 4a-b, Supplementary Fig. 4m-r). However, many of the lowly expressed transcripts 
generated HLA peptides that were still confirmed by PRM (Fig. 4c-d). It was theorized that a subset of cells 
expressing the same gene at sufficient levels could enable their HLA presentation and detection by MS. Thus, 
single cell RNA sequencing (scRNA-Seq) was performed to gain deeper insights into the underlying profiles of 
non-coding gene expression. In this manner, a subset of cells was found in the melanoma cell line that co-
expressed the non-coding source gene LINC00520, with marker genes ATP-binding cassette sub-family B 
member 5 (ABCB5), catenin beta 1 (CTNNB1) and microphthalmia-associated transcription factor (MITF) (Fig. 
5e-h). The three latter genes are known for their cancer stem cell properties and are important drivers of 
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melanoma progression [301-303]. In 0D5P, a novel downstream ORF of ABCB5 was detected by Ribo-Seq, 
resulting in the identification of a non-canonical ABCB5 peptide, KYKDRTNILF. Importantly, this ABCB5 
noncHLAIp was found to be immunogenic, as assessed by IFNγ secretion in both autologous TILs and CD8+ T 
cells from peripheral blood lymphocytes (Fig. 9a-c) following in vitro peptide stimulation. This finding has 
exciting implications, potentially allowing immune targeting of melanoma stem cell subpopulations to inhibit 
tumor progression. 

TUMOR SPECIFICITY OF NON-CANONICAL PEPTIDES AND RE-IDENTIFICATION ACROSS PATIENT SAMPLES 

At the clinical level, the interrogation of tumor specificity is key to limit toxicity and on-target off-tumor effects. 
Publicly available databases such as GTEx [304](The Genotype-Tissue Expression project; consisting of healthy 
human tissue RNA-Seq data) were employed to retrospectively evaluate tumor specificity of source non-coding 
genes. Of these, 23% were found to be specific to the tumor samples (Fig. 6). Additionally, the ideal situation 
was evaluated, where both tumor and healthy tissue from the same patient is available. In the case of the lung 
cancer/healthy tissue samples, nearly all non-canonical peptides found were patient-specific. However, these 
were not necessarily tumor-specific, as they were additionally identified by MS in the healthy tissue 
counterpart (Fig. 7a-b). This suggests that thorough investigation of non-canonical peptides across healthy 
tissues, ideally from the same patient, is necessary to ensure tumor specificity.  

Finally, in order to develop rapid and “off-the-shelf” cancer treatment options there is profound interest in 
identifying immunogenic antigens that are shared among patients. Therefore, the prevalence of common 
noncHLAIp was investigated in the nine tumor samples. Twenty-seven shared peptides were detected by MS, 
and 15 of these events were re-confirmed by PRM, thereby validating for the first time that noncHLAIp can be 
shared across patient samples (Fig. 8a). Lastly, using an in-house curated immunopeptidomics MS database, 
ipMSDB [305], the prevalence of common noncHLAIp across a larger set of patients was assessed. A large-scale 
non-canonical presentation signature was obtained over the 91 biological cancer and 35 healthy tissues/cell 
line sources (Fig. 8b and Supplementary Data 8). Sixty of the re-identified tumor-specific noncHLAIp were 
limited to cancer samples in ipMSDB, and an enrichment trend of noncHLAIp was observed across cancer 
samples (Fig. 8c). Moreover, fourteen peptides were detected in at least one additional cancer sample, with 
the immunogenic non-canonical ABCB5 peptide shared across three melanoma samples in ipMSDB. Overall, 
these findings highlight the potential of non-canonical peptides to be shared across patients, and in a variety 
of different cancer types.  
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Chapter 4 MANUSCRIPT 1 
The method was published in Molecular and Cellular Proteomics in December 2017, where I am first co-author 
together with Dr. Fabio Marino, a former postdoc in the Bassani-Sternberg lab. The study was designed and 
results were interpreted together with Dr. Michal Bassani-Sternberg, while I and Dr. Marino, performed and 
analyzed all wet lab, cell culture and MS-based experiments, and wrote the manuscript together with Dr. 
Michal Bassani-Sternberg and Prof. George Coukos.  

Furthermore, and as also outlined in Chapter 9, I co-developed a book chapter that describes our above step-
by-step HLA purification protocol for basic and translational applications. Following this, in collaboration with 
Prof. David Gfeller’s group at the Ludwig Institute for Cancer Research, Lausanne, the high quality 
immunopeptidomics datasets we generated with the above method were used to refine HLA-I and -II binding 
motifs and to improve the performance of HLA binding prediction algorithms. Lastly, I contributed to two 
additional studies by applying the described method for the discovery of immunogenic epitopes in ovarian 
cancer patient samples in collaboration with the group of Prof. Inge Marie Svane from Copenhagen and in a 
pre-clinical humanized mouse model (manuscript in preparation).  
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High-throughput and Sensitive
Immunopeptidomics Platform Reveals
Profound Interferon!-Mediated Remodeling of
the Human Leukocyte Antigen (HLA)
Ligandome*□S

Chloe Chong‡§ §§, Fabio Marino‡§ §§, HuiSong Pak‡§, Julien Racle‡§**,
Roy T. Daniel¶, Markus Müller!, David Gfeller‡§**, George Coukos‡§,
and Michal Bassani-Sternberg‡§‡‡

Comprehensive knowledge of the human leukocyte anti-
gen (HLA) class-I and class-II peptides presented to T-
cells is crucial for designing innovative therapeutics
against cancer and other diseases. However methodolo-
gies for their purification for mass-spectrometry analysis
have been a major limitation. We designed a novel high-
throughput, reproducible and sensitive method for se-
quential immuno-affinity purification of HLA-I and -II pep-
tides from up to 96 samples in a plate format, suitable for
both cell lines and tissues. Our methodology drastically
reduces sample-handling and can be completed within
five hours. We challenged our methodology by extracting
HLA peptides from multiple replicates of tissues (n " 7)
and cell lines (n " 21, 108 cells per replicate), which re-
sulted in unprecedented depth, sensitivity and high repro-
ducibility (Pearson correlations up to 0.98 and 0.97 for
HLA-I and HLA-II). Because of the method’s achieved
sensitivity, even single measurements of peptides purified
from 107 B-cells resulted in the identification of more than
1700 HLA-I and 2200 HLA-II peptides. We demonstrate the
feasibility of performing drug-screening by using ovarian
cancer cells treated with interferon gamma (IFN!). Our
analysis revealed an augmented presentation of chymot-

ryptic-like and longer ligands associated with IFN! in-
duced changes of the antigen processing and presenta-
tion machinery. This straightforward method is applicable
for basic and clinical applications. Molecular & Cellular
Proteomics 17: 10.1074/mcp.TIR117.000383, 533–548,
2018.

The rich repertoire of peptides presented by HLA class I
(HLA-I)1 and HLA class II (HLA-II) complexes, referred to as
the immunopeptidome, reflects the health state of a cell.
HLA-bound peptides (HLAp) derived from cancer-specific
and mutated proteins, pathogens and self-peptides in case of
autoimmunity, serve as leading targets for T-cell recognition.
In recent years the remarkable clinical efficacy of immune
checkpoint blockade therapies has motivated researchers to
discover immunogenic T-cell epitopes that mediate disease
control (1) or improved survival for development of personal-
ized vaccines (2–5).

Presently, mass spectrometry (MS) is the only unbiased
methodology to comprehensively interrogate the in vivo nat-
urally presented HLAp repertoire (6), in human cell lines (7–9),
tumor tissues (10–12) and body fluids such as plasma (13).
Importantly, pioneering proof-of-concept studies have shown
that this technology has matured to the extent that identifica-
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tion of clinically relevant mutated antigens in humans has
become reality (14–17). In the field of immunology, this meth-
odology is perceived as highly promising although not ready
yet for its implementation in clinical settings because of its low
sensitivity and robustness (2).

HLA-I and HLA-II complexes have key roles in modulation
of immune responses and are distinguishable by the type of
cells that express and recognize them and by the distinct
biogenesis of the presented peptides (18). The repertoire of
the presented immunopeptidome is constantly modulated by
source protein expression levels, post translational modifica-
tions, and by several enzymes, chaperones and transporters
that comprise the cellular antigen processing and presenta-
tion machinery (APPM). Cellular perturbation could affect this
machinery at multiple levels, leading to the presentation of an
altered peptidome. So far, the assessment of differential im-
munopeptidomics has been mainly unexplored because of
technical limitations related to low throughput and reproduc-
ibility of existing methodologies (19, 20).

Immunopeptidomics is based on immunoaffinity purifica-
tion (IP) of HLA complexes from mild detergent solubilized
lysates, followed by extraction of the HLAp. The extracted
peptides are then separated by chromatography and directly
injected into a mass spectrometer. With the new generation of
mass spectrometer instrumentations, thousands of HLAp can
be readily identified per sample (7, 21).

The most critical step in the immunopeptidomics pipeline is
the sample preparation as it determines the overall peptide
yield and reproducibility. The entire workflow is laborious,
typically spanning over 3 to 5 days, and is often limited to a
few samples at a time (22). The above-mentioned bottlenecks
pose severe restrictions on implementing this methodology
for robust clinical applications and for LFQ comparative stud-
ies such as antigen presentation on infection (23), drug treat-
ments or association of particular HLA alleles with autoimmu-
nity (24).

In this work we set out to develop the first high-throughput
method for IP of HLAp for MS-based immunopeptidomics,
suitable for both basic and translational studies, where thou-
sands of unique HLA-Ip and -IIp can be readily identified in a
single IP procedure from cell lines and tissue samples. As IP
of clinically relevant samples are often hindered by scarcely
available amounts (12, 25–27), we decided to challenge the
sensitivity of our platform by immunopurifying HLAp from as
low as 107 B-cells. Furthermore, we also demonstrated the
feasibility of performing comparative screening using an ovar-
ian cancer cell line treated with the pro-inflammatory cytokine
IFN!. IFN! is a well-known master regulator of immune mod-
ulation that up-regulates antigen presentation on target cells
(28). Here, for the first time, we captured IFN!-mediated mod-
ulation of specific components of the APPM which resulted in
qualitative and quantitative alterations of the presented HLAp
repertoire. Specifically, we discovered an enhanced presen-

tation of chymotryptic-like ligands, as well as longer ligands
deriving from nested sets on IFN! treatment.

EXPERIMENTAL PROCEDURES

Cell Lines—EBV-transformed human B-cell lines JY (ATCC®
77442™, Manassas, Virginia), CD165, PD42, CM467, RA957 (a gift
from Pedro Romero, Ludwig Cancer Research Lausanne) were main-
tained in RPMI 1640 ! GlutaMAX medium (Life Technologies, Carls-
bad, CA) supplemented with 10% heat-inactivated fetal bovine serum
(FBS) (Dominique Dutscher, Brumath, France) and 1% Penicillin/
Streptomycin Solution (BioConcept, San Diego, CA). UWB.1 289
ovarian carcinoma cells (ATCC® CRL-2945™) were maintained in a
1:1 mix of HuMEC Ready medium (Thermo Fisher Scientific, Wal-
tham, MA) supplemented with HuMEC Supplement Kit (Thermo
Fisher Scientific) and RPMI 1640 ! GlutaMAX medium, with addition
of 1% Penicillin/Streptomycin Solution and 3% heat-inactivated FBS.

Cells were grown to the required cell amount, collected by centri-
fugation at 1200 rpm for 5 min, washed twice with ice cold PBS and
stored as dry cell pellets at "20 °C until use. For the in vitro treatment
of UWB. 1 289 cells with human IFN! (Miltenyl Biotec, Bergisch
Gladbach, Germany), cells were grown to 1.5 # 108 in quadruplicates
both for control and treatment. For treatment, cells were exposed to
100 IU/ml IFN! for 24 h, detached with Accutase (Thermo Fisher
Scientific), counted and washed twice with cold PBS before storage
at "20 °C.

All cells were tested negative for mycoplasma contamination. High
resolution 4-digit HLA-I and HLA-II typing was performed for all cell
lines at the Laboratory of Diagnostics, Service of Immunology and
Allergy, CHUV, Lausanne and provided in supplemental Table S1.

Patient Material—T-cells were expanded from two melanoma tu-
mors as previously described (29) following established protocols (30,
31). Briefly, fresh tumor samples were cut in small fragments and
placed in 24-well plate containing RPMI CTS grade (Life Technolo-
gies), 10% Human serum (Valley Biomedical, Winchester, VA), 0.025
M HEPES (Life Technologies), 55 "mol/l 2-Mercaptoethanol (Life
Technologies) and supplemented with a high concentration of IL-2
(Proleukin, 6,000 IU/ml, Novartis, Basel, Switzerland) for 3 to 5 weeks.
Following this initial pre-rapid expansion, tumor infiltrating lympho-
cytes (TILs) were then expanded in using a rapid expansion protocol
approach. To do so, 25 # 106 TILs were stimulated with irradiated
feeder cells, anti-CD3 (OKT3, 30 ng/ml, Miltenyl biotec) and high dose
IL-2 (3,000 IU/ml) for 14 days. The final cell product was washed and
prepared using a cell harvester (LoVo, Fresenius Kabi, Lake County,
IL). On receival of TIL samples, the cells were washed with PBS on
ice, aliquoted to a cell count of 1 # 108 and stored as dry pellets at
"80 °C until use.

Snap frozen meningioma tissues from patients (3830-NJF, 3849-
BR, 3912-BAM, 3865-DM) were obtained from the University Hospital
of Lausanne (CHUV, Lausanne, Switzerland).

Informed consent of the participants was obtained following re-
quirements of the institutional review board (Ethics Commission,
CHUV). Protocol F-25/99 has been approved by the local Ethics
committee and the biobank of the Lab of Brain Tumor Biology and
Genetics.

Generation of Antibody-crosslinked Beads—W6/32 and HB145
monoclonal antibodies were purified from the supernatant of HB95
(ATCC® HB-95™) and HB145 cells (ATCC® HB-145™) grown in
CELLLine CL-1000 flasks (Sigma-Aldrich, St. Louis, MI) using pro-
tein-A Sepharose 4B (Pro-A) beads (Invitrogen, Carlsbad, CA). Anti-
bodies were cross-linked to Pro-A beads at a concentration of 5 mg
of antibodies per 1 ml volume of beads. For this purpose, the anti-
bodies were incubated with the Pro-A beads for 1 h at room temper-
ature. Chemical cross-linking was performed by addition of Dimethyl
pimelimidate dihydrochloride (Sigma-Aldrich) in 0.2 M Sodium Borate
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buffer pH 9 (Sigma-Aldrich) at a final concentration of 20 mM for 30
min. The reaction was quenched by incubation with 0.2 M ethanola-
mine pH 8 (Sigma-Aldrich) for 2 h. Cross-linked antibodies were kept
at 4°C until use.

High-throughput Purification of HLA Class-I and -II Complexes—
For high-throughput HLA-I and -II purification, we employed the Wa-
ters Positive Pressure-96 Processor (Waters, Milford, MA). For IPs, we
used the 96-well single-use micro-plate with 3 !m glass fiber and 10
!m polypropylene membranes which are compatible with the proc-
essor and are commercially available (ref number: 360063, Seahorse
Bioscience, North Billerica, MA). The positive pressure processor was
used in each step of the procedure to generate homogenous flow of
liquid through the plates. The suggested applied pressure is in the
range of 3–5 psi. The following procedure is also exemplified in Fig. 1.

Preparation of lysates: In the Plate 1 experiment (see supplemental
Table S2) we purified the HLA-I and II peptidome from JY, CD165,
PD42, CM467, RA957, TIL1, and TIL3. Cell lysis was performed with
PBS containing 0.25% sodium deoxycholate (Sigma-Aldrich), 0.2 mM

iodoacetamide (IAA) (Sigma-Aldrich), 1 mM EDTA, 1:200 Protease
Inhibitors Mixture (Sigma-Aldrich), 1 mM Phenylmethylsulfonylfluoride
(Roche, Basel, Switzerland), 1% octyl-beta-D glucopyranoside (Sig-
ma-Alrich) at 4 °C for 1 h. In general, lysis buffer was added to the
cells at a concentration of 1 ! 108 cells/ml. Lysates were cleared by
centrifugation with a table-top centrifuge (Eppendorf Centrifuge,
Hamburg, Germany) at 4 °C at 14,200 rpm for 50 min. For each cell
line, lysate from a total of 3 ! 108 cells were pooled and evenly
distributed as 1 ! 108 triplicates into designated wells. Mock wells
were incorporated into the experimental set-up, whereby wells con-
tained anti-HLA-I and HLA-II cross-linked beads without addition of
lysate. In the Plate 2 experiment (supplemental Table S2), snap-
frozen meningioma tissue samples were placed in tubes containing
ice cold lysis buffer (mentioned above) and homogenized on ice in 3–5
short intervals of 5 s each using an Ultra Turrax homogenizer (IKA,
T10 standard, Staufen, Germany) at maximum speed. For one gram
of tissue, 10 ml of lysis buffer was required. Lysates were cleared by
centrifugation at 25,000 rpm in a high-speed centrifuge (Beckman
Coulter, JSS15314, Nyon, Switzerland) at 4 °C for 50 min. To test the
sensitivity of our method (Plate 3, see supplemental Table S2), we
extracted HLA-I and -II peptides from 10, 30, 50, and 70 million cells
as described above and we split the lysate of 1.6 ! 108 CD165 B-cells
proportionally to the desired cell amount; this was performed in
triplicates. Lastly, four biological replicates of UWB.1 289 cells un-
treated and treated with IFN" (1.5 ! 108 cells each replicate) were
processed in parallel for HLAp purification (Plate 4, see supplemental
Table S2).

Preparation of plates: First, empty plates’ wells were washed and
equilibrated with 1 ml of 100% ACN (Sigma-Aldrich), followed by 1 ml
of 0.1% TFA (Merck Millipore, Billerica, Massachusetts) and lastly
with 2 ml of 0.1 M Tris-hydrochloric acid (HCl) pH 8 (Thermo Fisher
Scientific). Anti-pan HLA-I and HLA-II antibodies cross-linked to
beads were loaded on their respective plates (named “HLA class I”
and “HLA class II,” see Fig. 1) at a final bead volume of 75 !l in 0.1 M

Tris-HCl. For tissue samples, a depletion step of endogenous anti-
bodies was required. Therefore, an additional plate (named “Pre-
clear” plate) with wells containing 100 !l Pro-A beads was prepared.
The beads alone or antibodies cross-linked to beads were condi-
tioned with lysis buffer before lysate loading.

Affinity purification of HLA complexes using the processor: As
represented in Fig. 1, for tissue purification, three plates were sequen-
tially stacked together; the Pre-clear on top, followed by the HLA
class I, HLA class II and lastly, collection or waste plates. In this
manner, we sequentially depleted the endogenous antibodies and
immuno-affinity purified HLA class I and II complexes without inter-
mediate steps. For cell line preparation, the pre-clear plate is not

necessary. The lysates were loaded on the first plate and flowed by
gravity through the preclear (for tissues only), HLA class I and II plates
at 4 °C. HLA class I and II plates were then washed separately (Fig. 1)
using the processor as follows: 4 times 2 ml of 150 mM sodium
chloride (NaCl) (Carlo-Erba, Val de Reuil, France) in 20 mM Tris-HCl
pH 8, 4 times 2 ml of 400 mM NaCl in 20 mM Tris-HCl pH 8 and again
with 4 times 2 ml of 150 mM NaCl in 20 mM Tris-HCl pH 8. Finally, we
washed the beads twice with 2 ml of 20 mM Tris-HCl pH 8.

Purification of HLA-I and HLA-II peptides: Two Sep-Pak tC18 100
mg Sorbent 96-well plates (named “C18 solid phase extraction” plate)
(ref number: 186002321, Waters) were required for the purification
and concentration of HLA-I and HLA-II peptides. Each C18 plate was
handled separately. Firstly, we conditioned the plates with 1 ml of
80% ACN in 0.1% trifluoroacetic acid (TFA) and then with 2 ml of
0.1% TFA. The affinity plate was stacked on top of the C18 plate to
achieve direct elution of the HLA complexes and the bound peptides
with 500 !l 1% TFA. The use of TFA leads to complete denaturation
of antibodies and results in a high recovery of HLAp. This is followed
by washing the C18 wells with 2 ml of 0.1% TFA. Thereafter, we
eluted the HLA-I peptides with 500 !l of 28% ACN in 0.1% TFA.
HLA-II peptides were eluted from the class II C18 plate with 500 !l of
32% ACN in 0.1% TFA. Both HLA-I and -II peptides elutions were
transferred into eppendorf tubes. Recovered HLA-I and -II peptides
were dried using vacuum centrifugation (Concentrator plus Eppen-
dorf) and stored at "20 °C. The overall time required for sample
drying may vary according to the specification of the vacuum centri-
fuge, the user settings and amount of samples.

HLA class I and II heavy chains and the #2m molecules were
recovered from the C18 plates using 300 !l of 80% ACN in 0.1%
TFA. The samples were dried down and re-suspended in 30 !l
0.1% TFA. One-third of each fraction was loaded onto an SDS-gel
for visual inspection of HLA complexes by SDS-electrophoresis.

Sample Preparation for Proteomics Analysis—The four biological
replicates of IFN" treated and untreated UWB.1 289 cells were re-
suspended in lysis buffer composed of 8 M Urea (Biochemica, Billing-
ham, UK) and 50 mM ammonium bicarbonate (AMBIC, Sigma-Aldrich)
pH 8. The cell lysates were sonicated in the Bioruptor instrument
(Diagenode, B01020001, Seraing, Belgium) for 15 cycles, maximum
mA for 30 s each cycle. Subsequently, centrifugation at 20,000 ! g at
4 °C for 30 min separated the soluble from the insoluble protein
fractions. The soluble fraction was collected and the protein concen-
tration of the lysates was determined by a Bradford protein assay.
Proteins were reduced with a final concentration of 5 mM DTT (Sigma-
Aldrich) at 37 °C for 60 min, followed by alkylation with a final con-
centration of 15 mM iodoacetamide (IAA, Sigma-Aldrich) at room
temperature for 60 min in the dark. After the alkylation step the
digestion was carried out with a mixture of endoproteinase Lys-C and
Trypsin (Trypsin/Lys-c Mix, Promega, Madison, WI). The first step
consists of endoproteinase Lys-C digestion for 4 h at 37 °C with a
protein to enzyme ratio of 50:1 (w/w). Subsequently, the samples
were diluted 8 times with 50 mM AMBIC to a Urea concentration of 1
M. The second step of digestion was performed with Trypsin overnight
at 37 °C with a substrate to enzyme ratio of 50:1 (w/w). After diges-
tion, the samples were acidified with formic acid (FA) and desalted on
C18 spin columns (Harvard Apparatus, Holliston, MA). Samples were
further fractionated using 2 layers of strong-cation-exchange (SCX)
discs (Empore, Sigma-Aldrich) inserted into 20 !l StageTips gener-
ated in-house. Centrifugation was performed at up to 500 rcf on a
tabletop centrifuge. Three fractions were collected by eluting with 75
mM ammonium acetate (NH4AcO) pH 4 (Sigma-Aldrich), 200 mM

NH4AcO pH 5 and 5% Ammonia (Merck, Corsier-sur-Vevey, Switzer-
land) in 80% ACN pH 12. The fractions were dried and resuspended
in 0.1% TFA for desalting on C18 spin columns. Finally, the samples
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were dried and resuspended in 2% ACN in 0.1% FA (Thermo Fisher
Scientific).

LC-MS/MS Analysis—Before MS analysis HLA-I and HLA-II pep-
tide samples were re-suspended in 9 !l of 0.1% FA and 1/3 or 1⁄2 of
the sample volume were placed in the UHPLC autosampler (as indi-
cated in supplemental Table S2), whereas half of each of the SCX
fractions were taken. For HLA-Ip, we used the following gradient with
a flow rate of 250 nl/min using a mix of 0.1% FA (buffer A) and 0.1%
FA in 80% ACN (buffer B): 0–5 min (5% B); 5–85 min (5–35% B);
85–100 min (35–60% B); 100–105 min (60–95% B); 105–110 min
(95% B); 110–115 min (95–2% B) and 115–125 min (2% B). For HLA-II
peptidomics, the gradient consisted of: 0–5 min (2–5% B); 5–65 min
(5–30% B); 65–70 min (30–60% B); 70–75 min (60–95% B); 75–80
min (95% B), 80–85 min (95–2% B) and 85–90 min (2% B). Propor-
tionally shorter gradients of 1 h were used for the third experimental
set-up (Plate 3) where the HLA-p were extracted from 10, 30, and 50
million cells. For proteomics, the gradient was as such: 0–5 min
(2–5% B); 5–30 min (5–9% B); 30–180 min (9–22% B); 180–230 min
(22–35% B); 230–250 min (35–60% B); 250–255 min (60–95% B);
255–260 min (95% B); 260–265 min (95–5% B) and 265–270 min
(5% B).

All samples were acquired using the nanoflow UHPLC Easy nLC
1200 (Thermo Fisher Scientific, LC140) coupled online to a QExactive
HF Orbitrap mass spectrometer (Thermo Fischer Scientific) with a
nanoelectrospray ion source (Sonation, PRSO-V1, Baden-Württem-
berg, Germany). We packed the uncoated PicoTip 8 !m tip opening
with 75 !m i.d. ! 50 cm long analytical columns with ReproSil-Pur
C18 (1.9 !m particles, 120 Å pore size, Dr. Maisch GmbH, Ammer-
buch, Germany). Mounted analytical columns were kept at 50 °C
using a column oven.

For HLAp, data was acquired with data-dependent “top10”
method, which isolates within a 1.2 m/z window the ten most abun-
dant precursor ions and fragments them by higher-energy collision
dissociation (HCD) at normalized collision energy of 27%. For pro-
teomics, data-dependent “top15” method was used. The mass spec-
trometer scan range was set to 300 to 1650 m/z with a resolution of
60,000 (200 m/z) and an AGC target value of 3e6 ions for HLAp,
whereas for proteomics, the mass spectrometer scan range was set
to 300 to 800 m/z. For MS/MS, AGC target values of 1e5 were used
with a maximum injection time of 120 ms (HLAp) or 25 ms (proteom-
ics) at set resolution of 15,000 (200 m/z). For HLA-I peptidomics, in
case of assigned precursor ion charge states of four and above, no
fragmentation was performed. For HLA-II peptidomics, in case of
assigned precursor ion charge states of one, and from six and above,
no fragmentation was performed. The peptide match option was
disabled. For proteomics, in case of unassigned precursor ion charge
states or a charge state of one, no fragmentation was performed and
the peptide match option was set to “preferred.” The dynamic exclu-
sion of precursor ions from further selection was set for 20 s.

Database Search—We employed the MaxQuant computational
proteomics platform version 1.5.5.1 (32) to search the peak lists
against the UniProt databases (Human 42,148 entries, March 2017)
and a file containing 247 frequently observed contaminants. N-termi-
nal acetylation (42.010565 Da) and methionine oxidation (15.994915
Da) were set as variable modifications. As the IP lysis buffer contains
IAA we included in an additional search also cysteine carbamidom-
ethylation (57.021463 Da) as a variable modification. For proteomics,
a fixed modification of cysteine carbamidomethylation (57.021463
Da) was used. The second peptide identification option in Andromeda
was enabled. A false discovery rate (FDR) of 0.01 and no protein FDR
was set for peptidomics analysis whereas a protein FDR of 0.01 was
set for proteomic analysis. The enzyme specificity was set as unspe-
cific for peptidomics analysis, whereas C-terminal specificity for K
and R, and max 2 miscleavages were chosen for analysis of proteom-

ics samples. Possible sequence matches were restricted to 8 to 25
amino acids (a.a.), a maximum peptides mass of 4600 Da. The initial
allowed mass deviation of the precursor ion was set to 6 ppm and the
maximum fragment mass deviation was set to 20 ppm. Where indi-
cated, we enabled the “match between runs” option, which allows
matching of identifications across different replicates of the same
biological sample in a time window of 0.5 min and an initial alignment
time window of 20 min. For proteomic analysis, “match between
runs” module was enabled between all samples and label-free quan-
tification (LFQ) was enabled in the MaxQuant environment (33).

