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Gaps in the wall: understanding cell wall biology to tackle 
amoxicillin resistance in Streptococcus pneumoniae 
Paddy S Gibson and Jan-Willem Veening*   

Streptococcus pneumoniae is the most common cause of 
community-acquired pneumonia, and one of the main 
pathogens responsible for otitis media infections in children. 
Amoxicillin (AMX) is a broad-spectrum β-lactam antibiotic, 
used frequently for the treatment of bacterial respiratory 
tract infections. Here, we discuss the pneumococcal 
response to AMX, including the mode of action of AMX, the 
effects on autolysin regulation, and the evolution of 
resistance through natural transformation. We discuss 
current knowledge gaps in the synthesis and translocation of 
peptidoglycan and teichoic acids, major constituents of the 
pneumococcal cell wall and critical to AMX activity. 
Furthermore, an outlook of AMX resistance research is 
presented, including the development of natural competence 
inhibitors to block evolution via horizontal gene transfer, and 
the use of high-throughput essentiality screens for the 
discovery of novel cotherapeutics. 
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Introduction 
Amoxicillin (AMX) is the frontline antibiotic for the 
treatment of bacterial respiratory tract infections such as 
otitis media and pneumonia. The global leading cause of 
community-acquired pneumonia and one of the most 
common causes of otitis media in children is Streptococcus 
pneumoniae (the pneumococcus) [1]. This Gram-positive 
opportunistic pathogen is an important commensal 

member of the human nasopharyngeal microflora and 
while colonization is usually asymptomatic, local spread 
or invasion of other regions can result in symptomatic 
infection. In addition, the pneumococcus is capable of 
crossing epithelial barriers to cause severe in-
vasive pneumococcal disease (IPD), such as sepsis and 
meningitis, and was responsible for more than 800 000 
deaths in 2019 [2]. The pneumococcus has a remarkable 
genomic plasticity that is driven by a phenomenon called 
natural competence that allows bacteria to take up and 
integrate extracellular DNA from its environment, 
thereby able to rapidly evolve in response to stressful 
conditions such as antibiotic exposure [3]. As such, an-
tibiotic resistance is evolving rapidly and the high 
burden of pneumococcal disease, despite vaccine in-
troduction, led to the WHO listing S. pneumoniae as a 
top-12 priority pathogen in 2017. Indeed, it was recently 
estimated that approximately 600 000 people died in 
2019 due to antibiotic resistance-associated pneumo-
coccal infections [4]. 

AMX is one of the most prescribed antibiotics globally  
[5]. AMX is a penicillin (PEN)-derived β-lactam antibiotic 
and highly active toward S. pneumoniae, including against 
isolates with reduced susceptibility toward PEN [6]. 
Using fluorescently labeled bocillin, it was shown that 
AMX has a distinct mode of action compared with PEN 
(see below, [7]). In addition, the high absorption rate of 
AMX into the bloodstream reduces side effects and in-
creases serum concentrations, making it desirable as an 
oral treatment. It is commonly prescribed for otitis media 
and outpatient community-acquired pneumonia with re-
ductions in recommendations for treatment duration, 
thereby limiting the chance of selection of resistant 
strains [8]. The current clinical breakpoints for oral AMX 
treatment recommended by european committee on an-
timicrobial susceptibility testing (EUCAST) are 
minimum inhibitory concentration (MIC) <  0.5 µg/mL to 
be considered fully susceptible and ≥ 1 µg/mL for re-
sistance [9]. Strains with AMX MICs greater than 16 µg/ 
mL were isolated in Romania between 2005 and 2006  
[10], and are currently on the rise in Spain, a phenomenon 
that correlates with increased usage of oral AMX/clavu-
lanic acid (sold as Augmentin) [11]. Clavulanic acid in-
hibits β-lactamase enzymes, frequently found in Gram- 
negative pathogens such as Haemophilus influenzae, an-
other causative agent of otitis media [1]. These enzymes 
have not yet been found in S. pneumoniae. 
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AMX usage and consequent resistance evolution oc-
curred in the context of widespread PEN usage and 
circulation of β-lactam resistance determinants [12]. It is 
thus impossible to delve into AMX-specific resistance 
mechanisms and dissemination without first under-
standing general mechanisms of pneumococcal β-lactam 
resistance. Here, we examine the fundamental process 
of cell wall synthesis and its inhibition by β-lactam an-
tibiotics, as well as the resulting downstream effects, 
including autolysis. We discuss resistance evolution 
through rampant horizontal gene transfer between S. 
pneumoniae and commensal Streptococcal species. We 
then summarize the current knowledge of β-lactam re-
sistance determinants in the pneumococcus and discuss 
how these have changed in response to the shift to-
ward broad clinical usage of AMX. 

