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ABSTRACT  

 

Background: Tumor infiltrating lymphocytes (TILs) and programmed death ligand 1 

(PD-L1) are targets of immune checkpoint inhibitors.  

Methods: 43 WHO grade II/III gliomas (39 IDH-mutant, 4 IDH-wt) and 14 IDH-mutant 

glioblastomas were analyzed for TIL (CD3+; PD1+) infiltration and PD-L1 expression. 

Results were compared with the data of a previously published series of 117 IDH-

wild type glioblastomas. PD-L1 gene expression levels were evaluated in 677 diffuse 

gliomas grade II-IV from The Cancer Genome Atlas (TCGA) database.  

Results: TILs and PD-L1 expression were observed in approximately half of WHO 

grade II/III gliomas. IDH-wt status was associated with significantly higher TIL 

infiltration and PD-L1 expression among all (grades II-IV) cases (n=174, p<0.001) 

and within the cohort of glioblastomas (n= 131, p<0.001). In the TCGA low grade 

glioma (LGG) and glioblastoma cohorts, significantly higher PD-L1 gene expression 

levels were evident in IDH-wt compared to IDH-mutant samples (LGG: N=516; p= 

1.933e-11, GBM: N=161; p < 0.009). Lower PD-L1 gene expression was associated 

with increased promoter methylation (Spearman correlation coefficient -0.36; p<0.01) 

in the TCGA LGG cohort. IDH-mutant gliomas had higher PD-L1 gene promoter 

methylation levels than IDH-wt gliomas (p<0.01).  

Conclusions: The immunological tumor microenvironment of diffuse gliomas differs 

in association with the IDH mutation status. IDH-wt gliomas display a more prominent 

TIL infiltration and higher PD-L1 expression than IDH-mutant cases. Mechanistically 

this maybe at least in part be due to differential PD-L1 gene promoter methylation 

levels. Our findings may be relevant for immune modulatory treatment strategies in 

glioma patients.  
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IMPORTANCE OF THE STUDY 

 

Here, we show that the immunological tumor microenvironment of diffuse gliomas 

differs in dependence of the molecular tumor status with IDH-wild type cases 

showing more prominent infiltration by lymphocytes and higher expression of the 

immune check-point molecule programmed death ligand 1 (PD-L1) than IDH-mutant 

cases. The difference in PD-L1 expression was evident not only at the protein level 

as assessed by immunohistochemistry, but also on the gene expression level, as 

confirmed in a large series of diffuse gliomas from the TCGA database. As potential 

mechanistic link between PD-L1 gene expression and IDH mutations we identified 

increased PD-L1 gene promoter methylation in the IDH-mutant subpopulation. Given 

the possible predictive value of TIL infiltration and PD-L1 expression as biomarkers 

for response to immune checkpoint inhibitors, our findings may be relevant for 

immune modulatory treatment strategies in glioma patients. 
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INTRODUCTION 

Diffuse gliomas are the most common primary brain tumors of adults and comprise a 

heterogeneous group of neoplasms that differ with regard to their natural course and 

sensitivity to chemo- and radiotherapy. Traditionally, diffuse gliomas have been 

separated in astrocytic versus oligodendroglial neoplasms and in three tumor grades 

based on histological features.1 However, in recent years, distinct molecular classes 

of diffuse gliomas have been identified and the revised 4th edition of the 

internationally accepted World Health Organisation (WHO) Classification of CNS 

Tumors published in 2016 has incorporated important molecular features as integral 

part of glioma sub-classification.2 These include the mutational status of the isocitrate 

dehydrogenase (IDH) 1 and 2 genes, the co-deletion status of chromosome arms 1p 

and 19q and histone 3 mutational status that have been shown to distinguish 

biologically and clinically distinct diffuse glioma types.3,4 Although neurosurgical 

resection and adjuvant radio- and chemotherapy may prolong patient´s survival 

times, most diffuse gliomas recur and limit life expectancy. So far, novel treatments 

based on biological insights have not been able to improve patient outcomes and 

new treatment modalities are needed for patients with diffuse gliomas. 

