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De novo design of protein interactions with 
learned surface fingerprints
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Michael Bronstein9 ✉ & Bruno E. Correia1,2 ✉

Physical interactions between proteins are essential for most biological processes 
governing life1. However, the molecular determinants of such interactions have been 
challenging to understand, even as genomic, proteomic and structural data increase. 
This knowledge gap has been a major obstacle for the comprehensive understanding 
of cellular protein–protein interaction networks and for the de novo design of protein 
binders that are crucial for synthetic biology and translational applications2–9. Here 
we use a geometric deep-learning framework operating on protein surfaces that 
generates fingerprints to describe geometric and chemical features that are critical to 
drive protein–protein interactions10. We hypothesized that these fingerprints capture 
the key aspects of molecular recognition that represent a new paradigm in the 
computational design of novel protein interactions. As a proof of principle, we 
computationally designed several de novo protein binders to engage four protein 
targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were 
experimentally optimized, whereas others were generated purely in silico, reaching 
nanomolar affinity with structural and mutational characterization showing highly 
accurate predictions. Overall, our surface-centric approach captures the physical and 
chemical determinants of molecular recognition, enabling an approach for the 
de novo design of protein interactions and, more broadly, of artificial proteins with 
function.

Designing novel protein–protein interactions (PPIs) remains a funda-
mental challenge in computational protein design, with broad basic 
and translational applications in biology. The challenge consists of 
generating amino acid sequences that engage a target site and form a 
quaternary complex with a given protein. This represents a stringent 
test of our understanding of the physicochemical determinants that 
drive biomolecular interactions11. Robust computational methods to 
design de novo PPIs could be used to rapidly engineer protein-based 
therapeutics such as antibodies and protein inhibitors or vaccines 
among others, and are therefore of considerable interest for biomedi-
cal and translational applications2–8.

Despite recent advances in rational PPI design2,6,8 and prediction12, 
designing novel protein binders against specific targets is very chal-
lenging, particularly when no structural elements from pre-existing 

binders are known. Current state-of-the-art methods for de novo PPI 
design2,6,13,14, such as hotspot-centric approaches6 and rotamer infor-
mation fields2,8, rely on placing disembodied residues on the target 
interface and then optimizing their presentation on a protein scaf-
fold. Intrinsic limitations of these approaches relate to the very weak 
energetic signatures provided by scoring functions to single-side chain 
placements, which is compounded in flat interfaces that lack deep 
pockets. These methods also face the challenge of finding compatible 
protein scaffolds to precisely display the generated constellations of 
residues. To circumvent these limitations, new approaches are needed 
to design de novo binders to various surface types and protein sites.

A long-standing model of molecular recognition postulates that 
PPIs form between protein molecular surfaces with chemical and geo-
metric complementarity15,16. The complementarity features arise as a 

https://doi.org/10.1038/s41586-023-05993-x

Received: 16 June 2022

Accepted: 21 March 2023

Published online: 26 April 2023

Open access

 Check for updates

1Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 2Swiss Institute of Bioinformatics, 
Lausanne, Switzerland. 3Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 
4Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. 5CAS Key Laboratory of Pathogen Microbiology and Immunology, 
Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. 6Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, 
Switzerland. 7Laboratory of Biophysical Chemistry of Macromolecules, School of Basic Sciences, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de 
Lausanne, Lausanne, Switzerland. 8Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 9Department 
of Computer Science, University of Oxford, Oxford, UK. 10Present address: Monte Rosa Therapeutics, Basel, Switzerland. 11These authors contributed equally: Pablo Gainza, Sarah Wehrle, 
Alexandra Van Hall-Beauvais, Anthony Marchand, Andreas Scheck. ✉e-mail: michael.bronstein@cs.ox.ac.uk; bruno.correia@epfl.ch

https://doi.org/10.1038/s41586-023-05993-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-05993-x&domain=pdf
mailto:michael.bronstein@cs.ox.ac.uk
mailto:bruno.correia@epfl.ch


Nature  |  Vol 617  |  4 May 2023  |  177

consequence of the energetic contributions that are critical to stabilize 
PPIs, including van der Waals interactions (geometric complementarity), 
hydrophobic effect and electrostatics interactions (chemical comple-
mentarity)15. At the structural level, most protein interfaces contain 
surface regions that become inaccessible to solvent after complex forma-
tion, which we refer to as buried or the core interface, as well as patches 
that are involved in the interface but remain solvent-exposed, which we 
refer to as the interface rim. Residues within the buried areas tend to be 
much less tolerant to mutations1,17 and have a large energetic contribu-
tion towards the PPI formation, often referred to as hotspots. Rim regions 
are generally more polar and tolerant to mutations, giving important 
contributions to affinity and, notably, specificity1,18. Guided by these gen-
eral principles of molecular recognition, we introduce a protein design 
approach based on the critical importance of the fully buried patches of 
the interface to drive protein interactions. We implemented these design 
principles by taking advantage of surface fingerprints learned from 
interacting protein surfaces that capture features that are determinants 
for molecular recognition. Our approach enables ultrafast and accurate 
prediction of privileged sites for PPI design, and reduces the complexity 
for hotspot search and grafting. We used this design workflow to suc-
cessfully engineer and characterize binders against four therapeutic 
targets of interest—namely, SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4.

