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Abstract The low interest rates that prevail on many capital markets impose great challenges for

the asset management of financial organizations. They try to achieve target returns for their clients,

a solid one-period funding ratio and a low one-period underfunding probability. In this summarizing

contribution of Müller and Wagner (2018), we aim to study the impact of capital allocation strategies for

pension funds in Switzerland. Thereby, we compare classic Markowitz theory with an extended Taylor

series approach for the utility function. It is further analyzed how the assumption of normally distributed

returns drives the optimal asset allocation when compared with using the distributions corresponding to

the best fit of the historical data. Taking the extended utility function including the first four central

moments and the alternative return distributions, we simulate the assets of a pension fund in a one-

period model with the Monte Carlo method. A comparison of these results with those obtained from

the classic minimum variance theory concludes that a considerable change of the portfolio weights takes

place. Our research is relevant for theory and practice alike. Financial institutions can strongly profit

from comparing different approaches when assessing their investment strategy.

Zusammenfassung Das niedrige Zinsniveau, das auf vielen Kapitalmärkten vorherrscht, stellt das

Assetmanagement von Finanzeinrichtungen vor große Herausforderungen. Ihr Ziel ist es, Zielrenditen

für ihre Kunden, einen sicheren Deckungsgrad auf Einjahressicht sowie eine niedrige einjährige Unter-

deckungswahrscheinlichkeit sicherzustellen. In dieser Zusammenfassung der Arbeit von Müller und Wag-

ner (2018) werden die Strategien zur Kapitalallokation von Schweizer Pensionskassen untersucht. Dabei

vergleichen wir die klassische Markowitz Portfoliotheorie mit dem Ansatz einer erweiterten Taylorreihe

für die Nutzenfunktion. Des Weiteren wird die Annahme von normalverteilten Renditen für die optimale

Vermögensallokation mit Verteilungen verglichen, welche die historischen Werte besser abbilden. Mit

Hilfe einer erweiterten Nutzenfunktion, welche die ersten vier zentralen Momente beinhaltet sowie den

alternativen Renditeverteilungen, simulieren wir das Kapital einer Pensionskasse in einem Einperioden-

modell. Die Resultate zeigen, dass eine erhebliche Veränderung der Portfoliogewichte stattfindet. Unsere

Ergebnisse sind sowohl für die Theorie als auch für die Praxis relevant. Finanzinstitutionen können stark

von einem Vergleich verschiedener Ansätze in der Beurteilung der Anlagestrategie profitieren.
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Remark

This work summarizes the main findings of a working paper written by Müller and Wagner (2018)

that was presented by the authors at the annual meeting of “Deutscher Verein für Versicherungswis-

senschaft e.V.” in Munich, March 2018.

1 Introduction

In the current low interest rate environment, a proper asset allocation strategy is crucial for financial

institutions like life insurers and pension funds. Often being obliged to grant their clients a guaranteed

interest rate on their savings, they face the issue of having to find a suitable combination of asset classes

to invest in. With respect to Swiss pension funds, this topic is of great importance. As funds face large

obligations towards their members, it is necessary for them to have an investment strategy that balances

expected return and investment risk. While the pension funds aim to achieve adequate returns in a

competitive market environment, the resulting volatility should not be too high. Otherwise, years with

very low capital market returns could lead to a strong decrease of the funding ratio and thus put the

fund’s solvency at risk. It is therefore crucial to choose a combination of assets that meets the needed

returns while maintaining a certain safety level. In our work, we seek to examine this subject by looking

at utility-driven asset allocations under selected return distribution assumptions. To this respect, we

study the impact that higher moments have when included in the decision taker’s utility function. We

analyze how using different distributions for simulating the assets leads to a better fit of the historic data

and thus to different simulation results. In order to compare the resulting allocations, we simulate the

assets of a fund and analyze the results after one period. A comprehensive literature review is presented

in Müller and Wagner (2018).

To start our study, we consider a pension fund with a given asset-liability situation and which is regulated

by prevalent rules of the Swiss pension fund system. Our aim is to find the asset allocation that allows the

fund to reach a given expected target return, a given funding ratio or a given low underfunding probability.

