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Abstract: During the last phase of HIV viral production, nascent HIV virions acquire a fraction of the
cellular lipid membrane to create the external lipid envelope, a process by which cellular proteins
present on the surface of the infected cell can be incorporated along with Env trimers. Interestingly,
several studies indicated that these incorporated host molecules could conserve their biological
activity and consequently contribute to HIV pathogenesis either by enhancing the infectivity of
HIV virions, their tissue tropism or by affecting immune cell functions. The following review will
describe the main approaches used to characterize membrane bound host molecule incorporation
into HIV virions, the proposed mechanisms involved, and the role of a non-exhaustive list of
incorporated molecules.
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1. Introduction

Since the beginning of the epidemic, more than 84.2 million individuals have been
infected by HIV. In 2021, about 38.4 million people have already died from HIV-related dis-
eases (https://www.who.int/gho/hiv/en/) (accessed on 15 August 2022) and 37.6 million
people were living with HIV infection, but none of them were able to naturally clear the
infection. Indeed, in the absence of treatment, 99% of HIV-infected people experience a
gradual decline in their CD4 T cell count. When the CD4 T cell count drops to around
200 cells/mm3 of blood, these individuals enter the final stage of the infection, the acquired
immunodeficiency syndrome (AIDS), eight to ten years after infection [1–3]. At that stage,
the immune system collapses and is no longer able to protect individuals from opportunistic
pathogens, and HIV-infected individuals ultimately die from infections or cancers [1,4].

The reasons for this extremely efficient way for HIV to resist to the pressure exerted
by the immune system probably reside in complex immuno-virological mechanisms [5–9].
The functional impairment of HIV-specific CD4 and CD8 T cells (reviewed in Fenwick et al.,
2019 [7]), the difficulty in generating broadly neutralizing antibodies by HIV-specific B
cells (reviewed in Havenar-Daughton et al., 2017 [8]), as well as the ability of the virus to
establish a viral reservoir capable of remaining in a latent state, and therefore invisible to
the immune system (reviewed in Cohn et al., 2020 [9]) contribute to the persistence of the
virus [7–9].

Since HIV is an enveloped virus, HIV virions can incorporate host molecules located
either at the membrane or at the cytoplasmic levels during the production process [10–16].
Interestingly, several studies indicated that these incorporated molecules could still harbor
biological activities [17–19].

A mathematical model estimated that between 100 million and 100 billion viruses
could be produced and eliminated from the body of an HIV-infected individual every
day [20]. Due to the extent of viruses produced and the capacity of HIV virions to incorpo-
rate host molecules during the budding phase, several studies focused on their potential
impact during HIV pathogenesis. The present review therefore proposed to focus on the
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main experimental approaches used to identify membrane bound host molecules incor-
porated into HIV virions, the mechanisms involved in the incorporation process and the
potential role of selected incorporated molecules in HIV pathogenesis.

2. Experimental Strategies to Characterize Host Proteins Incorporation into
HIV Virions

The deep structural characterization of viruses has, for a long time, been limited by
their relatively small size. However, in the last decades, the development of novel tech-
nological tools allowed for a better characterization of HIV virion structures as well as
their protein compositions. Because each technique has its advantages and disadvantages;
e.g., the sensitivity for mass spectrometry, the robustness for western blot and electron
microscopy, and the small amount of required protein for immune capture (Figure 1), most
recent studies proposed combined approaches to characterize the host protein spectra of
HIV virions and their potential factors during HIV pathogenesis [21,22]. The following sec-
tion will focus on the characteristics, advantages, and limitations of the major experimental
strategies used to characterize HIV virion envelope composition.

Viruses 2022, 14, 2523 3 of 13 
 

 

limitations of this technique is the detection of only one protein at a time, preventing the 

study of the co-incorporation of various host molecules.  

 

Figure 1. Methods to characterize host protein incorporation into HIV virions: (a) mass spectrometry 

is the gold standard to deeply characterize protein compositions of viral preparations; (b) electron 

microscopy and more recently the use of immuno-gold labeling are becoming standard tools to 

characterize host protein interaction/incorporation in HIV virions; (c) the immuno-capture of HIV 

virions is a two-step process; first, the capture using beads or plates coated with mAbs and second, 

the detection of either HIV RNA or p24 to quantify HIV virions; and (d) flow virometry represents 

a promising tool, where HIV virions could be detected and characterized using fluorescently labeled 

mAbs. 