Design strategy and in silico validation
In previous work, we introduced a geometric deep-learning frame-
work—Molecular Surface Interaction Fingerprinting (MaSIF)—to 

generate surface fingerprints from the geometric and chemical features 
of molecular surfaces and learn patterns that determine the propen-
sity of protein interactions10. Within this framework we developed 
the MaSIF-site tool to predict areas with a propensity to form PPIs on 
the surface of proteins. MaSIF-site receives as input a protein decom-
posed into patches and outputs a per-vertex regression score on the 
propensity of each surface point to become a buried site within a PPI. 
We also developed MaSIF-search, another tool to evaluate the sur-
face complementarity between binding partners. MaSIF-search was 
designed as a Siamese neural network architecture19 trained to pro-
duce similar fingerprints for the target patch versus the binder patch, 
and dissimilar fingerprints for the target patch versus the random 
patch. As MaSIF tools had robust performance in PPI-related prediction 
tasks, we hypothesized that we could use them to design PPIs by tar-
geting sites using only structural information from the target protein.  
To address the de novo PPI design problem, we devised a three-stage 
computational approach depicted in Fig. 1: (1) prediction of target 
buried interface sites with high binding propensity using MaSIF-site 
(Fig. 1a); (2) surface fingerprint-based search for complementary 
structural motifs (binding seeds) that display the required features 
to engage the target site, a protocol we refer to as MaSIF-seed (Fig. 1a,b); 
(3) binding seed transplantation to protein scaffolds to confer stabil-
ity and additional contacts on the designed interface (Fig. 1c) using 
established transplantation techniques20.

The new MaSIF-seed protocol addresses the problem of identifying 
binding seeds that can mediate productive binding interactions (Fig. 1 
and Extended Data Fig. 1). This task stands as a considerable challenge 
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Fig. 1 | Surface-centric design of de novo site-specific protein binders.  
a, Schematic of fingerprint generation. Protein binding sites are spatially 
embedded as vector fingerprints. Protein surfaces are decomposed into 
overlapping radial patches, and a neural network trained on native interacting 
protein pairs learns to embed the fingerprints such that complementary 
fingerprints are placed in a similar region of space. We show an illustration  
for a subsample of the fingerprints projected in a space reduced to three 
dimensions. The green box highlights a region of complementary fingerprints. 
b, MaSIF-seed—a method to identify new binding seeds. A target patch is 

identified by MaSIF-site based on the propensity to form buried interfaces. 
Using MaSIF-seed, fingerprint complementarity is evaluated between the 
target patch and all fingerprints in a large database (around 402 million 
patches); the pairs of fingerprints are subsequently ranked. The top patches 
are aligned and rescored to enable a more precise evaluation of the seed 
candidates. c, Scaffold search, seed grafting and interface redesign. The 
selected seeds are transferred to protein scaffolds and the rest of the interface 
is redesigned using Rosetta. The top designs are selected and tested 
experimentally.
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in protein design owing to the vast space of structural possibilities to 
explore, as well as the required precision given that subtle atomic-level 
changes—such as misplaced methyl groups20,21, uncoordinated water 
molecules in the interface or incompatible charges—are sufficient to 
disrupt PPIs22.

In MaSIF-seed, protein molecular surfaces are decomposed into 
overlapping radial patches with a 12 Å radius, capturing on average 
nearly 400 Å2 of surface area, consistent with the buried surface areas 
observed in native interfaces (Supplementary Fig. 1). For each point 
within the patch, we compute chemical and geometric features, as 
well as a local geodesic polar coordinate system to locate points within 
the patch relative to each other. A neural network is then trained to 
output vector fingerprint descriptors that are complementary 
between patches of interacting protein pairs and dissimilar between 
non-interacting pairs10 (Fig. 1a and Extended Data Fig. 1). Matched  
surface patches are aligned to the target site and scored with a second 
neural network, outputting an interface post-alignment (IPA) score to 
further improve the discrimination performance of the surface descrip-
tors (Methods).

To benchmark our method, we assembled a test set comprising 114 
dimeric complexes, which contained 31 complexes of which the bind-
ing motif was a single α-helical segment and 83 of which the binding 
motif was composed of less than 50% helical segments (Supplementary 
Fig. 2). As decoy sets, we used 1,000 motifs (ranging from 600,000–
700,000 patches), which, in the case of the helical set, also had a heli-
cal secondary structure and, in the non-helical set, were composed of 
two- and three-strand β-sheets.

We benchmarked MaSIF-seed relative to other docking methods to 
identify the true binder from the co-crystal structure in the correct ori-
entation (interface root mean squared deviation (iRMSD) < 3 Å) among 
1,000 decoys (Extended Data Fig. 2). MaSIF-seed identified the correct 
binding motif in the correct orientation as the top scoring result in 18 
out of 31 cases, and 41 out of 83 cases for the helical and non-helical sets, 
respectively. By contrast, the best performing method, ZDock + ZRank2 
(refs. 23–25) identified only 6 out of 31 as top results in the helical set, 21 
out of 83 in the non-helical set. In addition to superior performances, 
MaSIF-seed was considerably faster, showing speed increases of between 
20- and 200-fold, which mostly depend on the number of patches 
derived from each motif. In our benchmark, we also performed com-
parisons with faster methods, which showed much lower performances 
than ZDock + ZRank2 (Table 1 and Supplementary Table 1).

