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Over the past decade, immunotherapy has emerged as a major modality in cancer medicine. However, despite its
unprecedented success, immunotherapy currently benefits only a subgroup of patients, may induce responses of
limited duration and is associated with potentially treatment-limiting side effects. In addition, responses to immu-
notherapeutics are sometimes diminished by the emergence of a complex array of resistance mechanisms. The
efficacy of immunotherapy depends on dynamic interactions between tumour cells and the immune landscape in
the tumour microenvironment. Ultrasound, especially in conjunction with cavitation-promoting agents such as
microbubbles, can assist in the uptake and/or local release of immunotherapeutic agents at specific target sites,
thereby increasing treatment efficacy and reducing systemic toxicity. There is also increasing evidence that ultra-
sound and/or cavitation may themselves directly stimulate a beneficial immune response. In this review, we sum-
marize the latest developments in the use of ultrasound and cavitation agents to promote checkpoint inhibitor
immunotherapy.
Introduction

Cancer immunotherapy

Although there is evidence of the exploitation of the immune system
in treating diseases in medical texts dating back to the Ancient World,
the use of immunotherapy in oncology was not widely explored until
the 18th century [1]. In 1863, Rudolf Virchow reported a connection
between tumours and inflammation after observing that neoplastic tis-
sues are often surrounded by leukocytes. Since then, deeper understand-
ing of the inflammatory microenvironment of solid tumours has
supported Virchow’s hypothesis, and the correlation between malignant
tissue and inflammation has spurred the development of cancer immu-
notherapy [2−5]—the harnessing of the body’s natural defences to treat
and prevent tumour growth. The most widely reported example of early
cancer immunotherapy was the experiment by William B. Coley in
1891, in which he attempted to treat cancer patients with bacteria-
derived products [1,6]. Coley [7] reported remarkable effects in certain
cancer patients, but his lack of systematic reporting, inconsistent success
rates and competition from the contemporaneous development of radio-
therapy meant that his work remained largely ignored and indeed dis-
credited for most of the 20th century. Decades later, interest in the
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immune system re-emerged following advances in immunology and can-
cer research, including the discovery of interferon and dendritic cells
[8,9], understanding of the crucial role of T cells in immunity [10] and
development of the first vaccine based on a single purified surface anti-
gen [11,12]. Over the past 40 years the field of immunology has
emerged as a major influence in cancer research and treatment. In 2018,
James P. Allison and Tasuku Honjo were jointly awarded the Nobel Prize
in Physiology or Medicine “for their discovery of cancer therapy by inhi-
bition of negative immune regulation” [13].

Immunotherapeutics

In cancer immunotherapy, agents are utilized to either activate or
boost the immune system to attack cancer cells through natural mecha-
nisms, which otherwise are evaded, are repressed or never develop at all
enabling uninterrupted disease progression [14] (Figs. 1 and 2).