Experimental Design and Statistical Rationale—A detailed descrip-
tion of the immunopeptidomic experimental design, including naming
of samples and their positions on the plates, RAW MS file names, and
assignment of biological and technical replicates are provided in
supplemental Table S2. We used the Perseus computational platform
version 1.5.5.3 (34) for all statistical analysis, unless otherwise indi-
cated. For immunopeptidomics, we used the “peptides” MaxQuant
output table. Peptides matching to reverse and contaminants were
filtered out. The values of peptide intensities were log2 transformed
and Pearson correlations of the intensities were calculated for each
experiment. For Plate 1 and 2 experiments, “match between runs”
was enabled only between same biological samples and separately
for HLA class I and II peptides. For Plate 3 experiment, “match
between runs” was enabled only between the replicates of similar
lysate dilution (i.e. all the 3 replicates corresponding to 10 million
cells) and separately for HLA class I and II peptides. For the bioinfor-
matics analysis of the IFN" (Plate 4) experiment, the intensities were
normalized using “width normalization” option in Perseus. Briefly, for
each sample, the first, second and third quartiles (q1, q2, q3) are
calculated from the distribution of all values. The median (q2) is
subtracted from each value to center the distribution. Then we divide
by the width in an asymmetric way. All values that are positive after
subtraction of the median are divided by q3 - q2 whereas all negative
values are divided by q2 - q1. Missing intensity values were imputed
by drawing random numbers from a Gaussian distribution with a
standard deviation of 20% in comparison to the standard deviation of
measured peptide abundances. Volcano plots of modulations in the
relative intensities of HLA ligands on IFN" treatment were created.
Each dot represents a unique HLA-I peptide. Log2-fold changes of
their abundance are indicated on the x axis and the corresponding
significance levels were calculated by two-sided unpaired t test with
a FDR of 0.01 and S0 of 1. For proteomic analysis of UWB.1 289 cell
line treated with IFN", LFQ intensities of proteins were retrieved from
the “ProteinGroups” MaxQuant output table, were log2 transformed
and a filter was set for at least 3 valid values in either the control or
IFN" treated groups. Missing intensities were imputed as described
above and a volcano plot was generated where log2-fold changes of
IFN" versus control group are indicated on the x axis and the corre-
sponding significance levels were calculated by two-sided unpaired t
test with a FDR of 0.01 and S0 of 0.2.

For the analysis of tryptic- and chymotryptic-like ligands in the
immunopeptidome, we grouped the peptides based on their C-ter-
minal specificities: K and R a.a. for tryptic-like ligands and A, F, I, L,
M, V, and Y for chymotryptic-like ligands. Affinities to the correspond-
ing allotypes expressed in the UWB.1 289 cell line were predicted for
all 8 to 15 mer eluted peptides identified using NetMHC4.0 (35).
Binding predictions were assigned to peptides only if they were
predicted to bind to only one HLA allotype. The threshold for binding
was set to rank "2% and the respective affinity values in nM were
extracted. Sequence motifs were calculated and visualized from
Gibbscluster-2.0e (36) and Seq2logo (37). For length distribution,
affinity and hydrophobicity analyses, we enabled the option of “match
between runs” only within the control and IFN" groups and used the
uniquely identified peptides in control and IFN" treatment samples for
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comparison. The same list of peptides was used for comparing pre-
dicted binding affinities between control and IFN! treated samples.
Hydrophobicity scores were calculated online with https://www.protpi.
ch/Calculator. Their significance levels of control and IFN! treated
samples were calculated using a two-sided unpaired t test. IceLogo
was used to calculate the statistics to find over-represented a.a. in
each position of HLA-B*07:02, -A*68:01 and -A*03:01 predicted bind-
ers of the IFN! dataset compared with the control, with a p value
cut-off of 0.01(38). The normalized output tables were parsed using a
Java program to retain proteins with matched overlapping HLA-Ip
sequences. We determined nested pairs of peptides containing the
same core region (referred as “short”) differing by up to five a.a. to the
left (N-terminal) or to the right (C-terminal) (referred as “long”). Inten-
sity changes on IFN! treatment were calculated as Normalized log2-
intensity difference ! log2((IFN!long-ctrllong)/(IFN!short-ctrlshort)). For
in-depth analysis of C-terminal extensions, we paired short and long
peptide versions based on whether they remained tryptic-like, chymo
tryptic-like, or if their cleavage specificities were switched. The p
values were calculated using a one-sided t test, where the null hy-
pothesis represented zero change. Statistical calculations and plots
were performed in R (www.r-project.org).

Synthetic Peptides—15 peptides (PEPotech Heavy grade 3,
Thermo Fisher Scientific) with Alanine and Leucine C-terminal were
selected based on their high intensities and retention time distribution
from previously measured CD165 HLA-I samples. We mixed all the
heavy-labeled peptides (listed in supplemental Table S3) together and
desalted them on a C18 spin column. Peptides were dried to obtain
10,000 pmol of each peptide in the mixture. To test the level of
cross-contamination between wells as well as reproducibility, we
spiked-in the 15 peptides at 50 pmol immediately after the peptides
were placed onto the C18 plate for the three replicates of CD165
HLA-I samples.

To measure the total abundance of synthetic peptides, the area
under the curve (AUC) of extracted ion chromatograms for charge
states z ! 1", z ! 2", and z ! 3" were calculated and summed to
obtain the total signal of a given peptide. The log2 ratio between
heavy and light peptides was then calculated and the mean, standard
deviation and coefficient of variation (CV) were assigned for 3 exem-
plary synthetic peptides (see supplemental Table S4) as an example
of reproducibility between the three replicates.

Gibbs Clustering Analysis for HLA-II Peptides—Gibbscluster-2.0e
(31) was run independently for each sample using all HLA-IIp iden-
tified in a given sample, with the default options except that the
number of clusters was tested between 1 and 6, the number of
seeds for initial conditions was set to 5, the initial Monte Carlo
temperature was 1.5, and we enabled the preference for hydropho-
bic a.a. at P1. The number of motifs plotted for each sample in
supplemental Fig. S2 corresponds to the best number of motifs as
determined by GibbsCluster.

We determined the reference binding motifs for each HLA-II allele
based on peptides annotated in the immune epitope database (IEDB)
as positive, positive-high, positive-intermediate and positive-low (39).
Here Gibbscluster-2.0e was run separately per allele, with the same
parameters mentioned above yet by considering a single cluster.
Sequence logos were drawn with Seq2logo, based on Shannon en-
tropy, without any sequence weighting nor Blosum correction (37).

FACS Analysis of HLA-I and -II Expression—To analyze cell surface
expression of HLA-I and -II of UWB.1 289 cells on IFN! treatment for
24 h, cells were stained with anti-HLA-A,B,C PerCP/Cy5.5 and anti-
HLA-DR DP DQ FITC, or isotype-matched controls (Biolegend, San
Diego, CA). Dead cells were measured using DAPI staining (PanReac
Applichem, Darmstadt, Germany). Data was acquired using a LSR II
SORP instrument (Beckton Dickinsons) and analyzed with the FlowJo
Software version 10.3.

RESULTS

Development of a High-throughput and In-depth Immuno-
peptidomics Method—In an attempt to improve the sample
preparation for MS-based immunopeptidomics, we revisited
several recently published studies (7, 12, 17, 25–27, 40–50).
Although most reported methods are similar and based on
common IP procedures, our literature study systematically
revealed insufficient description of experimental methodolo-
gies (supplemental Table S5) such as IP conditions, amount of
cells or tissue used and the throughput of the experiment.
Furthermore, the yields of quantified and identified peptides
by MS may vary drastically between research labs; conse-
quently, no fair comparisons could be conducted. Impor-
tantly, all the screened methodologies were found to have
limited throughput because of lengthy (2–5 days) and labori-
ous procedures.

We envisioned that reducing sample handling throughout
all the purification steps would minimize peptide losses and
significantly improve reproducibility. Thus, we designed a
high-throughput 96-well plate format workflow for the simul-
taneous processing of tens of samples with commercially
available reagents and consumables (Fig. 1). The platform
employs a positive pressure processor which ensures a con-
trolled and reproducible flow through the wells.

Briefly, tissue lysates are loaded on the first plate (Pre-clear
plate in Fig. 1) containing Pro-A beads for clearance of en-
dogenous antibodies, whereas cell lysates are loaded directly
onto the plate (HLA class I plate in Fig. 1) containing anti-
HLA-I antibodies covalently cross-linked to Pro-A beads for IP
of HLA-I complexes. Lysates then drop directly from the first
affinity plate onto the second plate (HLA class II plate in Fig.
1) that contains anti-HLA-II cross-linked to Pro-A beads. HLA
class I and II plates are washed separately and each plate is
then positioned on top of distinct C18 96-well plates (C18
solid phase extraction plate in Fig. 1). The HLA complexes are
eluted from each of the affinity plates with TFA directly onto
the corresponding C18 plate. After adequate washing of the
C18 plates, the HLAp are eluted with ACN into collection
plates and are ready to be dried by vacuum centrifugation and
stored. The immunopurification procedure takes on average
five hours including the desalting step and thus eliminates the
in-process temporary storage of samples. To complement the
immunopeptidomic analyses, total protein extracts and DNA
can be collected from the investigated samples for shot-gun
proteomics and genomics.

High-throughput Purification of HLA-Ip and HLA-IIp from
Tissues and Cell Lines—To assess the throughput and overall
performance of our method, we first purified HLA-Ip and
HLA-IIp in a single IP procedure (Plate 1) from a total of twenty
one samples (with 3 additional mock samples), which in-
cluded three replicates each from five B- and two T-cell lines
(108 cells per replicate). In a second experiment (Plate 2) we
processed four primary meningioma tissues, using 0.7 to 1.47
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grams per biological replicate. Detailed information about the
experimental design is provided in supplemental Table S2 and
clinical information and HLA typing are provided in supple-
mental Table S1. From plate number 1, a total of 42,556
unique HLA-Ip from 8975 source proteins and 43,702 unique
HLA-IIp from 4501 source proteins were identified using a 1%
peptide spectrum match FDR. The number of unique HLA-Ip
in B- and T- cell lines varied from 3293 to 13,696 and from
7210 to 10,060 for HLA-IIp (Fig. 2A–2B and supplemental
Table S6). Unlike the high concentration of about 15 mM used
for carbamidomethylation of cysteines in shotgun proteomics
workflows, the low concentration of 0.2 mM IAA in the IP lysis
buffer facilitates irreversible inhibition of cysteine proteases,
like caspases (51). Therefore, we identified a small percentage
of on average 1.2% HLA-Ip and 1.9% HLA-IIp containing

carbamidomethylated cysteines (supplemental Table S7). To
exclude carry-over between wells during the affinity purifica-
tion steps, we incorporated in plate 1 cross-linked beads not
loaded with lysate (mock samples), and indeed no HLA-I or
HLA-II complexes were detected here (supplemental Fig.
S1A). In plate 2 we identified from 3497 to 14,213 HLA-Ip and
from 5047 to 7972 HLA-IIp (at 1% FDR) from four patient-
derived primary meningioma tissues (Fig. 2A–2B and supple-
mental Table S8).

In-depth and Accurate Immunopeptidomics Enables Deter-
mination of Consensus Binding Motifs—HLA-Ip datasets were
highly enriched for ligands of typical length distribution for
HLA-I (Fig. 2C). The consensus binding motifs of respective
HLA-I alleles can be accurately de-convoluted from the iden-
tified peptides and the motifs match remarkably well to the

FIG. 1. Outline of the high-throughput immunopurification workflow using a plate format. A, Tissues are first homogenized, lysed with
mild detergents and cleared with a centrifugation step. B, To enable sequential loading of the lysates on multiple affinity resins, cleared lysates
are loaded on stacked plates containing firstly, Pro-A beads for depletion of tissue endogenous antibodies, then anti-HLA class I and II
antibodies cross-linked to Pro-A beads for direct enrichment of HLA class I and II complexes. C, Affinity plates containing the captured HLA
complexes are separated, washed individually and stacked on C18 plates. HLA class I and II complexes are then eluted on the C18 plates.
Peptide and protein fractions are then recovered separately. Each step is timed with the hourglass symbol that is equivalent to about one hour.
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FIG. 2. In-depth and sensitive analysis of HLA-Ip and HLA-IIp at 1% FDR for peptide identifications. A, Number of unique HLA-Ip (blue
bars) and (B) HLA-IIp (green bars) identified for B- and T-cell lines and individual tissue samples, and in total (gray bars). C, Length distribution
of HLA-Ip and (d) of HLA-IIp. D, Average number of HLA-Ip (blue bars) and (E) HLA-IIp (green bars) identified in triplicates in lysate volumes
equivalent to 10, 30, 50, 70 and 100 -million CD165 cells. Data is represented as mean ! S.D. F, Distribution of intensities of HLA-Ip and (G)
HLA-IIp detected in the samples of 100 million cells and those detected in samples of both 10 million and 100 million cells.
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known ones (7, 29, 52). However, in contrast to the HLA-I
motifs, the core binding preferences of HLA-IIp are still poorly
defined (36, 53). HLA-II molecules present longer peptides
(mainly 12–19 mer and average a.a length of 15) (Fig. 2D) often
sharing a binding core of typically 8–9 a.a. We anticipate that
the great depth of our data will facilitate HLA-II motif deter-
mination. Similarly to HLA-I motif analysis (29), we de-convo-
luted the peptidomics data per sample and searched for the
concordant motif between samples sharing the same HLA-
DRB1 alleles (36). We further compared them to the motifs
derived from assembled IEDB data (39). We were able to
determine at least one HLA-DR motif in each of the samples
with defined anchor residues typically located at positions
1, 4, 6, and 9. Furthermore, motifs of shared alleles showed
a high degree of similarity between samples (supplemental
Fig. S2).

Challenging the Sensitivity of the Immunopeptidomics Plat-
form for Samples of Limited Amount—Sample amount avail-
ability poses a major limitation for the recovery of HLA class I
and II peptides, especially in clinically relevant samples (12,
25–27). We reasoned that because of the fast recovery of HLA
complexes and minimal sample handling, our method would
also achieve substantial peptide yields even from samples of
limited amount. Thus, we decided to challenge the sensitivity
of our immunopurification platform by assessing HLA-I and -II
peptide yields for decreasing cell amounts, down to 107 B-
cells. We selected a B-cell line (CD165) characterized with an
average yield of peptides (from the B-cell lines analyzed).
Lysate volumes equivalent to 10, 30, 50, and 70 million cells in
triplicates were loaded on the plate. The linear recovery of the
HLA heavy chains and !2m was visualized on a SDS-gel
(supplemental Fig. S1B). Similarly, the unique HLA-Ip and -IIp
identified linearly correlated with the amount of cells (Fig.
2E–2F). From as little as 10 million cells we identified a total of
1846 HLA-Ip and 2633 HLA-IIp peptides (Fig. 2E–2F and
supplemental Tables S9 and S10) and as expected, the pep-
tides identified from 10 million cells were among the most
abundant ones detected in the samples containing a 100
million cells (Fig. 2G–2H).

Assessment of Intra- and Interplate Reproducibility—For a
thorough evaluation of the reproducibility, we distributed the
same amount of lysates from each of the B- and T-cell lines
into triplicate wells within the same plate (Plate 1). First, we
assessed the overlap of detection of HLA-Ip and HLA-IIp in
one, two or all three replicates of the RA957 cell line. 84% of
HLA-Ip overlapped in all 3 replicates, 12% in 2 out of 3 and
only 4% in one replicate. In the case of HLA-IIp, 79% of
peptides were found in all 3 replicates, 15% in 2 out of 3 and
only 6% in one replicate (Fig. 3A–3B). The overall reproduc-
ibility of the MS signal at the peptide level displayed Pearson
correlation coefficients (r) ranging from 0.89 to 0.98 for HLA-
Ip, and from 0.89 to 0.97 for HLA-IIp (Fig. 3C–3D). Notably, the
reproducibility between wells was as good as the reproduc-
ibility of MS-technical duplicates of the RA957 samples (Fig.

3E–3F). Additionally, CD165, CM647 and JY samples were
distributed in Plate 1 (supplemental Table S2) to non-adjacent
wells to assess how plate-positional effects would affect re-
producibility; no evident plate-positional effects were ob-
served (Fig. 3C–3D).

High correlations (r) of 0.93 were also observed between
the peptides extracted from different sections of 3849-BR
and 3830-NJF meningioma tissues (Fig. 3C–3D, see Plate 2,
supplemental Table S2), emphasizing the applicability of our
platform for more challenging clinical tissue samples. In ad-
dition, JY cells of similar amounts were purified on different
days, with new reagents and using orthogonal wells across
the plates to evaluate interplate performance (supplemental
Tables S2 and S11). Average correlations (r) of 0.93 for HLA-Ip
and 0.9 for HLA-IIp were observed (supplemental Fig. S3A–
3B). The peptide recovery was further evaluated by spiking 15
heavy-labeled peptides into CD165 HLA-Ip samples. All 15
heavy-labeled and their endogenous counterparts were iden-
tified in each of the replicates. Their retention times are re-
ported in supplemental Table S3. The CV of the ratio between
the heavy-labeled and endogenous peptides was calculated
for three exemplary cases resulting in a CV of 1% between the
replicates (supplemental Table S4). The synthetic peptides
were additionally used to evaluate carry-overs between wells
during desalting steps and no synthetic peptides were de-
tected in neighboring samples after manual inspection of the
RAW MS data (supplemental Table S3).

Highly Reproducible Analysis Facilitates Label-free Compar-
ative Study of the Drug-modulated Immunopeptidome—We
reasoned that our streamlined method would enable a quali-
tative and quantitative assessment of HLAp alterations on
external stimuli, potentially revealing the mechanistic mode of
action. Thus, as a proof of concept we interrogated alterations
induced by IFN" on the UWB.1 289 ovarian cancer cell line.
IFN" is a key cytokine that activates multiple immune related
signaling pathways and hence modulates the expression of
hundreds of genes. Specifically, it is known to up-regulate the
expression of HLA-I complexes as well as other key proteins
involved in the antigen processing and presentation pathway
in tumor cells (54). Indeed, on 24 h of IFN" treatment of the
UWB.1 289 cells, we detected enhanced cell surface expres-
sion of HLA-I by FACS and a global increase of total HLA-I
and !2m by SDS-gel analysis (supplemental Fig. S4A–S4B).
Average Pearson correlations of 0.95 between IFN"-treated
and of 0.97 between control replicates were obtained (Fig.
4A). We identified on average 4090 unique HLA-Ip in controls
and 5195 peptides in IFN" treated samples (Fig. 4B). How-
ever, with the “match between runs” option which enables the
assignment of identifications to MS features that were not
selected for fragmentation in all replicates (55), the number of
identified peptides in controls evened up to the number de-
tected in IFN" treated samples (Fig. 4B and supplemental
Table S12). The overlap of the two datasets was then as high
as 91%. This observation, together with the sum of peptide
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signal intensities (Fig. 4C) suggested that IFN! led to quanti-
tative reshaping of the repertoire.

Immunopeptidomics and Proteomics Capture Similar Global
Changes on IFN! Treatment—We further explored qualitative
global changes in the HLAp repertoire modulated on IFN!

treatment and detected 1157 HLA-Ip that were significantly
up-regulated and 551 down-regulated HLA-Ip (t test FDR !
0.01, S0 ! 1). Among the up-regulated HLA-Ip we detected
peptides derived from well-known intracellular mediators of
IFN! (Fig. 4D) (56) and this observation was confirmed with
our proteomics analysis (supplemental Table S13). Proteins
involved in antigen processing and presentation and con-

sequently in the IFN-mediated immune response, were sig-
nificantly up-regulated, among them STAT1 and 2, TAP1
and 2, "2m, OAS3, WARS, IFI16, and IRF (Fig. 4D). The
constitutive proteasomal subunits (i.e. "5 (PSMB5), "1
(PSMB6) and "2 (PSMB7)) were not found to be differentially
regulated on IFN! treatment. On the other hand, the immu-
noproteasomal subunits (i.e. "5i (PMSB8) "1i (PSMB9), and
"2i (PSMB10)) were up-regulated on exposure to IFN! in both
peptidomics and proteomics datasets (Fig. 4D–4E), support-
ing the switch from the constitutive- to the immunoprotea-
some (57). Notably, the constitutive proteasome has both
tryptic and chymotryptic-like activities, whereas the IFN!-

FIG. 3. Assessment of intra-plate reproducibility. A, Overlap in the frequency of HLA-Ip and (B) HLA-IIp identified in three plate replicates
of RA957 samples. C, Intra-plate reproducibility calculated by Pearson correlations of log2 transformed intensities of HLA-Ip and (D) HLA-IIp
identified across the different MS measurements. E, Examples of comparative semi-quantitative analysis of HLA-Ip detected in two MS
measurements (referred here as technical MS replicates) of one RA957 sample and (F) of two representative plate replicates of RA957 samples.
Values of the Pearson correlation are indicated.
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induced immunoproteasome has been shown to exhibit
quantitatively higher chymotryptic-like activity (58).

IFN! Induced Presentation of Longer Peptides and of Pep-
tides Harboring C-terminal Chymotryptic-like Residues—As
the chosen UWB.1 289 cell line expresses HLA-I alleles of
C-terminal tryptic motifs (A03:01, A68:01) and C-terminal chy-
motryptic-like motifs (B07:02) (Fig. 5A) we hypothesized that
analyzing the repertoire changes on IFN! could uncover the
impact of the immunoproteasome on the presented ligan-
dome. First, we grouped the peptides based on their chymo-
tryptic- or tryptic-like C-terminal (regardless of their HLA allele
preferences). This revealed an enhanced presentation of chy-
motryptic-like ligands (Fig. 5B), whereas the presentation of
tryptic-like ligands did not differ substantially on IFN! treat-

ment (Fig. 5C). Another global effect of the treatment was a
general distribution of longer peptides that were uniquely
detected on IFN! treatment compared with those in control
samples (Fig. 5D–5E).

Previous reports have shown peptides containing the bind-
ing motif within a common core region but extending beyond
the motif in either N- or C-terminal directions (21, 42, 59, 60).
About 7% of the peptides in this dataset were found overlap-
ping entirely with longer peptide sequences. When the short
and long peptide pairs were found to start at the same posi-
tion we named them C-terminal elongated pairs. Similarly,
short and long peptide pairs ending at the same position were
named N-terminal elongated pairs (supplemental Table S14).
We observed that after IFN! stimulation, the longer peptides,

FIG. 4. Label-free semi-quantitative comparative analysis of IFN! modulated immunopeptidome. A, Reproducibility calculated by
Pearson correlations of log2 transformed intensities from HLA-Ip of control and IFN! -treated samples across the different MS measurements.
B, Number of HLA-Ip identified from UWB.1 289 ovarian cancer cells untreated (control) and treated with IFN!. The number of peptides
identified with (gray) and without (blue) matching identifications across the treated and untreated samples and the average values of the
Pearson correlations are indicated. C, Summed peptide intensities identified in each of the IFN! treated and control samples. D, Volcano plot
summarizing unpaired t test analysis of the immunopeptidome of IFN! treated versus untreated cells. Peptides located above the lines are
statistically significantly modulated in their level of presentation (FDR ! 0.01, S0 ! 1). All peptides derived from proteins related to immunity
are highlighted in pink. Selected up-regulated peptides were highlighted in red, corresponding to well known intracellular mediators of IFN!
signaling. E, Volcano plot of unpaired t test analysis of the proteome of IFN! treated versus untreated cells. Proteins located above the lines
are statistically significantly modulated in their expression level (FDR ! 0.01, S0 ! 0.2). Selected proteins involved were similarly highlighted.
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in both N- and C-terminal directions, were often significantly
more abundant compared with their shorter counterparts (Fig.
5F–5G), thereby contributing to the global length shift (Fig.
5D–5E). The extensions range between one to five a.a. along
both termini.

Because the proteasome is known to determine the C-ter-
minal cleavage specificity of HLA-Ip, we further explored if the
enhanced presentation of the C-terminal elongated peptides
is in agreement with the global increase in presentation
of chymotryptic-like peptides on IFN! treatment. Thus, we
grouped the C-terminal elongated pairs based on whether
their C-terminal remained tryptic-like, chymotryptic-like, or if
their specificity was switched. We observed that on treat-
ment, elongated chymotryptic-like peptides were significantly
more abundant than their shorter tryptic-like peptides, mainly
by one a.a. (supplemental Table S14 and Fig. 5H). The switch
in cleavage specificity can be further visualized by comparing
long peptides changing from tryptic- to chymotryptic-like (n !
40) and those maintaining their chymotryptic-like (n ! 36)
C-terminal cleavage specificity (Fig. 5I).

Allele-specific Analysis of the Immunopeptidome—Allele-
specific presentation on IFN! can be defined by other factors
apart from the immunoproteasomal cleavage preferences.
Therefore, we predicted the binding affinities with NetMHC
4.0 for HLA-A*03:01, -A*68:01, -B*07:02 and -C*07:02 (Fig. 5A
and supplemental Table S15). We could not predict binding to
the HLA-C*03:32 allele as the motif for this allele is currently
still unknown and we excluded the HLA-C*07:02 binders be-
cause of their small population size (n ! 58). Finally, we
assigned the allele specificities to peptides that were pre-
dicted to bind to only one allele.

In line with the analysis for chymotryptic-like ligands, we
detected an enhanced presentation of the HLA-B*07:02 pep-
tides which contains C-terminal chymotryptic-like a.a. (Fig. 5B
and supplemental Fig. S4C). Increased expression of HLA-
B*07:02 heavy chain molecules was evident also at the pro-
teomic level (Fig. 4E). Both HLA-A*03:01 and -A*68:01 have
tryptic-like binding motifs, but with marked differences at the
C-terminal (Fig. 5A). When examining these allele-specific
populations, we observed that peptides predicted to bind the
HLA-A*03:01 molecules were slightly down-regulated in con-
trast to HLA-A*68:01 ones (supplemental Fig. S4C). Overall,
the predicted binding affinities of HLA-B*07:02 ligands were

similar regardless of IFN! treatment, whereas HLA-A*03:01
and -A*68:01 ligands were predicted to bind with higher af-
finity on IFN! stimulation, although not statistically significant
in all peptide lengths (supplemental Fig. S5A). We detected a
statistically significant increase in the composition of hydro-
phobic a.a. (as indicated by the hydrophobicity score ",
supplemental Fig. S5B) in peptides across all three alleles.

DISCUSSION

The extraction procedure of HLA ligands for deep MS anal-
ysis has been a major limitation (19). We present here a greatly
improved IP-based HLA-Ip and -IIp purification pipeline which
has been rigorously optimized and encompasses several new
features and advantages: (1) the fast IP step minimizes arti-
facts possibly introduced during long incubations, (2) minimal
in-process sample handling and freezing steps allow compet-
itive recovery and sensitivity, (3) drastic reduction in the
amount of expensive antibody-crosslinked beads, (4) parallel
processing of dozens of samples and (5) elimination of error
prone steps, making the pipeline suitable for processing val-
ued patient-derived tissue samples. We demonstrated the
high-throughput nature of the workflow by purifying in a single
IP procedure HLA-Ip and HLA-IIp from twenty one samples
(only 108 cells per replicate). The depth and reproducibility of
the enriched HLA-I and -II peptidomes were outstanding with
an average of more than 7500 unique peptides identified in
single IP for both class I and II (Fig. 2A–2B). Furthermore, the
overall reproducibility (Pearson correlation coefficient) ranged
from 0.89 to 0.98 for HLA-Ip, and from 0.89 to 0.97 for HLA-IIp
(Fig. 3C–3D). We affirmed the pipeline’s robust performance
and clinical applicability by parallel processing of four primary
meningioma tissues of different quantities, which matched
well with their peptide yields (Figs. 2A–2B and 3C–3D).

Importantly, a major bottle-neck of immunopeptidomics is
still the requirement of a relatively large amount of cells or
tissue material, which is not always feasible to obtain from
clinical samples. We showed that our methodology reached a
degree of sensitivity that enables us to identify 1846 HLA-Ip
and 2633 HLA-IIp from as little as 10 million cells (Fig. 2E–2F).
This achievement therefore highlights the possibility to dras-
tically scale down the sample amount, when required.

The purity and depth of the extracted peptidomes allowed
us to determine high-resolution HLA class II motifs compa-

FIG. 5. Impact of IFN! on global features of HLA class-I repertoire. A, Peptides were assigned to the different HLA allotypes based on
binding affinity predictions and their binding motifs depicted with sequence logos. B–C, Volcano plots summarizing unpaired t test analysis of
the immunopeptidome of IFN! treated versus untreated cells. Peptides located above the lines are statistically significantly modulated in their
level of presentation (FDR ! 0.01, S0 ! 1). All chymotryptic-like (B) and tryptic-like ligands (C) were highlighted, respectively. D–E, Length
distribution of peptides uniquely identified in IFN! treated (orange) or control (blue) samples according to their chymotryptic- (D) or tryptic-like
(E) properties. F–G, Intensity changes on IFN! treatment were calculated for longer peptides against their shorter versions for both C- or
N-terminal extensions: Normalized log2-intensity difference ! log2((IFN!long-ctrllong)/(IFN!short-ctrlshort)). (H) C-terminal nested versions were
grouped based on whether their extended peptides remained tryptic-like (T3T), chymo-tryptic like (C3C), or if their specificities were
switched (C3T or T3C). Log2-intensity changes on IFN! treatment were calculated for longer peptides against their shorter versions (I) For
T3C and C3C peptide pairs, the sequence logos around the cleavage site of the long peptides (C-terminal P1–5, downstream P’1–5) are
depicted (one-sided t test, p value * # 0.1; ** # 0.05; and *** # 0.01).
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rable to the IEDB data (supplemental Fig. S2). A current
limitation to obtain the HLA class II binding motifs from this
approach arises when the alleles from an individual sample
share very similar binding motifs (i.e. DRB1*01:01 and
DRB1*07:01). In such eventuality, GibbsCluster cannot clus-
ter the peptides into distinct motifs. Motif annotation can also
be hindered by the lack of existing data and reference motifs
in the IEDB database.