An analysis of the cases in which MaSIF-seed performed best showed 
that its success relied on PPIs of which (1) the interaction site could be 
correctly identified by the method, and (2) the majority of contacts 
lie on a radial patch at the interface core, and with a high shape com-
plementarity in that region (Supplementary Fig. 3). This is consistent 
with how MaSIF-seed was designed to capture protein interfaces using 
a radial geodesic patch.

Encouraged by MaSIF-seed’s speed and accuracy in discriminating 
the true binders from decoys on the basis of rich surface features, we 
sought to design de novo protein binders to engage challenging and 
disease-relevant protein targets. We therefore assembled a motif data-
base including approximately 640,000 structural fragments (402 mil-
lion surface patches/fingerprints) with distinct secondary structures 
(approximately 390,000 and 250,000 non-helical and helical motifs, 
respectively) extracted from the Protein Data Bank (PDB; Methods). 
We computationally designed and experimentally validated bind-
ers against four structurally diverse targets: the receptor-binding 
domain (RBD) of the SARS-CoV-2 spike protein in which we identified a 
neutralization-sensitive site; the two partners of the PD-1–PD-L1 com-
plex, an important protein interaction in immuno-oncology that displays 
a flat interface that is considered to be ‘hard to drug’ by small molecules 
(Supplementary Fig. 4); and CTLA-4—another important target for 
immuno-oncology. We show that our method can be applied to a variety 
of structural motifs as binding seeds (helical and non-helical), generat-
ing functional designs directly from the computational simulations.

Targeting a predicted SARS-CoV-2 site
We applied our surface-centric approach to design de novo binders 
to target the SARS-CoV-2 RBD. First, we used MaSIF-site to predict sur-
face sites on the RBD with a high propensity to be engaged by protein 
binders. We selected a site distinct from the ACE2-binding region, but 
overlapping such that a putative binder could inhibit the ACE2–RBD 
interaction (Fig. 2a). At the time, binders to this site were lacking. We 
searched a subset of our database containing 140 million surface finger-
prints derived from helical fragments to find binding seeds that could 
target the selected site. The 7,713 binding seeds MaSIF-seed provided 
showed two prominent features: (1) a contact surface devoid of resi-
dues with strong binding hotspot features (such as large hydrophobic 
residues); (2) an equivalent distribution of binding seeds in two distinct 
orientations of the helical fragment, with the seeds binding at 180° from 
each other (Fig. 2b), hinting that both binding modes are plausible. 
Notably, both orientations of the binding seeds present very similar 
signatures at the surface fingerprint level (Supplementary Fig. 5) and 
at the sequence level (Fig. 2b).

We synthesized one of the top-ranked binding seeds as a linear 
peptide, but no binding interaction was detected using surface plas-
mon resonance (SPR) (Supplementary Fig. 6). Thus, using the Rosetta 
MotifGraft protocol, we identified several protein scaffolds that were 
compatible with both binding modes of the seed (Fig. 2c), transplanted 
the seed hotspot side chains from a top-ranking seed onto the scaffolds 
and used Rosetta (v.3.13) to optimize the binder interface (Fig. 1c). 
In total, 63 designs based on 20 scaffolds, with 7–23 mutations rela-
tive to the native proteins, were screened in a yeast display analysis 
(Extended Data Fig. 3a–d). From this initial round of designs, DBR3_01 
showed weak binding in yeast display experiments. Moreover, binding 
of DBR3_01 was competitive with soluble ACE2 (Extended Data Fig. 3e), 
suggesting that the binder was targeting the correct RBD site. Further-
more, DBR3_01 showed slightly increased binding compared with the 
native scaffold protein and a variant with a double point mutation at the 
designed interface residues, further supporting that the seed residues 
were participating in the binding interaction (Extended Data Fig. 3f and 
Supplementary Table 2). We next sought to improve the binding affinity 
of the design by generating two mutagenesis libraries: first, a directed 
library in the designed interface was prepared (Supplementary Fig. 7), 

Table 1 | Benchmarking of MaSIF-seed and other docking 
methods

Benchmarked 
method

No. 
in 
top 
1

No. 
in 
top 
10

No. 
in 
top 
100

No. 
outside 
top 
100a

Average 
time 
(min)b

Helical seeds MaSIF-seed 18 18 20 11 15

ZDock 3 4 8 23 2,715

ZDock + ZRank2 6 12 21 10 2,946

Non-helical seeds MaSIF-seed 41 47 49 34 118

ZDock 7 9 22 61 2,206

ZDock + ZRank2 21 33 45 38 2,400

A benchmark of MaSIF-seed against other docking methods in recovering the native binder 
in the correct conformation from co-crystal structures for 31 helix–receptor complexes or 83 
non-helix seed–receptor complexes, discriminating between 1,000 decoys. The number of 
receptors for which the method recovered the native binding motif (<3 Å iRMSD) within the 
top 1, top 10 and top 100 results is shown. 
aThe number of receptors for which the method did not recover the native binding motif in the 
top 100 results. 
bThe average running time, excluding precomputation time.
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which yielded DBR3_02 with four mutations and a dissociation constant 
(KD) of 4.6 µM determined by SPR (Fig. 2d and Supplementary Fig. 7). 
Second, we screened a site-saturation mutagenesis (SSM) library, which 
resulted in the enrichment of three point mutants, one of which over-
lapped with a mutation from the first library (Supplementary Fig. 8). 