Immunotherapies blocking specific immunomodulatory molecules, so called immune 

checkpoint inhibitors, have shown clinically relevant efficacy in a number of tumor 

types and have emerged as novel treatment paradigm in clinical oncology. 

Monoclonal antibodies targeting the immunosuppressive molecule programmed 

death 1 (PD-1) and programmed death ligand 1 (PD-L1) have proven particularly 

successful and have been approved in melanoma, lung cancer, renal cell cancer and 

other tumor types. Among diffuse gliomas, glioblastoma has repeatedly been 

described to over-express PD-L1 and contain tumor-infiltrating lymphocytes (TIL).5-7 
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Moreover, efficacy of PD-1/PD-L1 inhibitors has been observed in preclinical glioma 

models and in individual human cases.8-11 Several clinical trials including large 

international randomized studies are enrolling glioblastoma patients and will report 

efficacy data in this glioma type in the near future. However, so far little data on the 

immune composition of the tumor microenvironment of other diffuse gliomas are 

available. Intriguingly, a recent paper reported some differences in the frequency of 

TILs and PD-L1 expression between tumor types and tumor grades as defined by 

histological features and the WHO 2007 classification.12,13 Associations of molecular 

subtypes with tumor immunogenicity and the capacity for immune evasion have been 

reported for several tumor types. We hypothesized that the recently defined 

molecular glioma subtypes may also associate with distinct immunological tumor 

characteristics.14-16 Therefore, we compiled a large series of cases across all diffuse 

glioma types as defined by the WHO 2016 classification and characterized them with 

regard to infiltration by TIL subsets and expression of PD-L1. To validate our 

findings, we performed an analysis of PD-L1 gene expression levels in diffuse 

gliomas derived from The Cancer Genome Atlas (TCGA) database. 
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METHODS 

 

Vienna WHO II/III glioma cohort 

Patients treated for diffuse astrocytoma, anaplastic astrocytoma, oligodendroglioma 

or anaplastic oligodendroglioma at the Medical University of Vienna were identified 

from the Neuro-Biobank of the Institute of Neurology, Medical University of Vienna. 

Diagnosis was performed according to the WHO 2016 classification by a board 

certified Neuropathologist.2 The ethics committee of the Medical University of Vienna 

approved the study (Vote 078/2004). 

 

Vienna glioblastoma cohort  

Data on TIL infiltration and PD-L1 expression in 117 IDH-R132H negative newly 

diagnosed glioblastomas were available from a previous study.6 For the present 

study, we expanded this cohort by 14 newly diagnosed glioblastoma cases harboring 

an immunohistochemically detected IDH-R132H mutant. The overall glioblastoma 

cohort analyzed in this study therefore encompassed 131 cases.  

 

Immunohistochemistry and molecular pathology 

Tumor tissue was formalin fixed and paraffin embedded (FFPE) according to 

standard laboratory practice. Specimens presenting with a specific anti-IDH-R132H 

immunohistochemical signal were scored as IDH mutated (IDH-mut). Anti-IDH-

R132H negative WHO II/III glioma cases underwent genetic sequencing of IDH1 and 

IDH2 genes to detect less common forms of IDH mutations.17 Only WHO II/III glioma 

specimens with no evidence of IDH1/2 mutations at immunohistochemistry and gene 

sequencing were classified as IDH wild type (IDH-wt).18 Immunohistochemistry for 

CD3 and PD1 was performed as previously published on a Ventana Benchmark Ultra 
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immunostaining system.6 Tissue of human non-malignant lymph nodes was used as 

positive control and omission of primary antibody was used as negative control. 