In recent years, a wide variety of immunotherapeutic products have
been approved by the U.S. Food and Drug Administration (FDA), includ-
ing checkpoint inhibitors, recombinant cytokines, adoptive cell thera-
pies and cancer vaccines (Fig. 2). To date, immune checkpoint inhibitors
represent the most thoroughly investigated class of immunotherapeu-
tics. Current mainstream drugs that block checkpoint proteins target
CTLA-4 (cytotoxic T lymphocyte-associated protein 4), PD-1
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Figure 1. Effects of immune checkpoint inhibitors. Monoclonal antibodies that block the regulatory immune targets CTLA-4, PD-1 and PD-L1 are the mainstream drugs
currently applied in the clinic. A deeper understanding of tumour immunology has led to an increasing number of immunotherapies, including the first recent U.S. Food
and Drug Administration approval of anti-LAG-3. For tumour-directed T cells to become activated, two signals are required. The first signal corresponds to the binding
of specific tumour peptides (TAA) to TCR on antigen-specific T cells. The second signal is typically mediated between the interaction of co-stimulatory molecules on
antigen-presenting cells and T-cell receptors. Blocking immune checkpoint proteins, including PD-1, PD-L1, CTLA-4 and LAG-3, with monoclonal antibodies promotes
increased T-cell activation, proliferation and enhanced effector function. After the monoclonal antibody binds to the immune targets, the tumour-specific killing ability
of T cells is then activated (causing an immune attack) [15,16]. MHC, major histocompatibility complex; TAA, tumour-associated antigen; TCR, tumour cell receptor;
IFN-γ, interferon-γ. Created in Biorender.com.
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(programmed cell death protein 1) and PD-L1 (programmed cell death
ligand 1) [6,19,20]. Whilst CTLA-4 and PD-1 are found on T cells, PD-L1
is found mainly on cancer cells [19]. The physiological role of immune
checkpoints is to maintain appropriate immune responses and protect
healthy tissues from auto-immune attack (Fig. 1). Over the past decade,
the most impactful class of novel anti-tumour drugs comprises those that
inhibit PD-1/PD-L1 [21−28]. These drugs block the binding of inhibi-
tory molecules to their receptor ligand on tumour or cytotoxic T cells
[29−31]. As of December 2021, the number of active interventional
clinical trials testing the effectiveness of anti-PD-1/PD-L1 increased
from 1 in 2006 to 5683 as monotherapy or in combination with other
treatments [5,32]. In 2016, the first clinical trial of a PD-1-targeted
monoclonal antibody, nivolumab, was reported (NCT01454102). Since
then, at least seven monoclonal antibodies targeting PD-1 or its ligand
PD-L1 have been approved by the FDA alone or in combination with
other therapies for the treatment of more than 14 cancer types (Table 1).
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In March 2022, the FDA approved a combination of nivolumab and
relatlimab, the first immune checkpoint inhibitor targeting LAG-3 (lym-
phocyte-activation gene 3), for patients with untreated unresectable or
metastatic melanoma [33].

Similar to Coley’s toxins, however, the clinical success of immuno-
therapy has been variable, with only 20%−30% of patients responding
to monotherapy, and some only temporarily. Solid tumours present a
particular challenge, with the efficacy of anti-PD-1/PD-L1 inhibitors
fluctuating between 10% and 30% [37,38]. The tumour microenviron-
ment (TME) not only presents a physical barrier to drug uptake and
accumulation; it also contributes directly to the suppression of a normal
immune response through a number of mechanisms such as production
of immunosuppressive cytokines and induction of regulatory T cells
[39,40]. If a therapeutic concentration of an immunotherapeutic cannot
be achieved, then there will be insufficient restoration of the anti-
tumour immune response [41], development of resistance, tumour



Figure 2. Effects of microbubbles and ultrasound in enhancement of different classes of cancer immunotherapy. Immunomodulatory agents or immunotherapeutics
can be categorised as follows. (i) Agents that promote the activity of dendritic cells, antigen-presenting cells (APCs) and/or T lymphocytes, to identify tumour cells as
“foreign.” (ii) Agents that inhibit immunosuppressive responses in tumours: Such agents may inhibit myeloid-derived suppressor cells (MSDCs) or regulatory T cells
(Tregs) or may inhibit the suppressive function of immune checkpoint molecules, including CTLA-4 (ipilimumab), PD-1 (pembrolizumab and nivolumab) and PD-L1
(atezolizumab, avelumab, durvalumab) [17]. (iii) Cellular therapies including chimeric antigen receptor (CAR) T cells, engineered T cell receptor (TCR) therapy, adop-
tive transfer of tumour-infiltrating lymphocytes (TILs) and cell-based vaccines. This illustration represents distinct categories of immunotherapy and how the effects of
microbubbles and ultrasound could enhance each immunotherapy subclass. Reprinted, with permission, from Kooiman et al. [18].

Table 1
CTLA-4 and PD-1/PD-L1 targeted drugs (inhibitors of CTLA-4 and PD-1/PD-L1) approved by the U.S. FDA

Drug name
(brand name, manufacturer)

Type of cancer approved to treat First FDA approval date Type of checkpoint inhibitor

Ipilimumab
(Yervoy, BristolMeyersSquibb)

Melanoma, RCC, colorectal, HCC, NSCLC, malignant pleural
mesothelioma

2011 Anti-CTLA-4

Pembrolizumab
(Keytruda, Merck&Co)

Melanoma, NSCLC, RCC, Hodgkins lymphoma, HNSCC,
Merkel cell carcinoma, MSI-H or dMMR markers,
colorectal cancer, gastric cancer, HCC, cervical cancer,
PMBCL, SCLC, cutaneous squamous, bladder cancer,
breast cancer, endometrial cancer, esophageal cancer,
TMB-high cancer