β-lactam treatment and the cell wall 
Cell wall synthesis is essential for cell viability, making 
this pathway an attractive target for antibiotic develop-
ment [13]. In the pneumococcus, the cell wall is com-
posed of roughly equal quantities of both peptidoglycan 
(PG) and teichoic acids (TA), both of which play a role in 
the cellular response to β-lactam treatment (Fig. 1). 

PG biosynthesis starts with the mevalonate pathway in 
which the precursors for the production of all isoprenoids 
in S. pneumoniae are generated [14]. One of those iso-
prenoids, undecaprenyl phosphate (Und-P), acts as the 
lipid carrier for the PG precursor lipid II [15]. Lipid-II 
precursors are synthesized in the cytoplasm, then flipped 
and exposed on the outside of the membrane, possibly 
by YtgP, an essential flippase similar to MurJ in Gram- 
negative bacteria [16,17]. In addition to linear lipid II, 
branched muropeptides are produced by the aminoacyl- 
tRNA-dependent ligases MurM and MurN, which add 
L-Ser-L-Ala or L-Ala-L-Ala to the lysine in the stem 
peptide [18•]. It is not known whether YtgP can also flip 
branched muropeptides or whether other flippases are 
involved (Fig. 1). Incorporation of lipid II into the PG 
occurs in two steps performed by penicillin-binding 
proteins (PBPs) and shape, elongation, division, and 
sporulation (SEDS) proteins FtsW and RodA [19–21]. 
Transglycosylation, in which precursors are assembled 
into PG chains, is followed by transpeptidation, where 
cross-links between neighboring peptides are formed. Of 
the six PBPs encoded by S. pneumoniae, only Pbp2x and 
Pbp2b are essential under normal growth conditions. 
These proteins are both high-molecular-weight (HMW) 
class-B PBPs, with transpeptidase (TP) and PBP dimer 
domains. In addition, both pneumococcal SEDS pro-
teins FtsW and RodA are essential [22]. Pbp2x is re-
quired for septal PG synthesis and depletion results in 
an elongated phenotype, while Pbp2B is involved in 
peripheral PG synthesis and depletion leads to short 
cells [23•]. Pbp1a, Pbp1b, and Pbp2a, HMW class-A 

PBPs, have both TP and transglycosidase domains and 
are not essential in normal growth conditions. Pbp3 is a 
low-molecular-weight D,D-carboxypeptidase that reg-
ulates PG synthesis by cleaving the fifth amino acid from 
pentapeptides already integrated in the PG matrix, re-
ducing available substrate for incorporation of new lipid- 
II monomers [24]. 

Septal and longitudinal PG synthesis are maintained in a 
delicate balance and inhibition of the two essential PBPs 
is tolerated to differing extents [25,26]. Recent work, 
using direct Stochastic Optical Reconstruction Micro-
scopy (dSTORM) and 3D-Structured Illumination Mi-
croscopy on fluorescent D-amino acid-labeled PG in S. 
pneumoniae, showed spatially ordered PG synthesis with 
septal PG being synthesized ahead of the peripheral PG, 
which is inserted into the septal PG after its splitting by 
septum hydrolases [27••,28]. The serine/threonine ki-
nase StkP, together with adapter proteins DivIVA and 
GpsB, also plays a crucial role in regulating cell elonga-
tion and division [29]. In addition, using sCRilecs-seq 
(subsets of clustered regularly interspaced short palin-
dromic repeats (CRISPR) interference libraries ex-
tracted by fluorescence-activated cell sorting coupled to 
next-generation sequencing), it was shown that septal 
PG synthesis is more sensitive to reduced Und-P levels 
than peripheral PG synthesis, suggesting that the reg-
ulation between elongation and division is also con-
trolled at the level of substrate concentration [30]. 