Immunohistochemistry for PD-L1 was performed using a Dako AutostainerPlusLink 

immunostaining system and the monoclonal mouse antibody Clone 5H1 (dilution 

1:400; kindly provided by Dr. Lieping Chen), which was used in several studies 

correlating PD-L1 expression and response to immune checkpoint inhibitors as well 

as in our previous studies of our group investigating PD-L1 expression.6,19-23 In brief, 

antigen retrieval was performed using the TRS high pH9 buffer (Dako Glostrup, 

Denmark) followed by antibody incubation using a 1:100 dilution and detection using 

the EvVision FLEX and visualization system (Dako Glostrup, Denmark. Human 

placenta served as positive control and omission of the primary antibody as negative 

control. The 1p19q status (1p19q co-deleted [codel] vs. 1p19q non-codeleted [non-

codel]) was evaluated in all WHO grade II/III gliomas using fluorescence in situ 

hybridization (FISH) as described previously.24 

 

Evaluation of Immunohistochemistry  

Tumor infiltrating Lymphocytes  

Density of CD3+ and PD1+ TILs was evaluated semiquantitatively by overall 

impression at low microscopic magnification (100x) and scored absent (less than 4 

TILs in the entire specimen), sparse (more than 4 but no accumulation), moderate 

(single areas with accumulation of TILs), dense (TILs throughout the tumor section) 

or very dense (high frequency of TILs throughout the entire tumor section) according 

to previously published criteria.6,25 Further, accumulation of TILs in predefined areas 

(within the viable tumor tissue, in the perivascular region and, if applicable, in the 

invasion zone to the surrounding brain parenchyma) was analyzed at higher 

magnification (200x – 400x).  
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PD-L1 expression  

PD-L1 expression was evaluated according to a previously published algorithm: 

diffuse/fibrillary PD-L1 expression was semiquantitatively assessed according to the 

following criteria: (i) no positive tumor areas; (ii) expression in < 25% of non-necrotic 

tumor area; (iii) expression in > 25% and < 50% of non-necrotic tumor area; (iv) 

expression in > 50% and < 75% of non-necrotic tumor area; (v) expression in > 75% 

of non-necrotic tumor area.6 Further, membranous PD-L1 labeling was recorded as 

percentage of tumor cells presenting with strong, complete, or membranous PD-L1 

staining. For subsequent statistical analysis specimens with fibrillary/diffuse PD-L1 

expression in >25% of viable tumor tissue, or membranous PD-L1 expression in at 

least 1% of tumor cells were defined as “PD-L1 positive”. 

 

The Cancer Genome Atlas Dataset 

TCGA RNA-Seq Level 3 (normalized) data for WHO grade II/III diffuse glioma (TCGA 

LGG dataset) and glioblastoma (WHO grade IV, TCGA GBM dataset) samples were 

obtained through the NCI GDC portal, and was pre-processed to produce single data 

frames of expression values with sample annotations (sample type, IDH mutation 

status) based on supplementary tables 2 & 3 from Ceccarelli et al. 3 For the PD-L1 

gene expression analysis, TCGA WHO grade II/III gliomas and glioblastoma samples 

were selected for which RNA-Seq data and annotation information were available 

(N=516). For the correlation analysis of PD-L1 gene expression and promoter CGI 

CpG methylation levels, a smaller subset of samples was selected due to the lack of 

glioblastoma samples which have both RNA-Seq and Infinium450k data available 

(N=51 IDH-wt and 4 IDH-mut). Infinium450k probes measuring DNA methylation at 

the PD-L1 promoter were selected for analysis based on the previously described 
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methodology.26 Briefly, PD-L1 promoter probes exhibiting functional methylation were 

determined 1) based on their annotated location, and 2) exhibiting a significant 

negative correlation methylation / PD-L1 expression (Spearman correlation) in the 

TCGA-LGG dataset. TCGA data has been downloaded between November 2015 and 

January 2016, and has been pre-processed to produce single data frames of 

expression values for each dataset. Compiled molecular information, comprising 

IDH1/2 mutation status, 1p19q codeletion status, and CIMP status were kindly made 

available by Pierre Bady. 27 

 

Statistical analysis 

All pairwise comparisons with two groups were performed using Student’s T-Test or 