Adding these three mutations to DBR3_02 resulted in DBR3_03, which 
showed a KD of 80 nM and was folded and stable (Fig. 2d and Supplemen-
tary Fig. 9). Here, we started from a computationally designed binder 
with very low affinity as observed with yeast display, yet undetectable by 
SPR, and, after introducing 6 mutations, we observed an improvement 
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Fig. 2 | Design and optimization of a SARS-CoV-2 binder targeting the RBD. 
a, MaSIF-site prediction of the interface propensity of the RBD. The ACE2- 
binding footprint (yellow outline) is distinct from the predicted binding site 
(red). b, MaSIF-seed predicts helical seeds that cluster into anti-parallel 
orientations, referred to as up or down configurations. Sequence logo plots 
highlight the similarity between the sequences of the two seed clusters, 
regardless of orientation. c, The scaffold (PDB: 5VNY) used to make DBR3_01 
allows for binding in the up or down orientation, sharing similar footprints.  
d, SPR data of improved DBR3 binders with controls. DBR3_03 has an affinity of 
80 nM with RBD. e, A cryo-EM structure (dark green) aligns to the AlphaFold 
prediction with an iRMSD of 1.4 Å. The trimeric spike protein (grey) has one 

DBR3_03 bound per RBD (orange, pink, green). f, Fc–DBR3_03 binds to the 
spike protein of most variants of concern, except for those with the L452R 
mutation. A list of half-maximal effective concentration (EC50) values of 
DBR3_03 is provided in Supplementary Table 3. The fits were calculated from 
technical replicates (n = 2) using a nonlinear four-parameter curve fitting 
analysis. g, Fc–DBR3_03 neutralizes live Omicron virus in cell-based inhibition 
assays with an half-maximal inhibitory concentration (IC50) of 1.7 × 10−6 g ml−1, 
compared with the AstraZeneca (AZD8895 and AZD1061) mix, which has an IC50 
of 2.9 × 10−7 g ml−1. The fits were calculated from biological replicates (n = 2) 
using a nonlinear four-parameter curve fitting analysis.

https://doi.org/10.2210/pdb5VNY/pdb
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of greater than 60-fold in binding affinity. The mutations all occurred 
in the binding helix of the design. Of these mutations, A17G and S20A, 
residing in the core of the interface, appeared to have relieved steric 
clashes and reduced buried unsatisfied polar atoms, respectively.

To structurally characterize the binding mode of DBR3_03, we solved 
a cryo-electron microscopy (cryo-EM) structure of the design in a com-
plex with the trimeric spike protein at a local resolution of 2.9 Å (Fig. 2e 
and Supplementary Figs. 10–12). The structure confirmed the predicted 
binding sites on both partners. Importantly, the binder adopted the 
orientation of the helical binding seed that was marginally less favoured 
by MaSIF’s fingerprint descriptors (down orientation) (Fig. 2b). Notably, 
the initial design DBR3_01 showed similar metrics when the interfaces 
were analysed in both directions (Supplementary Fig. 5), pointing to 
known limitations of surface fingerprints in the unbound docking type 
of problems10. This led us to use another state-of-the-art protein dock-
ing method, AlphaFold Multimer26, to predict the complex of DBR3_03 
with the spike RBD, and we obtained a 1.4 Å iRMSD between the Alpha-
Fold prediction and the experimental structure (Fig. 2e). This result 
presents a powerful demonstration of the synergies between machine 
learning techniques purely based on structural features and those that 
leverage large sequence-structure datasets for structure prediction 
tasks. At the structural level, DBR3_03 engages the RBD with a buried 
interface area of 1,452 Å2 (the surface area buried on both sides of the 
complex), which is much smaller than the average buried surface area 
of antibodies (approximately 2,071 ± 456 Å2 (ref. 27), yet still results 
in a high-affinity interaction. The designed interface lacks canonical 
hotspot residues and engages the RBD through small residues and is 
composed of 21% backbone and 79% side-chain contacts. Given the 
pandemic situation with SARS-CoV-2 and the general need for rational 
design of protein-based therapeutics to fight viral infections, we next 
engineered an Fc-fused DBR3_03 (Fc–DBR3_03) construct and tested 
its neutralization ability on a panel of SARS-CoV-2 variants in virus-free 
and pseudovirus surrogate assays28 (Fig. 2f,g, Extended Data Fig. 4a 
and Supplementary Table 3). We compared the breadth and potency 
of our design with those of clinically approved monoclonal antibodies. 
In virus-free assays, we observed that Fc–DBR3_03 had comparable 
potency to that of imdevimab (REGN10987), an antibody used clini-
cally, for the wild-type (WT) spike and bound to the Omicron strain, 
whereas RGN87 did not (Extended Data Fig. 4a). Neutralization activity 
in pseudovirus assays was tested, and Fc–DBR3_03 neutralized Omicron, 
albeit less potently than the AstraZeneca clinically approved antibody 
mix (Fig. 2g). A cryo-EM structure showed that the binding mode was 
nearly identical (1.4 Å backbone RMSD) between the DBR3_03–RBD(WT) 
complex and the DBR3_03–RBD(Omicron) complex (Supplementary 
Figs. 13–15). Importantly, Fc–DBR3_03 showed a very broad reactiv-
ity to many SARS-CoV-2 variants (Fig. 2f), which is attributable to the 
sequence conservation of the targeted site and the small binding foot-
print of the design. The design was sensitive to the L452R/Q mutation 
present in the Delta, Lambda and Kappa variants (Fig. 2f and Extended 
Data Fig. 4b), but introducing a single point mutation (L24G) to relieve 
the clash between L452R and the binder led to the design binding to 
Delta (Extended Data Fig. 4c). Our results highlight the value of the sur-
face fingerprinting approach to reveal target sites in viral proteins and 
for the subsequent design of functional antivirals with broad activity.