β-lactam antibiotics mimic the D-ala-D-ala moiety of the 
muropeptides, which is recognized by the PBPs for 
transpeptidation, allowing an interaction with the active- 
site serines of TP and D,D-carboxypeptidase domains  
[39]. The resulting acylation reaction hydrolyzes the 
high-energy β-lactam ring to form a covalent penicilloyl- 
enzyme complex, blocking the active site [40]. Inhibi-
tion of transpeptidation is the critical step that stops cell 
wall synthesis, although almost all β-lactams also exhibit 
potent inhibition of Pbp3 via the D,D-carboxypeptidase 
domain [7]. Cell shape is dependent on tight control of 
transpeptidation and transglycosylation. TP inhibition 
results in a high concentration of un-crosslinked glycan 
strands without the structural support of cross-linking, 
induces nascent PG turnover, and depletes intracellular 
stocks of cell wall building blocks, ultimately con-
tributing to bacterial death [41]. In addition, it is hy-
pothesized that the uncoupling of transpeptidation and 
transglycosylation activities combined with the loss of 
cell wall synthesis quality checking capabilities of other 
proteins during β-lactam treatment results in the mis-
activation of autolytic hydrolases [41]. PG hydrolases are 
essential for insertion of muropeptides into the existing 
cell wall structure, septum formation, and daughter cell 
separation [29]. However, their activity is tightly regu-
lated, and loss of this control leads to explosive 
lysis (Fig. 2). 

2 Cell Regulation  
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Pneumococcal autolysis 
Major pneumococcal autolysin LytA is required for lysis 
to occur following β-lactam treatment [43]. LytA is an N- 

acetylmuramoyl L-alanine amidase with a choline- 
binding domain. LytA dimers bind to choline-decorated 
TAs, orienting the active site to cleave the amide bond 

Figure 1  
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Overview of cell wall synthesis in the pneumococcus. Knowledge gaps in key details regarding pneumococcal cell wall biology are indicated by 
question marks. Both PG and TA precursors are anchored to the membrane by lipid carrier undecaprenol phosphate (Und-P). Und-P is made from 
farnesyl-PP precursors produced via the mevalonate pathway [14,15]. Farnesyl-PP is used by UppS to produce undecaprenyl pyrophosphate (Und- 
PP), which is then dephosphorylated to Und-P by UppP. UppS is inhibited by FDA-approved drug Clomiphene (yellow triangle, structure indicated), a 
potential cotherapeutic for the resensitization of AMX-resistant pneumococcal infections [30]. Pentapeptides are synthesized from uridine 
diphosphate-N-acetylmuramic acid (UPD-MurNAc) and amino acids in the cytoplasm by MurA-F. Transfer to Und-P is performed by MraY, then N- 
acetylglucosamine (GlcNAc) is added by MurG forming Lipid II. Lipid II is either transferred over the membrane by predicted flippase YtgP (MurJ 
homolog), or additional amino acids are added by MurM and MurN, resulting in branched Lipid II before flipping [18•]. Whether YtgP is the actual 
pneumococcal Lipid II flippase and can also flip branched Lipid II is still unknown. These precursors are then incorporated into the PG matrix via PBP, 
RodA, and FtsW-mediated transglycosylation. Und-PP is assumed to be recycled by UppP, but a flippase would also be required for transport back 
across the membrane. Recent work in Bacillus subtilis and Staphylococcus aureus identified widely conserved proteins UptA and PopT as the missing 
transporters [31,32], but homology in S. pneumoniae remains to be explored. Peptide bridges are formed by transpeptidation, thought to be largely 
catalyzed by Pbp2b and Pbp2x. Transpeptidase activity is inhibited by AMX (pink square, structure indicated). Pbp3 contributes to PG maturation by 
cleaving the terminal alanine from Lipid II, blocking further cross-linking. TA precursors are also synthesized in the cytoplasm in a series of membrane- 
bound steps from N-acetylgalactosamine (GalNAc), 2-acetamido-4-amino-2,4,6-trideoxygalactose (AATgal), glucose (Glc), and ribitol-5-phosphate 
(Rbo-P) [33]. They are then modified with phosphorylcholine groups by LicC, following proton-coupled choline import by LicB [34], and 
phosphorylation by LicA [35]. TacF flips phosphorylcholine-modified precursors over the membrane, to be used as substrates for polymerization by 
TarQ and TarP [22]. As TarP is classified by PFAM as a Wzy-type polymerase with predicted active site outside the cell, we speculate that TarP and 
TarQ polymerize the TA extracellularly in contrast to previous reports [33]. Multimers are then either attached to a glycolipid anchor by TacL [36], or 
anchored to the PG matrix presumably by LytR [37], competing for anchor points with capsule tethers [38]. Glycolipid anchors are thought to consist of 
glucosyl-diacylglycerol (Glc-DAG), synthesized by addition of Glc to diacylglycerol (DAG) via LafA, and exposed on the outside of the membrane by an 
unknown flippase. Note that the pneumococcus has a second glycolipid GalGlc-DAG produced by LafB (CpoA)-catalyzed addition of galactosyl (Gal) 
to Glc-DAG. LytA attaches to phosphorylcholine residues on TA at certain stages of growth and is responsible for AMX-induced autolysis via its PG 
hydrolase activity.   
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between glycan strand and peptide in the PG [44] 
(Fig. 1). TAs are an important structural component of 
the cell wall. Precursors are assembled in the cytoplasm 
before being decorated with phosphorylcholine groups 
by LicC [33]. TacF transports phosphorylcholine-mod-
ified TA precursors over the membrane ready for poly-
merization by TarQ and TarP [22]. It has typically been 
thought that precursor polymerization occurred in the 
cytoplasm before flipping, however, based on homology 
of TarP with Wzy-type polymerases, we would expect 
the predicted active site to be situated outside the cell. 
We thus hypothesize that polymerization occurs extra-
cellularly [33]. TA multimers are either anchored onto 
the PG matrix, presumably by LytR to form wall tei-
choic acids (WTA) [37] or transferred to a glycolipid 
anchor by TacL for lipid teichoic acids (LTA) [45]. 
WTA and LTA pathways thus compete for the same 
precursors, and the proportions of these two cell wall 
structures are thought to be important for the regulation 
of LytA activity [36]. 