Chi Square test as appropriate. Comparisons with more than two groups were 

compares using ANOVA, with pairwise comparisons performed using Tukey’s HSD 

post-hoc analysis. P-values < 0.05 were considered as statistically significant. No 

survival analysis was performed due to the high percentage of censored patients 

(>90%). Due to the exploratory and hypothesis-generating design of the present 

study, no adjustment for multiple testing was applied.28 All statistical analysis was 

performed with a statistical package for the social sciences (SPSS) 20.0 software 

(SPSS Inc) or in R. 29 
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RESULTS 

 

TIL density and PD-L1 expression in the Vienna WHO grade II/III glioma cohort 

Overall, tissue samples of 43 patients with WHO grade II and III diffuse gliomas were 

available. Tumor typing according to WHO 2016 classification and patient 

characteristics are given in Table 1. Infiltration of TILs was present in 22/43 (51.2%) 

specimens. The TIL density overall was only sparse to moderate, and none of the 

investigated specimens presented with dense or very dense infiltration of any TIL 

subtype (Figure 1). Infiltration was observed diffusely throughout the viable tumor 

tissue. TILs were only infrequently observed in the invasion zone to the surrounding 

brain parenchyma, and if present only at sparse density. PD-1+ TILs were not 

detected in any of the investigated WHO grade II/III glioma samples (Supplemental 

Table 1).  

 

No correlation between histology (IDH-mut/1p19q codel vs. IDH-mut/1p19q non-

codel) and CD3+ TIL density was detected (p=0.408; Chi Square test). Correlation of 

TIL infiltration and IDH status was not performed due to limited statistical power (only 

4/43 IDH-wt specimens).  

 

Diffuse/fibrillary PD-L1 expression in tumor tissue was observed in 22/43 (51.2%) 

specimens (Figure 1E). Membranous PD-L1 expression of individual tumor cells was 

evident in 3/43 (7.0%) specimens (Supplemental figure 1; Supplemental Table 1). 

Only 1/43 (2.3%) cases, an anaplastic astrocytoma IDH-mut, displayed membranous 

PD-L1 expression in approximately 10% of viable glioma tumor cells. No statistical 

difference in frequency of PD-L1 expression according to molecular subtype (IDH-

mut/1p19q codel vs. IDH-mut/1p19q non-codel) was observed (p=0.855 Chi Square 
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test). Correlation of PD-L1 expression and IDH mutation was not performed due to 

limited statistical power (only 4/43 IDH-wt specimens). 

 

TIL density and PD-L1 expression in the Vienna glioblastoma cohort (WHO 

grade IV) 

In the 14 cases of IDH-mut glioblastoma we found CD3+ TILs in 3/14 (21.4%) cases. 

PD1+ TILs were absent in all 14 IDH-mut glioblastoma cases. Diffuse/fibrillary and 

membranous PD-L1 expression was evident in 1/14 (7.1%) of these specimens, 

while none of the cases showed membranous PD-L1 expression. Comparing the 

results from this series of 14 IDH-R132H-positive glioblastomas to the data from our 

previously reported series of 117 IDH-R132H-negative glioblastomas 6 , we found a 

strong correlation of IDH status with characteristics of the inflammatory 

microenvironment: IDH-wt glioblastoma presented significantly more frequently with 

CD3+ TILs (66.7% vs. 21.4%; p=0.001; Chi Square test), PD1+ TILs (17.1% vs. 

0.0%; p=0.002; Chi Square test), fibrillary/diffuse PD-L1 expression (84.6% vs. 7.1%; 

p<0.001; Chi Square test) and membranous PD-L1 expression (58.1% vs. 0%; 

p<0.001; Chi Square test) than IDH-mut specimens (Supplemental Table 1).  