Targeting a flat surface in PD-L1
Surface sites presenting flat structural features are difficult to target 
with small-molecule drugs, leading to their categorization as undrugga-
ble. To test our fingerprint-based approach, we sought to design binders 
to target the PD-1–PD-L1 interaction, which is central to the regulation 
of T cell activity in the immune system29. We used MaSIF-site to find 
high-propensity protein-binding sites in PD-L1 and, unsurprisingly, 
the identified site overlapped significantly with the native binding site 
engaged by PD-1 (Fig. 3a). This site is extremely flat at the structural level, 

ranking in the 99th percentile in terms of interface flatness (ranked 7 
among 1,068 transient interfaces; Methods and Supplementary Fig. 16), 
one of the dominant structural features that makes this site hard to drug 
by small molecules. We next used MaSIF-seed to find binding motifs 
to engage the site. Among the top results helical motifs clustered in 
six orientations packing against the β-sheets of PD-L1 (Supplemen-
tary Fig. 17). In the most populated cluster (Supplementary Fig. 17), we 
observed sequence convergence for a 12-residue fragment (Fig. 3b). 
We next used Rosetta MotifGraft to search for putative scaffolds to 
display this fragment and used RosettaDesign to optimize contacts at 
the interface. We tested 16 designs based on 5 different scaffolds for 
binding to PD-L1 on the surface of yeast. Two designs based on two dif-
ferent scaffolds showed low binding signals (Supplementary Fig. 18), 
which we refer to as DBL1_01 and DBL2_01 (Fig. 3c). The specificity of 
the interaction was confirmed by testing hotspot-knockout controls 
of each design (Supplementary Fig. 18). To improve the binding affinity 
of DBL1_01, we constructed a combinatorial library with mutations in 
the predicted binding region, while maintaining the hotspot residues 
predicted by MaSIF-seed; Extended Data Fig. 5a). From this library, we 
selected the variant DBL1_02, which has five mutations found mostly 
in the interface rim of the design that improve the formation of polar 
contacts. The most substantial change occurred at position 53, a muta-
tion of alanine to glutamine that introduces a hydrogen bond with PD-L1 
(Extended Data Fig. 5a). To improve the design’s expression and stabil-
ity, we constructed a second library targeting residues in the protein 
core to optimize core packing (Extended Data Fig. 5b). Combining 
mutations from both libraries, we obtained DBL1_03 with 11 mutations 
from the starting design, which was folded and monomeric in solu-
tion, and showed a binding affinity of 2 µM (Fig. 3d and Supplementary 
Fig. 9), comparable to that of PD-1 (KD = 8.2 µM)30. To further assess the 
optimality of each residue at the interface of the designed binder, we 
screened a SSM library sampling 19 positions on the basis of DBL1_03. 
The most relevant positions are shown in Fig. 3f (all positions are shown 
in Extended Data Fig. 5c,d). The SSM results revealed that the four hot-
spot residues placed by MaSIF-seed were crucial, as any other residue 
was deleterious for binding (Fig. 3f). However, in the interface rim, 
many mutations could provide affinity improvements, strongly sug-
gesting that this region of the interface was suboptimal (Fig. 3f). On the 
basis of these data, we generated the DBL1_04 variant, which resulted 
in a tenfold increase in the binding affinity, showing a KD of 256 nM to 
PD-L1 (Fig. 3d). Both DBL1_03 and DBL1_04 showed cell-surface binding, 
comparable to PD-1, on cells expressing PD-L1. The specificity of the 
designed interaction was confirmed by the binding inability of variants 
with a single-residue mutation at the interface (Extended Data Fig. 5e).