LytA is constitutively expressed through all growth 
phases, indicating strict regulation at the protein level  

[46]. LytA is predominantly cytoplasmic during ex-
ponential growth and shifts to the extracellular surface in 
stationary phase [36,47]. How this shift occurs and what 
factors affect the timing or control of the autolytic ac-
tivity are not well understood. PEN tolerance is asso-
ciated with changes to autolysin regulatory elements in 
clinical isolates, as opposed to complete loss of LytA or 
its function [48]. This is perhaps not surprising as LytA 
deletion mutants have attenuated virulence in murine 
infection models [49]. In some cases, autolysin was still 
present in lower concentrations than in a wild-type 
strain, and tolerant isolates were still susceptible to lysis 
via other induction routes [50]. Although not well stu-
died for AMX, we could expect some cross-tolerance 
from PEN-tolerant mutants. 

Natural competence and amoxicillin 
resistance evolution in the pneumococcus 
The first AMX-resistant strains isolated between 1994 and 
1995 had similar MICs for both AMX and PEN [51]. 
Isolates with higher MICs for AMX than for PEN began 
to be isolated in France in 1997 [12], while two large co-
hort studies across Spain between the years of 1998–1999 
and 2001–2002 found that 5% of isolates were AMX-re-
sistant, a figure that increased to 20% when only PEN- 
resistant isolates were considered [52,53]. Pneumococcal 
strains are characterized by both genetic sequence type 
and capsule-dependent serotype. Closely related se-
quence types are clustered into clonal complexes to reflect 
close relationships. A more comprehensive study of 165 
pneumococcal strains isolated from 17 Spanish hospitals 
between 1998 and 1999 found that 9.8% were AMX 
nonsusceptible [54,55]. Among the AMX-resistant isolates 
collected during this time, approximately 78% of them 
belonged to five clonal complexes notorious for PEN re-
sistance: Spain23F-1, Spain6B-2, Spain9V-3, Poland23F-16, 
and an England14-9 [55,56]. Although the sequence types 
associated with these clones are still common culprits in 
AMX-resistant infections, they are often found with dif-
ferent serotypes due to prevalent capsule switching in the 
postvaccine era [11,57•]. AMX nonsusceptible clones have 
also been associated with increased rates of cephalosporin 
and clindamycin resistance [55]. 