Having established an optimal allocation strategy, we simulate the assets of the fund. For this, we first

make use of a multivariate normal distribution. However, asset returns exhibit characteristics such as

skewness and heavy tails, that cannot be fully reflected by using a normal distribution. Therefore, we

perform the simulation also by using alternative distributions taking their specific correlation structure

into account. This way, the historic data can be fitted in a more flexible way that should improve the

results. With the optimal allocation corresponding to the objective return and a distribution that fits

the historic data, we simulate the assets and liabilities of the pension fund in a one-period model. While

the assets evolve according to the simulated returns, the liabilities are assumed to be credited with the

guaranteed interest rate. Based on the results, it is analyzed in what state the fund is at the end of the

period. Among others, this involves examining key figures such as the expected funding ratio, selected

quantiles of that ratio and the underfunding probability. In this context, we compare what implications

the use of an asset-liability approach has compared to a classical analysis. In this, the asset allocation

can be set up with regard to a desired funding ratio or underfunding probability rather than a target

return.

The remainder of this summary is organized as follows. Section two introduces the framework that

we use for modeling the pension fund and the optimization problem for determining the optimal asset

allocation. The third section presents the asset classes together with their descriptive statistics and

the fitting of return distributions. Section four presents the optimization and simulation results. This

comprises both, the results for the minimum variance portfolio with normally distributed returns as well

as the extended utility along with the best-fit return distributions. The final section concludes.
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2 Model Framework

In the following, we describe the model framework applied within the analysis conducted by Müller and

Wagner (2018). We introduce a simple asset allocation framework and solvency indicators for pension

funds. This involves describing the processes that take place within the fund as well as in the assets that

it invests in. Then, we develop an optimal portfolio theory in which we use different utility functions

that incorporate higher moments.

2.1 Pension Funds and Key Funding Indicators in a One-Period Model

For the pension fund, we focus on a simplified representation of the accumulation phase of a defined

contribution fund in Switzerland. We examine how the assets A0 and the liabilities L0 evolve in a one-

period model from time t = 0 to t = 1, given an asset allocation and legal minimum increases of the

liabilities. Thereby, we disregard fluctuations, annuitization and deaths. At the end of the period, the

state of the fund is analyzed by considering the funding ratio and the probability of underfunding.

The assets A0 represent the capital that is available to the fund for investing on the capital market at time

zero. In our model, we assume that the fund invests in n different asset classes i = 1, . . . , n. The shares αi,

that are invested in the respective classes i, are summarized in the vector α = (α1, . . . , αn)
′

. These shares

are in the focus of the present study. In Switzerland, the regulator imposes limits on the asset shares

that can be invested in the various asset types (see BVV2, 2017, Art. 55). Therefore, we introduce an

upper limit αmax
i

for each asset class i. We assume that the entire assets are invested and suppose that

no short sales are made. Consequently, it holds for the asset shares αi that 0 ≤ αi ≤ αmax
i

, i = 1, . . . , n

and
∑

n

i=1
αi = 1.

The stochastic asset returns in the period are denoted by r = (r1, . . . , rn)
′

. They are the only source of

risk in our study. With the returns ri denoting the different assets and αi the investment shares, the

overall portfolio return is

rA = α
′
· r =

n∑

i=1

αi · ri. (1)

Starting with a value of A0 at time t = 0 and considering continuous compounding of the interest return,

the value of the assets at time t = 1 is given by

A1 = A0 · e
rA = A0 · e

∑
n

i=1
αi·ri . (2)

The liabilities Lt represent the obligations that the fund has towards its members. This includes the

regular contributions that have been paid by the actives as well as surpluses that the fund can distribute

when being in good health. In the Swiss system, funds are required to credit their members at least a

minimum interest rate rL on the compulsory part of their second pillar pension savings. The value of rL

is set by the legislator at the end of every year according to the prevailing conditions on the financial

market (see BVV2, 2017, Art. 12). In our model, we assume that the liabilities start with a value of L0

at time zero and are compounded with rL over the course of the period. Their value at time one therefore

is

L1 = L0 · e
rL . (3)

While in our model L1 is deterministic (no fluctuations, no mortality, no payouts, no surpluses cred-

ited), A1 is a stochastic outcome and depends on the asset allocation and the market returns. Having

obtained the values of the assets and the liabilities at time t = 1, we analyze the distribution of the

state of the fund. For this, we first consider the funding ratio Ft calculated by dividing the assets by the
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liabilities, i.e.