The second lead design, which uses the same seed but is based on 
a different scaffold, DBL2_01, could not be solubly expressed and we 
therefore designed a combinatorial library to improve expression and 
binding affinity (Extended Data Fig. 5f). From this library, we isolated 
the variant DBL2_02, which had six mutations, and expressed it in 
Escherichia coli. From the six mutations, three were predicted to be 
in the interface (Y23K, Q35E, Q42R) and improved binding affinity by 
forming additional salt bridges with PD-L1 (Extended Data Fig. 5f). The 
KD to PD-L1 determined by SPR was 374 nM, more than tenfold higher 
than the native ligand PD-1. As both designs shared the same binding 
seed, we transplanted the SSM mutations of the DBL1_04 design and 
generated DBL2_03, which showed a threefold improvement in binding 
affinity (KD = 120 nM) (Extended Data Fig. 5i), indicating that the bind-
ing seed was engaging PD-L1 in a similar manner to that of DBL1_03. To 
further assess the influence of each residue in the designed binding 
interface, we performed an SSM analysis of 19 interface residues of 
DBL2_03 (Fig. 3f and Extended Data Fig. 5g,h). The SSM profile reiterated 
that the hotspot residues placed by MaSIF-seed were very restricted in 
variability, showing that these residues were accurately predicted. By 
contrast, several positions on the interface rim were suboptimal and 
mutations to polar amino acids resulted in affinity enhancements. 
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On the basis of the SSM data, we generated the DBL2_04 design with 
additional polar mutations (Fig. 3g and Extended Data Fig. 5i), showing 
an improved KD of 65 nM (Fig. 3e). To experimentally validate the bind-
ing mode, we co-crystallized the designs with PD-L1 (Supplementary 

Fig. 19). Overall, for both designs, the structures (Fig. 3i,j) showed excel-
lent agreement with our computational models, with RMSDs of 0.8 Å 
and 2.0 Å for the overall backbone and 1.0 Å and 1.9 Å for the full atom 
interface for DBL1_03 and DBL2_02, respectively, showing a very high 
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Fig. 3 | De novo design and optimization of PD-L1 binders targeting a flat 
surface. a, MaSIF-site prediction of the interface propensity of PD-L1. The 
predicted interface (red) overlaps with the binding site of the native interaction 
partner PD-1 (yellow). b, Helical seeds were predicted by MaSIF-seed and 
clustered. The dominant cluster showed strong amino acid preferences 
(Z-score > 2). Hotspot residues are underlined. c, Binders based on two 
different scaffold proteins using the selected seed were identified. d, The 
binding affinities of DBL1 designs after combinatorial (light green) and SSM 
library optimization (dark green), measured using SPR. Mutation of a hotspot 
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DBL1_03 in a complex with PD-L1. The computational model (light green) is 
aligned with the crystal structure (dark green). Inset: the alignment of the 
residues in the binding seed. j, Crystal structure of DBL2_02 in a complex with 
PD-L1, shown by aligning the computational model (light blue) with the crystal 
structure (dark blue). Inset: the alignment of the residues in the binding seed 
represented as sticks.
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accuracy of the predictions in the interface region. The buried interface 
area of the designs with PD-L1 was between 1,424 Å2 and 1,438 Å2, com-
pared with 1,648 Å2 for the buried interface area of PD-1 (PDB: 4ZQK). 
The chemical composition of the designed interface is similar in both 
designs—around 59% of the surface area is hydrophobic and the remain-
ing area is hydrophilic for DBL1_03 and correspondingly for DBL2_02. 
These values are comparable to those of the PD-1–PD-L1 interaction (52% 
hydrophobic surface), showing that we have designed interfaces with 
chemical compositions similar to the native interaction using a distinct 
backbone conformation (Fig. 3h). The discovery of binding motifs by 
MaSIF-seed is notable when comparing the backbone motif used by the 
native PD-L1-binding partner PD-1 and the designed binders. Whereas 
the native PD-1 uses a β-hairpin to engage the site, the designed binders 
do so through an α-helix motif, illustrating the ability of our approach to 
explore outside of the structural repertoire of native binding motifs. The 
general trend arising from the designed PD-L1 binders is that, despite 
the accurate predictions of core residues in the interface, through 
mutagenesis studies, the designed polar interactions are suboptimal. 
To address these and other limitations of our computational approach, 
we performed additional computational design steps to improve the 
pipeline and tested it on the design of binders to target PD-1.