 

TIL density and PD-L1 expression in the overall Vienna glioma cohort (WHO 

grades II, III and IV) 

IDH mutation status also correlated with characteristics of the inflammatory 

microenvironment in the entire Vienna glioma cohort containing 43 WHO grade II/III 

gliomas and 131 glioblastomas (total n=174). IDH-wt glioma presented significantly 

more frequently with CD3+ TILs (66.1% vs. 43.4%; p=0.005; Chi Square test; Figure 

2A; Table 2), with PD1+ TILs (16.5% vs. 0%; p=0.002; Chi Square test; Figure 2B; 

Table 2), with fibrillary/diffuse PD-L1 expression (56.2% vs. 5.7%; p<0.001; Chi 
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Square test; Figure 2C; Table 2) and with membranous PD-L1 expression (56.2% 

vs. 5.7%; p<0.001; Chi Square test; Figure 2D; Table 2) compared to IDH-mut 

glioma.  

 

PD-L1 gene expression and PD-L1 gene promoter methylation in the TCGA 

dataset 

PD-L1 expression differed significantly between molecular glioma subtypes. The 

lowest expression was observed in IDH-mut/1p19q codel gliomas, followed by IDH-

mut/1p19q non-codel, IDH-wt and glioblastoma (p<0.001; Figure 3A). PD-L1 gene 

expression was statistically significantly higher in IDH-wt WHO grade II/III gliomas 

compared to IDH-mut WHO grade II/III gliomas (p = 1.933e-11). However, there was 

no statistical difference in PD-L1 gene expression levels between IDH-wt WHO grade 

II/III glioma and glioblastoma cases. 

 

PD-L1 gene promoter methylation was studied as a possible explanation for these 

differing results. A negative correlation of PD-L1 gene expression with PD-L1 gene 

promoter methylation was observed (cg15837913, -0.36 (Spearman correlation 

coefficient), p<0.01, Figure 3B; cg19724470, -0.27, p<0.01 Supplemental Figure 

1). In line, PD-L1 gene promoter methylation levels were higher in IDH-mut as 

compared to IDH-wt samples, supporting the notion that PD-L1 gene promoter 

methylation may be causally linked to the lower PD-L1 expression levels in IDH-mut 

versus IDH-wt samples (p<0.01; Figure 3B). In the TCGA glioblastoma cohort the 

number of IDH-mt cases with 450K and RNA-seq data was too small for meaningful 

analysis (4 of 55). 
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DISCUSSION 

In this project, we investigated TIL infiltration and PD-L1 expression in diffuse 

gliomas and report a significant association of these immunological parameters with 

their molecular tumor subtype. A previous paper by Garber et al. has already 

documented some difference in TIL infiltration and PD-L1 expression among 

histological glioma types. 12 Our study indicates that the main factor influencing the 

extent of TIL infiltration and presence of PD-L1 expression in diffuse gliomas is the 

IDH mutational status. IDH-wt cases had more TIL and PD-L1 expression and may 

be considered more immunologically activated than IDH-mut cases. The association 

of PD-L1 expression with IDH status was evident both at protein-based analysis 

using immunohistochemistry in our series and at the gene expression level in the 

TCGA dataset.  

 

The mechanistic basis for the association of the IDH mutation with the immunologic 

make-up of the tumor microenvironment remains to be determined. However, the 

lower PD-L1 gene expression was associated with increased promoter methylation in 

the IDH-mut gliomas. Based on our data, we hypothesize that the higher PD-L1 

promoter methylation is associated with the characteristic hypermethylator phenotype 

of IDH-mut gliomas that has been shown to be induced by the oncometabolite 2-

hydroxglutarate. 30-32 Further factors influencing the different immune phenotypes of 

IDH-wt and IDH-mut gliomas may include epigenetic alterations in other immune-

relevant signaling pathways, and reprogramming of the metabolism. 33,34 In addition, 

the effects of 2-hydroxglutarate on the tumor microenvironment including TIL will 

need to be considered. 31,35 
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Clinical trials are currently evaluating the role of PD-1/PD-L1 inhibitors in newly 

diagnosed and recurrent primary glioblastoma. Should these trial efforts show a 

positive therapeutic effect of these drugs in this tumor type, expansion of the subset 

of non-glioblastoma diffuse gliomas without IDH mutation should be considered. 