Ft =
At

Lt

, t = 0, 1. (4)

We analyze the mean E [F1] as well as selected quantiles qx of F1 in order to examine the range of the

distribution of the funding ratio at time one in our simulations. We consider the 1%, 50% and 99%

quantiles, denoted by q1% (F1), q50% (F1) and q99% (F1).

Further, we compute the probability of underfunding, i.e. the probability of the funding ratio falling be-

low 100% at time one. This way, it is measured how exposed to insolvency the fund is. The underfunding

probability at time one is defined as

P [F1 < 100%] . (5)

The asset returns r are of particular importance, as they influence the allocation α and the distribution

of A1. For this, it is important to have information about the distribution and the dependency structure

of the asset portfolio. For analyzing the returns of the asset portfolio, and subsequently the impact

of utility preferences, we examine the first four moments introduced in the following. These first four

moments are the expected return µ, the volatility σ, the skewness γ̄ and the kurtosis κ̄ (see, e.g., Bhandari

and Das, 2009) of the investment portfolio return.

2.2 Optimal Portfolio Theory

In this section, we first present a formulation of a utility function U(α, r) based on a limited number of

moments of the distribution of r. We then consider two particular cases for optimizing the choice of the

asset allocation, the minimum variance approach by Markowitz (1952) as well as an alternative one that

includes the third and fourth moments of skewness and kurtosis.

Normally Distributed Returns

In the case of multivariate normally distributed asset returns, the third and fourth moment equal zero.

Consequently, the expected utility function equals

E[U(α, r)] = U(α, r) +
1

2
· U ′′(α, r) ·α′

· Σ ·α. (6)

As the utility function is invariant with respect to positive and monotone transformations (see, e.g., Levy

and Markowitz, 1979), we are able to define a function of equivalent utility V1(α, r), for which it holds

that (see, e.g., Braun et al., 2017)

V1(α, r) = µ− λ1 ·α
′
· Σ · α. (7)

In this, λ1 > 0 implies U ′′(α, r) < 0 and thus serves as a measure for risk aversion. Conversely, λ1 < 0

corresponds to a risk taking behavior while λ1 = 0 stands for a risk-neutral decision making. Conse-

quently, as V1(α, r) is of equivalent utility to E[U(α, r)], the combination of parameters (shares α) that

maximize V1(α, r) will also turn out to maximize the expected utility E[U(α, r)].

To find the portfolio that maximizes the utility function, we search for the classic Markowitz (1952) min-

imum variance portfolio. In this, the aim is to find an optimal set of portfolio weights α∗ = (α∗

1, . . . , α
∗

n
)′

for the different asset classes that minimizes the variance of the resulting portfolio while achieving a

certain target return µ∗. We therefore have the constrained optimization problem

α
∗ = argmin

α

[λ1 ·α
′
· Σ · α] , (8)
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with the objective

α
′
· µ = µ∗, (9)

where

0 ≤ αi ≤ αmax
i

, i = 1, . . . , n, (10)

and

α
′
· 1 = 1. (11)

The investment restrictions on αi require that no short sales are made, the share αi, that is invested in

each asset class, remains below the respective regulatory upper limit αmax
i

(Equation 10) and the entire

assets are invested on the capital market (Equation 11).

Depending on the perspective taken, the objective in Equation (9) is interchangeable with other target

conditions considering the funding ratio or the underfunding probability, leading to conditions of the

type

E [F1] = F̄ , (12)

where F̄ is a given funding ratio target, and

P [F1 < 100%] = ǫ. (13)

where ǫ is a predetermined one-year probability for underfunding (i.e., F1 < 100%).1

General Case

While the optimization problem introduced in Equations 8 ff. can be solved relatively easily and yields

the minimum variance portfolio, it relies on the assumption that the asset returns follow a multivariate

normal distribution. Research shows that in practice, capital market returns do not show Gaussian

properties (see, e.g., Jondeau et al., 2007; Cont, 2001). As the historical values exhibit clear signs of

asymmetry and heavy tails, it is in many situations consistent for the decision maker to use a valuation

technique that higher moments into account. Therefore, the corresponding expected utility function can

in general not be simplified to only include the variance of the asset returns. Instead, we aim to find

the optimal investment weights α
∗ with respect to the (still approximate) expected utility function. If

we again follow the above procedure of applying positive and monotone transformations, we obtain the

utility function V2(α, r), which is defined as

V2(α, r) = µ− λ1 ·α
′
· Σ ·α + λ2 · α

′
· Γ · (α⊗α) − λ3 ·α

′
·K · (α⊗α⊗α). (14)