One-shot design with native affinities
Despite the successes in designing site-specific binders to engage two 
different targets, the computational designs still required in vitro evolu-
tion to enable expression and detectable binding affinities that could be 
biochemically characterized. To address these issues, we used a struc-
turally diverse library of binding seeds (helical and β-sheet motifs) and 
assembled a more comprehensive design pipeline (Fig. 4a), performing: 
(1) sequence optimization of selected seeds; and (2) biased design for 
polar contacts in the scaffold interface31. To test this approach, we 
designed de novo binders to target three proteins (PD-L1, PD-1 and 
CTLA-4). For each of the design targets, we selected the top 2,000 
designed sequences according to several structural metrics (Methods) 
and tested them using yeast display coupled with deep-sequencing 
readout. According to our deep-sequencing readout, we obtained 
binders for all three targets using diverse structural motifs to mediate 
the binding interaction (Supplementary Table 4). Several binders were 
biochemically characterized to varying degrees. For PD-1, we found 
three designs based on de novo miniprotein32,33 scaffolds with interfaces 
mediated by helical motifs (DBP13_01, DBP40_01 and DBP52_01) (Fig. 4b 
and Supplementary Fig. 20) that showed a moderate to strong binding 
signal on the surface of yeast. The most promising candidate binding to 
PD-1, DBP13_01, was investigated in more detail (Fig. 4b–e). To confirm 
whether the binding interaction was mediated through the designed 
interface, we tested several control constructs, which included the 
native miniprotein scaffold and DBP13_01 variants with predicted 
knockout mutations (Fig. 4b), all of which abolished binding (Fig. 4c). 
The interaction site on PD-1 was further probed using a competition 
assay with nivolumab34, which blocked the DBP13_01–PD-1 interaction 
as expected due to the overlapping binding footprints (Extended Data 
Fig. 6). DBP13_01 did not bind to a close sequence homologue (porcine 
PD-1), supporting the specificity of the designed interactions (Extended 
Data Fig. 6). The DBP13_01–PD-1 interaction showed a KD of 4.2 ± 2 µM 
(n = 3; Fig. 4d) as determined by SPR, similar to the affinity of the native 
PD-L1–PD-1 interaction (KD = 8.2 µM)30. This was a promising result given 
that the design was not subjected to experimental optimization by 
in vitro evolution. We next performed an SSM experiment and observed 
that mutations at the predicted core interface positions (Leu23, Leu27, 
Ile30, Met31) were generally deleterious for binding, supporting the 
structural and sequence accuracy of the design (Fig. 4e and Supplemen-
tary Fig. 21). Moreover, we readily improved the affinity to submicro-
molar levels by introducing two mutations identified in the SSM data 
(M31F + H33S, DBP13_02) (Fig. 4d). The predicted complex structure 

by AlphaFold Multimer was in agreement with that of MaSIF, with an 
interface footprint that largely overlaps with the designed residues, 
and 3.3 Å of backbone RMSD and 2.9 Å of interface full atom RMSD 
(Supplementary Fig. 22). Although these results are supported by the 
SSM data, they are a predictive exercise and cannot be interpreted as 
absolute evidence that the designed binding mode is occurring, which 
will ultimately require an experimental structure.

Similarly, we experimentally confirmed the specificity of a 
β-sheet-based-binder to PD-L1 (DBL3_01) (Fig. 4f) with a predicted 
knockout mutant and a competition assay with high-affinity PD-1 
(Fig. 4g and Extended Data Fig. 6). These data were supported by an 
AlphaFold prediction matching our design model with a 0.97 Å back-
bone RMSD (Supplementary Fig. 22). Binding to PD-L1 was further 
improved on yeast by mutating two exposed cysteine residues to serines 
in the scaffold, which may stabilize the protein and avoid unwanted 
disulfide bonds (DBL3_02; Fig. 4g and Extended Data Fig. 6). This design 
adopts a different backbone conformation compared with the native 
PD-1–PD-L1 interaction, which further demonstrates MaSIF-seed’s 
ability to generalize beyond interactions found in nature (Extended 
Data Fig. 6). We also estimated the affinity on a yeast display-based 
assay determining an apparent KD of 21.8 nM, 42.7-fold higher than the 
known high-affinity PD-1, which has been reported to have a true KD of 
110 pM (ref. 35) (Fig. 4h).

We also performed experimental characterization for two other 
binders targeting PD-L1 (DBL4_01) and CTLA-4 (DBC2_01) and observed 
that the binding interactions are specific to targeted sites by compe-
tition and mutagenesis experiments performed using yeast display 
(Extended Data Figs. 6 and 7). Note that, for several of these binders, 
the AlphaFold predictions were not in agreement with our models 
but, nevertheless, the experimental results provide solid evidence 
that the correct interfaces are involved in the designed interactions 
(Supplementary Table 4).

Overall, the results show that by starting the interface design process 
in a manner driven by surface fingerprints and by introducing additional 
features of native interfaces (such as hotspot optimization and polar 
contacts), we can design site-specific binders using a variety of struc-
tural motifs with native-like affinities purely by computational design.

Discussion
Physical interactions between proteins in living cells are one of the 
hallmarks of function36. Our incomplete understanding of the com-
plex interplay of molecular forces that drive PPIs has greatly hindered 
the comprehension of fundamental biological processes as well as 
the ability to engineer such interactions from first principles. It has 
been particularly challenging for protein modelling methodologies 
that use discrete atomic representations to perform de novo design 
of PPIs2,6,13,14. This is in large part due to the small number of molecular 
interactions that are involved in most protein interfaces and to the very 
small energetic contributions that determine binding affinities, making 
physics-based energy functions less reliable37. To address this gap, we 
developed an enhanced data-driven framework to represent proteins as 
surfaces and learn the geometric and chemical patterns that ultimately 
determine the propensity of two molecules to interact. We proposed 
a new geometric deep-learning tool, MaSIF-seed, to overcome the PPI 
design challenge by both identifying patches with a high propensity to 
form buried surfaces and binding seeds with complementary surfaces 
to those patches. By computing fingerprints from protein molecular 
surfaces, we rapidly and reliably identify complementary surface frag-
ments that can engage a specific target within 402 million candidate 
surfaces. This, in practice, solves an important challenge in protein 
design by efficiently handling search spaces of daunting scales.