2014 Anti-PD-1

Nivolumab
(Opdivo, Bristol-Myers Squibb)

Melanoma, NSCLC, RCC, Hodgkin’s lymphoma, HNSCC,
colorectal cancer, gastric cancer, HCC, SCLC, bladder
cancer, esophagus, malignant mesothelioma

2014 Anti-PD-1

Atezolizumab
(Tecentriq, Roche)

Melanoma, NSCLC, HCC, SCLC, bladder cancer, breast
cancer

2016 Anti-PD-L1

Durvalumab
(Imfinzi, AstraZeneca)

NSCLC, SCLC, bladder cancer, biliary track 2017 Anti-PD-L1

Avelumab
(Bavencio, EMD Serono)

RCC, Merkel cell carcinoma, bladder cancer 2017 Anti-PD-L1

Nivolumab + ipilumab
(Opdivo + Yerboy, Bristol-Meyers Squibb)

Malignant pleural mesothelioma, NSCLC 2020 Anti-CTLA-4 and anti-PD-1

Tremelimumab + durvalumab (Imjudo + Imfinzi,
Pfizer/AstraZeneca Pharmaceuticals)

Metastatic NSCLC, no sensitizing EGFR mutation, anaplastic
lymphoma kinase genomic tumour aberrations

2022 Anti-CTLA-4

Relatlimab-rmbw+ nivolumab (Opdualag,
Bristol-Meyers Squibb)

Unresectable or metastatic melanoma 2022 Anti-LAG-3 and anti-PD-1

Cemiplimab-rwlc
(Libtayo, Regeneron)

NSCLC, cutaneous squamous-cell carcinoma 2022 Anti-PD-1

Dostarlimab-gxly
(Jemperli, GlaxoSmithKline)

dMMR solid cancers, endometrial carcinoma 2023 Anti-PD-1

In addition to the FDA-approved drugs, a few more drugs have been approved by agencies of the European Union, Japan and China:
camrelizumab, sintilimab, tislelizumab and toripalimab [32,34−36].
dMMR, DNA mismatch repair; EGFR, epidermal growth factor receptor; FDA, U.S. Food and Drug Administration; HCC, hepatocellular carcinoma; HNSCC,
head and neck squamous cell cancer; MSI-H, high microsatellite instability; NSCLC, non-small cell lung cancer; PMBCL, primary mediastinal B-cell lym-
phoma; RCC, renal cell carcinoma; SCLC, small cell lung cancer; TMB, tumour mutational burden.
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progression and, in some cases, treatment-limiting side effects [42].
Therefore, a method that can either enable greater delivery efficiency
and/or shift the TME from immunosuppressive to immunopermissive
would have a major impact for many cancer patients who would other-
wise fail immunotherapy [43]. The aim of this review is to discuss the
potential application of ultrasound in this context to overcome the limi-
tations of checkpoint inhibitor immunotherapy.

Ultrasound therapy and immunostimulation

High-intensity focused ultrasound

High-intensity focused ultrasound (HIFU, i.e., ultrasound with suffi-
cient intensity to promote tissue ablation) has been utilized in the treat-
ment of multiple diseases, including essential tremor [44,45], uterine
fibroids [46] and cancer [47−51]. Several studies have suggested that
HIFU can also increase the effectiveness of immunotherapeutic drugs
through enhanced delivery and/or by amplification of the natural anti-
tumour immune response [52,53]. HIFU enables the local ablation of
tumour tissue and can promote other beneficial effects in the TME [54]
including a systemic or abscopal immune response [55]. For example,
improved T lymphocyte-mediated function, measured by a marked
increase in the CD4+/CD8+ ratio in peripheral blood of cancer patients
with posterior choroidal melanoma, has been observed following hyper-
thermia generated by HIFU (frequency = 0.8 MHz, acoustic focal peak
intensities ranging from 5000 to 20000 W/cm2, duration ranging from
2.5 to 8 h) [41,56−58]. Currently, there is a growing number of ongoing
pre-clinical studies supporting the rationale for combining immunother-
apy with focused ultrasound [59]. Silvestrini et al. [60] combined abla-
tive focused ultrasound with anti-PD-1 and CpG, a toll-like receptor
(TLR) agonist, in murine B16 melanoma to induce an abscopal effect,
resulting in a complete response to therapy in 80% of treated mice with
bilateral disease at day 90. The underlying mechanisms have yet to be
fully explained and are likely multifactorial, for example, enabling anti-
gen release, promoting vascular alteration, chemokine, or cytokine alter-
ation or dampened immune resistance. Interestingly, other physical
cancer treatments such as surgery, microwave and external beam radio-
therapy have also been reported to stimulate abscopal effects in pre-clin-
ical and clinical studies [41,61−64], although similarly the underlying
mechanisms have never been fully explained.