Again, λ1 serves as a measure for risk aversion, with λ1 > 0 being equivalent to U ′′(α, r) < 0. Anal-

ogously, the new parameters, λ2 and λ3 represent risk preferences (for λ2, λ3 > 0) regarding the third

and fourth moments of skewness and kurtosis. As individuals prefer odd moments and try to avoid even

ones (see, e.g. Chiu, 2010; Scott and Horvath, 1980), the signs of the terms in V2(α, r) alternate. The

reasoning behind this is, that the second moment represents the dispersion of the asset returns, which

a risk averse investor would aim to keep as low as possible. For the skewness, it holds that a negative

skewness corresponds to the mass of the distribution being concentrated on the right with a longer left

tail. Correspondingly, a positive third moment has the mass of the distribution shifted towards the left

while the right tail is longer. Due to the characteristics of the tails, a risk-averse investor would prefer a

positive skewness of the asset returns, as it reduces the risk of extreme losses (low returns). The kurtosis

1When the investment restrictions on αi from Equation (10) are used, a closed-form solution of the optimization problem
can not be derived. We consequently solve the constrained optimization problem using numerical approximations. For
further details, see, e.g. Samuelson (1970) and Harvey et al. (2010).
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serves as a measure for the tails of the distribution. For this, a large value corresponds to distinctive

peaks with little weight on tails, whereas a small value signifies lower peaks and heavy tails. Risk-averse

individuals would therefore prefer a smaller kurtosis.

Taking the equivalent utility function V2(α, r) into account, Equation (8) of the optimization problem

becomes

α
∗ = argmin

α

[λ1 ·α
′
· Σ ·α− λ2 · α

′
· Γ · (α⊗α) + λ3 ·α

′
·K · (α⊗α⊗α)] , (15)

with the same target conditions laid out above in Equations (9), (12) or (13), and under the investment

restrictions of Equations (10) and (11) on α.

In the following, we aim to compare the two optimization problems and their outcomes with each other.

This involves fitting distributions to the historical asset return data presented in the following section, as

well as determining the covariance, co-skewness and co-kurtosis. Based on those, we aim to compute the

optimal solutions of the two optimization problems and consequently analyze their simulation results.

3 Asset Return Statistics and Distribution

In order to model the assets that the pension fund can invest in, we use five different asset classes that

represent the most common investment types. Those involve the money market, government bonds, real

estate, stocks and hedge funds (representing riskier investments). As our research focuses on the Swiss

pension fund system, we make use of financial products that are connected to the Swiss market. An

overview of the characteristics of the asset classes introduced above is given in Table 1.

Asset class Mean return µi Volatility σi Skewness γ̄i Kurtosis κ̄i

Money Market (MM) 1.14% 0.34% 16.54% 19.81%

Government Bonds (GB) 3.95% 3.72% 3.74% 28.28%

Real Estate (RE) 5.28% 7.07% −12.70% 33.34%

Stocks (ST) 7.27% 15.57% −27.13% 41.76%

Hedge Funds (HF) 8.72% 7.58% 0.45% 24.04%

Table 1: Overview of asset classes with their respective annualized mean return µi, volatility σi, skew-
ness γ̄i and kurtosis κ̄i in the time period 1996–2015.2

3.1 Fitting of Return Distributions

For simulating the asset returns, the multivariate normal distribution is not able to take the skewness

and kurtosis of the returns into account. Furthermore, it is not suited for the modeling of fat tails.

We therefore fit the historic data with alternative distributions in order to better describe the empirical

distribution. This includes, among others, a better fit of the asymmetry as well as the tails of the returns.

The distributions we consider are the Normal, Cauchy, Logistic and Normal-Inverse-Gaussian (NIG)

distribution. We use the Akaike information criterion (AIC, see Akaike, 1973) values to evaluate the

goodness-of-fit. The results are reported in Table 2.