The current data allowed the identification of motifs for
most of the HLA-DR alleles present in each sample. However,
these samples also contained HLA-DP and HLA-DQ alleles.
As such we cannot exclude that some of the motifs predicted
by Gibbscluster for which we could not find any HLA-DR may
correspond to -DP or -DQ motifs. Unfortunately, both the
alpha and beta chains show high variability in these alleles,
such that each sample could contain up to four different
HLA-DP and four different HLA-DQ combinations, which
makes motif identification and annotation much more chal-
lenging. Our work suggests that samples expressing mono-
allelic selected HLA-DP and HLA-DQ alleles should be ex-
plored to reveal their specificities. We anticipate that with the
growing number of samples analyzed with the method de-
scribed in this work, the number of newly identified HLA-II
binding motifs will quickly grow and, re-interrogation of this
data can be of use for improving HLA-II ligand predictions in
machine learning studies.

The development of a reproducible and high-throughput
methodology allows us to generate high quality data to gain
more insight into biological questions. Thus, as a proof of
concept we demonstrated the feasibility of performing com-
parative screening on IFN! treatment. Exposure of tumor cells
to IFN! is known to induce pro-inflammatory gene signatures
that consequently lead to enhanced recognition by cytotoxic
T-lymphocytes (28, 61) mediated by the up-regulation of the
APPM and HLA surface expression. Augmented surface pres-
entation of HLA complexes could lead to a higher probability
of presentation and, hence, recognition of immunogenic
epitopes. However, no high-quality mapping of the IFN! mod-
ulated peptidome has been reported so far and therefore, the
overall properties of the presented repertoire on stimulation
remain unknown.

Here, we uncovered a global modulation in the immuno-
peptidome on exposure to IFN!. We estimated that the
HLA-Ip repertoire increased by 170%, as depicted from the
differential MS intensities (Fig. 4C). The boost in HLA-I ex-
pression was also validated by FACS, as well as by semi-
quantification of the HLA heavy chains and "2m (supple-
mental Fig. S4A–S4B). In addition, the proteomics analysis
confirmed the up-regulation of intracellular sensors and me-
diators of the IFN! signaling pathway as well as several of its
effectors (Fig. 4E), as previously reported (56). The IFN! sig-
nature was clearly conveyed at the peptide repertoire (Fig.
4D–4E), supporting the reported positive correlation between
proteome expression and antigen presentation (7). In fact,

both at the peptidome and proteome level, various key com-
ponents of the APPM were up-regulated, such as TAP 1 and
2, "2m, HLA heavy chains and the immunoproteasomal sub-
units (i.e. "5i (PMSB8) "1i (PSMB9), and "2i (PSMB10)). Our
results clearly showed a marked shift in presentation of chy-
motryptic-like ligands (i.e. HLA-B*07:02 binders) on IFN!

stimulation (Fig. 5A and supplemental Fig. S4C). This can be
explained by the combined effect of the increased expression
of HLA-B*07:02 molecules (Fig. 4E) and by the switch from the
constitutive proteasome to immunoproteasome. In fact, pro-
teasomal switching may have led to a more efficient genera-
tion of peptides harboring C-terminal chymotryptic-like resi-
dues (i.e. same as HLA-B*07:02 binders) (58), whereas the
overall tryptic-like ligand presentation remain largely un-
changed (Fig. 5B–5C and supplemental Fig. S4C). However,
when allele specificities were taken into account, the presen-
tation of HLA*03:01 and A*68:01 binders were differentially
regulated on treatment possibly because of subtle protea-
somal (or other peptidases) cleavage preferences or to the
slightly different expression levels of these HLA alleles (sup-
plemental Fig. S4C).

A general tuning of the APPM toward presentation of longer
peptides was globally detected (Fig. 5D–5E). These longer
peptides may bind via canonical residues facilitated by the
bulging of the middle part of the peptide or they could bind
with inner anchors leaving the extension to protrude from one
end of the binding groove (42, 60, 62, 63). Uniquely to our
study, we were able to quantitatively assess the enhanced
presentation of peptides varying in length on IFN! stimulation.
N-terminal extended peptides did not show cleavage pat-
terns; this is expected because of the downstream trimming
events that takes place in the ER. N-terminal extended ver-
sions of canonical peptides still may contain appropriate HLA
binding motifs (59). Intriguingly, we also detected C-terminal
tryptic-like peptides that have statistically significant enriched
chymotryptic-like longer versions (one a.a.), possibly hinting
toward an enhanced chymotryptic-like activity of the immu-
noproteasome (Fig. 5H). We speculate that the production of
longer peptides may have been favored, not only by protea-
some switching but also by TAP shuttling (64), which was also
significantly up-regulated in our proteomic analysis. Interest-
ingly, it was observed that the first three N-terminal residues
and the C-terminal residue were the most critical for TAP-
binding (65). Therefore, the longer peptides we detected may
have been favored because of their specific physicochemical
properties for binding to the TAP (64).

Altogether, in this proof of concept study, we shed light on
the quantitative re-shaping of the presented peptidome im-
posed by IFN! treatment. Further investigation across addi-
tional cell lines covering more HLA allotypes is required to
precisely determine the exact molecular mechanisms under-
lying these changes and if the observed modulation of the
peptidome can be generalized. Further research is also
needed to reveal the cellular conditions that facilitate the
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generation and surface presentation of peptides of higher
quality in terms of fitness to the HLA alleles, such as binding
affinity, sequence hydrophobicity and peptide length. This
would enable the incorporation of additional features in pre-
diction algorithms of antigen presentation and hence improve
their accuracy (43, 66). We present a robust methodology
that enables LFQ comparative immunopeptidomics appli-
cable for the investigation of perturbations in the antigen
presentation caused for example by pathogenic infections,
autoimmunity and cancer. Several pioneering vaccine com-
panies and research labs have recently incorporated MS-
based immunopeptidomics as a discovery tool to gain
knowledge of the presented peptidome for improved bind-
ing predictions or to directly identify mutated antigens and
clinically relevant targets for vaccinations (67, 68). We hope
that our method will accelerate the development of vaccines
and will assist in implementing this technology in clinical
practice.
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Abstract 32 

 33 

Efforts to precisely identify tumor human leukocyte antigen (HLA) bound peptides capable of 34 

mediating T cell-based tumor rejection still face important challenges. Recent studies suggest 35 

that non-canonical tumor-specific HLA peptides derived from annotated non-coding regions 36 

could elicit anti-tumor immune responses. However, sensitive and accurate mass  37 

spectrometry (MS)-based proteogenomics approaches are required to robustly identify these 38 

non-canonical peptides. We present an MS-based analytical approach that characterizes the 39 

non-canonical tumor HLA peptide repertoire, by incorporating whole exome sequencing, bulk 40 

and single-cell transcriptomics, ribosome profiling, and two MS/MS search tools in 41 

combination. This approach results in the accurate identification of hundreds of shared and 42 

tumor-specific non-canonical HLA peptides, including an immunogenic peptide derived from 43 

an open reading frame downstream of the melanoma stem cell marker gene ABCB5. These 44 

findings hold great promise for the discovery of previously unknown tumor antigens for cancer 45 

immunotherapy.46 
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Introduction 47 

The efficacy of T cell-based cancer immunotherapy relies on the recognition of HLA-bound 48 

peptides (HLAp) presented on the surface of cancer cells. Characterizing and classifying 49 

immunogenic epitopes is an ongoing endeavour for developing cancer vaccines and adoptive 50 

T cell-based immunotherapies. Neoantigens, peptides derived from mutated proteins, are 51 

absolutely tumor-specific yet mostly patient-specific, and are implicated in the efficacy of 52 

checkpoint blockade immunotherapy
1-4

. In contrast to tumor-specific private neoantigens, 53 

tumor-associated antigens (TAAs) that are shared across patients may be more attractive for 54 

immunotherapy due to the more efficient and rapid treatment of a greater number of patients 55 

5-7
. Recent studies have focused on the discovery of non-canonical antigens, which are 56 

antigens derived from the aberrant translation of presumed non-coding transcripts and/or the 57 

aberrant or deregulated transcription of non-coding genomic regions, UTR, or genomically 58 

altered frames. Such aberrant transcription and translation events lead to the generation of 59 

peptide sequences that are missing in conventional protein sequence repositories
8,9

. If such 60 

translation events lead to the presentation of tumor-specific and immunogenic HLA ligands, 61 

these occurrences could substantially expand the repertoire of targetable epitopes for cancer 62 

immunotherapy
8-19

.  Currently, approximately 1% of the entire genome is annotated as protein-63 

coding regions, yet 75% of the genome can be transcribed and theoretically translated, 64 

potentially offering a pool of previously unexplored peptide targets
20

.   65 

To date, mass spectrometry (MS) is the only analytical methodology that allows the direct 66 

identification of the HLAp repertoire in vivo21
. Often, MS-based immunopeptidomic discoveries 67 

are limited to the standard, available protein sequence database, usually containing only 68 

annotated proteome-derived sequences. Recently, several studies have included protein 69 

sequences derived from the translation of transcripts identified from RNA-Seq, or ribosome 70 

profiling, in MS-based searches
8,22-27

. Overall, these studies warrant further development 71 

regarding many key aspects. Importantly, elevated false discovery rates (FDRs) for the non-72 

canonical space can occur when MS reference data are populated with polypeptide 73 
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sequences derived from all potential three- or six-frame translations of transcribed regions28. 74 

Several studies did not compute FDRs or apply sample-specific thresholds for FDR 75 

calculations23,27. Furthermore, rigorous experimental confirmations of such non-canonical 76 

sequences by targeted MS is currently lacking. Additionally, current workflows often introduce 77 

a risk of bias by pre-filtering peptide identifications based on HLA-binding predictions23,27. Due 78 

to the above limitations and to an a priori restriction of the search space to tumor-specific non-79 

canonical polypeptide sequences23, the overall biogenesis of non-canonical HLA binding 80 

peptides (noncHLAp) remains to date understudied.  81 

Here, we describe a proteogenomic approach that allows identifying tumor-specific noncHLAp 82 

derived from the translation of presumed non-coding transcripts, such as from (long) non-83 

coding genes (lncRNAs), pseudogenes, untranslated regions (UTRs) of coding genes, and 84 

transposable elements (TEs). We performed immunopeptidomics analyses while integrating 85 

tumor exome, bulk and single-cell transcriptome (scRNA-Seq), and whole translatome data. 86 

We then implemented NewAnce, a new analytical approach for non-canonical element 87 

identification that combines two MS/MS search tools, along with group-specific FDR 88 

calculations to identify noncHLAp. Together, this approach unveiled a large number of unique 89 

noncHLAp, highlighting the potential of this approach to increase the range of targetable 90 

epitopes in cancer immunotherapy.  91 

Results 92 

A comprehensive strategy for noncHLAp identification 93 

MS-based immunopeptidomics was performed on seven patient-derived melanoma cell lines 94 

and two pairs of lung cancer samples with matched normal tissues (Fig. 1a), which resulted 95 

in the identification of 60,320 unique proteome-derived HLA class-I bound peptides 96 

(protHLAIp) and 11,256 proteome-derived HLA class-II bound peptides (protHLAIIp). For the 97 

exploration and identification of non-canonical peptides presented naturally in vivo, whole 98 

exome and RNA-Seq data were generated from all samples (Fig. 1a and Supplementary 99 
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Data 1). We inferred expression of presumed non-coding genes, such as lncRNAs, 100 

pseudogenes and other non-protein-coding genes, from individual samples’ RNA-Seq data. 101 

In addition, we applied an analytical pipeline to assign TE-derived RNA-Seq reads to single 102 

loci (see Methods section for more details), resulting in expression data for transcribed TEs. 103 

All three forward open reading frames (ORFs) (stop-to-stop) in the above transcripts were 104 

subsequently in silico translated into polypeptide sequences. For every sample, the 105 

polypeptide sequences were concatenated to personalized canonical proteome references 106 

containing allelic variant information from patient tumor exome data. Finally, we searched the 107 

MS immunopeptidomics data against these personalized reference databases. 108 

Database size affects false positives in noncHLAp detection  109 

In silico translation of transcripts in three forward reading frames results in a large number of 110 

potential polypeptide sequences. In proteogenomics, searching MS data against such inflated 111 

protein reference databases may propagate false positives28,29. Hence, our first investigative 112 

step was to understand the impact of database size on the level of false positives in 113 

immunopeptidomics datasets. We searched reference databases containing canonical (i.e., 114 

UniProt) and our non-canonical polypeptide sequences with a single search tool (MaxQuant) 115 

and at a global 1% FDR. The accuracy was assessed by assigning HLA-binding prediction 116 

scores to the MS-identified peptides with MixMHCpred30. We reasoned that non-canonical 117 

HLA class I bound peptides (noncHLAIp) should follow the same binding rules as protHLAIp31. 118 

First, we compared a generic non-canonical protein sequence database derived from the three 119 

forward frame (three-frame) translation of all non-coding transcripts from ENCODE32 with a 120 

sample-specific protein sequence database derived from the three-frame translation of 121 

lncRNAs and pseudogenes from the RNA-Seq data using an expression cut-off value of > 0 122 

fragments per kilobase of transcript per million mapped reads (FPKM). Additional databases 123 

of decreasing size were assembled by retaining only the sequences that originated from more 124 

highly expressed genes (FPKM > 2, > 5 or > 10). Reducing the size of the database by 125 

personalizing and focusing on highly expressed genes led to an increase in the percentage of 126 
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noncHLAIp that were predicted to bind to their respective HLA alleles (MixMHCpred p-value 127 

≤ 0.05) (Fig. 1b). Restricting the database to polypeptide sequences originating from highly 128 

expressed genes should, on the one hand, improve the accuracy of MS-based non-canonical 129 

peptide identification, while on the other hand, lead to the potential loss of peptides encoded 130 

by lower-expressing transcripts. Hence, in this study, we included all non-canonical transcripts 131 

with FPKM > 0 to circumvent the need to exclude polypeptide sequences based on low 132 

expressing transcripts. 133 

NewAnce improves the accurate identification of noncHLAp  134 

We developed the computational module NewAnce, which combines the MS search tools 135 

MaxQuant33 and Comet34, with the implementation of a group-specific strategy for the FDR 136 

calculation (see Methods section for more information and Supplementary Fig. 1a-g for 137 

performance evaluation). All HLAp identified by either of the search tools were consequently 138 

matched against an up-to-date UniProt/TrEMBL sequence database (95,106 protein 139 

sequences of the human reference proteome (up000005640), with isoforms) to extract 140 

noncHLAp that do not map back to known human proteins in UniProt. For every sample, FDRs 141 

were calculated separately for protHLAp and noncHLAp (Fig. 1c and Supplementary Fig. 142 

1a). Only consensus (intersection) peptide-spectrum matches (PSMs) from Comet and 143 

MaxQuant were retained for further downstream analyses. Estimating the FDR after retaining 144 

the intersection is challenging. Nevertheless, most false positive PSMs are specific to one 145 

search tool, and the remaining decoys in NewAnce indicated an estimated FDR of < 0.001%.  146 

With NewAnce, the number of protHLAIp identified across 11 samples ranged from 3,490 to 147 

16,672 per sample, and from 817 to 5,777 for protHLAIIp (Supplementary Data 2). 148 

Furthermore, up to 148 noncHLAIp per individual sample were identified with NewAnce, with 149 

a combined total of 452 unique noncHLAIp (Supplementary Data 2 and Supplementary 150 

Data 3). Of note, noncHLAp are defined here as the peptides derived from either non-protein-151 

coding genes, such as lncRNAs and pseudogenes, or TEs. As the majority of the non-protein-152 

coding genes were lncRNAs, these will be henceforth collectively termed lncRNAs. Among 153 
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the four HLA-II expressing samples investigated, only 4 non-canonical HLA class II bound 154 

peptides (noncHLAIIp) were detected out of 11,256 protHLAIIp. Re-searching the 2,597 PSMs 155 

of identified noncHLAIp against the human proteome UniProt database concatenated with the 156 

list of non-canonical peptide sequences and allowing identification of alternative sequences 157 

including six common modifications (see Methods section) revealed a very low level of 158 

ambiguity (Supplementary Data 4 and 5). 159 

We employed two complementary methods to assess the accuracy of our approach. First, we 160 

predicted the binding of peptides to their respective HLA allotypes. Across all 11 samples, 161 

90% of the noncHLAIp and 91% of the protHLAIp identified with NewAnce were predicted to 162 

bind the HLA allotypes (median values, Supplementary Fig. 1h). As expected, NewAnce 163 

detected fewer HLAp than Comet (PSM FDR of 3%) or MaxQuant (PSM FDR of 3%), while 164 

with a more routinely applied FDR of 1% using MaxQuant alone, more HLAp were obtained 165 

with NewAnce (Fig. 2a, Supplementary Fig. 1i-l and Supplementary Data 2). Importantly, 166 

for the noncHLAIp repertoire (lncRNAs and TEs), significantly higher percentages of peptides 167 

predicted to bind the HLA allotypes were identified by NewAnce than MaxQuant or Comet 168 

alone (Fig. 2b and Supplementary Fig. 1i-l).   169 

In addition, we correlated the observed mean retention time (RT) of a given peptide against 170 

the calculated hydrophobicity index (HI), which corresponds to the percentage of acetonitrile 171 

at which the peptide elutes from the analytical HPLC system. Calculating the sequence-172 

specific hydrophobicity of peptides identified by NewAnce by SSRCalc35 showed that the RT 173 

distribution of non-canonical peptides was on the diagonal line, and was not significantly 174 

different from the distribution of proteome-derived peptides, supporting their correct 175 

identification (Fig. 2c) (one-sided F-test p-value: 1.0e+0). However, a significant difference in 176 

RT distribution was observed when comparing non-canonical peptides identified by NewAnce 177 

to those identified by MaxQuant (one-sided F-test p-value: 6.3e−32) or Comet alone (one-178 

sided F-test p-value: 8.4e−20) (Fig. 2d). Similar results were obtained for all investigated 179 

samples (Supplementary Fig. 2).   180 
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A common approach to boosting non-canonical peptide identifications is searching the MS 181 

data with a single tool (or the union of two tools) while applying a permissive FDR followed by 182 

an additional step of filtering to include only peptides predicted to bind the relevant HLA 183 

allotypes36. To evaluate this approach, we compared the correlation between the HIs and RTs 184 

of predicted non-canonical HLA binders and non-binders identified at 3% PSM FDR with either 185 

MaxQuant (Fig. 2e) or Comet (Fig. 2f). Predicted binders showed better correlations between 186 

the HI and RT than non-binders (one-sided F-test p-values: 8.4e-6 for MaxQuant and 4.4e-18 187 

for Comet). These correlations were fairly poor for MaxQuant, while a much better correlation 188 

was calculated for Comet, likely due to the conservative group-specific FDR control strategy 189 

we applied for Comet.   190 

Notably, when examining the source protein sequence origins of all noncHLAIp, we detected 191 

an enrichment towards the C-termini of their precursor protein sequences. This effect was also 192 

observed for protHLAIp originating from similarly short canonical proteins (Supplementary 193 

Fig. 3a-b).  194 

Targeted-MS and Ribo-Seq confirm noncHLAIp detection 195 

To experimentally validate the NewAnce computational pipeline, we investigated a selection 196 

of NewAnce-identified HLAp from a melanoma sample (0D5P) with targeted MS-based 197 

analyses. All identified noncHLAIp (lncRNAs and TEs, n=93), as well as a similarly  sized 198 

subset of protHLAIp from clinically relevant TAAs (n=71) detected in 0D5P, were synthesized 199 

in their heavy isotope-labelled forms for MS-targeted validation. The selected TAAs were 200 

chosen solely based on their interesting tumor-associated biological functions, such as known 201 

cancer/testis or melanoma antigens. Here, MS-based targeted confirmation by parallel 202 

reaction monitoring (PRM) was directly compared between the non-canonical and proteome-203 

derived peptide groups by spiking the heavy labelled peptides into multiple independent 204 

replicates of 0D5P immunopeptidomic samples, revealing that protHLAIp confirmation was 205 

superior to that of noncHLAIp (78.5% for TAAs versus 55.2% for lncRNAs and 27.7% for TEs) 206 

(Fig. 3a, Supplementary Data 6 and Supplementary Data 7). We also observed that the 207 
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PRM validation was dependent on the source RNA expression level (Supplementary Fig. 4a-208 

d), measured peptide intensities (Supplementary Fig. 4e-h), and detectability by MS/MS 209 

across multiple 0D5P replicates (Supplementary Fig. 4i-l).  210 

To further validate the noncHLAIp with an additional targeting strategy, we analyzed sample 211 

0D5P also by Ribo-Seq, which involves the sequencing of ribosome protected fragments 212 

(RPFs). Periodic RPF distributions (see Methods section) that supported translation from the 213 

correct ORFs of the transcripts encoding the identified noncHLAIp were observed for 22.2% 214 

of the TE peptides and 21.3% of the lncRNA peptides, compared to 100% of the TAAs (Fig. 215 

3b). Notably, nine lncRNA HLAIp and two TE peptides were validated independently by both 216 

the PRM and Ribo-Seq approaches. For example, the noncHLAIp SYLRRHLDF was 217 

confirmed by MS (Fig. 3c), and the translated ORF that generated the peptide was mapped 218 

back to two non-coding RNA transcripts (Fig. 3d-e).  219 

Low RNA expression limits noncHLAIp presentation 220 

We then characterized the expression levels of source RNAs encoding HLAIp in more depth. 221 

For this purpose, we compared all identified source genes of protHLAIp to source genes of 222 

noncHLAIp in the 0D5P sample. The protein-coding source genes had a median FPKM value 223 

of 9.3, whereas the presumed non-coding source genes showed lower expression overall, 224 

with a median FPKM of 2.1 (Fig. 4a-b). Generally, higher numbers of unique peptides 225 

identified per gene were correlated with higher expression levels. PRM-validated noncHLAIp 226 

covered a large dynamic range of gene expression, and interestingly, a few were confirmed 227 

at very low source RNA expression levels (Fig. 4c-d).  228 

The low expression levels of source genes that generated noncHLAp prompted us to 229 

investigate the regulation of non-canonical HLA presentation and whether their expression 230 

can be induced or enhanced with drug treatments. We treated melanoma cells with either 231 

decitabine (DAC), a DNA methyltransferase inhibitor, known to reactivate epigenetically 232 

silenced genes, or with interferon gamma (IFNγ), known to upregulate antigen presentation37-233 
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40. As expected, we observed large quantitative changes in the presentation of protHLAIp 234 

when T1185B melanoma cells were treated with IFNγ. Specifically, we found enhanced 235 

presentation of peptides derived from immune-related genes, likely due to their high gene 236 

expression and increased production of HLA-I molecules (Supplementary Fig. 4m). 237 

However, no obvious change was observed for the noncHLAIp repertoire, with 60% of the 238 

identified noncHLAIp remaining unaltered by IFNγ treatment, suggesting that transcription is 239 

the limiting step in the presentation of noncHLAIp or that transcription of noncHLAIp is not 240 

affected generally by IFNγ (Supplementary Fig. 4n). Furthermore, we explored the effect of 241 

the hypomethylating agent DAC on noncHLAIp in melanoma. Although DAC induced the 242 

expression of selected hypomethylating-induced immune genes41, TAAs and non-coding 243 

transcripts (Supplementary Fig. 4o-q), changes in the 0D5P noncHLAIp repertoire were 244 

modest. Nonetheless, we identified and confirmed the presence of a unique DAC-induced 245 

noncHLAIp derived from a lncRNA (Supplementary Fig. 4r).  246 

Ribo-Seq improves the coverage of protHLAIp and noncHLAIp  247 

Next, we hypothesized that immunopeptidomes would correlate more closely with translatome 248 

than transcriptome data. To build the translatome-based database for the MS search, all ORFs 249 

showing periodic RPF distribution were extracted for the 0D5P sample, and translated in silico. 250 

This technique reduced the size of the search space, and we used this independent discovery 251 

method in our study to identify additional noncHLAIp, including those derived from previously 252 

unexplored ORFs in coding genes. 253 

We investigated the extent by which a protein sequence database inferred by Ribo-Seq could 254 

replace or complement the search performed with our personalized references comprising 255 

canonical protein sequences concatenated with polypeptide sequences from the three-frame 256 

translation of expressed non-coding transcripts. Using 0D5P as a representative 257 

immunopeptidomic dataset, we observed a positive correlation between RNA expression and 258 

HLAIp-sampling (see Methods section) searched against the personalized protein sequence 259 

database (r= 0.392) (Fig. 4e). Then, we searched the same immunopeptidomics MS data 260 
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against the de novo-assembled Ribo-Seq inferred database, and we correlated this HLAIp-261 

sampling with RNA abundance (Fig. 4f) or with translation rates based on the spectral 262 

coefficient of the 3-periodic signal in the Ribo-Seq data (see Methods section) (Fig. 4g). This 263 

approach resulted in a significantly higher positive correlation between HLAIp-sampling 264 

searched against the Ribo-Seq inferred database and the translation rate (r=0.574) than the 265 

overall RNA abundance (r=0.431, two-sided p-value< 10e-16). Thus, evidence exists that the 266 

immunopeptidome, at least for the 0D5P sample, is better captured by the translatome than 267 

the transcriptome. 268 

Notably, restricting the database to actual translation products by Ribo-Seq provided a deeper 269 

coverage of the immunopeptidome than a canonical protein sequence database (Fig. 4h). 270 

This enhanced coverage led to the identification of additional noncHLAIp derived mainly from 271 

ORFs that are not included in canonical annotation but still showing periodic footprint of 272 

translation, such as those originating in 5’ or 3’ UTRs, presumed non-coding RNAs, retained 273 

introns, and pseudogenes. The majority of those identified were derived from either upstream 274 

ORFs or other un-annotated ORFs (Fig. 4i-j). Many of these additional noncHLAIp were 275 

missed using the RNA-Seq inferred database. Of note, this method also takes into account 276 

products arising from ribosomal frameshifting, which could be relevant in the context of non-277 

canonical antigens42. Interestingly, only 16 common lncRNA-derived noncHLAIp were found 278 

when comparing both strategies, which likely reflects the limited detection of periodic Ribo-279 

Seq reads in transcripts with low expression or low mappability (Supplementary Fig. 5a-c).  280 

scRNA-Seq reveals heterogeneity in presumed non-coding genes 281 

Tumor cell heterogeneity could be a key factor underlying immune escape, leading to the 282 

inefficacy of cancer immunotherapies. To understand the pattern of non-coding gene 283 

expression at the single-cell level, we performed scRNA-Seq on the 0D5P melanoma cell line. 284 

Overall, 1,400 cells were sequenced at a total depth of 176 million reads, resulting in the 285 

detection of a median of 6,261 genes per cell (total of 19,178 detected genes). As expected, 286 

clustering of 0D5P cells revealed dependency on the cell cycle status (Fig. 5a), and thus we 287 
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explored whether source genes associated with the cell cycle (Fig. 5b-c). Then, we confirmed 288 

that the antigen presentation machinery as well as many of the selected TAAs were uniformly 289 

expressed in all cells and were thus independent of the cell cycle, as expected (Fig. 5d). 290 

Out of the 71 presumed non-coding source genes identified by bulk transcriptomics, 35 were 291 

also detected at the single-cell level (Fig. 5d). HLAIp derived from presumed non-coding 292 

source genes detected with higher coverage at the single-cell level were also those confirmed 293 

by PRM (6 out of 8 genes confirmed in > 50% cells and 14 out of 27 genes confirmed in < 294 