Serial passaging experiments to select for mutants with 
reduced susceptibility to β-lactam antibiotics such as 
piperacillin and cefotaxime provided valuable informa-
tion regarding antibiotic targets and key PBP affinities 
for resistance. However, these experiments are challen-
ging to perform for AMX as many residue substitutions 
are required across multiple loci for detectable changes 
in resistance [42••,58]. Previous studies have shown no 
or very minor decreases in susceptibility, with no more 
than a 2-fold increase in MIC [59]. Maintaining selection 
for 24 passages did result in a 10-fold increase in MIC, 
but at 0.125 g/mL was still significantly below the 

Figure 2  
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Cell lysis following AMX treatment. Snapshots from phase-contrast 
time-lapse imaging of VL2177 (TIGR4, AMX MIC 0.016 μg/mL), a 
serotype 4, AMX-susceptible laboratory strain, and VL1313 (ST6521, 
AMX MIC 4 μg/mL), a serotype 11A AMX-resistant clinical isolate, grown 
in AMX 1 μg/mL [42••]. Dramatic lysis of the AMX-susceptible strain is 
visible by 3 h of exposure. Micrographs were produced in Gibson 
et al., 2022.   
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clinical breakpoint for intermediate resistance [60], and 
even starting from PEN-resistant clinical isolates did not 
result in an increase in MIC [61]. 

Resistant variants primarily arise through homologous 
recombination among strains, or from closely related 
species that occupy the upper respiratory tract niche  
[62]. The result is frequent and large-scale recombina-
tion events, enabling an ever-changing landscape of 
vaccine-escape and antibiotic-resistant variants [63]. 
β-lactamase enzymes have never been isolated from 
S. pneumoniae. Instead, resistance in this species is 
predominantly mediated by significant amino acid 
substitutions in the PBPs, although mutations in non- 
PBP genes such as murM and ciaH have also been 
implicated [40,64,65]. While highly conserved in β- 
lactam-sensitive strains, PBPs of resistant isolates are 
enormously variable [40]. 

Indeed, among AMX-resistant pneumococcal isolates, 
the relative horizontal transfer frequencies of pbp2x and 
pbp2b were high (10.2% and 7.8%, respectively), in-
dicating that movement of pbp alleles coding for proteins 
with low AMX affinity between pneumococcal strains 
has contributed to the dissemination of resistance [56]. 
Evidence of pbp allele transfer among Streptococcus mitis, 
Streptococcus oralis, Streptococcus gordonii, and S. pneumo-
niae has been found in clinical isolates [66,67•], while 
pbp alleles from S. mitis coding for low-affinity PBPs 
conferred resistance to PEN and cefotaxime in S. pneu-
moniae under laboratory conditions [68]. β-lactam-sus-
ceptible commensal Streptococcal species display large 
variation in pbp alleles as well as regions homologous to 
low-affinity mosaic pbp fragments in β-lactam-resistant S. 
pneumoniae. This provides a global pool of low-affinity 
pbp alleles for lateral gene transfer into, and among, 
pneumococcal isolates, enabling rapid dissemination of 
pbp-mediated resistance [69,70]. 

Natural competence and homologous recombination are 
powerful processes that enable enormous genetic varia-
tion and genomic plasticity. Competence is controlled by 
a quorum sensing pathway that rapidly expresses all 

proteins necessary for exogenous DNA uptake and fra-
tricide. Upon cytoplasmic entry, ssDNA is bound by 
RecA, DprA, and SsbB, and the homology search is in-
itiated [3]. Once RecA-mediated crossover has begun, 
the stringent homology requirement decreases, allowing 
some mismatches to occur, a requirement for the re-
combination of highly variable pbp loci [71]. 

Recombination regions up to 50-Kb long were identified 
in clinically relevant pneumococcal isolates such as 
pneumococcal molecular epidemiology network clone 1 
(PMEN-1) [63,72]. Events of this length enable si-
multaneous capsular serotype and resistance profile 
switching due to the close proximity of the cps locus to 
pbp2x and pbp1a [73]. In addition, frequent cotransfer of 
distantly located pbp loci provides strong evidence for 
epistasis between resistance determinants [74,75]. 

Pbp2x, Pbp2b, Pbp1a, and MurM implicated in 
amoxicillin resistance 
β-lactam resistance in S. pneumoniae is mediated by large- 
scale modifications to the PBPs that reduce the anti-
biotic-binding affinity. However, no single mutation or 
block of mutations in any one pbp was sufficient to 
confer AMX resistance in a susceptible strain [76] and 
multiple residue sites in all three of Pbp1a, 2x, and 2b 
were found to be under positive selection in resistant 
isolates [77]. Adding to this complexity are the risks 
associated with altering the active sites of essential en-
zymes, requiring compensatory mechanisms to balance 
fitness loss with antibiotic avoidance. This results in 
selection for mutations outside of the target loci, as well 
as a tendency toward an optimal order of resistance de-
terminant acquisition. 