When comparing the results, we conclude that the NIG distribution provides the best fit on our return

data for the money market and the stocks. For the government bonds and the real estate investments

2As the empirical moments of the third and fourth order are calculated by taking the third and fourth power of the
returns, they are particularly sensitive to changes in the data. Different historic values can consequently result in strong
changes in the empirical moments. This needs to be taken into account when calculating the skewness and kurtosis.
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Money Market Gvt. Bonds Real Estate Stocks Hedge Funds

Normal −2 628.35 −1 485.09 −1 178.72 −800.79 −1 144.47

Cauchy −2 531.36 −1 410.13 −1 126.66 −775.29 −1 051.68

Logistic −2 616.45 −1 485.15 −1 186.16 −816.72 −1 138.91

NIG −2 651.30 −1 482.60 −1 183.97 −833.06 −1 140.47

Table 2: AIC values from fitting distributions to the historic monthly returns using 20 years of data.

the logistic distribution is suited best. For the hedge funds, the normal distribution achieves the best

fit of the data. For the Cauchy distribution, the results are mixed through the considered asset classes.

While it is better than the logistic and the NIG distribution for the hedge funds, it is not better than

the normal distribution for any of the asset classes.

4 Numerical Application

In the following, we present the results of our simulations for a fund operating in Switzerland. Therein,

we initially look at the reference case of multivariate normally distributed assets in a minimum variance

portfolio under the utility function V1(α, r). Following that, we look at the case of the portfolio weights

being chosen in line with the extended utility function V2(α, r) and the returns following the fitted

distributions. We examine how the asset allocation changes and analyze the outcome of the simulations.

The risk factors λ1, λ2 and λ3 are set to one in these cases. The numerical application is performed by

simulating the efficient portfolios for target values between min(µi) = 1.14% and the maximum attainable

return of 6.73% using a step size of 0.1% and N = 107 (10 million) realizations for every simulation.

With respect to the investment limits, αmax
i

, there are no specific limitations for the shares invested in

the money market and the government bonds. For the real estate, the maximum share, that can be

invested, amounts to 30%. Conversely, the proportion of the assets, that is made up by the stocks, can

be up to 50%. The strictest limit is imposed on the hedge funds. For them, the maximum share amounts

to 15%. For our simulations, we therefore use the vector α
max = (100%, 100%, 30%, 50%, 15%)′ for

the investment limits (see BVV2, 2017, Art. 55). Furthermore, we assume that the fund starts in a

“healthy” situation with assets of A0 = 110 and liabilities of L0 = 100 at time t = 0. The funding

ratio F0 = A0/L0 consequently equals 110%, which corresponds to the average value for private pension

funds in Switzerland over the past years (see Swisscanto, 2018). While the return on the assets rA is

random following the distributions laid out in Section 3, the interest rate rL for the liabilities is set to

the legal minimum. For 2016, it equals 1.25% (see BVV2, 2017, Art. 12).

4.1 Classic Markowitz Optimization with Normally Distributed Returns

Serving as a reference case, we first simulate the pension fund using the asset allocation derived from

minimum variance theory. Therein, the asset classes are multivariate normally distributed and the risk

aversion coefficient λ1 = 1. Figure 1 displays the asset allocations in the efficient portfolios for the

restricted case.

For every combination of target returns and corresponding minimum variances, it depicts the optimal

shares α∗ of the five asset classes. It can be seen that for low target returns the efficient portfolio mainly

consists of money market investments. As the drift µ increases, this share decreases while the shares of

the remaining assets increase, with the government bonds having the second-highest percentage. As µ

grows further, the share of the hedge funds and the government bonds evolve similarly at first. The
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Figure 1: Optimal asset allocations for target return µ for V1(α, r) and normally distributed returns.

stocks are hardly represented in the portfolio. The changes in the asset shares are linear up to a drift of

almost 3.5%, where the hedge funds reach their maximum of αmax
5 = 15%. Past this point, the share of

the money market begins to decrease steeply and the portfolio weights shift more towards the government

bonds, the real estate and the stocks. For the stocks, it can be seen that an increase of its share is taking

place as a result of the hedge funds hitting their investment limit. The same holds true for the real estate.