50% cells) and by Ribo-Seq (37 out of 41 genes confirmed in > 50% cells and 25 out of 46 295 

genes confirmed in < 50% cells). Importantly, source non-coding genes clearly showed 296 

expression heterogeneity: nearly none of them were uniformly expressed across cells, 297 

although the limited sensitivity of scRNA-Seq could account for this variation. The expression 298 

of LINC00520 was higher than expected given its detection in only 75% of cells, suggesting 299 

that it is not uniformly expressed (Fig. 5d). Sufficient expression level in a subset of cells would 300 

allow the sampling for HLA presentation of overall lowly expressed genes and eventually their 301 

detection in the immunopeptidome.  302 

We thus sought to explore the cell subset by identifying known biomarker genes co-expressed 303 

with LINC00520 (Fig. 5e-h). Interestingly, we found that LINC00520 was co-expressed with 304 

the ATP-binding cassette sub-family B member 5 (ABCB5) gene (Fig. 5g). The ABCB5 305 

mediates chemotherapy drug resistance in stem-like tumor cell subpopulations in human 306 

malignant melanoma and is commonly over-expressed in circulating melanoma tumor cells43, 307 

together with beta-catenin (CTNNB1), a key regulator of melanoma cell growth44, and with its 308 

critical downstream target microphthalmia-associated transcription factor (MITF) which 309 

mediates melanocyte differentiation45 (Fig. 5h). ABCB5 was detected in 37% of 0D5P cells 310 

(Fig. 5f), which also coexpressed LINC005520. Importantly, we also detected a noncHLAIp 311 

epitope encoded by a previously unknown ORF embedded within the ABCB5 gene, which as 312 

shown below is immunogenic. The detection of such non-canonical neoantigens on subsets 313 
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of melanoma cells with regenerative or metastatic potential could prove highly interesting in 314 

the context of immunotherapy.   315 

Identification of tumor-specific noncHLAIp 316 

As our initial MS search space was not restricted to polypeptide sequences derived from 317 

tumor-specific transcripts, we retrospectively investigated the potential of identified noncHLAIp 318 

to be classified as tumor-specific. A public database of RNA sequencing data from 30 different 319 

healthy tissues (Genotype-Tissue Expression, GTEx46) was assessed at a strict 90th 320 

percentile, which sets the expression of a gene at the top 10% of its expression across all 321 

samples. We identified 335 noncHLAIp from 280 lncRNA genes in the seven melanoma 322 

samples, of which 23% were expressed in only any of our tumor samples and not in the healthy 323 

tissues (excluding testis due to its immunoprivileged nature) (Fig. 6). Among these genes was 324 

the tumor-specific LINC00518 gene, which has been proposed as a two-gene classifier for 325 

melanoma detection together with the TAA PRAME47.  326 

Using an in-house curated inventory of human TE-derived polypeptide sequences (from three-327 

frame translations) as a reference, we found 88 unique TE-HLAIp in our whole dataset. Some 328 

were derived from autonomous TEs, such as long tandem repeat (LTR) retrotransposons and 329 

long interspersed nuclear elements (LINEs), and others were derived from non-autonomous 330 

retrotransposons such as short interspersed nuclear elements (SINE) and SINE-VNTR-Alu 331 

(SVA) elements (Supplementary Fig. 6a). Importantly, 60 of the 88 TE-HLAIp were found in 332 

presumed non-coding TE regions and therefore represent previously unknownHLA peptides. 333 

For example, peptides derived from AluSq2 SINE/Alu and L1PA16 LINE/L1 elements were 334 

expressed in only skin and testis. These TE-HLAIp would have been overlooked in canonical 335 

MS-based searches. 336 

We next examined whether our approach could identify tumor-specific non-canonical targets 337 

in the ideal case in which normal and tumor biopsies are available, i.e., from the two lung 338 

cancer patient samples included in the present dataset. For the C3N-02671 lung tumor 339 



Chapter 5 

 86 

 

 
 

14 
 

sample, 21 noncHLAp were detected by MS; however, none of the peptides were tumor-340 

specific. In the C3N-02289 sample, we identified 45 noncHLAIp by MS (Fig. 7a), among which 341 

10 peptides were identified uniquely in the tumor tissue. Four of these source genes were also 342 

entirely absent at the RNA level in the adjacent lung (Fig. 7b). Interestingly, the noncHLAIp 343 

from RP11-566H8.3 was also testis-specific in the GTEx database (90th percentile transcripts 344 

per million (TPM) ≤ 1) (Fig. 7b), thus qualifying as a non-canonical cancer testis antigen.  345 

The same analyses of TE genes in lung tumor sample C3N-02289 resulted in the identification 346 

of one LTR7B LTR/ERV1 TE-HLAIp that was present in the tumor tissue; however, this gene 347 

is also expressed in healthy brain. For sample C3N-02671, no TE-derived HLAIp were 348 

detected.  349 

To comparatively assess the expression of canonical tumor antigens in the same samples, we 350 

investigated select TAAs using the same methodology (Supplementary Fig. 6b-c). We 351 

identified six TAA protHLAIp that were exclusively detected in the tumor tissue of C3N-02289 352 

(BIRC5, TERT, FAP, SPAG4, MAGEA9 and BCL2L1). We also detected uniquely in C3N-353 

02671 tumor tissue two protHLAIp TAAs (CCND1 and PXDNL) and five protHLAIIp TAAs 354 

(MMP2 and CEACAM5). 355 

NoncHLAIp are shared across patient samples 356 

We investigated the prevalence of shared noncHLAIp among the nine tumor samples 357 

analysed.  We  identified 27 peptides that were detected in at least two patient samples. Seven 358 

noncHLAIp, already validated in 0D5P, were confirmed by PRM in at least one other patient 359 

sample that expressed HLA allotypes with identical or highly similar binding specificities 360 

(Supplementary Table 1), with a total of 15 individually detected PRM events (Fig. 8a). 361 

Interestingly, one noncHLAIp, VTDQASHIY, derived from microcephalin-1 antisense RNA 362 

(MCPH1-AS1), was independently confirmed with PRM in three melanoma or lung cancer 363 

patients (Supplementary Fig. 7a-b). Further, the shared presentation of the noncHLAIp 364 

AAFDRAVHF, derived from the family of LINEs (LINE/L2) on chromosome 6, was confirmed 365 



Manuscript 2 

 87 

 

 
 

15 
 

in two melanoma samples (Supplementary Fig. 7c-d). Interestingly, the corresponding 366 

source RNA expression is restricted to the skin and testis. 367 

Next, we assessed a large collection of immunopeptidomic datasets (ipMSDB48, 91 biological 368 

cancer tissue/cell line sources, 35 biological healthy tissues/cell line sources; 1,102 MS raw 369 

files in total) and obtained the first large-scale signature of noncHLAIp presentation 370 

(Supplementary Data 8). In total, 220,293  peptides were obtained from healthy samples 371 

versus 280,385 peptides from cancer samples. We re-identified in ipMSDB 92  tumor-specific 372 

noncHLAIp (source genes described above and were expressed at 90th percentile TPM ≤ 1 in 373 

a maximum of 3 tissues) (Fig. 8b), 60 of which were only detected in cancer 374 

immunopeptidome samples. From those,14 were detected in at least one additional cancer 375 

sample in ipMSDB. Overall, noncHLAIp presentation showed a trend of enrichment in cancer 376 

samples in ipMSDB (Fig. 8c). Interestingly, two noncHLAIp from the lncRNA HAGLROS 377 

(KVLAGTVLFK and VLAGTVLFK), identified specifically in the lung cancer tissue in our 378 

samples, were exclusively found only in cancer samples in ipMSDB, mainly in ovarian cancer 379 

samples, consistent with a previous report49.   380 

Immunogenicity of noncHLAIp with autologous T cells  381 

The involvement of noncHLAIp in tumor immune recognition was assessed by measuring IFNγ 382 

release upon peptide stimulation of autologous tumor-infiltrating lymphocytes (TILs) or 383 

peripheral blood mononuclear cells (PBMCs) from the same patients. Out of the 786 peptides 384 

screened (94 TEs, 421 lncRNAs, 56 alternative ORFs and 215 TAAs), we confirmed the 385 

specific recognition by autologous TILs of TAAs, such as the HYYVSMDAL and 386 

RLPSSADVEF peptides from tyrosinase (TYR) and RYNADISTF from tyrosinase-related 387 

protein 1 (TYRP1) in melanoma sample 0D5P, and of the YLEPGPVTA peptide from the 388 

promelanosome protein (PMEL) in melanoma sample T1015A. One non-canonical peptide, 389 

KYKDRTNILF, derived from the downstream ORF (dORF) of the melanoma stem-cell marker 390 

ABCB5 gene in 0D5P, was also found to be immunogenic in both autologous CD8+ TILs and 391 
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CD8+ T cells from peripheral blood lymphocytes (PBLs) (Fig. 9a-c). Notably, this peptide was 392 

shared across three additional melanoma samples in ipMSDB.  393 

Discussion 394 

Our proteogenomics approach led to the stringent identification of hundreds of noncHLAIp 395 

derived from presumed non-coding genes, TEs and alternative ORFs. This feat was achieved 396 

with NewAnce, a computational module that overcomes the challenge of reduced sensitivity 397 

and specificity when searching against large MS search spaces and it can be applied to any 398 

(non-canonical) protein sequence database of interest 28,50. We rigorously tested the validity 399 

of noncHLAIp identifications with HLA-binding predictions, sequence-specific retention 400 

characteristics, and targeted MS analyses, and provided evidence of translation in peptide-401 

encoding ORFs by Ribo-Seq. Using all of  these strategies together, we confirmed that 402 

NewAnce was superior to MaxQuant and Comet alone across all the investigated samples. 403 

Taking one patient as an example, we conducted PRM and Ribo-Seq analyses to compare a 404 

subset of protHLAIp to non-canonical antigen classes (lncRNAs and TEs), thereby validating 405 

the identified noncHLAIp at the experimental level. We found that noncHLAIp had an overall 406 

lower confirmation rate than protHLAIp, possibly due to their lower expression, which also led 407 

to their stochastic detection by MS. Interestingly, the expression and translation of 408 

microproteins derived from presumed non-coding RNAs in the heart were recently discovered 409 

using a Ribo-Seq directed proteogenomics approach. Similar to our results, evidence of 410 

translation was confirmed for 22.5% of the lncRNAs, while 55.4% of the micropeptides were 411 

validated by PRM MS51. Importantly, our results additionally demonstrate that the correct 412 

identification of noncHLAIp in proteogenomic workflows requires proper FDR control and 413 

validation using multiple independent methods.  414 

 415 

Combining immunopeptidomics with RNA-Seq and Ribo-Seq datasets enables the 416 

comprehensive assessment of how transcription, translation and HLA presentation are 417 
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correlated. Despite the different methodological challenges52-54, we observed the expected 418 

correlations between HLA presentation level and expression, especially by Ribo-Seq, 419 

presumably because translation is biologically closer to antigen processing and presentation 420 

than transcription is. In addition, we found that in the melanoma sample 0D5P, most of the 421 

noncHLAIp derived from the Ribo-Seq inferred database originated from source genes 422 

harbouring upstream ORFs (uORFs). Notably, uORFs can trigger the non-sense-mediated 423 

decay of mRNAs and provide a rich source of noncHLAIp55-57.   424 

 425 

While a previous study showed that the presentation of non-canonical peptides was enhanced 426 

by inflammatory stimuli, the presentation of only specific HLA peptides was documented58. In 427 

contrast, our large-scale analysis of both DAC- and IFNγ-treated cells did not detect profound 428 

changes in noncHLAIp presentation, although non-coding source genes were induced. Hence, 429 

we hypothesize that low copy numbers of such noncHLAIp remain a limiting factor of their 430 

presentation. Moreover, corroborating prior research27, we report the enrichment of 431 

noncHLAIp originating from the C-termini of source protein sequences. Translation products 432 

of such presumed non-coding regions could be considered defective ribosomal products that 433 

are expected to be unstable and rapidly degraded, likely bypassing the proteasome59.   434 

 435 

Given the lack of ‘complete’ tissue immunopeptidomics reference libraries from healthy 436 

donors, we propose a workflow to retrospectively search for tumor-specific non-coding source 437 

genes with publicly available RNA-Seq databases (such as GTEx46). We observed that 23% 438 

of the source non-canonical genes were not expressed in healthy tissues (with our selected 439 

thresholds), and could be considered tumor-specific. However, in the ideal situation in which 440 

both tumor and matched normal tissues were available, we found that the majority of peptides 441 

were detected in both, suggesting that the comparison with GTEx overestimates the fraction 442 

of true tumor-specific non-canonical ligands, and that some might be patient-specific. 443 

Interestingly, two overlapping epitopes were identified in the lncRNA HAGLROS, which were 444 

expressed and presented uniquely in  the lung tumor tissue. This lncRNA has been implicated 445 
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in cancer progression60,61 and should be prioritized for downstream validation. Moreover, while 446 

Laumont et al.23 first proposed the existence of shared noncHLAIp, our work validates that 447 

noncHLAIp can be shared across multiple tumor samples, and we anticipate better treatment 448 

efficacy with such shared noncHLAIp compared to that achieved with private neoantigens62,63. 449 

 450 

The expression of tumor-specific noncHLAp in a subpopulation of tumor cells suggests a 451 

dependency on a molecular or functional state. For example, the immunogenic noncHLAIp 452 

derived from the dORF in the ABCB5 gene was moderately expressed in only 37% of the 453 

melanoma cells compared to the expression of the TYR and TYRP1 genes, both of which 454 

were highly and uniformly expressed and produced confirmed immunogenic epitopes. 455 

Immune pressure on selected tumor cell subsets with particular biological relevance–-such as 456 

cancer stem-like cells, tumor cells with epithelial-mesenchymal transition features and 457 

proliferating tumor cells-–could greatly impact tumor behavior and be clinically beneficial.  458 

 459 

Indeed, we found such an immunogenic noncHLAIp from 0D5P derived from the dORF of the 460 

ABCB5 gene. ABCB5 has been shown to be expressed in malignant melanoma-initiating cells 461 

and is thought to be responsible for both the progression and chemotherapeutic refractoriness 462 

of advanced malignant melanoma43. Through an IL1β/IL8/CXCR1 cytokine signalling circuit, 463 

ABCB5 has been shown to control IL1β secretion and maintain slow cycling and 464 

chemoresistance64. Blockage of ABCB5 reversed resistance to multiple chemotherapeutic 465 

agents, induced cellular differentiation and impaired tumor growth in vivo64. We found that 466 

ABCB5 was differentially co-expressed in a cluster of 0D5P cells with the transcription factor 467 

MITF and CTNNB1, whose expression may be enriched in melanoma stem cell populations65. 468 

The presence of spontaneous specific T cells recognizing the noncHLAIp derived from the 469 

dORF of the ABCB5 gene in both peripheral blood and TILs suggests no central tolerance and 470 

that this target could allow immune targeting of the melanoma stem cell subpopulation to 471 

curtail tumor growth.    472 

 473 
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Out of more than 500 noncHLAIp screened, immune recognition by rapidly expanded TILs 474 

and PBMCs was detected for only a single immunogenic noncHLAIp. Various mechanisms 475 

could account for such lack of recognition by autologous T cells. First, we were able to screen 476 

only autologous TILs that had long propagated in culture. We previously reported that TIL ex 477 

vivo expansion may lead to depletion of T cell clones that recognize tumor neoantigens
66

. 478 

Second, it is possible that the melanoma cells, which had to be expanded considerably in 479 

culture for immunopeptidomics analyses, could have undergone an alteration of their HLA 480 

peptide repertoire, leading to the identification of noncHLAIp that were not originally present 481 

in the freshly extracted cells. However, we also assessed snap-frozen lung cancer tissues and 482 

still did not observe the immune recognition of identified non-canonical targets in autologous 483 

PBMCs. Alternatively, the ability of noncHLAIp to induce a natural immune response might be 484 

inferior to that of protHLAp. Low expression might limit the uptake by professional antigen-485 

presenting cells and thus also limit the priming of  naïve T cells in vivo through cross 486 

presentation. Similarly, the engagement of CD4+ T helper cells through HLA class II 487 

presentation might also be limited. Nevertheless, tumor-specific non-canonical targets may 488 

still be valuable for immunotherapy, even when no prior immune response against the targets 489 

has been detected ex vivo, as was previously shown for neoantigens
3,4,67

. More research 490 

should be performed to thoroughly assess the ability of noncHLAp to augment the protective 491 

immune response in vivo. Such approaches are supported by evidence in mouse models 492 

demonstrating that peptides derived from non-canonical regions can be spontaneously 493 

recognized and leveraged in cancer immunotherapy
23,68

.    494 

 495 

Remarkably, across tumor types, the potential number of predicted noncHLAp is orders of 496 

magnitude larger than that of neoantigens encompassing non-synonymous somatic 497 

mutations. As T cell-based screenings currently have limited throughput and are expensive
69

, 498 

an accurate and cost-effective non-canonical target discovery approach is crucial for their 499 

further development and use in cancer immunotherapy. With the renewed interest in cancer 500 

vaccines and the constantly growing number of antigens screened for immune recognition, we 501 
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expect that enough training data will become available to allow the development of accurate 502 

predictors of immunogenicity. Combining this approach with our developed module NewAnce 503 

to shortlist noncHLAp presented in vivo and to rank them according to their predicted 504 

immunogenicity will facilitate the comprehensive exploration of non-canonical antigens, their 505 

association with immune responses and their potential for building effective cancer 506 

immunotherapies.   507 

  508 
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Methods  509 

Patient material 510 

Melanoma cell lines (0D5P, 0MM745, 0NVC) were generated as follows: patient-derived 511 

tumors were cut into small pieces before being transferred into a digestion buffer containing 512 

collagenase type I (Sigma Aldrich) and DNase I (Roche) for at least one hour. Dissociated 513 

cells were washed and maintained in RPMI 1640 + GlutaMAX medium (Life Technologies) 514 

supplemented with 10% heat-inactivated FBS (Dominique Dutscher) and 1% 515 

Penicillin/Streptomycin Solution (BioConcept). If fibroblasts appeared, they were selectively 516 

eliminated with G418 (Geneticin; Gibco) treatment. The primary melanoma cell lines T1185B, 517 

T1015A, Me290 and Me275 were generated at the Ludwig Institute for Cancer Research, 518 

Department of Oncology, University of Lausanne70,71. All established melanoma cells were 519 

subsequently grown to 1 x 108 cells, collected by centrifugation at 151 x g for 5 min, washed 520 

twice with ice cold PBS and stored as dry cell pellets at -20°C until use. For the in vitro 72 h 521 

treatment with IFNγ (100 IU/mL, Miltenyi Biotec), T1185B cells were grown to 2 x 108 in 522 

triplicate. For the treatment with DAC (Sigma-Aldrich), 2 x 108 melanoma cells were grown for 523 

8 days in medium containing 0.5 µM DAC, and the drug was readministered on the 4th day.  524 

 525 
Autologous TILs were expanded from fresh melanoma tumor samples from patients 0D5P, 526 

0MM745, 0NVC, LAU1185 (tumor cell line T1185B), LAU1015 (tumor cell line T1015A), 527 

LAU203 (tumor cell line Me290) and LAU50 (tumor cell line Me275) at the Ludwig Institute for 528 

Cancer Research, Department of Oncology, University of Lausanne. The fresh tissues were 529 

manually cut into fragments of one to two mm3. The tumor fragments were then placed in 24-530 

well plates containing RPMI CTS grade (Life Technologies), 10% human serum (Biowest), 531 

0.025 M HEPES (Life Technologies), 55 μmol/L 2-mercaptoethanol (Life Technologies) and 532 

supplemented with IL-2 (6,000 IU/mL, Proleukin) for three to five weeks. Following this pre-533 

rapid expansion protocol (REP), TILs were then expanded with another REP as follows: 5x106 534 

TILs were stimulated with irradiated feeder cells (Ratio 1:200), anti-CD3 (OKT3, 30 ng/mL, 535 
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Miltenyi Biotec) and IL-2 (3,000 IU/mL) for 14 days. After 14 days of REP, approximately 2x109 536 

TILs were harvested, washed and cryopreserved until use. The purity (i.e., the percentage of 537 

CD3 T cells) was > 95%. As an additional control, one flask with the exact same REP 538 

conditions without TILs was cultured in parallel, and no cells were detectable at day 14. REP 539 

TILs were thawed in 5 IU/mL DNase I (Sigma Aldrich) and cultured in 3000 IU/mL IL-2 for two 540 

days in RPMI 1640 medium with GlutaMAX™ Supplement (Gibco), and 8% human serum 541 

(Biowest), 10 mM HEPES (Gibco), 50 μM Beta-mercaptoethanol (Gibco), 100 μM non-542 

essential amino acids (Gibco), 100 IU/mL penicillin, 0.1 mg/mL streptomycin, 2 mM L-543 

glutamine (Gibco), 0.1 mg/mL kanamycin sulfate (Carl Roth) and 1 mM sodium pyruvate 544 

(Gibco).  The cells were then washed twice in complete medium and subsequently rested 545 

overnight in the presence of 150 IU/mL IL-2 prior to peptide stimulation.  546 

Snap-frozen normal and lung tumor tissue materials from the C3N-02289 (Lung squamous 547 

cell carcinoma, grade 2) and C3N-02671 (lung adenocarcinoma, G2) samples were kindly 548 

provided by the International Institute of Molecular Oncology. Informed consent was obtained 549 

from the participants in accordance with the requirements of the institutional review board 550 

(Ethics Commission, CHUV, Bioethics Committee, Poznan University of Medical Sciences, 551 

Poznań, Poland).  552 

All cells tested negative for mycoplasma contamination. High-resolution 4-digit HLA-I and 553 

HLA-II typing (Supplementary Data 1) was performed at either the Laboratory of Diagnostics, 554 

Service of Immunology and Allergy, CHUV, Lausanne or in-house using the HLA amplification 555 

method with the TruSight HLA v2 Sequencing Panel kit (CareDx) according to the 556 

manufacturer’s protocol. Sequencing was performed on the Illumina® MiniSeq™ System 557 

(Illumina) using a paired end 2x150 bp protocol. The data were analysed with Assign TruSight 558 

HLA v2.1 software (CareDx). 559 

 560 
Immunoaffinity purification of HLA peptides 561 

We performed HLA immunoaffinity purification according to our previously established 562 

protocols39,72. W6/32 and HB145 monoclonal antibodies were purified from the supernatants 563 
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of HB95 (ATCC® HB-95™) and HB145 cells (ATCC® HB-145™) using protein-A sepharose 564 

4B (Pro-A) beads (Invitrogen), and antibodies were then cross-linked to Pro-A beads. Cells 565 

were lysed with PBS containing 0.25% sodium deoxycholate (Sigma Aldrich), 0.2 mM 566 

iodoacetamide (Sigma Aldrich), 1 mM EDTA, a 1:200 protease inhibitors cocktail (Sigma 567 

Aldrich), 1 mM phenylmethylsulfonylfluoride (Roche), and 1% octyl-beta-D glucopyranoside 568 

(Sigma Alrich) at 4°C for 1 hour. The lysates were cleared by centrifugation in a table-top 569 

centrifuge (Eppendorf) at 4°C for 50 min at  21,191 x g. Snap-frozen tissue samples were 570 

homogenized on ice in 3-5 short intervals of 5 s each using an Ultra Turrax homogenizer (IKA) 571 

at maximum speed. The lysates were then cleared by centrifugation at 75,600 x g in a high-572 

speed centrifuge (Beckman Coulter, Avanti JXN-26 Series,, JA-25.50 rotor) at 4°C for 50 min. 573 

For HLA immunopurification, we employed the Waters Positive Pressure-96 Processor 574 

(Waters) and 96-well single-use micro-plates with 3 µm glass fibers and 10 µm polypropylene 575 

membranes (Seahorse Bioscience, ref no: 360063). Pan HLA-I and HLA-II antibodies cross-576 

linked to beads were loaded onto separate plates, respectively. For tissue samples, depletion 577 

of endogenous antibodies was required with Pro-A beads. The lysates were passed 578 

sequentially through the first plate containing pan HLA-I antibody-crosslinked beads, then 579 

through the second plate with pan HLA-II antibody-crosslinked beads, at 4°C. The beads in 580 

the plates were then washed separately with varying concentrations of salts using the 581 

processor. Finally, the beads were washed twice with 2 mL of 20 mM Tris-HCl pH 8. 582 

Sep-Pak tC18 100 mg Sorbent 96-well plates (Waters, ref no: 186002321) were used for the 583 

purification and concentration of HLA-I and HLA-II peptides. The C18 sorbents were 584 

conditioned, and the HLA complexes and bound peptides were directly eluted from the affinity 585 

plate with 1% trifluoroacetic acid (TFA; Sigma-Aldrich). After washing the C18 sorbents with 2 586 

mL of 0.1% TFA, HLA-I peptides were eluted with 28% acetonitrile (ACN; Sigma Aldrich) in 587 

0.1% TFA, and HLA-II peptides were eluted with  32% ACN in 0.1% TFA. Recovered HLA-I 588 

and -II peptides were dried using vacuum centrifugation (Concentrator plus, Eppendorf) and 589 

stored at -20°C.  590 

 591 
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LC-MS/MS analyses 592 

The LC-MS/MS system consisted of an Easy-nLC 1200 (Thermo Fisher Scientific) connected 593 

to a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific). Peptides were separated 594 

on a 450 mm analytical column (8 µm tip, 75 µm inner diameter, PicoTip

TM

Emitter, New 595 

Objective) packed with ReproSil-Pur C18 (1.9 µm particles, 120 Å pore size, Dr. Maisch GmbH). 596 

The separation was performed at a flow rate of 250 nL/min by a gradient of 0.1% formic acid 597 

(FA) in 80% ACN (solvent B) in 0.1% FA in water (solvent A). HLAIp were analyzed by the 598 

following gradient: 0–5 min (5% B); 5-85 min (5-35% B); 85-100 min (35-60 % B); 100-105 599 

min (60-95% B); 105-110 min (95% B); 110-115 min (95-2% B) and 115-125 min (2% B). 600 

HLAIIp were analyzed by the following gradient: 0-5 min (2-5% B); 5-65 min (5-30% B); 65-70 601 

min (30-60% B); 70-75 min (60-95% B); 75-80 min (95% B), 80-85 min (95-2% B) and 85-90 602 

min (2% B). 603 

 604 

The mass spectrometer was operated in the data-dependent acquisition (DDA) mode. Full MS 605 

spectra were acquired in the Orbitrap from m/z = 300-1650 with a resolution of 60,000 (m/z = 606 

200) and an ion accumulation time of 80 ms. The auto gain control (AGC) was set to 3e6 ions. 607 

MS/MS spectra were acquired in a data-dependent manner on the 10 most abundant 608 

precursor ions (if present) with a resolution of 15,000 (m/z = 200), an ion accumulation time 609 

of 120 ms and an isolation window of 1.2 m/z. The AGC was set to 2e5 ions, the dynamic 610 

exclusion was set to 20 s, and a normalized collision energy (NCE) of 27 was used for 611 

fragmentation.  612 

No fragmentation was performed for HLAIp with assigned precursor ion charge states of four 613 

and above or for HLAIIp with an assigned precursor ion charge state of one, or six and above. 614 

The peptide match option was disabled. 615 

Parallel reaction monitoring 616 
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Selected endogenous HLAp that required confirmation by PRM were ordered from Thermo 617 

Fisher Scientific as crude (PePotec grade 3) or HPLC grade (purity > 70%) with one stable 618 

isotope labelled amino acid. The mass spectrometer was operated at a resolution of 120,000 619 

(at m/z = 200) for the MS1 full scan, scanning a mass range from 300-1650 m/z with an ion 620 

injection time of 100 ms and an AGC of 3e6. Then each peptide was isolated with an isolation 621 

window of 2.0 m/z prior to ion activation by high-energy collision dissociation (HCD, NCE = 622 

27). Targeted MS/MS spectra were acquired at a resolution of 30,000 (at m/z = 200) with an 623 

ion injection time of 60 ms and an AGC of 5e5. Only those peptides that ultimately passed 624 

quality control were considered for further downstream analyses by spiking them back into the 625 

patient sample. 626 

The PRM data were processed and analysed by Skyline (v4.1.0.18169, MacCoss Lab 627 

Software)73, and an ion mass tolerance of 0.02 m/z was used to extract fragment ion 628 

chromatograms. To display MS/MS spectra, raw data were converted into the MGF format by 629 

MSConvert (Proteowizard v3.0.18136), and peak lists for the heavy-labelled peptides and light 630 

counterparts were extracted. The assessment of MS/MS matching was performed by pLabel 631 

(v2.4.0.8, pFind studio, Sci. Ac.) and Skyline. 632 

 633 

Exome/RNA sequencing 634 

DNA was extracted for HLA typing and exome sequencing with the commercially available 635 

DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturers’ protocols. For tissue 636 

samples, pelleted DNA was used, which was obtained after lysis of the tissue and 637 

centrifugation during HLA immunopurification. The supernatant was used for HLA 638 

immunopurification, whereas the pelleted DNA was resuspended in PBS using a pestle (70 639 

mm, 1.5/2.0 mL, Schuett-Biotec) before DNA extraction according to the manufacturer’s 640 

instructions.  641 

RNA was extracted for RNA sequencing using the Total RNA Isolation RNeasy Mini Kit 642 