Low-affinity alleles of pbp2x, pbp2b, murM, and pbp1a 
were essential to recapitulate the AMX MIC of a re-
sistant serotype 11A isolate (clonal complex 156) in 
susceptible strains D39V and TIGR4. In concordance 
with previous work, Pbp2x and Pbp2b substitutions 
were critical first steps toward resistance [42••,58]. 
MurM and Pbp1a substitutions were acquired in a 
second round of transformation, and were essential for 

Figure 3  
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Optimal order of allele uptake for the development of AMX resistance. Acquiring low-affinity alleles of the essential PBPs, Pbp2b and Pbp2x, was 
demonstrated by both whole genome and polymerase chain reaction (PCR) fragment transformation experiments to be the first key step in AMX 
resistance development [42••,58]. High-level resistance could then be acquired through the uptake of pbp1a and murM alleles. 
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high-level AMX resistance (Fig. 3). The TP active-site 
modifications found in PBPs of resistant pneumococcal 
isolates can have severe deleterious effects on the cell  
[78,79]. As such, acquiring determinants in this optimal 
order facilitates rapid evolution of high-level resistance 
through fitness compensation. 

To further complicate our understanding of AMX re-
sistance in the pneumococcus, genomic context has an 
enormous effect on the MICs conferred by resistance 
determinants. In one study, strains carrying identical pbp 
and murM alleles displayed different AMX MICs and 
transforming these alleles into a susceptible lab strain 
did not confer the same level of AMX resistance as the 
donor [80]. In a different collection of AMX-resistant 
clinical isolates, the TP domain of pbp1a did not contain 
mutations, but novel substitutions in Pbp2x were iden-
tified [10]. This indicates strongly the existence of more 
than one molecular mechanism for AMX resistance, but 
more detailed investigations into AMX-resistant isolates 
from different lineages is required to explore this idea 
further. 

β-lactam antibiotics differ in their TP active-site inter-
actions, thus substitutions reducing binding affinity to 
one drug may have an inverse effect on that of another  
[7]. Despite this, there are many well-described PBP 
substitutions found in β-lactam-resistant isolates, parti-
cularly at the catalytic motifs within the TP domains, 
which have been thoroughly reviewed previously [40]. 
In the context of AMX resistance, the active-site serines 
of Pbp2x include S337, S395, and S571, which have been 
shown to stabilize cefotaxime embedded in the active 
site [81], and the respective neighboring sites 338, 394, 
and 572 were found to be under positive selection in the 
context of AMX resistance [77]. Outside of the TP do-
main, relatively few substitutions have been linked to 
resistance (although many studies only report the se-
quence of TP domains), and were not found to be es-
sential for AMX resistance [42••]. Within Pbp2b, the 
T446A substitution has been selected for in laboratory 
experiments with both piperacillin and AMX [82] 
(Paddy Gibson, PhD thesis, University of Lausanne, 
2022), as well as found in collections of PEN and AMX- 
resistant clinical isolates [83,84]. A set of 10 mutations at 
the C-terminus of the Pbp2b TP domain is strongly 
associated with high-level AMX resistance [77,84] 

Mosaic pbp1a alleles restore deleterious growth defects 
conferred by low-affinity pbp2x and pbp2b alleles [78,85]. 
In addition, functional Pbp1a is required for expression 
of the resistance phenotype [42••]. Found in all β- 
lactam-resistant isolates, the TSQF(574−577)NTGY 
substitution contributes to a narrower active site [86], 
while there is evidence for positive selection of S351A 
and E512K in AMX resistance [77]. In contrast to Pbp2x 
and Pbp2b, substitutions outside the TP domain of 

Pbp1a are found in resistant isolates and have been as-
sociated with differences in AMX MIC, although the 
role of these changes in the β-lactam–PBP interaction is 
not known [77]. 