For the government bonds a decrease takes place for high returns. For the portfolio with the highest

return, which is located on the right end of the graph, the hedge funds, the stocks and the real estate

achieve their investment limits of 15%, 50% and 30%. The remaining proportion of 5% is attributed

to the government bonds. The portfolio weights thus are α = (0%, 5%, 30%, 50%, 15%)′, which means

that the highest achievable portfolio return is 6.73% along with a volatility of 8.94%. Overall, changes

of the shares take place with kinks in the graphs when assets hit their investment limits or disappear

from the portfolio. The numerical results for selected target values are given in Table 3. In the three

parts of the table, we fix target values for the mean return (part I), the expected funding ratio E [F1] at

time one (part II) and the one-year underfunding probability P [F1 < 100%] (part III). These objectives

correspond to the conditions described in Equations (9), (12) and (13).

4.2 Asset Allocation with Best-Fit Distributed Returns

In the previous section, we reported the investment portfolios when using the utility function V1(α, r)

and normally distributed returns. In the following, we depart this approach and look at the results when

using the utility function V2(α, r) integrating the first four moments of the returns in each asset class

and when considering the return distributions that fit the historic returns best for simulating the values

at time one (cf. Section 3.1). This way, we aim to find out how using moments of higher order in the

utility function and more suitable return distributions alter the previously obtained results. In order to

ensure comparability, the parameter values at time zero and the risk factors remain unchanged. Figure 2

depicts the asset shares in the optimal portfolios for V2(α, r) with returns that are in agreement with

the best-fit distributions. It can directly be compared with Figure 1.

As before, the portfolio with the smallest drift consists only of the money market. When increasing
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Figure 2: Optimal asset allocations for target return µ for V2(α, r) and best-fit distributed returns.

the portfolio return from this point on, we can see that at first only the government bonds are added

to the portfolio. After this, an investment in stocks takes place. Up to a drift of 4%, their share

grows up to about 25%. Meanwhile, the real estate and the hedge funds remain at a single-digit value.

From µ = 3.5%, the share of the hedge funds begins to increase quickly. Once they reach their maximum

value, the stocks increase their share again. This continues until they reach their maximum percentage

of αmax
4 = 50%. Subsequently, the real estate replaces the government bonds up to their respective

investment limit of αmax
3 = 30%. The portfolio with the highest drift and return consequently is the

same as in the minimum variance case. The course of the portfolio volatility σ is given on the second

horizontal axis in Figure 2. There, it can be seen that the increase of σ is not linear. Up to a portfolio

return of about 3.5% the volatility increases uniformly. Past that point, more weight is put on the

hedge funds which have a lower dispersion. The growth of the portfolio volatility consequently slows

down. Once the hedge funds reach the maximum share αmax
5 , the percentages of the remaining assets

Condition on I: Mean return II: Expected funding ratio III: Underfunding probability

µ 2.00 3.00 4.00 1.25 3.05 4.82 5.73 6.04 6.21
σ 0.74 1.48 2.29 0.34 1.52 3.06 4.75 5.89 6.58
γ̄ [×10−2] 0.11 0.13 0.12 0.01 0.13 0.11 0.25 0.32 0.35
κ̄ [×10−2] 0.03 0.03 0.03 0.00 0.04 0.02 0.13 0.21 0.24

α1 81.56 60.18 33.28 97.21 59.17 8.48 0.00 0.00 0.00
α2 9.78 21.57 39.90 1.42 22.02 58.18 35.48 26.18 21.06
α3 2.16 3.94 7.75 0.76 4.04 11.75 30.00 30.00 30.00
α4 1.07 1.85 4.07 0.56 1.85 6.59 19.52 28.82 33.94
α5 5.44 12.46 15.00 0.06 12.92 15.00 15.00 15.00 15.00

E [F1] 110.83 111.94 113.07 110.00 112.00 114.00 115.04 115.39 115.59
q1% (F1) 108.94 108.19 107.28 109.14 108.15 106.30 103.46 101.34 100.00
q50% (F1) 110.86 112.00 113.18 110.01 112.06 114.16 115.26 115.60 115.78
q99% (F1) 112.95 116.22 119.64 110.89 116.39 122.73 129.48 133.78 136.35

P [F1 < 100%] 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.50 1.00

Table 3: Simulation results using minimum variance and normal returns. Values in bold face correspond
to the target values. All reported values are given in %.
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in the optimal portfolio increase again and the portfolio volatility returns to increasing more strongly.