Until recently, the use of flow cytometry to characterize HIV virions was limited due 

to the difficulties of conventional flow cytometers to detect particles smaller than 400 nm, 

knowing that the size of HIV virions is comprised between 90–120 nm. However, in the 

last few years, many efforts were invested in the development of more sensitive 

instruments and the most recent studies are able to efficiently distinguish individual HIV 

virion using a new approach called flow virometry (Figure 1d) [31-35]. Most of these 

studies used fluorescent-labeled in vitro produced HIV virions to facilitate the 

discrimination between the background noise and viral populations [36, 37]. To 

circumvent the small size of HIV virions and to increase the purity of viral preparations, 

one study proposed an indirect method by first isolating viral particles using an immuno-

capture assay by small magnetic beads (15 nm) coated with gp120 antibodies and second, 

the HIV virion-bead complex detection using flow cytometry [32]. This study confirmed 

the presence of two cellular proteins known to be incorporated into HIV virions (i.e., HLA-

DR, and LFA-1) and was able to distinguish distinct viral subpopulations based on the co-

expression of these two proteins [32]. This method has several advantages; the estimation 

Figure 1. Methods to characterize host protein incorporation into HIV virions: (a) mass spectrometry
is the gold standard to deeply characterize protein compositions of viral preparations; (b) electron
microscopy and more recently the use of immuno-gold labeling are becoming standard tools to char-
acterize host protein interaction/incorporation in HIV virions; (c) the immuno-capture of HIV virions
is a two-step process; first, the capture using beads or plates coated with mAbs and second, the detec-
tion of either HIV RNA or p24 to quantify HIV virions; and (d) flow virometry represents a promising
tool, where HIV virions could be detected and characterized using fluorescently labeled mAbs.

Mass spectrometry (MS) (Figure 1a) or coupling methods such as liquid chromatography–MS
(LC-MS) are considered gold standards for the characterization of the protein composition
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of several viral sources [22–24]. Indeed, the high sensitivity in determining the protein
quantity and composition of several viruses has improved the understanding of the viral
structure and host protein interactions [21,22,24]. In addition, MS is actually the only
experimental strategy that does not require prior knowledge of a virus-incorporated host
factor [22]. However, this technique has mostly been used on HIV virions produced in vitro
from cell lines and not on HIV virions collected directly from ex vivo samples from body
fluid studies [25]. Even though MS has been a pioneer tool in the identification of host
molecules incorporated into HIV virions, no insights into the host protein profile of a single
virion or the co-incorporation of host molecules or the precise localization into the lipid
envelope have been obtained, as the analyses were performed on bulk viral preparations.

Over the past decades, electron microscopy (Figure 1b) became a powerful approach
for the characterization of the structural organization of HIV virions. While mature HIV
virions could be easily recognized by the specific conical shape of the capsid using electron
microscopy, the characterization of host protein incorporation into the HIV virion lipid
envelope requires the use of a specific immunogold-labeling [26,27]. Immunogold staining
of cellular sections infected with viruses involves low level of fixation, which may result
in the loss of HIV viral structure and limit the visual characterization of HIV virions in
these preparations. The development of novel approaches to distinguish several proteins
on an individual virion by electron microscopy was therefore developed and illustrated
by the recent use of dual immunogold-labeling [19,28]. This approach is based on the
use of two primary antibodies (e.g., p24, Env, or host proteins) labeled beads harboring
distinct sizes, distinguishable by electron microscopy. This approach classically allows the
determination of the co-expression of the two proteins (viral or host proteins) on individual
HIV virions [28]. This approach may also provide further information on the localization
(e.g., envelope, capsid, matrix) of cellular proteins into HIV virions.