Penicillin versus amoxicillin: a changing 
selective landscape 
AMX began to be recommended for clinical use as rates 
of PEN resistance in S. pneumoniae increased. 
Consequently, AMX resistance evolved when alleles for 
low β-lactam-binding affinity PBPs had already been 
circulating in the clinic for more than 20 years, since the 
first PEN-resistant strain was identified. Despite this, it 
was initially found that most PEN-resistant isolates 
could still be treated with AMX, with AMX MICs lower 
than those for PEN [87,88]. Importantly, this observa-
tion implies that resistant mutations acquired under 
PEN-selective pressure do not necessarily confer the 
same reduction in PBP affinity for AMX. This is inter-
esting given the close evolutionary relationship between 
AMX- and PEN- resistant clones, and the strong in-
dications that high AMX MICs evolved within classical 
PEN-resistant lineages [12,54–56]. Several studies 
comparing pbp allele sequences or restriction fragment 
length polymorphism patterning within PEN-resistant 
strains with varying AMX susceptibilities found large 
variation within pbp2x and pbp1a [12,58,76,80]. The only 
PBP substitutions shared among AMX-resistant isolates 
were in Pbp2b, specifically those located toward the C- 
terminal end of the TP domain (amino acids 590–641). 
Up to 10 substitutions have been identified in this re-
gion, with AMX MIC increasing with the number of 
modifications [76]. Indeed, transfer of this block of 
mutations was critical to reach donor-level AMX MIC in 
genomic DNA transformation experiments [42••]. In-
terestingly, this block of mutations could not be trans-
formed into a susceptible lab strain, unless low-affinity 
alleles of other pbp genes and a mutated murM allele 
were already present in the genome [42••,84], poten-
tially explaining the greater ease with which PEN-re-
sistant clones acquired AMX resistance [12]. 

Close association between pbp2b and murM 
alleles in amoxicillin resistance 
The presence of modified murM alleles results in higher 
proportions of branched muropeptides in the cell wall 
and are thought to compensate for losses in PBP fitness  
[64,89]. Wild-type murM is not essential under normal 
conditions, but deletion of this gene results in almost 
complete loss of PEN resistance, regardless of any low- 
affinity PBPs present [90]. The effect of murM mutants 
on the final MIC highly depends on the overall genomic 
context. For example, transfer of murM from a serotype 
23F isolate to susceptible lab strain R6 carrying pbp2x, 
pbp2b, and pbp1a alleles from the same donor was unable 
to confer comparable resistance. However, the same 
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murM allele could confer further resistance in R6 when 
in the presence of pbp alleles from different multidrug- 
resistant clinical isolates [58]. The importance of bran-
ched muropeptides to β-lactam resistance is not well 
understood, although it has been hypothesized that the 
different lipid-II shape either fits the low-affinity variant 
active sites better, thus compensating for reduced 
transpeptidation efficiency, or is a stronger competitor 
against β-lactams for PBP binding [40]. 

β-lactam resistance-associated murM alleles have been 
observed to co-occur with specific pbp2b mutations in 
AMX-resistant clinical isolates, including the 590–641 
block mentioned above [11,58,76,84]. This suggests an 
inclination toward branched muropeptides in cell elon-
gation, the major function of Pbp2b. Importantly, 
Pbp2b-depleted cells have been shown to incorporate 
more branched muropeptides into the cell wall [23•]. In 
addition, deleting murM introduces synthetic lethality 
with pbp2b, where decreasing Pbp2b concentration be-
comes toxic in a dose-dependent manner [23•]. This is 
not the case for Pbp2x, supporting an increased pro-
pensity for branched muropeptides in peripheral but not 
septal cell wall synthesis. One proposed hypothesis is 
that indirect cross-linking by the longer and more flex-
ible branched muropeptides in glycan strands 
strengthens the PG structure when cross-linking activity 
is reduced, and that Pbp2b specificity could thus be due 
to the increased turgor pressure experienced during di-
vision by new PG at the periphery but not the 
septum [23•]. 

Outside the penicillin-binding proteins: other 
determinants implicated in amoxicillin 
resistance 
Less commonly in pneumococcal β-lactam resistance, 
genetic determinants outside the pbp and murM loci are 
implicated. This has not been well studied in the con-
text of AMX resistance, and no AMX-specific determi-
nants have been identified. Nevertheless, PG N- 
acetylglucosamine deacetylase encoding pgdA was first 
associated with β-lactam resistance in strains with higher 
AMX than PEN MICs. It was strongly associated with 
specific pbp2x mutations and required to recapitulate 
both the AMX and PEN MICs of the donor strain fol-
lowing the transformation of genomic DNA from a ser-
otype 19A-resistant clinical isolate into susceptible strain 
R6 [91]. 