(Qiagen) according to the manufacturer’s protocol for all melanoma cell lines (including DNase 643 
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I (Qiagen) on-column digestion). Frozen pieces of tumor and normal tissue samples (< 20 mg) 644 

were directly submerged in 350 µL of RLT buffer supplemented with 40 µM dithiothreitol 645 

(DTT,Sigma Aldrich). Tissues were then completely homogenized on ice using a pestle (70 646 

mm, 1.5/2.0 mL, Schuett-Biotec) and passed through a 26G needle syringe five times (BD 647 

Microlance). Centrifugation was performed in a table-top centrifuge (Eppendorf) at 4°C for 3 648 

min at 18,213 x g before the supernatant was removed and used for RNA extraction. All 649 

subsequent steps are described in detail in the manufacturer’s protocol (including DNase I 650 

(Qiagen) on-column digestion).  651 

Three micrograms of genomic DNA were fragmented to 200 bp using Covaris S2 (Covaris). 652 

Sequencing libraries were prepared with the Agilent SureSelectXT Reagent Kit (Agilent 653 

Technologies). Exome enrichment was performed with Agilent SureSelect XT Human All 654 

Exome v5 probes. Cluster generation was performed from the resulting libraries using the 655 

Illumina HiSeq PE Cluster Kit v4 reagents and sequenced on the Illumina HiSeq 2500 platform 656 

using SBS Kit v4 reagents. At least 70x coverage was required for the melanoma cell lines 657 

and PBMCs/TILs. For tumor/normal lung tissues, at least 100x coverage was required. 658 

Sequencing data were demultiplexed using bcl2fastq Conversion Software (v. 1.84, Illumina). 659 

 660 

RNA quality was assessed on a Fragment Analyser (Agilent Technologies), and all RNAs had 661 

an RNA quality number (RQN) ranging from 7.4 to 10. RNA-Seq libraries were prepared using 662 

500 ng or 375 ng of total RNA with the Illumina TruSeq Stranded mRNA reagents (Illumina) 663 

according to the manufacturer’s recommendations. Libraries were quantified by a fluorometric 664 

method and their quality was assessed on a Fragment Analyser. Cluster generation was 665 

performed from the resulting libraries using the Illumina HiSeq PE Cluster Kit v4 reagents and 666 

sequenced on the Illumina HiSeq 2500 platform using HiSeq SBS Kit v4 paired end reagents 667 

for 2x100 cycles paired end sequencing. Sequencing data were de-multiplexed using 668 

bcl2fastq2w Conversion Software (v. 2.20, Illumina). 669 

RNA-Seq processing for lncRNA and gene expression analysis 670 
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The GENCODE comprehensive gene annotation version 221.2 was downloaded from the 671 

GENCODE website [ https://www.gencodegenes.org/releases/22.html] and used to define the 672 

protein-coding and non-coding gene features, including chromosome position, transcript 673 

structure, and transcript and protein sequences. Here, the human reference genome 674 

GRCh38/hg38 was downloaded from the UCSC Genome Browser website 675 

[http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/] and used as the genome 676 

assembly. The RNA-Seq reads were aligned to the GRCh38/hg38 reference genome using 677 

RNA-Star (v2.4.2a; [https://github.com/alexdobin/STAR]). Gene expression was normalized 678 

and calculated as  fragments per kilobase of transcript per million mapped reads (FPKM) 679 

values by Cufflinks (v2.2.1) ([http://cole-trapnell-lab.github.io/cufflinks/releases/v2.2.1/]). The 680 

gene-level RNA expression data for both protein-coding and non-coding genes were used for 681 

downstream gene expression analysis32,74. 682 

RNA-Seq data processing for TE expression analysis 683 

We developed an analytical pipeline that was capable of assigning TE-derived RNA-Seq reads 684 

to single loci in more than 95% of the cases. Reads from the investigated samples and public 685 

data from GTEx were mapped to the human (GRCh37) genome using hisat2 v.2.1.075. Counts 686 

on genes and TEs were generated using featureCounts 1.6.276. To avoid read assignment 687 

ambiguity between genes and TEs, a gtf file containing both was provided to featureCounts. 688 

For repetitive sequences, an in-house curated version of the Repbase database was used 689 

(fragmented LTR and internal segments belonging to a single integrant were merged). Only 690 

uniquely mapped reads were used for counting genes and TEs. Finally, features that did not 691 

have at least one sample with 20 reads were discarded from the analysis. Normalization for 692 

sequencing depth was performed for both genes and TEs using the Trimmed Mean of M 693 

values (TMM) method as implemented in the limma v.3.36.5 package of Bioconductor77 and 694 

using the counts on genes as the library size. 695 

Personalized sequence databases from non-coding transcripts 696 
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The curated set of human ENCODE non-coding transcripts (GRCh37 reference assembly) 697 

was downloaded from [https://www.gencodegenes.org/human/release_24lift37.html]. ORFs in 698 

all three forward reading frames were identified using a stop-to-stop strategy. The minimum 699 

peptide length was set to 8 amino acids, and the longest polypeptide identified was 3,644 700 

amino acids. Unless otherwise mentioned, to build the personalized protein fasta file, we 701 

selected transcripts from non-coding genes that were expressed in each sample (i.e. FPKM > 702 

0) and translated them in all three forward reading frames.  703 

Personalized databases with variants 704 

GENCODE v24 (GRCh37 human reference assembly, downloaded from 705 

[https://www.gencodegenes.org/human/release_24lift37.html] was chosen as the standard 706 

reference dataset. Whole exome sequence reads were aligned to the GRCh37 human 707 

assembly with BWA-MEM
78

, and variants were predicted using GATK framework v3.7 and 708 

Picard Tools v2.9.0
79

. Small nucleotide polymorphisms (SNPs) were defined as variants 709 

present in both tumor and germline samples, and somatic mutations (somatic nucleotide 710 

variants (SNVs) and indels) were defined as being present in only tumors. The GENCODE 711 

comprehensive gene annotation file, in GFF3 format, was parsed to extract genomic 712 

coordinate information for every exon in each protein-coding transcript, and those coordinates 713 

were compared with sample-specific variant coordinates to derive non-synonymous amino 714 

acid changes within each protein. For every sample, we created a separate fasta file for which 715 

residue mutation information was added to the header of the affected translated protein-coding 716 

transcripts, in a format compatible with MaxQuant v1.5.9.4i
80

.  717 

 718 

Mass spectrometry database search  719 

We used two widely used search tools: Comet 2017.01 rev. 2
34

 and the Andromeda search 720 

engine within MaxQuant v1.5.9.4i
81

. Both Andromeda and Comet allow searching for peptides 721 

with and without variants. Andromeda matched the MS/MS spectra of each sample against 722 
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the personalized reference libraries (mentioned above). Similarly, the variants were annotated 723 

in the PEFF format [http://www.psidev.info/peff] for Comet. Both search tools were run with 724 

the same principal search parameters: precursor mass tolerance 20 ppm, MS/MS fragment 725 

tolerance of 0.02 Da, peptide length of 8-15 when searching only HLA-I peptides and 8-25 for 726 

both HLA-I and HLA-II peptides and no fixed modifications. For samples 0D5P, 0NVC and 727 

0MM745, oxidation (M) and phosphorylation (STY) were set as variable modifications; for the 728 

remaining samples only oxidation (M) was included as a variable modification. A PSM FDR of 729 

3% was used for Andromeda as a first filter, and non-canonical reference sequences were 730 

loaded into the “proteogenomics fasta files” module for FDR calculations for proteome-derived 731 

and non-canonical sequences. For each spectrum the annotated PSMs with the highest score 732 

were kept (including the decoy hits calculated by Andromeda from reversed protein 733 

sequences) and stored in binary files. 734 

To assure that non-canonical peptide sequences did not match other protein-coding genes, 735 

all peptides found by Andromeda or Comet were aligned against an up-to-date 736 

UniProt/TrEMBL sequence database (95,106 protein sequences of the human reference 737 

proteome up000005640, with isoforms, downloaded 26/09/2018 ) using an algorithm built in 738 

NewAnce. Leucine and iso-leucines were treated as equal since they are not distinguishable 739 

by MS. If peptides were found to match standard UniProt sequences, they were assigned as 740 

proteome-derived with the UniProt IDs. However, we retained non-canonical  TE peptide 741 

sequences that matched annotated TEs that were integrated into the human reference in 742 

UniProt.  743 

Comet PSMs were read from Comet pep.xml files and all peptides were aligned against the 744 

UniProt database as described above. Equivalent to the Andromeda PSMs processing, PSM 745 

were annotated and the highest scoring PSMs were stored in binary files. Comet PSM 746 

processing was implemented in Java and utilizes the MzJava class library82. As described in 747 

detail below, it consisted of two main steps: first, three Comet scores XCorr, deltaCn and 748 

spScore and the spectrum charge were combined, and second, the FDR was calculated 749 
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separately for proteome-derived and non-canonical peptides. The first step boosted the overall 750 

number of identified PSMs at a given global FDR, whereas the second step limited the number 751 

of false positives in the group of non-canonical peptides at a given global FDR.  752 

All PSMs resulting from the Comet binary files were split into three sublists with PSMs of 753 

charge (Z) 1 (applicable to HLAIp only), 2, and charge 3 or higher. Further, the three Comet 754 

scores XCorr, deltaCn and spScore were considered (the ‘expect’ score was left out because 755 

it depends on the size of the sequence database). In order to calculate the FDR for 3D 756 

vectors		" = (%&'((, *+,-.&/, 0123'(+), the 3D spaces (one 3D space per charge state Z) were 757 

partitioned into small cells with 40 intervals in each dimension (Supplementary Fig. 1a). The 758 

PSMs in the sublist of charge Z were then parsed and for each cell, the number of wrong hits 759 

(n0) was set to the number of decoy PSMs in that cell, and the number of true hits (n1) was set 760 

to the number of target (non-decoy) PSMs minus n0. The 3D probability distributions were 761 

estimated by dividing the counts in each cell by the total counts summed over all cells resulting 762 

in a distribution for each charge state Z for true (1("|6, 7 = 1))	and wrong (1("|6, 7 = 0)) 763 

PSMs. In order to obtain smoother distributions, both true (n1) and decoy (n0) counts were 764 

averaged over a 9-cell nearest neighborhood. This 3D histogram based approach has the 765 

advantage that it does not require strong assumptions about the shape of the probability 766 

distributions, and in contrast to 1D projection methods, it does take into account the full 3D 767 

structure of the score space. On the other hand, it requires fairly large datasets with more than 768 

100’000 PSMs.  769 

The local FDR (lFDR) is the probability that a PSM within a given cell is wrong, whereas the 770 

global FDR is the probability that a PSM in the final result list from all cells is wrong. It has 771 

been shown that lFDR calculation provides the most sensitive decision boundaries while 772 

controlling the global FDR83. Mathematically, ,:;<(", 6) values for a score vector x and charge 773 

Z can be calculated by Equation (1): 774 

 775 
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(1) 776 

,:;<(", 6) = =>1("|6,7 = 0)
=>1("|6,7 = 0) + =@1("|6,7 = 1) = A1 + =@=>

∙ 1("|6, 7 = 1)
1("|6,7 = 0)C

D@
 777 

= A1 + EF
EG
H(", 6)C

D@
         778 

where => and =@ are the class probabilities for true (H=1) and wrong (H=0) PSMs, and  779 

1("|6, 7 = 0,1) are the probability distributions as described above. Finally, the lFDR threshold 780 

was adjusted to yield a global FDR of 3% and all PSMs within cells with lFDR values smaller 781 

than this threshold were added to the list of PSMs. Supplementary Fig. 1b shows a 782 

comparison of this 3D histogram approach to a simpler 1D method, where only the XCorr 783 

score was used, for the 0D5P sample. At the same FDR of 3%, the 3D histogram approach 784 

was able to boost the number of unique peptides for both proteome-derived and non-canonical 785 

peptides by 22% and 13%, respectively. Importantly, the percentage of predicted HLA binders 786 

and the standard error in hydrophobicity index calculation by SSRCalc remained unchanged 787 

(Supplementary Fig. 1c-d), indicating that the 3D method used in NewAnce did not inflate 788 

the error. However, Supplementary Fig. 1c also reveals that the percentage of predicted 789 

binders is low for the group of non-canonical peptides (only 55% compared to 95% for 790 

proteome-derived peptides), indicating a large portion of wrong PSMs in the non-canonical 791 

group. This phenomenon has been reported before28 and is due to a misbalance of true and 792 

false hits in the non-canonical sequence databases. Non-canonical sequence databases are 793 

typically very large, and they contain mostly sequences that have low probability to contribute 794 

to true hits.This causes a strong prevalence for wrong PSMs or a low =@/=> ratio (=@/=> ratio 795 

is the total number of true PSMs divided by the total number of wrong PSMs) compared to the 796 

proteome-derived database.  797 

 798 

In order to tackle this problem, we implemented an approach that estimates the lFDR values 799 

separately for non-canonical and proteome-derived PSM groups. Since there are only several 800 

hundreds of non-canonical PSMs, we could not use the 3D histogram approach directly for 801 
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the non-canonical PSM group. Instead, we assumed that the probability distributions 802 

1("|6, 7 = 0,1) are the same for non-canonical and proteome-derived PSMs, and that the 803 

=@/=> ratios strongly depend on the PSM group. The =@/=> ratios are global measures and 804 

can be readily calculated with a few hundred PSMs. Therefore, we first calculated the 805 

probability ratios H(", 6) for each cell using all PSMs and then calculated the =@/=> ratios 806 

separately for the non-canonical and the proteome-derived groups. We then plugged the 807 

group specific =@/=> ratios into Equation (1) and obtained a group-specific calculation of the 808 

lFDR for each cell. The low =@/=> ratio in the non-canonical group will increase the lFDR 809 

values for this group. When the lFDR threshold was adjusted to yield a global FDR of 3%, less 810 

but higher quality non-canonical PSMs passed this filter. Supplementary Fig. 1b shows that 811 

the number of passing non-canonical peptides (3D, 2 Groups) dropped to 28% compared to 812 

the number of peptides identified without group adjustment (3D, 1 Group), whereas the 813 

number of proteome-derived peptides increased slightly by 8%. However, the percentage of 814 

predicted binders among the passing non-canonical peptides (3D, 2 Groups) increased to 815 

85% (Supplementary Fig. 1c) and the standard error of HI decreased significantly 816 

(Supplementary Fig. 1d). 817 

 818 

Even if this group specific lFDR calculation improved the accuracy of non-canonical PSMs, 819 

the fairly low percentage of predicted binders indicated that there was still a larger error in this 820 

group. In order to discard more of this residual error, we combined the Comet and Andromeda 821 

search results and only the intersection, i.e. PSMs with identical Comet and Andromeda 822 

matches (same peptide sequence with the same identification) were retained. As shown in 823 

Supplementary Fig. 1e-g, this additional filter further reduced the number of non-canonical 824 

PSMs, but significantly increased the percentage of predicted binders to 97.3% and decreased 825 

the standard error of hydrophobicity index. Without the post-processing of Comet results 826 

performed in NewAnce, this improvement would not be possible. When only considering the 827 

XCorr score and without group specific lFDR calculation, combining Comet and MaxQuant 828 
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would yield more peptides, but with significantly lower percentage of predicted binders (87.3%) 829 

and almost double the standard error of HI (1D, 1 Group in green color compared with 830 

NewAnce 3% FDR in gray color in Supplementary Fig. 1e-g). Using a FDR threshold of 1% 831 

instead of 3% for MaxQuant and Comet in NewAnce would only reduce the number of peptides 832 

but not increase the percentage of predicted binders, or decrease the standard error of HI, 833 

thus justifying our choice of utilizing a 3% FDR threshold (NewAnce 3% FDR in gray color 834 

compared with NewAnce 1% FDR in beige color in Supplementary Fig. 1e-g). 835 

In order to assign peptides into source protein groups, we implemented a greedy bipartite 836 

graph protein grouping algorithm84. The total and ‘unique’ peptide counts were calculated for 837 

each protein. To calculate the adjusted peptide counts we sorted the proteins in each group 838 

by decreasing number of peptides and for each protein removed the peptides of all proteins 839 

higher up in the list. 840 

In order to test the robustness of our approach, the 2,597 PSMs of identified noncHLAp were 841 

re-searched against the human reference proteome UniProt database concatenated with the 842 

list of non-canonical peptide sequences, including six common modifications. The variable 843 

modifications included were 15.9949 Da for oxidation on M, 42.010565 Da for acetylation on 844 

the N-terminus, 79.966331 Da for phosphorylation on STY, 119.004099 Da for cysteinylation, 845 

0.98402 Da for deamidation NQ and 57.021464 Da for carbamidomethyl on C. Comet was 846 

employed (same parameters as above, but no FDR) to investigate whether PSMs would better 847 

fit another possible proteome-derived (modified) sequence based on XCorr. The results are 848 

reported in Supplementary Data 4 and 5.  849 

To build the ipMSDB database, we searched 1,102 immunopeptidomic raw files with Comet 850 

(PSM FDR of 1%, as described above), and the Apache Spark cluster computing framework85 851 

was used to process the results and calculate the FDR. The samples were annotated with 852 

basic biological information for further statistical analysis.  853 

Ribo-Seq: experimental protocol 854 
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Ribo-Seq was performed according to Calviello et al. 201686. Ribo-Seq libraries were derived 855 

from adherent melanoma 0D5P cells that were 80% confluent in 10 cm tissue culture dishes. 856 

After washing with ice-cold PBS supplemented with 100 μg/mL cycloheximide (Sigma Aldrich), 857 

the cells were immediately snap-frozen by placement in liquid nitrogen followed by placement 858 

on wet ice. A lysis buffer containing 20 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1 859 

mM DTT (Sigma Aldrich), 100 μg/mL cycloheximide, 1% (v/v) Triton X-100 (Calbiochem) and 860 

25 U/mL TURBO DNase (Life Tech) in a volume of 400 µL was immediately added to the 861 

frozen cells. The cells and buffer were then scraped off, mixed by pipetting, transferred to 862 

Eppendorf tubes and lysed on ice for 10 min. The lysate was then titurated by passage through 863 

a 26-G needle 10 times with a 1 mL syringe and cleared by centrifugation at 20,000 x g for 10 864 

min at 4°C.  The cleared supernatant was then transferred to a pre-cooled tube on ice, and 865 

footprinting was performed by adding 1000 U of RNase I (Life Tech. #AM2295) per 400 μL of 866 

lysate and incubating in a thermomixer set at 23°C, while shaking at 500 rpm for 45 min. The 867 

digestion was stopped by adding 13 µL of SUPERASE-In (Thermo, 20 U/µL) per 400 µL of 868 

lysate. 869 

Ribosomes were recovered using two MicroSpin S-400 HR columns (GE Healthcare) per 870 

sample. The columns were first equilibrated with a total of 3 mL of buffer containing 20 mM 871 

Tris-Cl pH 7.4, 150 mM NaCl, 5 mM MgCl2 and 1 mM DTT by performing 6 rounds of washes 872 

with 500 µL of the buffer. The resin was resuspended with the last wash and drained by 873 

centrifugation for 4 min at 600 x g. One-half of the sample volume was then filtered per column 874 

for 2 min at 600 x g, and the filtered halves were then combined. To the combined flow-875 

through, three volumes of TRIzol LS (Life Tech) were added and RNA was extracted using 876 

the Direct-zol RNA Mini-Prep kit (Zymo Research) according to the manufacturer’s instructions 877 

(including DNase I digestion). RNA was finally eluted in 30 μL of nuclease-free water and 878 

quantified using the Qubit RNA Broad Range Assay (Life Tech). 879 

Ribosomal RNA was depleted from up to 5 μg of footprinted RNA using the RiboZero Magnetic 880 

Gold kit (Illumina) according to the manufacturer’s protocol. Footprinted RNA was precipitated 881 



Manuscript 2 

 107 

 

 
 

35 
 

from the supernatant (90 μL) using 1.5 μL of glycoblue (Life Tech), 9 μL of 3 M sodium acetate 882 

and 300 μL of ethanol by snap-freezing in liquid nitrogen, incubating for one hour up to 883 

overnight at -80°C, and pelleting at 21,000 x g for 30 min at 4°C. The RNA pellet was dissolved 884 

in 10 μL of RNase-free water. 885 

Following rRNA depletion, isolation of short fragments and phosphorylation of these fragments 886 

by T4 PNK treatment, sequencing libraries were prepared using the NEXTflex Small RNA-887 

Seq Kit v3 (Bioo Scientific). According to the manufacturer's instructions, adapters were 888 

diluted 1:2 to decrease adapter dimerization. To determine the optimal number of PCR cycles 889 

for library amplification, pilot PCRs with the respective forward and reverse primers were 890 

performed for each sample for 12, 14, 16, 18 and 20 cycles. Adapter and primer sequences 891 

are published by Bioo Scientific. Products were separated on a native PAGE, and optimal 892 

cycle numbers were determined as the threshold cycle of the library product at 160 bp, the 893 

expected size for RPFs, with the smallest amount of adapter dimer product (130 bp) possible. 894 

After the final PCR, libraries were separated on and excised from an agarose gel, and then 895 

cleaned using the Zymoclean Gel DNA Recovery kit (Zymo Research). Library quantification 896 

and validation were performed using the Qubit dsDNA HS and Bioanalyzer DNA HS assays, 897 

respectively. Three 0D5P control samples and three DAC treated samples (in a pool of 21 898 

libraries) and two 0D5P samples (in a pool of 3 libraries) were sequenced on a NextSeq 500 899 

machine at a loading concentration of 1.6 pM using High Output Kits v2 (Illumina) with 75 cycle 900 

single-end reads.  901 

Ribo-Seq: analysis 902 

Ribo-Seq reads were stripped of adaptor sequences using cutdapt, and contaminants such 903 

as tRNAs and rRNA were removed by alignment to a contaminants index via Bowtie v 2.3.5, 904 

consisting of nucleotide sequences from known human rRNA and tRNA sequences drawn 905 

from the GENCODE annotation v2487. Unaligned reads from this analysis were then aligned 906 

to human genome version hg19 with the STAR v 2.6.1a_08-2788 splice-aware alignment tool 907 

allowing for up to 1 mismatch. The star genome index was built using GENCODE v24 (lift 37). 908 
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Reads with up to 20 multi-mapping positions were included, with multi-mapping reads beings 909 

separately treated in subsequent periodicity analysis. The RIboseQC pipeline v1.089 was used 910 

to deduce P-site positions from the Ribo-Seq reads, and the P-site data were then used as 911 

input into the SaTAnn pipeline v1.090 in combination with custom R scripts86 for ORF calling. 912 

The SaTAnn pipeline searches for the periodic ribosomal footprint pattern characteristic of 913 

translated ORFs using a supplied database of transcripts, yielding a set of ORFs 914 

corresponding to known coding regions, as well as ORFs originating from UTRs, non-coding 915 

RNAs, intron retentions, and read-through events. The 0D5P samples had a median of 2.8 916 

million reads mapped to coding sequences per sample, which constituted a median of 81% of 917 

the total reads (Supplementary Table 2). Since the false positive rate of periodicity based 918 

ORF calling is thought to be tolerant of non-periodic sources of noise such as genomic 919 

contamination, we included all samples for 0D5P. ORFs were called in both individual libraries 920 

and in the pooled set of all libraries for 0D5P, and ORFs that were fully contained within ORFs 921 

detected in another library were merged. ORFs were tested for periodicity, by a multitaper 922 

test86, and those with a p-value below 0.05 were retained for analyses.  923 

Polypeptide sequences in fasta format were generated from the coordinates of these ORFs 924 

and used for both validation of the peptides found using the RNA-Seq-based database and as 925 

a de novo-assembled database for the subsequent round of peptide detection. Peptides were 926 

considered validated by Ribo-Seq if they matched anywhere within the translated ORF 927 

sequences. 928 

Ribo-Seq profile plots were plotted with P-site numbers per-base on a log2 (n+1) scale. 929 

The 10x Genomics pipeline and gene expression analyses 930 

For single-cell library preparation on the 10x Genomics platform, the Chromium Single Cell 3′ 931 

Library and SingleCell 3’ Reagent v3 were utilized, together with the 10x Chromium single-cell 932 

controller instrument in accordance with the official CG000183 RevA user guide. A total of 933 

1,692 0D5P cells were captured for single-cell transcriptomics. The resulting cDNA libraries 934 
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were sequenced on NextSeq v 2.5 (with Illumina protocol #15048776). Cell Ranger v.3.0.1 935 

software (10x Genomics, [https://support.10xgenomics.com/single-cell-gene-936 

expression/software/pipelines] was used to process data generated using the 10x Chromium 937 

platform, with a restriction of including only 1400 cells to avoid cells or debris with low unique 938 

molecular identifier (UMI) counts. This approach led to the detection of 19,178 genes with a 939 

mean of 125,937 mapped reads. Genes present in at least five cells and cells with at least 200 940 

genes but no more than 50% of mito genes were retained for analysis, resulting in a reduced 941 

matrix of 15,710 genes over 1,365 cells.  942 

The raw counts were log-normalized using the NormalizeData implemented in the Seurat R 943 

package (Seurat v3). Prior to further processing, we scaled the data to remove cell-cell 944 

variations due to cell cycling or a high percentage of mitochondrial genes. For cell cycling 945 

correction, we followed the scoring strategy described by Tirosh et al. (2016)91: each cell was 946 

assigned a “Cell Cycle” score and the difference between G2M and S phase scores was 947 

regressed out. Clusters were obtained using a graph-based method implemented in Seurat 948 

(FindClusters with a resolution set to 0.5), leading to the identification of 5 clusters. Marker 949 

genes for each cluster were identified with FindMarkers from Seurat by setting the logFC 950 

threshold parameter to 0.15. Marker genes with an adjusted Bonferroni p-value < 0.05 were 951 

considered significantly differentially expressed. Functional analyses of each cluster were 952 

performed with STRING-db v11 using their corresponding marker genes as input. 953 

Assessing T cell reactivity 954 

Peptides were synthesized and lyophilized by the Protein and Peptide Chemistry Facility at 955 

the Ludwig Institute for Cancer Research (crude, > 80% purity), Department of Oncology, 956 

University of Lausanne, or by Thermo Scientific, and resuspended in DMSO at 10 mg/mL. 957 

IFNγ ELISpot assays were conducted to assess the reactivity of the REP TILs towards 958 

antigens of interest (TAAs, noncHLAIp) using pre-coated 96-well ELISpot plates (Mabtech) 959 

according to the manufacturer’s protocol. If necessary, REP TILs were stimulated with a single 960 

peptide or a peptide pool at 1 μg/mL in vitro for 14 days before re-challenging with the peptide 961 
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to assess the IFNγ response. For this purpose, REP TILs were plated at 1-2x105 cells per well 962 

and challenged for 18 h with cognate peptides at a final peptide concentration of 1 µM, in 963 

duplicate or triplicate. Medium without peptide was used as a negative control, and 1x Cell 964 

Stimulation Cocktail (eBioscience™, Thermo Fisher Scientific) was used as a positive control. 965 

Spot-forming units were quantified using the Bioreader-6000-E automated counter (BioSys). 966 

Positive hits were identified by having more spots than the negative control wells, which did 967 

not contain any peptide, plus 3 times the standard deviation of the negative control. Positivity 968 

was confirmed in at least ≥ 2 independent experiments. 969 

The identification of circulating antigen-specific T cells in patient 0D5P was performed as 970 

such66,92: CD19+ cells were isolated from cryopreserved PBLs using magnetic beads (Miltenyi) 971 

and expanded for 14 days with multimeric-CD40L (Adipogen, Epalinges, Switzerland, 1 972 

µg/mL) and IL-4 (Miltenyi, 200 IU/mL). CD8+ T lymphocytes were isolated from cryopreserved 973 

PBLs using magnetic beads (Miltenyi) and co-incubated at a 1:1 ratio with irradiated 974 

autologous CD40-activated B cells and peptides (single peptides or pools of ≤ 50 peptides, 1 975 

µM each). After 12 days of in vitro expansion, CD8+ T cells were re-challenged with cognate 976 

peptide and T cell responses were assessed by the ELISpot assay.   977 

Statistical analyses 978 

Statistical analyses were performedwhere appropriate. The following tools were used for 979 

statistical analyses:  GraphPad Prism 8, Perseus 1.5.5.3, RStudio 3.5.1 and Python 3.6. 980 

Specifically, the boxplots in Fig. 8c, Fig. 9a-b, Supplementary Fig. 1c-d and 1f-h, 981 

Supplementary Fig. 3a-b and Supplementary Fig. S4a-l were generated using the standard 982 

settings in either RStudio or GraphPad Prism. The boxplot settings were: Hinges (25% and 983 