The immuno-capture assay is a highly specific approach that includes two phases
(Figure 1c). The first step consists of the capture of viral particles that can be achieved using
either beads or plates coated with antibodies against the proteins of interest. The second
step is usually based on the quantification of either p24 or HIV RNA to determine the
quantity of viral particles captured by the specific antibodies [12,29,30]. Several studies used
this approach to confirm the incorporation of host proteins (e.g., Intercellular Adhesion
Molecules-1 (ICAM-1), HLA-DR, and α4β7) [12,29,30]. However, one of the limitations of
this technique is the detection of only one protein at a time, preventing the study of the
co-incorporation of various host molecules.

Until recently, the use of flow cytometry to characterize HIV virions was limited due
to the difficulties of conventional flow cytometers to detect particles smaller than 400 nm,
knowing that the size of HIV virions is comprised between 90–120 nm. However, in the last
few years, many efforts were invested in the development of more sensitive instruments
and the most recent studies are able to efficiently distinguish individual HIV virion using
a new approach called flow virometry (Figure 1d) [31–35]. Most of these studies used
fluorescent-labeled in vitro produced HIV virions to facilitate the discrimination between
the background noise and viral populations [36,37]. To circumvent the small size of HIV
virions and to increase the purity of viral preparations, one study proposed an indirect
method by first isolating viral particles using an immuno-capture assay by small magnetic
beads (15 nm) coated with gp120 antibodies and second, the HIV virion-bead complex
detection using flow cytometry [32]. This study confirmed the presence of two cellular
proteins known to be incorporated into HIV virions (i.e., HLA-DR, and LFA-1) and was
able to distinguish distinct viral subpopulations based on the co-expression of these two
proteins [32]. This method has several advantages; the estimation of the amount of cellular
proteins expressed by a single virion as well as the potential co-expression of different
proteins, allowing for the differentiation of distinct viral populations based on their host
protein incorporation signatures. Indeed, the flow virometry method could represent a
considerable advance in virology research and may echo the technological shift that flow
cytometry has brought to cellular immunology.
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3. Mechanisms of Host Protein Incorporation

Pioneer studies initially proposed that host protein incorporation resulted from a
passive mechanism depending on the quantity of proteins expressed on the cell surface
and located at close proximity to the budding site (Figure 2a) [38].
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Figure 2. Mechanisms of host protein incorporation into HIV virions: (a) passive incorporation; no
differences in protein (e.g., HLA-DR in blue) levels between the cellular and viral envelope: and
(b) lipid composition remodeling (grey fragments) and surface curvature promote the incorporation
of specific proteins (e.g., CD59 in red) that have a transmembrane domain with high affinity to
the liquid-order phase generated by HIV virions. (c) Interaction between HIV proteins (e.g., Gag
polyprotein) (violet) and the intracytoplasmic tail of host proteins (e.g., ICAM-1 in green).

In agreement with this paradigm, initial findings proposed that during the viral
budding process through the lipid rafts, proteins present on the cell surface were passively
incorporated into the HIV virion envelope [39,40].

However, more recent studies have demonstrated that the protein levels on HIV-infected
cell surfaces did not necessarily correlate with host protein profiles of HIV virions [11,41].
In this context, more recent studies proposed that in addition to a passive mechanism
(Figure 2a) and to the enrichment of host molecule incorporation into HIV virions due
to the composition of anchored proteins within the lipid raft (Figure 2b), host molecules
could also be incorporated via an active process involving direct interactions between host
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molecules and viral proteins (Figure 2c) [42]. The next section will, therefore, underscore
the proposed mechanisms of host protein incorporation and host protein exclusion [41,43].

HIV can actively remodel the lipid composition of the cell membrane at the budding
site (Figure 2b). The lipid composition remodeling is usually divided into two phases;
the first one consists of the formation of a liquid order (Lo) domain occurring when Gag
polyproteins start to oligomerize at the cell membrane [44]. Indeed, Gag polyprotein has a
high affinity for Phosphatidylinositol-4,5-bisphosphate (PIP2) that is enriched at the site of
assembly and can mediate the clustering of specific GPI-anchored lipid raft within virions
envelope to facilitate the incorporation of several proteins (e.g., CD59) [44–46]. The second
phase is also mediated by Gag and relies on the curvature of the plasma membrane at
the assembly site [44]. The enrichment of host proteins with high affinity to the Lo phase
domain increases protein composition differences and membrane thickness compared to
the bulk plasma membrane [44]. Consequently, these changes result in an increase in the
line tension, therefore inducing the membrane domains to form circular zones, leading
to the formation of budding vesicles enriched in host proteins with high affinity to the
Lo domain [44,47]. In this context, while the remodeling of the lipid raft at the budding
site involves an active mechanism mediated by viral proteins, the incorporation of host
molecules might reflect an indirect consequence of this process.