Ultrasound-mediated cavitation

High-intensity focused ultrasound can induce both thermal and
mechanical effects. Of the latter, cavitation—the generation and subse-
quent oscillation of gas/vapour-filled bubbles—has been reported to be
especially important in cancer therapy from accelerating ablative pro-
cesses to facilitating uptake of chemotherapy [65,18]. In addition, anti-
tumour immune responses may be activated by cavitation through
potentiation of immunostimulatory or chemotactic factors or through
their delivery into cells [52,66−69]. The presence of cavitation bubbles
during the application of ultrasound may also lead to bio-effects in
tumours such as (i) an increase in blood vessel permeability, (ii) altera-
tions in the molecular composition of the TME, (iii) recruitment and
penetration of tumour-infiltrating lymphocytes into tumour and (iv)
enhanced extravasation of particles or therapeutics into the interstitial
space (Fig. 2) [18,70]. It is also possible that cavitation promotes the
release of structurally unaltered tumour-associated peptides, allowing
presentation of tumour neoantigens [71].

Pulsed mode high-intensity focused ultrasound (pHIFU) in combina-
tion with checkpoint inhibitor immunotherapy has also recently been
determined to improve anti-tumour effects compared with control sub-
jects and with the treatments alone. In pulsed mode, exposures last milli-
seconds or shorter and use high peak negative pressure amplitudes (10
−20 MPa) similar to the acoustic parameters used in histotripsy studies
[72,73]. In a murine orthotopic model of pancreatic cancer, pHIFU in
4

combination with antibody immunotherapy shifted the TME from an
immunosuppressive to a pro-inflammatory microenvironment by an
increased ratio of CD8+IFNγ+ T cells to CD4+ T cells, regulatory T cells
and MDSCs (peak negative pressure = 17 MPa, frequency = 1.5 MHz,
duty cycle = 1%, 1 pulse/s, duration = 25 s) [74]. Acoustic cavitation
and physical disruption of the tumours were also reported, and it was
suggested that focused ultrasound in combination with checkpoint
inhibitor immunotherapy may be able to enhance anti-tumour effects in
patients with dense tumours, such as pancreatic cancer [74].

Localised drug delivery

Two key advantages of HIFU are that it can be applied extracorpore-
ally, and the ultrasound beam can be tightly focused to localise tissue
damage to the tumour site. Cavitation agents, including gas microbub-
bles, liquid droplets and solid particles [18], can be used to enable pre-
dictable generation of cavitation at the ultrasound focus and thus limit
the risk of off-target effects. They can also be used to enable therapy to
be delivered at lower, non-ablative ultrasound intensities. Microbubbles
have been extensively used as image contrast agents for several decades,
and more recently, clinical studies have reported their utility in restoring
blood flow after myocardial infarction [75], disrupting the blood−brain
barrier [76] and identifying liver lesions [77,78]. Clinical trials have
also illustrated the safety and efficacy of ultrasound-triggered microbub-
ble destruction combined with other cancer therapies, such as transarte-
rial radioembolization [79,80].