Selecting for mutants that grew following exposure to 
AMX identified the two-component signal transduction 
system CiaRH as a low-level resistance determinant 
(Paddy Gibson, PhD thesis, University of Lausanne, 
2022). Substitutions in the histidine kinase CiaH were 
first identified following serial passage in cefotaxime and 
piperacillin, usually clustered proximal to the conserved 

histidine residue (H226) [65], while more distally lo-
cating substitutions have been identified in clinical iso-
lates [92]. CiaRH acts as a general response to cell wall 
stress and regulates transcription of 21 operons, in-
cluding those involved in choline uptake and metabo-
lism, TA synthesis, and competence [93,94]. It is not 
known how CiaH senses cell wall stress, and environ-
ment-dependent differences in the response make it 
challenging to study. Exactly which member(s) of its 21- 
operon regulon is responsible for the changes in β-lactam 
susceptibility remains elusive, and it is unlikely to be 
specific to AMX. 

Future outlook 
Despite 40 years of clinical use, AMX resistance in the 
pneumococcus remains low, providing a unique oppor-
tunity to act in advance of the problem. 

A complex resistance genotype reliant on recombination 
is challenging to investigate at the bench as the process 
of horizontal gene transfer itself plays such a critical role 
in the evolution. Truly reproducing the clinical en-
vironment is difficult. Early work with PCR products 
limited experiments to known resistance determinants  
[58], and while transformation experiments with isolated 
genomic DNA expand the determinants that can be 
studied, it still fails to truly mimic the native environ-
ment [42••,91]. We would expect extracellular DNA to 
be either highly fragmented, or for transfer to occur 
following lysis of a neighboring cell in close contact, both 
of which will affect the quantity and quality of DNA 
taken up [95]. Recent work exploring the effects of cell- 
to-cell contact on recombination and resistance de-
terminant transfer has perhaps shown the most accurate 
experimental design for these contexts and may provide 
a platform for future work on AMX resistance evolution  
[96]. Finally, the selection of donor and recipient strains 
is perhaps the most engineered aspect of these experi-
ments. We use highly resistant donors from the clinic 
but transform their DNA into fully susceptible labora-
tory strains that have not been found in patients in more 
than 70 years. To fully discern how AMX resistance has 
developed, and is currently evolving, it is important to 
consider the serotypes and sequence types represented 
in AMX- resistant isolates. Utilizing recipient strains 
already encoding reduced susceptibility to PEN and 
perhaps other drugs is critical, as the genomic context 
even outside the PBPs will play a role both in re-
combination, and in how protein modifications are tol-
erated by the cell. 

One approach to slow the evolution of antibiotic re-
sistance in S. pneumoniae is to inhibit natural competence 
and thus reduce horizontal gene transfer. Conveniently, 
a side effect of this approach is attenuated virulence, as 
murein hydrolases such as LytA and CbpD are 
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upregulated during competence, increasing adherence to 
host cells as well as triggering the release of cytoplasmic 
pneumolysin [37,97•]. Competence-stimulating peptide 
(CSP) analogs block competence quorum sensing, in-
hibiting the resulting transcriptional cascade [97•,98]. In 
addition, proton motive force blockers, such as the bio-
cide triclosan, have been shown to disrupt competence 
onset and effectively reduce horizontal gene transfer 
both in vitro and in an in vivo mouse model [99]. Long- 
term evolutionary effects at the population level of these 
types of cotherapeutics have yet to be explored. 

In the search for cotherapeutic molecules that increase 
the killing potential of a drug while reducing the like-
lihood of resistance development, the use of high- 
throughput screening to assess bacterial stress response 
on the whole-genome level is being widely applied  
[100•,101]. Indeed, sCrilecs-seq identified the mevalo-
nate pathway as a potential cotherapeutic target. In-
hibiting isoprenoid synthesis with the FDA-approved 
drug clomiphene (Fig. 1), in combination with AMX, 
was able to resensitize an AMX-resistant pneumococcal 
isolate [30]. This work emphasizes the tight associations 
between cell wall synthesis pathways, which can be 
exploited for the development of cotherapeutics, and 
highlights the future role of chemogenomics in ongoing 
research to combat the antibiotic resistance pandemic. 

In conclusion, the complex evolutionary trajectories and 
delicate protein interactions that comprise β-lactam re-
sistance in S. pneumoniae offer many challenges for the 
study of AMX resistance. However, they also present 
many potential routes for the inhibition of resistance 
development and the treatment of AMX-resistant 
pneumococcal infections. 
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