75%), with the median plotted. For Fig. 8c and Supplementary Fig. 1c-d and 1f-g, the notch 984 

is additionally shown at +/-1.58 IQR/sqrt(n), where IQR is the interquartile range (difference 985 

between 75- and 25-percentile) and n the number of data points. A median at the notch edge 986 

corresponds to a 95% significant difference (p-value=0.05). Sample sizes and p-values 987 

forSupplementary Fig. 1c-d and 1f-g can be found in the Source Data File. In Fig. 9a-b, 988 
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Supplementary Fig. 1h, Supplementary Fig. 3 and 4, the whiskers are plotted down to the 989 

minimum and up to the maximum value, and each individual value is plotted as a point 990 

superimposed on the graph. 991 

HLA-binding predictions 992 

To evaluate the binding affinity of HLAIp, MixMHCpred.v2 prediction software was run on all 993 

HLAIp ranging in length from 8-14 amino acids. Peptides with a p-value < 0.05 were 994 

considered binders.  995 

Sequence specific HI calculator 996 

Sequence-specific HI was calculated with the SSRCalc vQ.0 tool35, available online at 997 

[http://hs2.proteome.ca/SSRCalc/SSRCalcQ.html] . Only unmodified peptides were included 998 

and parameters were set to: 100Å C18 column, 0.1% formic acid separation system and 999 

without cysteine protection. Observed RTs were obtained from Comet pep.xml files. If a 1000 

peptide was detected multiple times in the same sample, the mean RT was used. Peptides 1001 

and their mean RTs were plotted against the calculated HIs. For Fig. 2 c-f, to compare the 1002 

variances in the differences between the RTs and the regression line, we applied a one-sided 1003 

F-test.   1004 

In order to calculate the standard errors of HI, we regressed the measured RTs against the 1005 

calculated HI using the lm function in R. This function returns the residuals between the 1006 

regression line and HI values. The residual absolute errors of the lm-regression were plotted 1007 

in Supplementary Fig. 1d and g (the higher this value, the worse the correlation between 1008 

predicted and measured values). In this manner, we observe how well the HI calculations 1009 

correlate the experimentally observed RT.  1010 

Correlation analyses 1011 

Correlative analyses of the immunopeptidome and transcriptome of 0D5P (Fig. 3a-d) were 1012 

performed by first assigning HLAp to their respective source genes. For noncHLAp, the gene 1013 
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with the highest transcript expression was allocated for further analyses if the peptide map 1014 

back to more than one non-coding source gene unless otherwise indicated.  1015 

Assessing HLAIp sampling  1016 

For HLAIp sampling analyses, peptides were assigned to source protein groups as described 1017 

above. Adjusted peptide counts were taken, summed over a gene, and subsequently matched 1018 

to their corresponding expression values (either transcriptome or translatome based). 1019 

Normalized sampling corresponds to the adjusted peptide count per protein, normalized by 1020 

the protein length. The correlation between gene expression or the spectral coefficients of 3-1021 

periodic signals in Ribo-Seq data and HLA presentation were assessed by fitting a polynomial 1022 

curve of degree 3 to each dataset. Pearson correlation was used to assess the correlation 1023 

between the fitted curve and the data.  1024 

Peptide position analysis 1025 

For peptide position analysis within a protein sequence (Supplementary Fig. 3), proteome-1026 

derived datasets fitting to the length distribution of the 95% confidence level of the lncRNA 1027 

dataset were selected. Then, the position of the HLAp, relative to the full protein sequence, 1028 

was calculated for source lncRNA and proteome-derived sequences. Since the data were not 1029 

normally distributed, the Wilcoxon test was utilized for statistical analysis.  1030 

PRM analyses 1031 

For analyses of PRM statistics, MS-based intensities were taken from the initial MaxQuant 1032 

peptide table output. TAAs for PRM and further comparative analyses were selected from a 1033 

non-exhaustive list of known and clinically relevant TAAs.  1034 

GTEx RNA expression analyses 1035 

Tissue-specific gene expression data was downloaded from GTEx, a public resource that 1036 

contains data from 53 non-diseased tissues across nearly 1000 individuals46. We used a 1037 

custom R script to retrieve gene expression values, based on publicly available GTEx v7 data. 1038 
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In the case of multiple transcripts matching the same entry, expression data for the most 1039 

expressed transcript were used. The 90th percentile expression of the gene in the tissue-1040 

derived tumor was reported. The FPKM expression units of the investigated sample were 1041 

converted into TPM units for comparison with the GTEx data. The R package 1042 

“ComplexHeatmap v1.99.4”93 from the Bioconductor suite was used to draw heatmaps. 1043 

  1044 
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Fig. 2 Two complementary methods to assess the accuracy of NewAnce. a The percentages of predicted 
proteome-derived HLA-I binders in 0D5P were assessed with each MS search tool (MaxQuant and Comet at 
FDR 3%) and NewAnce. b Similar to a, the comparisons were performed for the different non-canonical antigen 
classes. c Retention predictions by SSRCalc for peptides identified in melanoma 0D5P. The observed mean 
retention time is plotted against the hydrophobicity indices for NewAnce-identified proteome-derived versus 
lncRNA-derived non-canonical peptides. d All peptides identified with each tool (MaxQuant, Comet, NewAnce) 
were analysed based on their hydrophobicity indices. e Hydrophobicity index calculation for MaxQuant- or f 
Comet-identified 8- to 14-mer peptides, based on predicted HLA binding.  Source data are provided as a Source 
Data file.
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Fig. 3 MS-based and ribosome footprint evidence of non-canonical peptide generation. A set of proteome-
derived tumor-associated antigens and noncHLAIp (lncRNAs and TEs) from melanoma 0D5P were synthesized in 
their heavy labelled form and spiked back into replicates of HLAIp eluted from 0D5P to confirm the presence of 
endogenous HLAIp. The proportions of confirmed and non-confirmed HLAIp as determined by a PRM and b Ribo-
Seq-targeted validation are shown for each of the antigen classes. c An example of the co-elution profiles of the 
transitions of heavy labelled and endogenous noncHLAIp (from lncRNA; SYLRRHLDF) from 0D5P (left) is shown. 
The MS/MS fragmentation pattern further confirms the presence of the endogenous peptide (Δm=10 Da) (right). 
d, e The Ribo-Seq profiles of two source genes show the frequency of Ribo-Seq reads from the ribosome’s P-site 
in three replicates. Library size-normalized P-sites per basepair are shown on a log2 scale on the Y-axis, with P-
sites inferred as a constant offset from the 5’ end of the footprint for each read length. The colored bars represent 
different reading frames. The yellow bars below the plots represent exons. For example, the noncHLAIp 
SYLRRHLDF in OVOS2 (blue arrow) falls within two nested, Ribo-Seq-supported ORFs (red arrows), within which 
most P-sites (red bars) fall in the first reading frame. Source data are provided as a Source Data file. 
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Fig. 4 RNA- and Ribo-Seq-based gene expression analyses from melanoma 0D5P. a Genes are ranked based 
on their RNA expression levels in 0D5P. P protein-coding (orange) and presumed non-coding (blue) source genes, 
in which HLAIp were identified. The frequency distributions of the gene expression levels of protein-coding and 
non-coding (lncRNA) genes are shown. b The region of interest is magnified to show the distribution of noncHLAIp 
source gene expression. c Source gene restriction plot. Targeted MS validation was performed, and confirmations 
are denoted for all identified non-canonical peptides and for a subset of protHLAIp (selected TAAs). Confirmed hits 
indicate that one or more peptides from that source gene were validated by PRM. Point sizes represent the number 
of peptides identified per source gene. d Frequency distribution of gene expression for MS-confirmed versus non-
confirmed (or inconclusive) noncHLAIp. Scatterplots show the correlation between e UniProt-based HLA-I sampling 
and RNA abundance, f Ribo-Seq-based HLA-I sampling and RNA abundance, and g Ribo-Seq-based HLA-I 
sampling and translation abundance. HLA-I sampling was calculated from the adjusted peptide counts normalized 
by protein length. Determination of the correlation between gene expression and HLA-I sampling was assessed by 
fitting a polynomial curve of degree 3 to each dataset. Pearson correlation values were calculated to assess the 
correlation between the fitted curve and the corresponding dataset. h With data derived from 0D5P, a comparison 
of the overall overlap in unique HLAIp identified with RNA-Seq-based and Ribo-Seq-based assembled databases 
for MS search is shown. i Overlap of noncHLAIp identified by RNA-Seq- and Ribo-Seq-based searches. j The total 
number of noncHLAIp identified by Ribo-Seq is depicted for each of the respective ORF types. Source data are 
provided as a Source Data file. 
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Fig. 5 ScRNA-Seq reveals non-coding transcriptional heterogeneity in melanoma 0D5P. a t-SNE plot of the 
1,365 cells colored by their“cell cycle”scores. b Examples of cell-cycle dependent genes: ATAD2, a tumor-
associated antigen, and c TMEM106C, from which a noncHLAIp originated. d Genes of interest were plotted based 
on their sum normalized expression by scRNA-Seq and ordered based on the percentage of cells that expressed 
the gene. The color codes denote the type of HLAIp identified from those genes. e t-SNE plot of the 1,365 cells 
colored by the five identified clusters. Clusters were annotated based on functional enrichment analyses of marker 
genes. f t-SNE plot highlighting the expression of the ABCB5 gene enriched in cluster 0. g Heatmap showing the 
scaled and centred expressions of marker genes in cluster 0. The cluster colors from (e) are represented above 
the plot. h Expression profiles of four marker genes in cluster 0 over all other clusters, including two well-known 
cancer biomarkers, MITF and CTNNB1, and two source genes for which noncHLAIp were identified, the ABCB5 
gene with a dORF and LINC00520. The p-values represented in (b), (c) and (h) were obtained with Wilcoxon tests. 
Source data are provided as a Source Data file. 
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Fig. 6 Non-coding source gene expression in healthy tissues. A comparison of presumed non-coding source gene 
expression in the investigated samples to that in healthy tissues (GTEx) reveals that a substantial proportion of source 
non-coding genes are tumor-specific. Heatmap of lncRNA source genes showing the 90th percentile gene expression 
levels across 30 healthy tissues on the left and the gene expression levels across our investigated melanoma samples on 
the right. Tissue gene expression was classified as not expressed (90th percentile TPM ≤¬ 1) in any, 1-3, or more than 3 
tissues other than testis to assess tumor specificity. Specifically for sample 0D5P, a total of 21.4% of the lncRNA source 
genes were considered as tumor specific compared to < 1% of the randomly selected protein-coding source genes with 
similar expression levels (P-value = 1.04 e-33). The number of HLAIp identified per gene is depicted as well as the gene 
(GENCODE) and sample type. Source data are provided as a Source Data file.
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Fig. 7 Non-coding source gene expression of lung cancer samples in healthy tissues. A comparison of 
presumed non-coding source gene expression in the investigated samples to that in healthy tissues (GTEx). a 
Heatmap of lncRNA source genes showing the 90th percentile gene expression levels across 30 healthy tissues 
on the left and the gene expression levels identified in lung tissue samples on the right. Tissue gene expression 
was classified as not expressed (90th percentile TPM ≤ 1) in any, 1-3, or more than 3 tissues other than testis to 
assess tumor specificity. The number of HLAIp identified per gene is depicted as well as the gene (GENCODE) 
and sample type. b Specifically, this was also plotted for the tumor-specific noncHLAIp identified in lung cancer 
patient C3N-02289. Source data are provided as a Source Data file. 
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Fig. 8 NoncHLAIp can be shared across individuals. a The noncHLAIp-centric heatmap (left) shows the 
corresponding presumed non-coding gene expression (90th percentile) across healthy tissues as well as that in 
our investigated samples (middle). The peptides that were identified by MS across the investigated samples, and 
therefore shared, are outlined in the rightmost heatmap. Validation by PRM was performed for multiple noncHLAIp 
across the corresponding samples and are denoted with cross markings. b NoncHLAIp identified across a large 
collection of immunopeptidomics datasets (ipMSDB) consisting of both cancer and healthy samples. Tumor-
specific noncHLAIp were re-identified and a trend of enrichment in cancer samples was observed. The noncHLAIp 
sequences can be found in the source data file. Cancer samples are labelled in shades of blue, and the star symbol 
include tumor metastases, myeloma, uterine, brain and liver cancer. Healthy samples are indicated in shades of 
red, and the hashtag symbol include fibroblast cells and epithelial cells. c Boxplot depicting the ratio of noncHLAIp 
over protHLAIp identified in the different groups of samples derived from ipMSDB (healthy n=27, cancer n=63, 
melanoma n=25) One-sided T test was performed, without multiple testing correction. Healthy versus cancer p-
value=0.17, healthy versus melanoma p-value=0.12. Please refer to the Methods section for boxplot parameters. 
Source data are provided as a Source Data file. 
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Fig 9 Non-canonical ABCB5 peptide induced an IFNγ response. a Reactivity was measured in melanoma 0D5P by 
the IFNγ ELISpot assay using autologous REP TILs. Representative example of three TAAs from TYR and TYRP1 and 
one non-canonical dORF-derived HLAIp from ABCB5 (written in red) that induced an IFNγ response. b In addition, a 
representative example of CD8+ T lymphocytes from PBLs is shown when re-challenged with autologous CD4+ blasts 
together with 1uM of the non-canonical ABCB5 HLAIp. (No Ag: no peptide, positive control: 1x cell stimulation 
cocktail). c Representative images of the IFNγ ELISpot response against the non-canonical ABCB5 peptide. In (a) and 
(b), T-cell reactivity for every peptide was validated by ≥ 2 independent experiments. Please refer to the Methods 
section for boxplot parameters. Source data are provided as a Source Data file.
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Chapter 6 DISCUSSION 
The discussion of the presented findings and their interpretation in light of the state-of-the-art is split into two 
parts. The first section focuses on the development of the HLA immunoaffinity purification method (see 
Chapter 4), while the second section provides more insight into the proteogenomics pipeline for identification 
of tumor non-canonical peptides (see Chapter 5).  

6.1 The Challenge Of HLA Immunoaffinity Purification 

In this first section, the challenges in the area of HLA immunoaffinity purification are covered, and the 
validation procedures in relation to other methods are outlined. This is followed by an illustration of how the 
high quality data that was obtained has been used to advance immunopeptidomics studies. The section 
concludes by describing limitations to the current experimental pipeline, proposing possible improvements, 
and importantly, detailing where the method will be implemented in the near future.  

Previously, TAAs have been identified in a variety of ways, from targeted molecular approaches, to NGS 
techniques coupled with computational predictions and downstream immunogenicity evaluation with cellular-
based assays [185]. Deep and diverse insights into HLA-bound tumor antigens are now constantly being 
acquired through the development of MS-related technologies [208, 209, 306-309]. The clinical applications 
of MS in the field of proteomics are already established, and are often based on targeted approaches to 
identify and quantify protein biomarkers [310]. However, in the immunopeptidomics field, the key question 
still remains: Will MS represent a clinical technology that can routinely identify tumor-specific neoantigens, 
and other types of tumor antigens, with high sensitivity?  

To date, the field of immunopeptidomics has not reached its full potential, despite the many advances and 
improvements that have been made over the last years. Thus far, MS has shown promising, although minimal, 
results in pinpointing tumor antigen targets [209, 213]. This is due to the fact that MS-based technologies 
often lack in sensitivity, and the associated workflows are highly dependent on practical factors, such as the 
availability of samples, and prior expertise [215]. For example, experimental HLA immunoaffinity purification 
workflows suffer from well-acknowledged drawbacks, and remain a bottleneck in the robust and sensitive 
identification of the antigen repertoire. Specifically, the fundamental issues result from the requirement of 
obtaining large amounts of initial biological material, often impossible when dealing with patient samples, as 
well as extensive sample handling during HLA extraction, which leads to significant peptide losses. Lastly, HLA 
immunoaffinity purification protocols are un-standardized across laboratories, lacking detailed information 
and step-by-step guides (see Chapter 4).  

With these issues in mind, we developed a high-throughput HLA immunoaffinity purification system, described 
in Chapter 4, with the following features that offer improvements over traditional methods: the possibility for 
parallel processing and scalability of up to 96 samples using a positive pressure system, the reduction of 
antibody-crosslinked beads, increased speed, and the elimination of error-prone steps resulting in higher 
recovery, sensitivity and purity of the measured immunopeptidome. These features are crucial when handling 
precious clinical samples that often suffer from low availability of material. Increased sensitivity with our 
pipeline was observed even for single MS measurements of 107 B cells. Furthermore, parallel processing 
allowed high reproducibility to be achieved for label-free comparative analyses. The feasibility of the latter 
was demonstrated by treating ovarian cells with the inflammatory cytokine IFNγ. For the first time, we 
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uncovered the upregulated presentation of both chymotryptic-like and longer ligands upon IFNγ, likely due to 
modulation of the antigen processing and presentation machinery. 

6.1.1 Method Validation 

The purpose of designing a positive pressure high-throughput system was to increase the ease and speed of 
HLA immunoaffinity purification, and eliminate extensive sample handling. Following this, we performed 
multiple experiments to validate the reproducibility and robustness of the system. Below, three important 
validation results are highlighted and discussed. 

The first validation strategy employed was to analyze peptide identification and reproducibility of the pipeline 
using JY, an Epstein-Barr virus (EBV) transformed human B cell line, as a representative sample. This cell line is 
routinely applied as a quality control in MS processes across different laboratories, and has very recently been 
used in the FDA-guided validation of technical MS equipment to support clinical trials [104, 118, 260, 311-
314]. Here, the values presented from Ghosh and colleagues will serve as rough guidance for evaluating the 
efficacy of our system [314]. In terms of peptide identification depth across three technical replicates of JY at 
1% FDR, the results in this thesis led to the identification of more than 3,000 HLAIp, similar to that reported by 
Ghosh et al. Next, considering the differences across MS injections of JY, reproducibility and precision with the 
presented method were demonstrated across both technical and biological replicates, as well as over three 
different days with Pearson correlations of up to 0.94, in line of what was reported previously. There were 
minute effects arising from plate manufacture differences, position of wells used, pressure differences and 
the quality of consumables. Overall, when interpreting the results from this comparison we should consider 
that different protocols were used and information reported, along with the utilization of different MS 
instrumentations, computational pipelines and biological material. However, this evaluation alongside the 
comparable FDA-guided study indicates the robustness of the method presented in this thesis.  

Second, a straightforward experiment was performed to demonstrate the adequate peptide recovery of the 
pipeline. Specifically, 15 endogenous peptides from the B cell line CD165 were selected by considering the 
distribution of retention times and based on their high intensities, synthesized in their heavy-labelled forms, 
and spiked back into the sample prior to C18 reverse phase extraction using the positive pressure system. 
Importantly, all of the peptides were re-identified using this spike-in approach, and no cross contamination 
was observed. As peptide losses prior to C18 were not directly analyzed, isotopically labelled peptide-MHC 
monomers could be used in the future to directly quantify the losses from the immunoaffinity purification step 
[217].  

Third, the sensitivity of the system was challenged by assessing HLA peptide yields while decreasing the cell 
amount input down to 107 B cells (CD165). This resulted in the identification of nearly 2,000 HLA-I and 3,000 
HLA–II peptides. In contrast, the anticipated results for 107 Jurkat cells reported in the latest 
immunopeptidomics protocol were in the range of a hundred HLA peptides, suggesting the superiority of our 
presented method to boost peptide yields [216]. However, ultimately, the yield depends on the expression of 
HLA molecules in the respective sample and the cell type used. Thus, as recently outlined by the 
immunopeptidomics consortium, it is anticipated that benchmarking processes in multi-laboratory studies 
using the same sample batch will allow a better head-to-head comparison of HLA immunoaffinity purification 
protocols [215].  
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6.1.2 Results From The HLA Immunoaffinity Purification System 

The search for mutated neoantigens by discovery-based MS is largely linked to peptide measurement depth 
[213]. Thus, acquiring high quality immunopeptidome data remains a key pre-requisite, and is especially 
important to enable robust sequence assignment, deep data-mining, and label-free comparative studies. 
Below, a selection of findings and insights that were achieved with the high quality data obtained from the 
method are discussed. 

Specifically, in Chapter 4, a label-free comparative study was performed by interrogating the modulation of 
HLA peptide presentation in ovarian cells upon IFNγ treatment. Importantly, although multiple reports 
observed overall mediocre correlations between protein levels and presented HLA peptides [96, 240, 260-
262], we showed the enhanced presentation of peptides derived from proteins of origin that were over-
expressed after IFNγ treatment, such as STAT1 and 2, TAP1 and 2, b2m, OAS3, WARS, IFI16, and IRF. This 
implies that with sufficient peptide identification depth, along with reproducible methods, the correlation 
between the immunopeptidome and the proteome can be observed. Additionally, previously un-reported 
features were identified, such as the upregulated presentation of chymotryptic-like HLA ligands upon IFNγ 
treatment, likely due to proteasome to immunoproteasome switch confirmed at the proteome level. IFNγ also 
led to the significantly increased presentation of longer peptides, as well as chymotryptic-like extended 
peptides, when compared to shorter tryptic-like counterparts. Importantly, IFNγ is an inflammatory agent that 
is often found highly expressed in the tumor bed [315, 316]. Several studies have now shown that IFNγ can 
indeed remodel the immunopeptidome extensively. For example, it was very recently shown that IFNγ led to 
an increase in HLA-B levels, and that this in turn positively correlated with immune cell infiltration in the tumor 
using TCGA lung cancer data [262]. Importantly, the increase in HLA-B expression upon IFNγ was also observed 
in our study, leading to the upregulated presentation of HLA-B binding peptides. Together, these findings have 
an important implication on the routine use of HLA binding predictions for the selection of tumor antigens. 
Specifically, one could imagine that IFNγ, or other stimuli, could represent critical factors in shaping the antigen 
repertoire, a feature currently overlooked by HLA prediction algorithms. The phenomenon displayed by IFNγ 
should be investigated over multiple biological systems and, if universally found, could be used to adapt 
antigen prioritization strategies.  

Using this novel system, we are routinely interrogating the presentation of TAAs in cancer samples based on 
their known potential to mediate anti-tumor responses [206, 207, 317, 318]. In a collaboration study with the 
group of Svane, we discovered two overlapping immunogenic cancer-testis GAGE peptides using MS in ovarian 
cancer sample OC.TIL.11, with one of them previously unreported [319]. GAGE-specific TILs were sorted from 
bulk TILs and were shown to kill autologous tumor cells. This study highlights the potential of MS-based 
discovery to uncover immunogenic epitopes in ovarian cancer. Furthermore, as epigenetic modulators in 
combination with checkpoint blockade has been shown to increase the immunogenicity of the tumor, we 
sought to investigate the upregulation of TAAs with DAC treatment [320]. Specifically, in Chapter 5, 
immunopeptidome changes upon DAC treatment in melanoma samples were analyzed. TAAs were indeed 
upregulated upon treatment, albeit to a lower extent than previously reported [292, 320, 321]. This 
discrepancy could be due to the previously observed global hypomethylation status at baseline in melanoma 
cell lines [322-325]. Alternatively, although the effect of DAC was observed at the RNA level, low copy numbers 
of antigens could have rendered them un-detectable in the immunopeptidome.  
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In addition, the generation of high quality data not only facilitated label-free comparisons, but has also enabled 
the significant improvement of existing HLA binding prediction algorithms. The immunopeptidome data 
collected in the lab of Bassani-Sternberg was applied by the Gfeller group to train algorithms predicting the 
binding of HLA-I, -II, as well as PTM peptides [175, 178, 212]. Combined, these studies underline the power of 
using multi-allelic samples from rich, diverse and naturally processed datasets to perform motif deconvolution. 
In contrast, extensive in vitro generation of mono-allelic cell lines can be used to resolve a HLA binding motif 
without the need for prior de-convolution [177, 179]. However, the multi-allelic approach used by the Gfeller 
group showed high similarities with methods using mono-allelic cell lines, both in terms of motifs, and the 
improvement of predictors. Furthermore, motif deconvolution guided by HLA-II peptidomics showed that HLA-
DR motifs were sufficiently resolved with pan-HLA-II samples, suggesting that mono-allelic samples may be 
dispensable. Ultimately, only the MS-based HLA peptide profiling of unmodified biological samples can capture 
the complexity and co-dependencies of HLA alleles, as well as variations of peptide processing. Thus, the rich 
information from this strategy will remain the driving force in the evolution of prediction tools [326].  

6.1.3 Limitations  

A current limitation of the presented HLA extraction system is a high dependency on the strong binding 
affinities of the antibodies used for immunoaffinity purification. Antibodies that are of lower affinity require 
longer incubation times with the respective lysate. When employing low-affinity antibodies, the interactions 
between antibody and HLA complexes do not have time to properly occur, as the positive pressure system 
results in the continuous flow of samples through the wells. Thus, lower peptide yields are obtained. 
Furthermore, the plate format is only partially compatible with large sample volumes, such as when applying 
5-10 mL plasma samples for immunopeptidomics studies [327, 328]. Therefore, if this pipeline is to be more 
generally and universally used, then optimizations will be needed for these two limitations. For example, this 
could include more tightly meshed well filters that lead to the slower flow of the lysate, or the incorporation 
of an additional plate-compatible incubation step at 4°C. Furthermore, custom made plates could be designed 
to integrate lysates larger than 2 mL.  

6.1.4 Future Perspectives 

While the presented system already drastically reduced the amount of time and manual handling needed for 
HLA immunoaffinity purification, there are further ways to increase the peptide yield. For example, current 
separation approaches using the common C18 media during desalting or LC lead to the lack of binding of 
certain peptides that harbor specific chemical properties [216]. Therefore, implementation of other types of 
separation protocols, such as high pH, or strong cation exchange, could help overcome this bias. Furthermore, 
peptide yield can be increased through pre-fractionation of immunopeptidomics samples to reduce the 
complexity of the peptide mixture prior to MS injection [218]. Moreover, to accommodate analyses of small 
tissue amounts, one could envision the interesting option of miniaturization through the use of digital 
microfluidic devices for immunoaffinity purification, where processes are easily controlled and lower sample 
volumes are needed [329, 330]. Lastly, robotic systems could take over the currently semi-manual handling of 
samples, which would undoubtedly allow for more efficient parallel processing and improve overall peptide 
yield.  

This workflow focuses on primarily on the optimization of experimental steps prior to injection into the MS. 
Thus, improvements to the methods surrounding MS could be further explored to enhance peptide 
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identification. For example, combining the different MS fragmentation techniques ETD and HCD has been 
shown to facilitate sequence assignment and increase peptide identification by three-fold in a human B cell 
line at 1% FDR [268]. In addition, boosting peptide identification and reproducibility over multiple experiments 
can be achieved by applying DIA techniques with compatible comprehensive spectral libraries [205, 241], 
currently being optimized in the lab of Bassani-Sternberg. The latter approach is indeed highly attractive to 
overcome the requirement of large sample quantities, a severe bottleneck in immunopeptidomics. Using 
libraries generated from DDA analyses with 3e8 cells, the DIA method has been reported to identify more than 
3,000 peptides using only 1 million human cells [241]. Further, high resolution accurate mass analyzers 
recognize a vast amount of peptide features, however, only a small fraction can currently be identified, thus 
there remains the need for faster and more sensitive measurement options [331]. These options include 
exciting developments in MS instrumentations. For example, the use of MS techniques that measure the 
mobility of ions, based on the charge, size and shape of the ion, adds another dimension to ion separation 
[332, 333]. High Field Asymmetric waveform Ion Mobility Spectrometry (FAIMS) incorporates such an ion 
mobility device that excels in removing interfering background ions [334]. This has been observed to enhance 
the limit of detection by nearly an order of magnitude with proteomics samples, leading to higher sensitivity 
for identification of low abundance peptides. Furthermore, the use of Trapped Ion Mobility Spectrometry 
(TIMS) allows for increased sequencing speed when coupled to a TOF analyzer, and therefore enables the 
generation of more complete datasets [335, 336]. We envision that these approaches, alongside the steady 
improvement of instrument sensitivity, would together allow for even higher identification rates and greater 
reproducibility across immunopeptidomics studies.  

In summary, in the first part of this thesis, a comprehensive experimental toolset was provided to robustly 
map the immunopeptidome, with the step-by-step protocol published separately [337]. A pilot cancer 
immunotherapy clinical trial at the University Hospital of Lausanne (CHUV), Switzerland, was recently 
performed using the presented HLA-immunoaffinity purification system [338]. While no mutated antigens in 
pancreatic ductal adenocarcinoma (PDAC) patients were found directly by MS-based discovery, the HLA 
immunoaffinity purification pipeline performed well, with a depth of up to approximately 11,000 HLA-I and 
3,000 HLA-II reached. This also led the identification of multiple TAAs, such as mesothelin, mucin-1 and the 
cellular tumor antigen p53. Importantly, the high quality immunopeptidomics data from the Bassani-Sternberg 
lab was capitalized to gain insights into the hotspots of antigen presentation [305]. This knowledge benefitted 
the prioritization of predicted mutated neoantigens for the pilot trial. Overall, vaccine companies and research 
labs worldwide are working on both improving HLA predictions leveraging MS immunopeptidomics data, as 
well as designing vaccination strategies through direct MS-based identification of tumor antigens [200, 339-
341]. Excitingly, and following on from the success of the prior pilot clinical trial, the presented method will be 
integrated into clinical trials this year at the CHUV, with the hope of pinpointing actionable neoantigens and 
elucidating their role in anti-tumor control in PDAC patients, as well as across other cancers.  
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6.2 Challenges In Non-Canonical Immunopeptidome Discovery 

In this second section, the challenges of a proteogenomics-directed immunopeptidomics workflow for 
identification of non-canonical antigens are discussed, and the rationale of the current pipeline strategy is 
outlined. Thereafter, the most relevant validation approaches are highlighted, followed by insights into the 
overall findings. Finally, limitations and potential improvements of the approach are considered, as well as the 
prospective incorporation of the pipeline into clinical trials.  