Cavitation agents offer a means of further increasing treatment local-
isation by conjugating drug molecules to them to enable their release
and/or tissue uptake at the target site. Microbubbles, in particular, can
be readily engineered for disease-specific targeting and/or loaded with
therapeutic agents to enable controlled drug release by low-intensity
focused ultrasound (LIFU, i.e., focused ultrasound with pulse intensity
similar to that of diagnostic ultrasound) guided by imaging. Microbub-
ble oscillations induced by LIFU can generate mechanical forces that
cause vascular disruption and promote extravasation [70,81,82]. This is
particularly important for cancer therapy as, unlike the vessels found in
healthy tissue, tumour blood vessels are structurally disorganised [83],
and low response rates to immunotherapy may be at least partly attrib-
uted to this aberrant vasculature [84]. Li et al. [82] designed and devel-
oped a multifunctional microbubble system that incorporated dual
loading with a chemotherapeutic agent (Docetaxel) inside the lipid shell,
and the anti-PD-L1 monoclonal antibody conjugated to the surface. This
group suggested that the system exhibited improved delivery to the
tumour site through three combined effects: (i) anti-PD-L1 conjugated to
the microbubble surface allowed tumour targeting; (ii) low-intensity
focused ultrasound collapsed the microbubbles and released the encap-
sulated chemotherapeutic agent within the tumour (acoustic focal peak
intensity = 2.0 W/cm2, frequency = 1 MHz, duty cycle = 50%, dura-
tion = 5 min); and (iii) cavitation increased tumour vessel permeability
and enhanced drug penetration across the tumour vessel walls and inter-
stitium [81]. Anti-PD-1 has been coupled to microbubbles for deploy-
ment by low-intensity ultrasound. This combination therapy amplified
immune-tumour responses and increased survival compared with con-
ventional delivery of free drug [31].

Immune adjuvants, including TLR agonists, have been used to
enhance the therapeutic efficiency of immunotherapy [60,85]. Immune
adjuvants are molecules that elicit activation of innate and adaptive
immune responses by promoting recruitment of antigen-specific CD8+
T cells to tumour sites [85−87]. The mechanisms underlying immunosti-
mulatory adjuvants for cancer immunotherapy are comprehensively
detailed in other reviews and so are not specifically discussed here [88
−91]. Despite the benefits of immunostimulatory adjuvants in cancer
immunotherapy, however, the systemic administration of TLR agonists
inevitably leads to an uncontrolled immune response and damage to
healthy tissue [85,92]. Zheng et al. [85] recently reported a study indi-
cating local administration of immune adjuvants by a drug-loaded
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microbubble delivery system enhances checkpoint inhibitory immuno-
therapy (acoustic focal peak intensity = 1.5 W/cm2,
frequency = 1.5 MHz, duty cycle = 50%, duration = 3 min). In this
study, docetaxel and the immune adjuvant R837 were loaded into
microbubbles and co-injected with the immune checkpoint inhibitor,
anti-PD-L1. The tumour inhibition rate for primary and distant tumours
reached 88.28±1.04% and 89.86± 5.76%, respectively, in the group
receiving docetaxel, R837 and systemic delivery of anti-PD-L1 [85].

Anti-vascular effect

The combination of ultrasound and microbubbles has also been used
as an “anti-vascular” agent to disrupt blood vessels with several down-
stream direct and indirect effects when combined with immunomodula-
tors. These include potentially increased trafficking or penetration of
immune checkpoint inhibitors (or resulting T cells) into tumour tissues
or even enhanced processes for antigen-presenting cell maturation and
differentiation. In a colorectal cancer murine model, ultrasound-medi-
ated microbubble therapy induced necrosis via an instant shutdown of
blood flow within the tumour tissue [31]. Another study reported cyto-
kine recruitment of immune cells to both local and distant tumour sites
in a Her2+ (NDL) murine breast cancer mouse model. This system pro-
duced anti-tumour effects via three pathways: (i) carriage of an anti-
CD326 antibody to target tumour cells, (ii) sonoporation-enhanced
transduction of a non-viral gene encoding IFN-β and (iii) tumour shrink-
age by direct mechanical forces. Tumour transfection with IFN-β
enhanced the damage-associated profile resulting from the destructive
application of ultrasound to targeted microbubbles (frequency =
250 kHz, peak negative pressure = 500 kPa, burst length = 4 ms, pulse
repetition frequency = 30 Hz, total duration = 3 min). The
Figure 3. Therapeutic applications of ultrasound and cavitation nuclei in the cancer
terized by inhibitory factors that lead to immune regulatory feedback mechanisms. Th
cell antigens and ending with the killing of cancer cells. The goal of cancer immunoth
cer immunity but avoid a generation of unrestrained autoimmune deleterious inflamm
tions between immune compartments during the immune response to cancer. Retrie
[19]. Created in Biorender.com.
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combination of microbubbles with checkpoint inhibition reduced
tumour growth in both the directly treated and distant tumours, induc-
ing local and systemic immune effects [93].