The selective acquisition of host proteins might also occur as an active process in-
volving the interaction with host molecules and viral proteins (e.g., Gag or Env). Gag
polyprotein consists of four fragments: p17 (MA), p24 (CA), NC, and p6. The p17 domain
was demonstrated to be crucial for the incorporation of Env, and p17 and NC have been
shown to be potential players in protein incorporation [42,48–50]. Notably, the incorpo-
ration of host molecules (e.g., HLA-DR) has also been shown to be dependent on Env
incorporation, even though this observation is still a matter of debate [51,52]. In this con-
text, two independent studies indicated that the interaction of Gag polyprotein with host
molecules (i.e., ICAM-1 and PD-L1) promotes their incorporation (Figure 2c) [19,42].

In these cases, the intracytoplasmic tail of host molecules was shown to interact with
the matrix (MA) domains of Gag polyprotein thus, driving the active incorporation into
HIV Virions [19,42,53]: Of note, the interaction between the host proteins and Gag can
remain stable even after the complete maturation of HIV virions. A better understanding
and characterization of specific motifs governing the interactions between Gag polyprotein
and host molecules would be of great interest to prevent/force the incorporation of host
molecules that might have a beneficial/detrimental role during HIV pathogenesis.

Interestingly, some host proteins (e.g., CD45, CD4, and CD80) can be actively excluded
from HIV virion lipid envelopes [41,54,55]. Some authors proposed that this may rely on
a mechanism similar to the one used by tetherin, an anti-viral protein known to prohibit
HIV virions released during the late phase of the budding process [56]. In this model, the
authors proposed that HIV Vpu protein could block the insertion of the GPI domain of
tetherin into HIV virion envelope by preventing its co-localization with Gag at the plasma
membrane, thus counteracting its potential anti-viral property on mature HIV virions [57].
Whether or not such a mechanism also occurs for other host molecules remains, however,
to be determined.

HIV virions can use two distinct pathways to bud out from infected cells. HIV virions
can bud using the lipid membrane at the surface of cells to create their own envelope
(Figure 3a). This mechanism mostly occurs in lymphoid cells but can also happen in myeloid
cells [58]. Furthermore, HIV virions can also assemble in virus containing compartment
(VCC) in myeloid cells (Figure 3b) [59]. The different production pathways of HIV virions
may partially explain the differences in host protein incorporation signatures observed
between HIV virions produced in lymphoid vs. myeloid cell lineages [25].
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4. Potential Influence of Host Protein Incorporation on HIV Pathogenesis

Upon incorporation into HIV virions, molecules can retain their biological activity and
mediate some effects during the course of HIV infection. Depending on the nature of the host
molecules incorporated, several potential impacts were proposed on HIV pathogenesis (e.g.,
HIV virions infectivity potential, cell attachment and immunoregulation) [12,17,19,29,30,60,61].
The following section will, therefore, underscore the major potential influence of host
molecules incorporation on HIV pathogenesis.

4.1. Potential Influence on Promoting HIV Virions Interaction with Susceptible Cells

HIV virion interaction with the host cell is mediated by the viral glycoprotein gp120
interacting with the cellular receptor CD4, resulting in conformational changes in gp120 and
allowing the interaction with one of the two co-receptors, CCR5 or CXCR4 [62]. However,
the adhesion to the target cell can be reinforced by host proteins incorporated into the
HIV virion lipid envelope, which can increase the binding affinity [30,63]. In this regard,
certain incorporated molecules were proposed to play a role in enhacing HIV infectivity by
promoting the direct interaction between HIV virions and susceptible cells (e.g., HLA-DR)
(Figure 4a), while others may increase HIV infectivity through indirect interaction with
follicular dendritic cells (FDCs) (e.g., ICAM-1) (Figure 4b), or with the extracellular matrix
of high endothelial venules (HEVs) (e.g., α4β7 or LFA-1) (Figure 4c) [12,17,29,30].