Such cases, i.e. diffuse and anaplastic astrocytoma with IDH-wt status have poor 

clinical outcome and limited treatment options and are in need of new therapies. 2 

Our data and the TCGA data may suggest that these cases may be amenable to 

immune checkpoint inhibition. 

Preclinical studies suggest that IDH mutations may serve as a specific target for 

vaccination approaches in glioma and a clinical trial evaluating this approach is 

currently recruiting patients with IDH-mut diffuse gliomas (NCT02454634, NOA-16).35 

Our findings show a low base-line infiltration by TILs in IDH-mut gliomas and 

combination of an IDH1R132H-specific vaccine with other immune-stimulatory 

agents boosting immune cell migration into the tumor microenvironment may be 

useful to facilitate an efficient anti-tumor response.10 Given the low PD-L1 expression 

found in IDH-mut cases, likely silenced through methylation of the PD-L1 gene 

promoter, PD1/PD-L1 immune checkpoint inhibitors are not indicated, and other 

strategies need to be employed e.g. agonists of co-stimulatory checkpoint molecules. 

Further, high mutational load is considered as an emerging biomarker for response to 

immune checkpoint inhibitors and pediatric hypermutant glioblastoma resulting from 

a germline mismatch repair deficiency presented with response to immune 

checkpoint inhibitors. 36,37 However, LGG present with a rather low mutational load 

(0.77 mutations/ Mb) in comparison to glioblastoma (2.2 mutations/ Mb) and 

especially other tumor entities with high response rates to immune checkpoint 

inhibitors like melanoma (12.9 mutations/ Mb) and lung cancer (9.9 mutations/ Mb). 
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38,39 A subset of IDH-mut/1p19q non-codel LGG and glioblastoma have been 

reported to present with a hypermutator phenotype after temozolomide based 

therapy. 40,41 The hypermutator phenotype has been found in MGMT methylated 

glioma at recurrence, usually associated with the acquisition of a mutation in MSH6, 

or another gene of the mismatch repair (MMR) pathway that provides resistance to 

temozolomide treatment.41,42 The plethora of acquired mutations may yield neo-

epitopes and render the tumors sensitive to immunotherapies. However, the 

frequency of the hypermutator phenotype is unknown, as only small series have 

been published so far.40-42 It has been proposed that MSH6 mutations and mutations 

in other MMR genes may serve as a biomarkers to detect the hypermethylation 

phenotype in temozolomide treated patients with MGMT methylated glioma. The 

latter is common in IDH-mut LGG or GBM (>90%), and close to 50% in IDH-wt 

glioma (WHO grade II to IV), and most importantly these patients are usually treated 

with an alkylating agent.27 

Therefore, combinational strategies taking into account the specific characteristics of 

the immune microenvironment like TIL density and PD-L1 expression, as well as 

mutational characteristics and previously applied therapies might in the future define 

the immune modulatory therapy approach.  

Several different antibodies and protocol have been used for the detection on PD-L1 

by immunohistochemistry. Importantly, the resulting signal can vary according to the 

main targeted domain as antibodies targeting the extracellular domain produce a 

rather cytoplasmatic signal and antibodies targeting the cytoplasmic domain a rather 

membranous signal. 43,44 In the current study, we used the antibody clone 5H1, which 

has been used by previous studies to study PD-L1 expression in glioma and other 

tumor types by our group and others to correlate PD-L1 expression likelihood of 
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response to immune checkpoint inhibitors. 6,23,20,21 Here, we observed a 

diffuse/fibrillary as well as a membranous staining pattern, both of which have been 

described previously.45 We believe that these staining patterns resemble the 

heterogeneous microarchitecture of glioblastoma, with the membranous labeling 

being only visible on epitheloid cancer cells and the diffuse/fibrillary staining reflecting 

membrane-staining on the delicate tumor cell process forming the pathognomic 

“neurofibrillary matrix” of glial tumors. Most likely only studies on ultrastructure level 

e.g. using electron microscopy can answer to with component the PD-L1 is bound in 

case of the fibrillary staining patterns. Importantly, so far no standard protocol has 