The discovery of mutated neoantigens, found either through prediction methodologies or by MS, have 
accelerated the rate of advances in cancer immunotherapy. However, for these mutated neoantigens, a 
personalized approach is indispensable due to the typically strict patient specificity. As the interest in mutated 
neoantigens grows [101], both patient-matched exome and RNA expression data, and tumor 
immunopeptidomics data are being accumulated. Recently, researchers are further exploring these and other 
new datasets to find common tumor targets that are likely shared across patients, or that could explain tumor 
editing and escape mechanisms [55, 160, 342-344]. As presumed non-coding genes, as well as TEs, could 
represent shared targets and have been shown to be tumor-specific and sometimes translated, there is a surge 
of interest in exploring the non-canonical space in the immunopeptidome [145].  

This interest extends to the investigation of the clinical potential of MS-based proteogenomics, and has led to 
multiple different non-canonical antigen identification approaches being published over the last five years 
[250, 276, 290, 292, 345]. The resulting identification of noncHLAp were derived from proteasome-generated 
spliced variants, retroviral elements and novel ORFs. However, such studies are often accompanied with 
statistical and validity concerns, that can propagate the level of false positive identifications unless handled 
carefully. Of note, several commentaries and reviews regarding proteogenomics raise these concerns, and 
recommend thorough evaluation by any researcher in the field [271, 272, 274].  

As such, in this work, a comprehensive MS-based proteogenomics and analytical workflow was developed and 
assessed, leading to the discovery and validation of tumor non-canonical antigens. We incorporated WES, bulk 
and single-cell transcriptomics, Ribo-Seq, and developed the computational tool NewAnce, that implements 
two MS/MS search tools in combination. Hundreds of noncHLAp were identified, with a selection being shared 
across patients and tumor-specific. Importantly, an immunogenic peptide derived from an alternative ORF of 
the melanoma stem cell marker gene ABCB5 was found.  

6.2.1 Rationale Of The Pipeline Strategy 

As there is currently no standardized approach to interrogate the non-canonical HLA repertoire, we set out to 
design an extensive analytical workflow, and discuss below the reasoning behind the choices implemented in 
the strategy. Specifically, the reasons are outlined for the use of certain patient-derived tumor samples, as 
well as the generation of customized reference databases for MS searches. Thereafter, the rationale leading 
to the exploration of specific non-canonical antigens, and the motivation behind the implementation of a novel 
computational pipeline, are described.  

THE USE OF PATIENT-DERIVED TUMOR SAMPLES AND DATA 

At the start of the study to identify tumor non-canonical peptides in the immunopeptidome, we reasoned that 
the reliability of any pipeline should be tested appropriately to determine the relevance of the discovered 
peptides in cancer immunotherapy. Therefore, the study was performed on samples with available autologous 



Chapter 6 

 142 

immune cells to allow for immunogenicity screening. Furthermore, in our proof-of-concept study, with the 
anticipation that experiments should be repeated, patient-derived cancer cell lines were sought out where 
appropriate. In order to heighten the chance of finding a non-canonical peptide, high mutational load tumors, 
such as melanoma and lung cancer samples, were chosen [126, 346]. We first compared whether a per-sample 
personalized reference based on RNA expression would improve the reliability of MS-based searches when 
compared to a generic non-personalized database of presumed non-coding regions. Indeed, it was observed 
that the non-personalized database was larger, and therefore led to an increase in the number of false 
positives, as indicated by the poorer percentage of non-canonical HLA binders. Consequently, the un-
necessary exploration of “junk” was limited by personalizing protein reference databases to include only 
expressed non-coding regions of the patient. Specifically, WES, paired-end stranded RNA-Seq, and Ribo-Seq 
(for one sample) were performed to extract the information on variants, gene expression, and translation rate 
to increase the comprehensiveness of protein sequence databases. This setup allowed the broad exploration 
of tumor non-canonical antigens, and iterations to be performed where necessary.  

THE SELECTION OF NON-CANONICAL ANTIGENS 

The different origins of non-canonical antigens interrogated over the recent years have varied from one 
research group to the other, and most groups have focused on single categories in isolation. For example, the 
group of Van Allen focused on intron-retained epitopes, the group of Hwu on RNA edited epitopes, and the 
group of Chen-Harris on TEs (see Section 1.6.2) [290-292]. However, it is currently not possible to obtain a 
clear picture on which category has the greatest clinical potential, especially given the comparison issues 
between studies. Thus, to gain a comprehensive view in this work, as many non-protein-coding genes and 
potentially translated genomic regions were incorporated as possible. Specifically, this included expressed 
non-protein-coding genes, TEs, as well as non-canonical alternative ORFs, inferred from RNA and Ribo-Seq 
data. The search for phosphorylated peptides was additionally included, as these could represent interesting 
tumor-associated targets [104]. We believe that this is a first attempt at interrogating such a broad range of 
non-canonical antigens in one study.  

Our MS-based discovery approach was heavily dependent on data generated by RNA-Seq. For this purpose, 
we chose to implement a stranded, paired-end and poly-A enrichment protocol for RNA-Seq for the following 
reasons. First, the stranded approach allowed the database size to be reduced by 3-fold (3-frame instead of 6-
frame translation), as directional information could be obtained [277]. Second, a paired-end method increased 
the confidence in mappability of repetitive regions for TEs at the locus-specific level [347]. Third, Poly-A 
enrichment typically results in the identification of the majority of non-protein-coding genes [348]. However, 
a drawback to keep in mind is that some lncRNAs lack poly-A tails, and hence, their potential peptide products 
might have been missed with the presented approach. This challenge could be overcome in the future by 
employing ribosomal RNA depletion in place of poly-A enrichment protocols [349].  

PERFORMANCE EVALUATION OF MS SEARCH TOOLS  

Using the customized reference databases of expressed non-protein-coding genes and TEs from above, the 
routinely employed MaxQuant tool was initially used at 1% FDR, that led to the identification of a significant 
number of non-canonical peptides. However, the majority were determined to likely be false positives, 
demonstrating a low percentage of HLA binders, as well as poor correlation between observed RT and 
calculated HI. Furthermore, we systematically tested the generic and personalized database sizes based on 
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RNA expression (FPKM >0), as well as at medium and higher expression cutoffs (FPKM>2, >5, and >10). This 
showed that the level of HLA binders increased with smaller databases, improving the quality of the non-
canonical peptide data obtained. Therefore, the trade-off between the level of false positives, and 
completeness of the database was re-considered. Importantly, when mapping back non-canonical sequences 
to source non-protein-coding genes, it was observed that many sequences were derived from lowly expressed 
genes, both in bulk and scRNA-Seq. Therefore, with regards to the aforementioned trade-off, we chose not to 
reduce the database size based on a gene expression threshold. This decision is in line with studies showing 
that RNA expression does not always dictate antigen presentation [266, 350]. Moreover, while various studies 
have filtered databases based on HLA binding predictions or tumor specificity [250, 285], these approaches 
were disregarded in this study so as to obtain more comprehensive insights into non-canonical antigen 
presentation.  

Given that the reference database was left as complete as possible, and the false positive issues an individual 
search tool faces in this setting, a novel computational tool NewAnce was developed by Markus Müller in the 
group of Bassani-Sternberg by combining the results of two independent MS-based search tools, MaxQuant 
and Comet. To first guarantee that identified non-canonical peptides from both MaxQuant and Comet did not 
match any other proteome-derived sequences, peptides were aligned against a UniProt/TrEMBL database to 
categorize the sequences into either non-canonical or proteome-derived. NewAnce then considers the 
intersection of results from both tools, and implements separate FDR calculations for the proteome-derived 
and non-canonical peptide groups. This specifically limits the number of false identifications for the non-
canonical peptide group at a given global FDR. Ultimately, considering common results from two search tools 
that have different scoring algorithms naturally increases the confidence that the identified novel peptide is 
not a false positive [351, 352]. 

Thus, the stringency of identifying novel peptides was handled by the utilized computational strategy, rather 
than limiting the database size. Overall, NewAnce reduced the number of identified non-canonical peptides 
by an order of magnitude (from 100s to 10s), while prioritizing superior specificity. This combination of a low 
number of peptides, that were identified with high confidence, brought operational benefits and enabled all 
of the peptides across the nine samples to be further interrogated downstream in vitro.  

6.2.2 Pipeline Validation 

After NewAnce was implemented for patient-derived tumor immunopeptidomics samples, the existence of 
the identified non-canonical peptides were evaluated. This is especially important when reporting novel, yet 
un-annotated peptide sequences [274]. To first ensure that the identified novel peptides could not be mapped 
back to other modified proteome-derived peptides, non-canonical peptide-spectrum-matches were re-
searched by allowing the matching against six common variable modifications. This resulted in the majority of 
our peptides (at least 97%) to be correctly identified as novel. Thereafter, multiple complementary validation 
approaches were conducted, and a brief interpretation of these are presented here, followed by a more 
detailed discussion on targeted MS-based validation. 

ASSESSMENT OF HLA BINDING AND PEPTIDE HYDROPHOBICITY 

HLA binding is widely accepted to be an estimation of inherent quality in immunopeptidomics data, and should 
always be incorporated in any purity assessment. In our study, HLA binding predictions showed that the vast 
majority (median of 91.7%) of NewAnce-identified non-canonical peptides were predicted HLA binders. This is 
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in comparison to the much lower levels of HLA binders identified with the MS search tools MaxQuant (median 
of 53.3%) and Comet (median of 76.9%) when used individually.  

However, HLA peptides that are not predicted to, or weakly, bind have been shown to mediate important anti-
tumor responses [251, 353-356]. Therefore, sequence-specific RT prediction, an approach that is more 
dependent on the overall sequence than the HLA motif, was used as a complementary assessment strategy. 
This approach has been used to evaluate non-canonical peptides. For example, regarding the post-
translationally spliced peptides identified by Faridi et al. [284], a poor correlation between calculated HI and 
observed RT was reported and indicates false sequence assignment [272]. When NewAnce-identified non-
canonical peptides were assessed with sequence-specific RT prediction, a highly positive correlation was found 
between the calculated HI and observed RT. Importantly, the distribution of the non-canonical peptides was 
not significantly different from that of the proteome-derived peptides, signifying the correct nature of the 
identifications across all samples. Importantly, the correlation between RT and HI was significantly better for 
the non-canonical peptides identified by NewAnce than those from either MaxQuant or Comet alone, 
providing greater confidence of correct sequence assignment and underlining the superiority of NewAnce.  

TARGETED PRM VALIDATION OF NON-CANONICAL PEPTIDES 

Commonly, researchers use synthetic peptides to separately confirm a previously identified sequence, through 
the correlation of similarities between endogenous and synthetic peptide MS/MS spectra [276, 357]. However, 
when such an approach is employed, the peptide effects in the original sample matrix is lost, and RTs of 
endogenous and synthetic peptides cannot be compared. Due to the loss of this information, it is possible that 
a higher level of false positive identifications can still be obtained.  

In contrast, the chosen method was to validate peptides-of-interest using isotopically heavy-labelled synthetic 
peptides spiked back into the original sample. PRM-based validation of a particular sequence in this way is a 
two-step process that comes with advantages over the more common approach [358]. First, spike-in enables 
the heavy-labelled synthetic peptide to be analyzed in the original matrix, and RT between the endogenous 
and synthetic peptide should be equivalent due to their same physico-chemical properties. Second, the 
fragmentation patterns should be nearly identical, resulting in their unambiguous validation. Naturally, this 
approach is only possible if enough of the original sample material is retrospectively available.  

In Manuscript 2 (Chapter 5), for the first time to our knowledge, a head-to-head comparison of validation rates 
was performed by PRM using a set of protHLAIp as a control (n= 71), along with lncRNA- and TE-derived HLAIp 
(n= 93) from melanoma sample 0D5P. While it was observed that the protHLAIp had higher validation rates 
than the non-canonical peptide groups, targeted MS was only able to validate approximately 70% of the 
protHLAIp. The lower percentage than theoretically expected could be due to several reasons. The un-
validated peptides might represent false positives identified through the database-dependent search, or 
remain un-detected due to poor reproducibility between sample injections. Additionally, this could result from 
the poor ionization efficiency of peptides, low amounts of peptides being injected, and ultimately, instrument 
sensitivity [238]. In particular, in the presented study, PRM confirmation was shown to be largely dependent 
on the intensity of the precursor ion and detection over multiple injections. This indicates that the rate of 
peptide validation could potentially be raised by injecting a higher amount of peptides into the mass 
spectrometer.  
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Ultimately, PRM validation was approximately 50% for the non-canonical space. However, when the results 
from the complementary validation approaches described above are taken into consideration, we believe that 
most non-canonical peptide identifications from the discovery approach are correct.  

6.2.3 Results From The Pipeline 

Following the validation performed on the non-canonical peptides, two key sets of analyses, and their 
corresponding results, are further discussed in the following subsections. First, a Ribo-Seq approach was 
conducted to both validate the translation of RNA-Seq identified non-canonical peptides in the correct ORF, 
and acted as an additional discovery approach for non-canonical peptides. Second, tumor specificity and 
immunogenicity read-outs of the identified non-canonical peptides provide insights into clinical relevance, and 
are crucial in advancing this pipeline for the treatment of patients.  

RIBO-SEQ AS A PROXY TO DEFINE THE IMMUNOPEPTIDOME  

The sequencing of ribosome-protected mRNA fragments, known as Ribo-Seq, represents a very exciting 
approach giving direct evidence of translation of an ORF [288]. This approach can therefore drastically reduce 
RNA-Seq inferred protein sequence reference databases to filter for true translation products. Ribo-Seq was 
performed in the melanoma sample 0D5P, and compared to the RNA-Seq-based proteogenomics approach to 
determine if additional insights can be generated with this technique. Matching against a smaller database 
increases the number of identifications at a given FDR threshold. Thus, results showed that a Ribo-Seq inferred 
reference increased the number of identifications for the proteome-derived space, and led to the discovery of 
56 additional non-canonical peptides for 0D5P. The results were further assessed by comparing whether HLA 
peptide sampling better correlated with the RNA expression levels or translation rates from Ribo-Seq. The 
correlation between gene expression and HLA presentation was indeed found to be weaker than the 
translation of proteins.  

Furthermore, it was observed that Ribo-Seq skewed the identification towards more highly expressed source 
non-coding genes. This stems from the fact that for a translated ORF to be defined in our approach, it needs 
to have sufficient ribosome coverage and 3- nucleotide periodicity pattern across the transcript. As such, to 
detect the translation of specific low expressed genes, deeper sequencing with sufficient mapped reads 
covering that region could confirm the 3-nucleotide periodicity of a translated ORF [286, 359]. Ultimately, the 
approach validated the previously identified non-canonical peptides derived from the highly expressed non-
coding genes (16 out of 77). However, unfiltered Ribo-Seq results showed that there was evidence of at least 
some mapped reads for the majority of the novel peptides identified by the RNA-Seq-inferred approach.  

As the above results were obtained from a database inferred by Ribo-Seq, the method becomes an intriguing 
option to fully interpret immunopeptidomics data. However, the use of Ribo-Seq in the wider research field 
remains limited. Adoption of the method is hindered by extensive, complicated, and time-consuming 
protocols, a requirement for large amounts of initial cells, as well as the need for high sequencing throughput 
due to the short fragment sizes of ribosome-protected mRNAs [360]. With further protocol improvements that 
address these challenges, it is anticipated that Ribo-Seq will become an important strategy for proteogenomics 
analyses, bridging the gap between transcription and HLA presentation.  
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TUMOR SPECIFICITY OF NON-CANONICAL PEPTIDES 

An expressed antigen is tumor-specific when it is not observed anywhere in normal tissues, and thus restricted 
to the tumor. Therefore, targeting such antigens would not trigger on-target off-tumor effects and toxicity 
issues. With mutated neoantigens, the molecular changes in the tumor are inherently tumor-specific. In 
contrast, while non-mutated non-canonical peptides derived from a specific transcript and translation product 
might be aberrantly expressed in the tumor, there is a risk that these peptides are also expressed in healthy 
tissues [107, 361].  

One approach to narrow down non-canonical tumor-specific targets in MS-based proteogenomics is 
accomplished by canceling out healthy RNA, thus resulting in tumor-specific data to search against [250]. For 
example, Laumont et al. used TECs as the healthy “control” and only considered RNA k-mers to be tumor-
specific when detected in the tumor and not in the RNA of TECs. This approach could have resulted in missing 
information on the global presentation of non-canonical antigens, and potentially led to the discarding of 
relevant novel TAAs, depending on the thresholds applied. Importantly, researchers are still looking into 
exploiting self or shared TAAs for immunotherapy, due to their inherent potential in rapidly reaching large 
cohorts of patients, especially when on-target off-tumor effects are considered low risk. For example, the 
deletion of normal B cells is well tolerated by non-Hodgkin’s lymphoma patients when targeting the TAA CD20 
[362, 363].  

Moreover, immunopeptidomics healthy tissue controls are currently still lacking. Therefore, in order to retain 
information on potential baseline and tumor-associated non-canonical peptides, we chose to interrogate 
tumor specificity retrospectively by comparing the source non-coding genes to expression profiles of publicly 
available healthy tissue RNA-Seq datasets (GTEx)[304]. Approximately 20% of lncRNA source genes were found 
to be tumor-associated, when compared to selected protein-coding source genes at similar expression levels. 
However, when looking into the ideal situation where healthy and matched tumor lung tissue from two 
patients were available, we found that the majority of the identified non-canonical peptides were patient-
specific, while not necessarily tumor-specific. Notably, lncRNAs and TEs are usually expressed in a tissue- and 
cell type-specific manner [164, 348, 364], implying that the expression of non-canonical peptides should be 
ideally evaluated in the matched healthy patient tissue. Ultimately, despite this, the mechanisms of expression 
regulation for the non-coding genes are largely unknown and it remains challenging to ensure tumor 
specificity.  

IMMUNOGENICITY OF NON-CANONICAL PEPTIDES 

Immune responses were detected against several canonical TAAs, including peptides derived from tyrosinase 
(TYR) and tyrosinase-related protein 1 (TYRP1) in melanoma patient 0D5P, and a melanocyte protein PMEL 
peptide in melanoma patient T1015A. Ultimately, we detected one non-canonical immunogenic peptide from 
0D5P through the Ribo-Seq inferred approach, which was derived from an alternative ORF of the ABCB5 gene. 
The pre-existing responses were found in autologous TIL products and peripheral blood after in vitro 
stimulation. Alternative ORFs of coding genes have previously been shown to generate novel antigens that are 
immunogenic, especially in the context of TAAs [149, 151, 365, 366], as well as in the viral context, for example 
in HIV-I [367, 368].  

Interestingly, the link between ABCB5 expression and melanoma occurrence has long been established, with 
ABCB5 acting as a stem cell marker and conferring chemotherapeutic resistance in malignant melanomas [301, 
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369]. Hotspot mutations in the canonical ABCB5 gene increase the proliferative and invasive properties of 
melanoma cells, thereby potentially acting as a tumor suppressor gene [370]. At the single-cell level, we found 
that ABCB5 was expressed in a specific subpopulation of cells, that included the co-expression of genes 
CTNNB1 and MITF. Together, there are indications that these three genes have an important role in 
maintaining a melanoma stem cell niche [301, 371]. The non-canonical ABCB5 peptide is shared across 
patients, specifically in three melanoma samples from our immunopeptidomics database ipMSDB. These 
findings highlight the potential of inhibiting tumor growth by immune targeting this epitope in melanoma stem 
cell subpopulations.  

The lack of immunogenicity for the remainder of the identified 451 non-canonical peptides could be due to 
multiple reasons. For example, T cells may not respond because of their exhausted state after rapid expansion 
that in turn could lead to a loss of antigen-specific frequencies [372]. Furthermore, the prolonged propagation 
in culture could have had an altered antigen repertoire of the interrogated samples. Additionally, the lower 
expression of non-coding genes found in our study (when compared to protein-coding genes) would likely lead 
to the presentation of non-canonical peptides in low copy numbers. The overall low expression could also 
explain the scarcity of non-canonical HLAIIp found in our samples (four peptides in total). These low copy 
numbers may present a limiting factor for cross presentation and for the generation of an appropriate T cell 
repertoire to initiate a robust anti-tumor response. As observed in viral systems, the relative abundance of 
specific epitopes, as well as antigen copy numbers, have been shown to correlate with the magnitude of 
antigen-specific cytotoxic T cell responses [373, 374]. In line with this, pre-existing T cell repertoires that confer 
protection in mice were correlated with the cognate antigen copy number on the target cell surface [250].  

Fortunately, the conducted in vitro immunogenicity assays do not fully exclude the possibility that these non-
canonical antigens represent good targets for cancer immunotherapy. In some cases, previous studies have 
reported promising mutated neoantigens that mediate tumor rejection, despite their lack of measurable T cell 
reactivity in vitro [251, 375-377]. Therefore, the currently employed T cell-based assays might not 
comprehensively characterize all traits of rejection antigens, and further research is needed to evaluate the 
possibility of using noncHLAp to induce a protective immune response in vivo.  

6.2.4 Limitations 

Despite the encouraging results obtained from this study, the conceptually developed pipeline should continue 
to be regarded as a work in progress, requiring adaptation depending on the research questions asked. While 
several limitations have already been discussed throughout this chapter, special consideration is given below 
to the challenges of building a comprehensive database and the work needed to validate non-canonical 
peptides.  

In view of developing a protein sequence database, our combined results revealed that less is in fact more. 
However, the comprehensiveness of the database might be improved when considering additional data 
sources. For example, Ribo-Seq presented an attractive approach to specifically pinpoint translated genomic 
regions. Nevertheless, the presented Ribo-Seq method excluded information on TEs. This is due to the fact 
that TEs are mostly repetitive, and the very short Ribo-Seq reads tend to map back to multiple regions in the 
genome, creating ambiguity. One viable option to include this potentially promising pool of non-canonical 
antigens would be to concatenate Ribo-Seq data with the three-frame translation of expressed TEs, pre-
extracted from an RNA-Seq-based approach. Furthermore, another interesting category of non-canonical 
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peptides could be those derived from alternative spliced variants, with a plethora of studies showing their 
increased RNA levels in cancer [160]. While these were not investigated in the research at hand, their 
identification may be possible through the implementation of sophisticated methods capable of computing 
splicing diversity with RNA-Seq data [378]. As 99% of the cancer specific somatic mutations are found outside 
of the exon-coding genome [379], whole genome sequencing (WGS) can offer opportunities to search for 
personalized mutated non-canonical peptides. However, in this study only approximately 1% of the variants 
identified through WES mapped back to non-protein-coding regions. Although resource intensive, WGS could 
be performed and integrated in order to customize the non-proteome-derived space for every patient based 
on their variants.  

Regarding the experimental setup for MS-based targeted validation, PRM was performed in order to evaluate 
the robustness and report the confidence level when using the computational pipeline NewAnce. However, 
when taking into account caveats that would apply in the clinic, such as limited timeframe, costs, resources 
and the effort required for multidisciplinary strategies, the question regarding the most suitable validation 
strategy remains. PRM techniques require a significant amount of time for method development and 
execution, as well as extensive downstream analyses [358]. Thus, this extensive validation approach is not 
expected to be routinely feasible in the clinic, except in instances where the routine-targeting of a few 
(common) peptides is carried out. Nonetheless, given the robust and reliable performance of NewAnce and 
our confidence in the resulting output, we believe that the implementation of PRM-based validation might not 
be required in a clinical setting.  

6.2.5 Future Perspectives 

While a mutated neoantigen discovery pipeline from the Bassani-Sternberg lab is being integrated into the 
clinical trials at the CHUV in the near future [338], the incorporation of the work presented in this thesis is still 
pending for the routine evaluation of non-canonical peptides. In order to enable integration into a streamlined 
approach and support large-scale analyses, the independent steps of the current workflow will need to be 
combined. These currently distinct steps include the processing of MS data by two different MS search tools 
and the implementation of NewAnce, as well as the established TE identification method and Ribo-Seq 
method. Furthermore, additional refinements to the approach could include RT prediction [380], post-filtering 
via HLA binding, and proper integration with RNA- and Ribo-Seq results. As discussed in Section 6.2.1, the 
stringency in the current NewAnce method reduced non-canonical peptide identification from 100s to 10s for 
individual samples, thus, further development should be conducted to increase sensitivity without 
compromising specificity and ensure that interesting targets are not missed. When taken together, this future 
work should enable both rich insights and data-mining on tumor non-canonical peptides, bringing more 
knowledge in terms of potential stratifications in cancer and their immunogenic potential. For example, 
hotspots of non-canonical antigen presentation in the genome are yet to be uncovered. If data generated by 
the large-scale use of the described pipeline is brought together, these hotspots could be extracted, as seen 
in similar analyses for proteome-derived HLA peptides [305]. Ultimately, if correlated with immunogenicity 
information, this will provide an important aspect for non-canonical antigen prioritization. 

Future work regarding the presented results is not limited to the incorporation of the pipeline into clinical 
trials. Importantly, we identified an immunogenic antigen from a novel alternative ORF of the melanoma stem 
cell marker ABCB5 (Figure 8). Excitingly, there is an indication from our unpublished Ribo-Seq results that this 
novel ORF is also found across two other melanoma samples, underlining its potential to be shared. Given the 
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critical role that this marker may play in cancer progression, it is vital for future work to evaluate its relevance 
across both cancer types and patients. For example, this could be explored by predicting the peptides that 
bind to the most common HLA alleles from the alternative ORF. These peptides should be synthesized in their 
heavy-labelled form and spiked back into a range of samples for targeted identification by MS. Furthermore, 
while our preliminary attempts have thus far been unable to sort the non-canonical ABCB5-peptide-specific 
TILs with multimers, other peptides originating from this novel ORF could be tested for immunogenicity and 
used to identify antigen-specific T cell populations. This would help explore whether ABCB5 non-canonical 
antigen-specific TCRs are shared among individuals by extracting information from further cellular analyses, 
and could shed light on its potential as a biomarker for diagnostic and prognostic applications.  

 

 

Figure 8 – Ribo-Seq directed immunopeptidomics. The potential of Ribo-Seq to support interpretation of MS 
data is illustrated. Translating ribosomes are halted, for example, with elongation inhibitors. The mRNAs with 
occupied ribosomes are digested with nucleases to enrich and isolate for ribosome-protected fragments. The 
fragments are thereafter purified, resulting in ribosome footprints. Libraries are constructed and deep 
sequencing performed. Sophisticated computational analysis allows the mapping of ribosome footprints and 
the identification of regions with triplet periodicity. Statistical calculations are performed to define translated 
loci with high confidence. These translated ORFs are used to build a protein reference database. The database 
is utilized as input to interpret immunopeptidomics data in a database-dependent search. We identified with 
Ribo-Seq a novel ORF in ABCB5 in three melanoma samples, that led to the MS-based discovery of a non-
canonical HLA peptide. Importantly, this peptide was found to be immunogenic in autologous immune cells, 
and thus represents a promising cancer immunotherapy target that warrants further exploration. Inspired by 
Hsu et al., PNAS, 2016 [381].  
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Chapter 7 CONCLUDING REMARKS 
Ultimately, the question remains: are non-canonical peptides relevant targets for cancer immunotherapy? To 
answer this, the characteristics of an ideal tumor antigen are considered. Specifically, both the antigen and 
source protein should be implicated in cancer, with their expression unique to tumors. Ideally, the antigen 
would be a HLA binder, recognized by autologous T cells, and shared across tumor types and patients. As 
discussed, our exploration of non-canonical peptides has found that they can be presented on tumors, are HLA 
binders, and could be immunogenic. One of the most intriguing findings presented here is the discovery that 
non-canonical peptides can indeed be shared across multiple tumor samples, and more frequently than 
nonsynonymous somatic mutations. This was validated by PRM and through analyses in ipMSDB, and indicates 
the potential to advance off-the-shelf treatment options. That being said, unlike mutated neoantigens, which 
are genuinely restricted to tumors, it is currently uncertain to what extent these non-canonical peptides are 
tumor-specific, and further research is needed on this topic.  