ICAM-1: ICAM-1 is an adhesion molecule expressed mainly on endothelial cells and
is playing a crucial role in the migration of immune cells expressing LFA-1 to inflammation
sites [64]. Furthermore, the interaction between ICAM-1 and LFA-1 is also known to
create an immunological synapse between dendritic cells and T cells thus promoting their
interaction [65]. ICAM-1 incorporation into HIV virions was proposed to be mediated
following interactions with Gag viral protein [13] and promote HIV virion infectivity by
increasing virus attachment to susceptible LFA-1+ cells, thereby promoting the first steps
of HIV replication cycle [17,66,67]. Indeed, no increase in infectivity was observed when
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LFA-1− cells were infected with ICAM-1+ HIV virions, thus supporting these findings [68].
ICAM-1 incorporation might also promote HIV virions rolling on susceptible cells to
maximize gp120-CD4 interaction, enhance the interaction with the co-receptor CXCR4, and
induce cytoskeleton-remodeling [66,67,69]. Furthermore, ICAM-1 incorporation into HIV
virions might also favor trans-infection from LFA-1+ cells (e.g., FDCs) to susceptible cells in
LNs germinal centers (GC) [70,71].
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Figure 4. Host molecules incorporated into HIV virions influence virion-cell interactions. The
incorporation of host molecules might influence HIV pathogenesis by promoting the interaction
between HIV virions and susceptible cells. The incorporation of host molecules (e.g., ICAM-1)
might promote HIV virion infectivity through: (a) the direct interaction with susceptible cells; and
(b) trans-infection through the interaction with FDC. (c) Incorporated molecules (e.g., α4β7 and
LFA-1) might promote HIV virion attachment to endothelial cells and thus enhancing the interaction
with susceptible cells either in homeostatic or inflamed environments.

α4β7: α4β7 is expressed on immune cells and has been described to play a fun-
damental role in T-cell homing towards the intestinal track through its interaction with
MAdCAM-1 expressed on HEV in Peyer’s patches and the mesenteric lymph nodes [72].
A recent study based on SIV/SHIV-infected macaques demonstrated that the blockade of
α4β7 reduced SIV/SHIV viral load both in plasma and gastrointestinal tissues and delayed
the time to viral rebound after ART interruption [73,74]. The author subsequently proposed
that α4β7 mAbs might have acted directly on α4β7+ HIV virions interrupting key events
of viral infection [12]. Using an in vivo model, they showed that the incorporation of α4β7
into HIV virions might play a role in promoting HIV virions accumulation to MAdCAM-1+

on HEV [12]. Notably, a higher proportion of α4β7+ HIV virions was observed in plasma of
viremic acute HIV-infected individuals compared to chronic HIV-infected individuals [12].
Based on these observations, a clinical trial using α4β7 mAbs in ART-treated HIV-infected
individuals investigated the potential impact on HIV viral rebound. Unfortunately, this
study did not achieve the same promising results as the one in macaques, and no delay
in viral rebound was observed [75]. Therefore, the role of α4β7 mAbs in the therapeutic
armamentarium for HIV cure remains debated.
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Other adhesion molecules were shown to be incorporated into HIV virions (e.g., LFA-1
and CD62L) and it has been proposed that they play a role in enhancing HIV infectivity
by promoting the interaction of HIV virions with susceptible cells through the interaction
with their respective ligands (i.e., ICAM-1 and CD34/MAdCAM-1) in various settings (e.g.,
homeostatic vs. inflamed environment) [76–79].

4.2. Influence of T and B Cell Responses

Various incorporated molecules were proposed to impact immune cell function/activation
(Figure 5), either by promoting B and/or T-cell activation (e.g., CD40L and HLA-DR alone
or co-incorporated with CD86) or functional impairment (e.g., PD-L1) [18,19,60,61,80].
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Institutional Review Board Statement: Not applicable. 