been published for the detection of PD-L1 expression in glioma and the optimal 

method for routine clinical use as well as the cut-off values need to be defined. 13 A 

further interesting parameter could be PD1 expression on tumor infiltrating 

lymphocytes besides the proposed predictive value of PD-L1 expression on tumor 

cells, macrophages or TILs.23,46,47 Indeed, a retrospective study suggests an 

increased likelihood of response to PD1 axis targeting immune checkpoint inhibitors 

in patients with dense infiltration of PD1+ TILs.48 The currently on-going clinical trials 

on immune checkpoint inhibitors in glioma patients will provide deeper insights on 

which characteristics of the inflammatory microenvironment might be of predictive 

value.  

 

In conclusion, our data show that the immunological tumor microenvironment of 

diffuse gliomas differs in association with their IDH mutation or CIMP status, 

respectively, although the mechanistic basis of the observed relationship remains to 

be elucidated. Our findings suggest that the characteristics of the inflammatory 

microenvironment may differ according to the genetic glioma subtype and may be 
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relevant for the further conduction and planning of clinical trials investigating the 

therapeutic value of immune modulatory treatment strategies in glioma patients.  
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Figure legend 

Figure 1: Difference in TIL density and PD-L1 expression in IDH-wt and IDH-mut 

glioma A/C/E IDH-wt glioma WHO grade III without immunohistochemical staining for 

IDH-R132H mutant and lack of IDH gene 1 or 2 mutations based on gene 

sequencing (magnification x 100; A; scale bar 250μm), scattered infiltration with 

CD3+ Tumor infiltrating lymphocytes (magnification x 200; C; scale bar 100μm), 

fibrillary expression of PD-L1 (magnification x 400; E); B/D/F IDH-mut WHO grade II 

glioma presenting with anti-IDH-R132H immunostaining (magnification x 100; B), 

absence of CD3+ Tumor infiltrating lymphocytes (magnification x 200; D; scale bar 

100μm), lack of PD-L1 expression (magnification x 200; F; scale bar 100μm) 

 

Figure 2: Bar graphs illustrating the correlation of TIL infiltration and PD-L1 

expression with IDH status in the overall Vienna cohort of WHO grade II-V 

diffuse glioma (n=174). A CD3+ TILs in IDH-mut and IDH-wt glioma. B 

Fibrillary/diffuse PD-L1 expression in IDH-mut and IDH-wt glioma. C Membranous 

PD-L1 expression in IDH-mut and IDH-wt glioma. 

 

Figure 3: PD-L1 gene expression and gene promoter methylation in diffuse 

glioma. A PD-L1 gene expression is significantly lower in IDH-mut WHO II/III glioma 

than in IDH-wt WHO II/III glioma of the TCGA WHO LGG cohort, while IDH-wt WHO 

II/III glioma are not different from the TCGA GBM cohort (for which RNA seq data is 

available). B PD-L1 gene expression levels show a significant negative correlation 

with PD-L1 gene promoter methylation, illustrated for a representative functional CpG 

(probe cg15837913, −0.36 [Spearman], p<0.01) in WHO II/III glioma of the TCGA 

LGG dataset. Black lines in the plot show the fit of linear regression, in grey local 
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regression using lowess smoothing. Methylation of the PD-L1 promoter is 

significantly higher in IDH-mut WHO II/III glioma than IDH-wt WHO II/III glioma (beta-

values, p<0.01, two-sided Student’s T-test). 

 

Supplemental Figure 1 (linked to Figure 3B): PD- L1 gene expression levels show a 

significant negative correlation with PD-L1 gene promoter methylation, illustrated for 

a functional CpG interrogated by the probe cg19724470 (−0.27 [Spearman], p<0.01) 

in WHO II/III glioma. Black lines in the plot show the fit of linear regression, in grey 

local regression using lowess smoothing. Methylation of the PD-L1 promoter is 

significantly higher in IDH-mut WHO II/III glioma than IDH-wt WHO II/III glioma (b-

values, p<0.01, two-sided Student’s T-test). 

 