Simulation results for different cases are presented in Table 4. As before, we have three parts where we

Condition on I: Mean return II: Expected funding ratio III: Underfunding probability

µ 2.00 3.00 4.00 1.24 3.03 4.76 3.04 4.88 5.29
σ 1.36 3.40 4.32 0.37 3.41 4.62 3.47 4.85 5.55
γ̄ [×10−2] 0.09 0.10 0.10 0.24 0.10 0.10 0.10 0.10 0.10
κ̄ [×10−2] 0.09 0.10 0.09 0.15 0.10 0.09 0.10 0.09 0.09

α1 81.12 62.86 44.96 96.32 62.12 32.99 62.06 30.78 21.87
α2 8.22 10.48 13.97 3.68 10.62 15.03 10.66 15.86 19.06
α3 2.04 5.03 9.10 0.00 5.68 12.25 5.23 11.81 13.06
α4 8.62 21.63 25.72 0.00 21.58 24.92 22.05 26.54 31.01
α5 0.00 0.00 6.26 0.00 0.00 14.81 0.00 15.00 15.00

E [F1] 110.83 111.94 113.07 110.00 112.00 114.00 111.99 114.07 114.54
q1% (F1) 107.26 103.05 101.76 109.09 103.06 101.83 102.91 101.36 100.00
q50% (F1) 110.96 112.25 113.48 109.99 112.29 114.39 112.30 114.54 115.07
q99% (F1) 114.93 122.15 126.08 111.06 122.21 127.91 122.41 128.73 131.30

P [F1 < 100%] 0.00 0.08 0.35 0.00 0.08 0.37 0.10 0.50 1.00

Table 4: Simulation results using extended utility and alternative returns. All values are given in %.

set target values for the mean return, the expected funding ratio and the underfunding probability. In

order to ensure the comparability of the results, we utilize the same target values as in Table 3.

5 Conclusion

In this research, we look at the impact that higher moments have on the optimal asset allocation of a

pension fund. The research question was: To what extend do (1) higher moments in the optimization

and (2) best-fit return distributions for the simulations lead to a change in the investment portfolio

weights. To this end, we compare how the Markowitz efficient portfolio asset weights change when

using an extended utility function that also considers the third and fourth moments of the historic asset

returns. Using the so obtained portfolio weights, we simulate the assets of the fund in a one-period

model. Therein, normally distributed returns are compared to alternative ones that fit the data in a

better way. Furthermore, it is examined how a more complex risk preference with respect to several

return moments impacts the optimization results. In order to deepen the analysis, a sensitivity analysis

in which the different risk preference factors are varied is presented in the full paper by Müller and

Wagner (2018). In our work we consider three different key indicators that are relevant for pension fund

management in practice: the target return, the expected one-period funding ratio and the one-period

underfunding probability.

Expectedly, our results indicate that the use of an extended utility function does indeed lead to a shift

in the optimal portfolio weights. Consequently, main portfolio characteristics change. Among others, a

strong increase of the volatility takes place in our example. Following this, the outer quantiles of the

funding ratio spread further and the underfunding probability increases. We are therefore able to say

that using the minimum variance portfolio can cause misleading security. Working with an extended

utility function that departs from the minimum variance framework and incorporates higher moments

of returns consequently may direct companies to assess their risk taking more adequately.

Along with the utility function, pension funds should also consider looking at adequate distributions
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for their asset classes. As previous research shows, the normal distribution is not able to fully reflect

the characteristics of asset returns. Comparing it to three other distributions, we are able to find

a distribution that fits the historic return data better for almost every type of assets. Using these,

we simulate returns that are not symmetric and put more weight on the tails, properties that are

characteristic for capital market returns. Consequently, the characteristics of the optimal portfolios such

as the skewness and kurtosis change in our simulations. In particular, the return distribution alters to

having a longer right tail and being less peaked. We are therefore of the opinion that pension funds, and

financial institutions in general, need to consider the most suitable distributions when simulating their

asset values.

While the “best” asset allocation is still to be interpreted in the light of the used hypotheses and

objectives, the investment shares – differing little or a lot – from the different methods give information

about the stability and robustness of the calculated allocations. While being focused on the pension

fund system, our results hold true for financial institutions in general. Practical implementation is often

impeded by the high number of parameters that must be estimated and set as input. Further results,

sensitivity analyses and comments can be found in Müller and Wagner (2018).
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