Future perspectives

Clinical evidence has revealed that the combination of a PD-1/PD-L1
checkpoint inhibitor with a chemotherapeutic agent may be synergistic
in specific clinical settings [82,94,95], and indeed, 90% of the new trials
that started in 2020 involved combination strategies [96]. However,
this combination approach has led to some quite severe side effects,
including cardiotoxicity, hematotoxicity, hepatotoxicity and neurotoxic-
ity. To address this challenge, the studies referred to in the previous sec-
tion suggest that ultrasound-mediated cavitation may enhance the
delivery of immunotherapeutic and chemotherapeutic agents while
reducing toxicity compared with the free drug combination. Clinical
studies are now ongoing to determine the efficacy of combining focused
ultrasound with immunotherapy. A clinical trial evaluating the combina-
tion of focused ultrasound with pembrolizumab in solid tumours (AM-
003/NCT04116320) is currently underway at the University of Virginia
[59,97]. Another clinical trial also from the University of Virginia and
investigating the combination of focused ultrasound with pembrolizu-
mab in metastatic breast cancer patients (Breast-48/NCT03237572) was
completed on 17 June 2022 but no results have been yet reported. Aside
from these trials, there are others listed, recruiting or completed clinical
studies worldwide exploring the use of focused ultrasound in combina-
tion with checkpoint inhibitors.

Combinations of anti-PD1/PD-L1 agents with anti-angiogenic or anti-
vascular agents are also currently being tested in >80 ongoing clinical
trials [98], and again, pre-clinical studies have determined a potential
immunity cycle. The generation of immunity to cancer is a cyclic process charac-
is cycle can be divided into seven major steps, starting from the release of cancer
erapy is to enable amplification and propagation of a self-sustaining cycle of can-
atory responses. The illustration simplifies the temporal pathways and interac-
ved and adapted for ultrasound and cavitation nuclei from Chen and Mellman
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role for ultrasound here too, through cavitation-enhanced delivery or
direct ablation of the vasculature. Many questions remain, however,
regarding the most effective combination of therapeutic modalities,
including the optimization and choice of targeted therapies to enhance
antigen presentation and cytotoxic T-cell priming in specific histology,
indications or clinical scenarios [99]. A wide variety of checkpoint
inhibitors and monoclonal antibodies are currently available in the
clinic for cancer treatment. It is therefore of great importance to have a
comprehensive scientific understanding of the mechanism(s) underlying
the combination of ultrasound therapy and immunomodulation.

The cancer immunity cycle (Fig. 3) is a further key consideration to
determine the appropriate timing of therapy delivery [19]. The different
classes of immunotherapies face differing delivery challenges, and in
many cases, their success relies mainly on the interaction with the tar-
geted protein. These targets may focus on different time points in the lin-
ear evolution of a dynamic immune response or enhanced tumour
immunity. In a syngeneic model of epithelial cancer [60], focal ultra-
sound therapy following immunotherapy resulted in increased number
of leukocytes and CD8+ T cells, as compared with all control groups.
Other studies have similarly conclued that, because of mechanical and
immunological changes in the TME following local ablation, there may
be a optimal window of opportunity for employing immunotherapy
[31].

Two further important questions are whether a robust systemic
immune response may be maintained without continued systemic expo-
sure over time to an immunotherapeutic and whether there are any
long-term adverse effects. Emerging evidence indicates that clinicians
should be aware of the risk of chronic immune-related adverse events
(irAEs) and their long-term outcomes, which are currently understudied
in clinical trials [100].
Conclusions

Despite major advances in cancer immunotherapy, its widespread
clinical success has been hindered by multiple factors, including cost,
poor delivery efficiency and severe adverse effects in non-target organs.
As a non-invasive and well-established clinical modality, ultrasound
offers a potentially attractive means of addressing these challenges.
Ultrasound ablation has been found to promote a systemic (abscopal)
immune response and to enable potent anti-vascular effects. Ultrasound-
mediated cavitation has similarly been found to promote a range of
immunostimulatory effects and to both localise and enhance delivery
efficiency of immunotherapeutics and/or other anti-cancer drugs. In
recent years there have been numerous pre-clinical studies demonstrat-
ing therapeutic efficacy in a range of tumour models. The underpinning
mechanisms, however, remain poorly understood and hence further
work is required to identify optimal treatment regimens.
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