Overall, through the extensive development of experimental and analytical methods that interrogate the 
tumor HLA repertoire, this thesis provides a comprehensive proteogenomics-directed immunopeptidomics 
framework (Figure 9). These methodologies were optimized for the prioritization of actionable antigens as 
targets for cancer immunotherapy, for both pre-clinical and clinical pipelines. Consequently, meticulous and 
stringent assessments of the reported workflows were performed in order to affirm their robustness and 
validity, while concurrently providing deeper insights into the field of non-canonical antigen presentation. In 
conclusion, this work should help guide us towards the more informed prioritization of tumor antigens for 
personalized immunotherapy, an objective that we will continue working towards. 
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Figure 9 - Contributions towards the MS-based proteogenomics workflow for cancer immunotherapy. My 
research work presented in this thesis focused on (1) significantly improving the HLA peptide purification 
method, and (2) enabling deep antigen discovery with our in-house developed NewAnce computational tool. 
We generated patient customized databases to (3) identify tumor non-canonical antigens by MS. (4) Ribo-Seq 
was performed to gain deeper insights into the translation potential of source genomic regions, and additionally 
applied for MS-based non-canonical peptide discovery. (5) A substantial portion of non-canonical peptides were 
validated by targeted MS, and (6) their expression explored with scRNA-Seq. Combined, the integration of the 
steps in this workflow led to the development of a robust pipeline and (7) expanded the range of targetable 
epitopes for cancer immunotherapy. 
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Chapter 9 APPENDIX 

9.1 Co-Author Manuscripts 

During my time as a PhD student at the Ludwig Institute for Cancer Research at the University of Lausanne, I 
have contributed to many successful research projects that employed immunopeptidomics and proteomics 
approaches. The published manuscripts, along with those that are currently being prepared, are listed below. 
These were a result of intensive and rewarding collaborations, and my contributions to each are further 
detailed. 

In Marino and Chong et al., 2019 [337], I co-developed a book chapter outlining the detailed methodology of 
our high-throughput HLA immunoaffinity purification pipeline for basic and translational applications.  

In Racle et al., 2019 [178], I generated a significant amount of immunopeptidomics data, which were used for 
training prediction algorithms for HLA-II epitopes.  

In Westergaard et al., 2019 [319], I significantly contributed to this work both experimentally and through 
subsequent downstream analyses, leading to the successful identification of immunogenic tumor-associated 
antigens in a patient-derived ovarian cancer cell line. 

In Mylonas et al., 2018 [271], I assisted in the underlying research and analyzing the associated data, leading 
to the development of a workflow that accurately estimates the fraction of proteasome-generated spliced 
peptides found in the immunopeptidome.  

In Bassani-Sternberg et al., 2017 [175], I generated a significant amount of immunopeptidomics data, which 
were used for training prediction algorithms for HLA-I ligands.  

In Caron et al., 2017 [215], I documented the discussions and presentations from the immunopeptidomics 
community workshop in Zurich. This material enabled the highlighted gaps in immunopeptidomics research to 
be accurately conveyed, and was used for the Meeting Report.  

In Bruand et al., manuscript in revision, I experimentally validated the differential signatures in the proteome 
that was found for BRCA1 knockdown versus control samples.  

In Semilietof et al., manuscript in preparation, I performed immunopeptidomics experiments and analyzed the 
data obtained.  
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9.2 Supplementary Information 

9.2.1 Manuscript 1 

  

1 
 

Supplemental Data for:  

 

High-throughput and sensitive immunopeptidomics platform reveals profound 

IFNγ-mediated remodeling of the HLA ligandome  

Chloe Chong1,2*, Fabio Marino1,2*, HuiSong Pak1,2, Julien Racle1,2,5, Roy T. Daniel3, Markus 

Müller4, David Gfeller1,2,5, George Coukos1,2, Michal Bassani-Sternberg1,2# 

1 Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.  

2 Department of Oncology, University of Lausanne, 1015 Lausanne, Switzerland.  

3 Service of Neurosurgery, University Hospital of Lausanne, 1015 Lausanne, Switzerland. 

4 Vital IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.  

5 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.  

 

# Correspondence author: Michal Bassani-Sternberg (Michal.bassani@chuv.ch) 

*Equally contributing authors 
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Supplemental Fig. S1.  SDS-gel semi-quantification of recovered subunits of the HLA 

complexes. (A) Eluted HLA-I heavy chains and β2m molecules, and HLA-II heavy chains from 

lysates of selected cell line samples and the three mock samples, respectively. (B) Eluted HLA-I 

heavy chains and β2m molecules, and HLA-II heavy chains for lysate volumes corresponding to 

10, 30, 50, 70 and 100 million CD 165 B-cells, respectively. 
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4 
 

Supplemental Fig. S2. Motif analyses of HLA-II immunopeptidomes. Motifs obtained by 

GibbsCluster for the various samples based on the new MS data and the motifs built from IEDB 

data corresponding to the HLA-DRB1 alleles present in each sample. The number of motifs plotted 

for each sample is the best number as determined by GibbsCluster. Numbers above each motif 

indicate the number of unique peptides assigned to it. Background colors and title above each 

motif indicate which HLA-DRB1 alleles was assigned to the motifs. When binding motifs are 

redundant, both alleles were assigned to the observed motifs. 

  



Appendix 

 165 

 

 

 

5 
 

 

Supplemental Fig. S3. Excellent inter-plate reproducibility. (A) Inter-plate reproducibility 

calculated by Pearson correlations of Log2 transformed intensities of HLA-Ip and (B) HLA-IIp 

purified from JY cells on different days and with different stocks of reagents and plates. 
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6 
 

 

Supplemental Fig. S4. Increased expression of HLA-I complexes and allele-specific 

changes upon IFNγ treatment. (A) Increased expression of HLA-I on the surface of UWB.1 289 

cells upon IFNγ treatment detected by FACS analysis. (B) SDS-gel semi-quantitative analysis 

confirmed global increase in intensities of HLA class I heavy chains and β2m molecules after IFNγ 

treatment. (C) Volcano plot summarizing unpaired t-test analysis of the immunopeptidome of IFNγ 

treated versus untreated cells. Peptides located above the lines are statistically significantly 

modulated in their level of presentation (FDR=0.01, S0=1). Peptides were colored on the exact 

volcano plot as follows: peptides predicted to bind the HLA-B*07:02 in orange, to the HLA-A*03:01 

in green and to the HLA-A*68:01 in blue. 
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8 
 

 

Supplemental Fig. S5. Physicochemical properties of HLA-Ip upon IFNγ treatment. (A) 

Peptides were assigned to the different HLA allotypes and peptides uniquely identified in IFNγ 

treated (blue) or control (orange) samples were plotted for their distribution in predicted binding 

affinities. (B) IceLogo was used to calculate the statistics to find over- represented amino acids in 

each position of HLA-B*07:02, -A*68:01 and –A*03:01 predicted binders of the IFNγ dataset 

compared to the control. A difference of hydrophobicity scores (Ф) between IFNγ dataset 

compared to the control is reported together with their statistical significance. (unpaired t-test, p-

value'*<0.1, ** <0.05 and *** <0.01). 
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9 
 

Supplemental Table Legends 

Supplemental Table S1. Description of samples. HLA typing are provided for each sample 

including clinical information, where relevant.  

Supplemental Table S2. Experimental design. Information on the experimental design includes 

sample name, type of replicate, HLA purification type, sample size, experiment number, MS 

injection amount and name of the RAW file.  

Supplemental Table S3. Heavy labelled synthetic peptides for validation of workflow 

performance. Detailed MS/MS information about the 15 isotopically heavy labeled synthetic 

peptides used as spiked-in standards are provided for the assessment of reproducibility and carry-

over during the HLA-I and –II IP procedure.   

Supplemental Table S4. Heavy labelled synthetic peptides for technical reproducibility 

assessment. Detailed MS/MS information about 3 selected isotopically heavy labeled synthetic 

peptides and their light counterparts were used to measure technical reproducibility between the 

three replicates. Area under the curve, AUC; standard deviation, SD; coefficient variation, CV. 

Supplemental Table S5. Literature on HLA-I and HLA-II immunopeptidomics. Reviewed 

reports on the IP workflows for HLA-I and HLA-II immunopeptidomics were compared based on 

their published detailed protocol descriptions.  

Supplemental Table S6. Peptide output table Experiment Plate Number 1. A list of HLA-I and 

–II peptides identified by MaxQuant from the “peptides” output table filtered for known 

contaminants and reverse. Plate Number 1 includes seven B- and T- cell lines that were processed 

in parallel. 
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10 
 

Supplemental Table S7. Cysteine carbamidomethylated HLA peptides from Experiment 

Plate Number 1 and 2. A list of HLA-I and –II modified peptides identified by MaxQuant from the 

“modificationSpecificPeptides” output table filtered for known contaminants and reverse.  

Supplemental Table S8. Peptide output table Experiment Plate Number 2. A list of HLA-I and 

–II peptides identified by MaxQuant from the “peptides” output table filtered for known 

contaminants and reverse. Plate Number 2 includes the parallel processing of four patient-derived 

meningioma tissues samples.  

Supplemental Table S9. Peptide output table HLAIp Sensitivity Experiment. A list of HLA-I 

peptides identified by MaxQuant from the “peptides” output table filtered for known contaminants 

and reverse. The CD 165 B-cell line was used to assess the limits of sensitivity of our workflow 

with cell amounts ranging from 10-100 Million.  

Supplemental Table S10. Peptide output table HLAIIp Sensitivity Experiment. A list of HLA-

II peptides identified by MaxQuant from the “peptides” output table filtered for known contaminants 

and reverse. The CD 165 B-cell line was used to assess the limits of sensitivity of our workflo with 

cell amounts ranging from 10-100 Million. 

Supplemental Table S11. Peptide output table JY Interplate Performance. A list of HLA-I and 

–II peptides identified by MaxQuant from the “peptides” output table filtered for known 

contaminants and reverse. HLA peptides from JY B-cells were purified on different days with 

different reagents to assess the interplate performance of our extraction procedure.  

Supplemental Table S12. Peptide output table IFNγ Experiment. A list of HLA-I peptides 

identified by MaxQuant from the “peptides” output table filtered for known contaminants and 

reverse. HLA peptides were extracted from an ovarian cancer cell line upon IFNγ treatment.  
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11 
 

Supplemental Table S13. Protein groups output table IFNγ Experiment. A list of proteins 

identified by MaxQuant from the “ProteinGroups” output table filtered for only identified by site, 

known contaminants and reverse from an ovarian cancer cell line upon IFNγ treatment.  

Supplemental Table S14. N- and C-terminal elongated HLA-Ip pairs extracted  from the 

normalized “peptides” output table of the IFNγ Experiment. Features such as the direction 

(N- or C-terminal) of elongation, length of elongation, C-terminal cleavage specificities and their 

normalized intensities before and after treatment are reported here for each peptide pair for the 

analysis of N- and C-terminal peptide pairs. 

Supplemental Table S15. Peptide output table IFNγ Experiment with t-test values and 

predicted affinities. A list of HLA-I peptides identified by MaxQuant from the “peptides” output 

table filtered for known contaminants and reverse. HLA peptides were extracted from an ovarian 

cancer cell line upon IFNγ treatment. The values were log2 transformed, normalized and imputed. 

Unpaired two-sided t-test (FDR: 0.01, S0: 1) was performed between IFNγ and ctrl groups. HLA 

specificities were assigned for peptides that were predicted to bind one allele only.  
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9.2.2 Manuscript 2 

 

Supplementary Information 

 

 

Integrated Proteogenomic Deep Sequencing and Analytics Accurately 

Identify Non-Canonical Peptides in Tumor Immunopeptidomes 

 

Chong et al.  
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Supplementary Fig. 1 NewAnce for robust noncHLAIp identification. Group specific FDR 
calculation and the combination of two MS search tools enable the robust identification of 
noncHLAIp. a Schematic description of Comet FDR calculation workflow within NewAnce. 1) 
For PSMs of charge Z, the 3D Comet score space was divided into 40x40x40 cells. For every 
cell the probability ratios were calculated. 2) PSMs were split into non-canonical and 
proteome-derived groups and the class probability ratios were estimated for each group 
separately. 3) lFDR values were calculated for each cell and group. 4) Finally, the lFDR 
threshold corresponding to a global FDR of 3% was calculated and used to filter the PSMs. b 
The log10 of the number of unique peptides is shown for the comparison of 3 processing 
strategies tested for the identification of lncRNA- and proteome derived peptides at FDR of 
3% in 0D5P sample. c The p-values for the MixMHCpred binding predictions are shown for 
the same comparisons as in b. The percentages of predicted binders (MixMHC p-values ≤ 
0.05) are indicated as numbers above the boxplots. d The residual absolute errors of 
hydrophobicity index calculations by SSRCalc are shown for the same comparisons as in b. 
Standard errors are indicated as numbers above the boxplots. e The log10 of the number of 
unique peptides is shown for the comparison of 3 combiner options tested for the identification 
of lncRNA- and proteome derived peptides in the 0D5P sample. f The p-values for the 
MixMHCpred binding predictions are shown for the same comparisons as in e. The 
percentages of predicted binders (MixMHC p-values ≤ 0.05) are shown as numbers above 
the plots. g The residual absolute error of hydrophobicity index calculations by SSRCalc are 
shown for the same comparisons as in e. Standard errors are indicated as numbers above 
the boxplots. Please refer to the Methods section for boxplot parameters. h Systematic 
assessment of percentages of proteome-derived and predicted non-canonical HLA-I binders 
for each MS search tool (MaxQuant and Comet at FDR 3%) and NewAnce, for all n=11 
samples, were performed. Ordinary one-way ANOVA, Sidak’s multiple comparisons test was 
performed separately for Uniprot, TEs and lncRNAs. P-values between MaxQuant and 
NewAnce, and Comet and NewAnce are shown above the boxplots. ns: non-significant. i-l 
MaxQuant identified 0D5P prot- and noncHLAIp were compared to the NewAnce output, 
while reducing database sizes at FPKM thresholds. The total number of protHLAIp identified 
is plotted in i, and their corresponding percentage of predicted HLA binders in j. Similarly, 
the total number of noncHLAIp identified is plotted in k and the corresponding % of 
predicted HLA binders in l. Source data are provided as a Source Data file. 
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Supplementary Fig. 2 Hydrophobicity index calculation for all identified peptides. The 
data is shown for all assessed patient samples. In the leftmost panel, the observed mean 
retention time (RT) is plotted against the hydrophobicity indices (HI) for NewAnce-identified 
proteome-derived versus lncRNA-derived non-canonical peptides. All lncRNA-derived 
peptides (middle panel) or TE-derived peptides (rightmost panel) identified with each tool 
(MaxQuant, Comet, NewAnce) were analysed based on their hydrophobicity indices. Source 
data are provided as a Source Data file. 
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a bLength Distribution Peptide Position in Protein
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Supplementary Fig. 3 The origin of lncRNA-derived nonHLAps. LncRNA-derived noncHLAps are mainly 
derived from the C-terminus of the source translation products. a Protein length differences were assessed 
by sampling a matching-sized subset of both of the proteome-derived datasets fitting the length distribution of 
the lncRNA dataset (n=276) for a fair comparison. b Using the same dataset as that in (a), the corresponding 
HLA peptide’s relative position (0 for N-terminus, 1 for C-terminus) was calculated for source lncRNA non-
canonical and proteome-derived sequences. Statistical significance was performed with Wilcoxon testing. 
Please refer to the Methods section for boxplot parameters. Source data are provided as a Source Data file.
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Supplementary Fig. 4 MS-based validation of noncHLAIp presentation and drug treatment effects. a-d Statistical analyses of MS-
validated lncRNA-derived noncHLAIps and TAAs in the melanoma cell line 0D5P. The same comparisons were made first for all PRM-tested 
HLAIps regardless of the validation status (lncRNA HLAIp n=67, TAA HLAIp n=65); made second for lncRNA- (not confirmed n=30, confirmed 
n=37) and TAA HLAIps (not confirmed n=14, confirmed n=51) separately; and finally, made for only the PRM-confirmed HLAIps (lncRNA 
HLAIp n=37, TAA HLAIp n=51). RNA abundance in FPKM was extracted from the RNA-Seq data and compared within the corresponding 
groups. e-h MS-based intensity values were taken from the MaxQuant peptide output table and compared within the corresponding groups. i-
l Last, MS/MS reproducibility, based on fragmentation by MS/MS per raw file (16 raw files for 0D5P in total), was analysed and compared 
within the corresponding groups. Unpaired two-sided t-test at 95% confidence interval. P-values are indicated above the plots. m Volcano plot 
depicting t-test analysis of HLAIps of IFNγ-treated versus untreated T1185B melanoma cells. Peptides located above the lines are statistically 
significantly up- or downregulated (FDR: 0.01, S0:0.1). All HLAIps derived from immunity-related genes are highlighted in dark blue, whereas 
all lncRNA-derived noncHLAIps are highlighted in red. n RNA expression analyses upon IFNγ treatment in T1185B. Induction of the total 
number of genes in per gene set was analysed for control and treated samples separately. The following gene sets were analysed: a selected 
set of TAA genes, all non-coding genes, and a subset of hypomethylating agent-induced immune-related genes (see main text). o-q 
Decitabine-treated melanoma cell lines were investigated at the RNA level. Only the total number of genes of interest that were exclusively 
expressed in each condition were taken into account. The same groups described above were analysed. For each gene category, decitabine 
induced the expression of more genes. r One example of a lncRNA-derived noncHLAIp that was induced by decitabine treatment in 0D5P, 
which was analysed by PRM. Co-elution of heavy and endogenous light transitions was found in only decitabine-treated samples. Source 
data are provided as a Source Data file.
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Supplementary Fig. 6 TE and tumor associated gene expression in healthy tissues. A comparison of 
presumed non-coding source gene expression in the investigated samples and healthy tissues (GTEx) for TE-
derived HLAIps and TAAs. a Heatmap of TEs showing the 90th percentile gene expression levels in 30 healthy 
tissues on the left and the TE expression levels in our investigated samples on the right. Samples were classified 
as not expressed (90th percentile CPM ≤ 1) in any, 1-3, or more than 3 tissues other than testis to assess tumor 
specificity. The TEs were classified according to their TE family. Ten percent of the noncHLAIps derived from 
TEs were found to be expressed in only a single healthy tissue excluding the testis. b The same data described 
above are also plotted for selected source tumor-associated protein-coding genes in melanoma samples and for 
c lung tissue samples in TPM. Source data are provided as a Source Data file.
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Supplementary Fig. 7 NoncHLAIp presentation can be shared across individuals. a Elution profiles of light 
and heavy labelled transitions and b representative MS/MS fragmentation pattern for the noncHLAIp 
VTDQASHIY. c-d The same representation is shown for TE-HLAIp AAFDRAVHF. Source data are provided as 
a Source Data file.
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Supplementary Table 1 PRM-confirmed noncHLAIps that are shared across different 
samples. These patients express HLA allotypes that have identical or highly similar binding 
specificities. 
 
 

 
 

 

 

Class HLAIp 0D5P 0NVC 0MM745 C3N02671 Me275 T1015A Motif Motif

TE/lncRNA AAFDRAVHF C1203 C1203

lncRNA VTDQASHIY A0101 A0101 A0101

lncRNA KSDLSKPLSY A0101 A0101

lncRNA APKSSSGFSL B0702 B0702

lncRNA YLDPAQQNLY A0101 A0101

lncRNA ETDIEMETRY A0101 A0101 A0101

TE KVFKNGNAF B1501 A3201

C1203

A0101

A0101

B0702

A0101

A0101

B1501 A3201



Appendix 

 183 

 

Supplementary Table 2 The number of reads for the various gene features are shown for 
each library of 0D5P sample used for ribosomal sequencing.  
 

 
 
 

sample coding 
sequences

5' 
untranslated 

regions

3' 
untranslated 

regions

non-coding exons of 
protein-coding 

genes
ncRNAs introns intergenic total

coding 
sequence
 fraction

0D5P_ctrl_1 4400694 105786 83403 51027 346510 67675 155554 5210649 0.8445578
0D5P_ctrl_2 1536300 50939 50498 33487 178853 83700 193350 2127127 0.7222418
0D5P_ctrl_3 2636780 24335 43383 30810 258093 49229 213592 3256222 0.8097667
0D5P_ctrl4B 4510023 185817 219233 100180 645713 128480 326054 6115500 0.7374741
0D5P_ctrl5B 1404981 59688 76844 32808 217170 53621 157586 2002698 0.7015441

0D5P_05_uM_DAC_1 2431969 30950 41030 26017 226756 39433 232525 3028680 0.8029798
0D5P_05_uM_DAC_2 3450894 38133 76831 37924 271107 63493 268217 4206599 0.8203525
0D5P_05_uM_DAC_3 2973768 37896 53655 34141 233149 76593 239118 3648320 0.8151061
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Supplementary Data Legends 
 
Supplementary Data 1. Immunopeptidomics, sequencing and HLA-I typing information are 
provided for all the samples investigated in the present study. 
 
Supplementary Data 2. Report of the numbers of HLAp and percentages of predicted HLA 
binders identified across each MS search tool and when NewAnce was applied for every 
investigated sample along with their clinical characteristics. 
 
Supplementary Data 3. List of all PSMs of lncRNA-derived HLAIps and TE-derived HLAIps 
identified across the investigated samples in NewAnce. Additionally, Ribo-Seq-identified 
noncHLAIps are reported for melanoma 0D5P. More information on the PSMs can be found 
in the PRIDE repository with the dataset identifier PXD013649. 
 
Supplementary Data 4. All noncHLAp PSMs were extracted and searched against six 
common modifications, using Comet at 1% FDR. XCorr scores and other PSM parameters, 
are listed. Out of the 2,597 MSMS spectra, only 37 had a higher Comet XCorr score for a 
modified or an alternative UniProt peptide, corresponding to 17 unique non-canonical peptide 
sequences and 3.3% of total identified noncHLAp.  
 
Supplementary Data 5. A summary of the noncHLAp PSMs that were ambiguously identified 
matching another Uniprot peptide and/or modified peptide. Out of the 17 peptides, two 
peptides had several PSMs being unambiguously identified as the non-canonical peptides, 
and therefore the non-canonical sequences are likely to be correct. One of the two peptides 
was confirmed by our PRM validation. The rest of the PSMs that showed higher scores as 
compared to the non-canonical counterparts were identified as de-amidated (Uniprot) peptides  
(n=6 unique peptides), carbamidomethylated Uniprot peptides (n=3) and alternative Uniprot 
sequences (n=8). Only one phosphorylated noncHLAIp identified and it was among those 
ultimately fitting better a canonical UniProt sequence. 
 
Supplementary Data 6. PRM-tested HLAIps, including noncHLAIps and a subset of 
protHLAIps identified in 0D5P. The sequences, their origin, and their PRM status are shown 
along with their “heavy” and “light” theoretical masses of 2+. 
 
Supplementary Data 7. Targeted MS-based confirmation by PRM of selected prot- and 
noncHLAIps for 0D5P. For all confirmed sequences, the co-elutions of heavy and light 
transitions are shown, along with their respective MS/MS spectra. 
 
Supplementary Data 8. The samples that were used as input in ipMSDB are listed together 
with their corresponding information and PRIDE identification numbers. 
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2013 Best in Class, Glycobiology | Imperial College London, UK 
Awarded for achieving highest grade in Glycobiology course 

Scientific Publications  

2020 Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical 
peptides in tumor immunopeptidomes 
Chong C.*, Müller M., Pak H., Harnett D., Huber F., Grun D., Leleu M., Auger A., Arnaud M., 
Stevenson B., Michaux J., Bilic I., Hirsekorn A., Calviello L., Simó-Riudalbas L., Planet E., Lubiński 
J., Bryśkiewicz M., Wiznerowicz M., Xenarios I., Zhang L., Trono D., Harari A., Ohler U., Coukos 
G., Bassani-Sternberg, M. Nature Communications, accepted on 12th February 2020 

2019 High-throughput, fast, and sensitive immunopeptidomics sample processing for mass 
spectrometry 
Marino F*., Chong C.*, Michaux J., Bassani-Sternberg M. In Immune Checkpoint Blockade (pp. 
67-79). Humana Press, New York 

2019 Robust prediction of HLA class II epitopes by deep motif deconvolution of 
immunopeptidomes  
Racle J*., Michaux J., Rockinger G., Arnaud M., Bobisse S., Chong C., Guillaume P., Coukos G., 
Harari A., Jandus C., Bassani-Sternberg M., Gfeller D. Nature biotechnology 

2019 Tumour-reactive T cell subsets in the microenvironment of ovarian cancer 
Westergaard M.*, Andersen R., Chong C., Kjeldsen J., Pedersen M., Friese C., Hasselager T., 
Lajer H., Coukos G., Bassani-Sternberg M., Donia M., Marie Svane I. British journal of cancer 
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2018 Estimating the Contribution of Proteasomal Spliced Peptides to the HLA-I Ligandome 
Mylonas R.*, Beer I., Iseli C., Chong C., Pak H., Gfeller D., Coukos G., Xenarios I., Müller M., 
Bassani-Sternberg M. Molecular & Cellular Proteomics 

2018 High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound Interferonγ-
Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome 
Chong C.*, Marino F.*, Pak H., Racle J., Daniel R., Müller M., Gfeller D., Coukos G., Bassani-
Sternberg M. Molecular & Cellular Proteomics 

2017 Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and 
identifies allostery regulating HLA specificity  
Bassani-Sternberg M.*, Chong C., Guillaume P., Solleder M., Pak H., Gannon P., Kandalaft L., 
Coukos G., Gfeller D. PLoS computational biology 

2017 A Case for a Human Immuno-Peptidome Project Consortium 
Caron E*., Aebersold R., Banaei-Esfahani A., Chong C., Bassani-Sternberg M. Immunity 

2016 

 

In vivo visualization and quantification of collecting lymphatic vessel contractility using near-
infrared imaging 
Chong C.*, Scholkmann F.*, Bachmann S., Luciani P., Leroux J., Detmar M., Proulx S. Scientific 
reports  

2016 

 

DeepCAGE transcriptomics identify HOXD10 as a transcription factor regulating lymphatic 
endothelial responses to VEGF-C. 
Klein S.*, Dieterich L.*, Mathelier A., Chong C., Sliwa-Primorac A., Hong Y., Shin J., Lizio M., Itoh 
M., Kawaji H., Lassmann T., Daub C., Arner E., Fantom Consortium, Carninci P., Hayashizaki Y., 
Forrest A., Wasserman W., Detmar M. Journal of cell science 

2016 Regulation of lymphangiogenesis in the diaphragm by macrophages and VEGFR-3 signaling. 
Ochsenbein A.*, Karaman S., Proulx S., Goldmann R., Chittazhathu J., Dasargyri A., Chong C., 
Leroux J., Stanley E., Detmar M. Angiogenesis  

TBD Immunogenicity of BRCA1-deficient ovarian cancers is driven through DNA sensing and is 
augmented by PARP inhibition 
Bruand M.*, Barras D., Mina M., Ghisoni E., Lanitis E., Zhang H, Chong C., Chee S., Tsianou T., 
Dorier J., Stevenson B., Iseli C., Ronet C., Bobisse S., Genolet R., Walton J., Bassani-Sternberg 
M., Kandalaft L., Ren B., McNeish I., Swisher E., Harari A., Delorenzi M., Ciriello G., Irving M., 
Rusakiewicz S., Foukas P., Martinon F., Dangaj D., Coukos G. Manuscript in revision  

TBD A pre-clinical humanized mouse model of antigenic epitope identification using mass 
spectrometry-based immunopeptidomics 
Semilietof A.*, Stefanidis E., Chong C., Pak H., Bobisse S., Marino F., Varrin M., Girotra M., 
Rotmistrovsky-Valcarcel N., Mathevet P., Barnier-Quer C., Sandaltzopoulos R., Collin N., Harari 
A., Coukos G., Bassani-Sternberg M., Vanhecke D. Manuscript in preparation 
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Relevant Scientific Presentations   

2019 

 

Poster at 8th SCCL Faculty & Staff Retreat, Lausanne, CH 

Poster and Talk at Cancer Immunotherapy Conference (CICON19), Paris, FR 

Poster at 6th joint Novartis-EPFL-UNIL meeting, Basel, CH 

2018 Poster at CIMT, Mainz, DE 

Talk at Wolfsberg Meeting, Meeting of the Swiss Immunology PhD students, Thun, CH 

2017 Poster and Talk at 6th SCCL Faculty & Staff Retreat, Lausanne, CH 

Poster at EMBO workshop on Antigen Processing and Presentation, Salamanca, ES 

2016 Poster at 5th SCCL Faculty & Staff Retreat, Lausanne, CH 

Poster at MaxQuant Summer School, Oxford, UK 
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