Figure 5. Potential influence of host protein incorporation on T and B cell responses. The incorpora-
tion of host molecules might influence HIV pathogenesis by modulating T and B cell responses: (a) the
co-incorporation of HLA-DR and CD86 into HIV virions may favor T-cell activation by increasing
NF-κB pathway. The incorporation of PD-L1 into HIV virions may favor T-cell functional impairment
by inhibiting NFAT pathway; and (b) the incorporation of PD-L1 impacts B-cell functions through an
indirect mechanism, by impairment of Tfh cell functions, which in turn may fail to provide efficient
B-cell support. The impact of incorporated molecules on B-cell functions might involve direct or
indirect interactions. The incorporation of CD40L into HIV virions interacts with CD40+ B cells and
may promote B-cell activation.

HLA-DR: HLA-DR is one of the MHC class II molecules expressed mostly on antigen-
presenting cells (APCs) and is able to present peptides to CD4 T cells [81]. HLA-DR is
also known to be upregulated on activated CD4 T cells [82]. HLA-DR was one of the
first host molecules described to be incorporated into HIV virions. In addition to its
role in increasing HIV infectivity through the enhancement of HIV virion fusion by the
interaction of HLA-DR+ HIV virions with CD4, HLA-DR incorporation was proposed
to influence T-cell function/activation [30,38,52,83]. Interestingly, it was also suggested
that HLA-DR+ HIV virions may have the capacity to present peptide epitopes to CD4 T
cells and may modulate CD4 T-cell responses (Figure 5a) [60,61,63]. The consequences
of this stimulation may depend on the co-incorporation of the co-stimulatory molecule
CD86 and the nature of the peptide presented [60,61]. Indeed, some authors proposed
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that HLA-DR+ HIV virions might be sufficient to trigger T-cell proliferation, cytokine
production, and apoptosis in vitro, while other studies proposed that HLA-DR+ HIV
virions might not trigger complete CD4 T-cell activation and thus may prime these cells
towards anergy [60,61,63]. Another study proposed that HLA-DR+ HIV virions trigger
T-cell apoptosis by increasing Fas and FasL expression levels [84].

PD-L1: The interaction between PD-1 on T cells and PD-L1 on APCs contribute to
regulate T-cell proliferation and cytokines production and is proposed to play a major
role in T-cell functional impairment [85,86]. It was demonstrated that PD-L1 was actively
incorporated into HIV virions from plasma of viremic HIV-infected individuals with
a process involving, at least in part, the interaction with HIV p17 matrix proteins. In
this study, PD-L1+ HIV virions were able to significantly reduce T follicular helper (Tfh)
cell proliferation and IL-21 production in vitro (Figure 5a), through the partial inhibition
of T-cell signaling pathway [19]. Interestingly, the impact of PD-L1+ HIV virions on
Tfh cell function ultimately translated into reduced IgG1 production from GC B cells
in vitro (Figure 5b) [19]. Therefore, in this study, the authors showed that PD-L1+ HIV
virions may not only influence directly CD4 T-cell functions but also indirectly influence
B-cell responses.

CD40L: CD40L is a co-stimularoy receptors expressed on T cells that play a fundamen-
tal role by interaction with CD40 on B cells during B-cell maturation and differentiation
processes [87]. Several studies showed that CD40L+ HIV virions could interact with B cells
and could induce unspecific B-cell proliferation, activation, and terminal differentiation
as well as IgG production, and IL-6 secretion (Figure 5b) [18,80,88]. Interestingly, the
quantity of IgG produced did not correlate with the presence or absence of Env but only
depended on the presence of CD40L on HIV virion surface. The authors proposed that
CD40L+ HIV virions might contribute to the hypergammaglobulinemia observed during
the course of HIV infection [80,88]. At the intracellular level, CD40L+ HIV virions were
able to induce an activation of the NF-κB pathway, which was similar to the one observed
using CD40 antibody stimulation. Furthermore, CD40L+ HIV virions might also contribute
to the increase the infection rate of CD4 T cells when co-cultured with tonsillar B cells, by
promoting the secretion of pro-inflammatory cytokines by B cells, providing a favorable
micro-environment for HIV replication [88].

5. Conclusions

During the budding process, HIV virions can passively and/or actively incorporate
functionally active host molecules, which may play an active role during HIV pathogenesis.
The development of novel experimental strategies and the advance of new technologies
will soon uncover the complexity of this phenomenon, opening the way to a better under-
standing of HIV pathogenesis.
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