The identified binding seeds were then used as the interface driving 
core to design binding proteins against challenging targets: a predicted 
interface in the SARS-CoV-2 spike protein, which ultimately yielded a 

https://doi.org/10.2210/pdb4ZQK/pdb
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SARS-CoV-2 inhibitor, the PD-1–PD-L1 protein complex and CTLA-4, 
exemplifying sites that are difficult to target with small molecules due 
to its flat surface. Several designed binders showed close mimicry to 
computationally predicted models and often achieved high binding 
affinities after experimental optimization. In the case of purely com-
putationally designed binders, the PD-1 binder showed low micromolar 

affinity without experimental optimization, which is the range of many 
native PPIs38, and several other binders targeting PD-L1 and CTLA-4 were 
shown to be specific to the targeted sites. Using surface fingerprints, we 
identified structural motifs that can mediate de novo PPIs, presenting 
a route to expanding the landscape of motifs that can be used to func-
tionalize proteins and that are critical for the de novo design of function.
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For all targets, the original binding seed arguably provided the prin-

cipal driver of molecular recognition representing the design’s bind-
ing interface core (Extended Data Fig. 8), maintaining a high surface 
similarity in this region between the original seed and the final design 
(Supplementary Fig. 23). However, contacts at the buried interface 
region are necessary, although, in most cases, probably not sufficient 
for high-affinity binding. Furthermore, in the three designed binders for 
PD-L1 and RBD, optimization of the polar interface rim through libraries 
was necessary to improve binding to a biochemically detectable range 
(KD at the micromolar level). Our de novo designs agree with previous 
findings6,39 that small changes in the polar interface rim (for example, 
in the hydrogen bond network surrounding the interface) can result in 
substantial differences in binding affinities. Encouragingly, by using a 
larger and more structurally diverse library of binding seeds together 
with an optimized design pipeline, we obtained several in silico-only 
designed binders to a variety of targets, representing a major step 
forward for the robust design of de novo PPIs.

In our study, several limitations of the approach became evident, 
namely, the absence of conformational flexibility and adaptation of the 
protein backbone to mutations and the difficulty of designing polar 
interactions that balance the hydrophobic patches of the interface con-
tributing for affinity and specificity, which has also been observed pre-
viously22,39,40. In future methodological developments, neural network 
architectures could be optimized to capture such features of native 
interfaces. The emergence of generative algorithms that can construct 
backbones conditioned to the target binding sites or the seed motifs, 
as recently described by other groups41,42, presents another exciting 
route through which our conceptual framework based on surfaces is 
likely to become more useful to overcome important challenges on 
the design of molecular recognition.

Here we presented a surface-centric design approach that lever-
aged molecular representations of protein structures based on learned 
geometrical and chemical features. We showed that these structural 
representations can be efficiently used for the design of de novo pro-
tein binders—one of the most challenging problems in computational 
protein design. We anticipate that this conceptual framework for the 
generation of rich descriptors of molecular surfaces can open possi-
bilities in other important biotechnological fields such as drug design, 
biosensing or biomaterials in addition to providing a means to study 
interaction networks in biological processes at the systems levels.
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Methods

Computing buried surface areas
A dataset of PPIs was downloaded from the PDBBind database43 con-
taining all interactions with a reported affinity stronger than 10 µM;  
as these PPIs have a reported affinity, all were assumed to be transient. 
The PDBBind database does not report the chains that are involved in 
the interaction with the reported affinity; thus, for simplicity, only those 
complexes containing exactly two chains in the PDB crystal structure 
were considered for the analysis.

The MSMS program44 was used to compute all molecular surfaces 
in this study (density = 3.0, water radius = 1.5 Å). As MSMS produces 
molecular surfaces with highly irregular meshes, PyMESH (v.0.2.1)45 
was used to further regularize the meshes at a resolution of 1.0 Å. For a 
given protein subunit that appears in a complex, we define the subunit’s 
buried surface as the patch that becomes inaccessible to water mol-
ecules after complex formation. As, in our implementation, a surface 
is defined by a discretized mesh, we compute the buried surface region 
as follows. The buried surface of both the subunit and the complex are 
first independently computed. Then, the minimum distance between 
every subunit surface vertex and any complex surface vertex is com-
puted. Subunit vertices that are farther than 2.0 Å from a vertex in the 
surface of the complex are labelled as part of the buried surface as 
these vertices no longer exist in the surface of the complex. The size 
of buried areas was determined by computing the area of each vertex 
labelled as a buried surface vertex.

Note that computing buried surface areas using this method can 
result in measurements that are different from those widely used in the 
field, which use the solvent-accessible surface area and count the bur-
ied interface of all subunits into a single value (the buried SASA area). 
Here we use the molecular surface (also known as solvent excluded 
surface) and count a single subunit. Thus, while in Extended Data Fig. 1 
we show areas computed using this method to compare to patch sizes, 
throughout the rest of this paper we refer to the more widely used 
buried SASA areas.

Patch generation in the MaSIF framework
Decomposing surfaces into radial patches. To process protein 
surface information, all molecular surfaces were decomposed into 
overlapping radial patches. This means that each vertex on the surface 
becomes the centre of a radial patch of a given radius. To compute the 
geodesic radius of patches, throughout this Article, we used the Dijk-
stra algorithm46—a fast and simple approximation to the true geodesic 
distance in the patch. We used a radius size of 12 Å for patches, limited 
to at most 200 points, which we found corresponds approximately 
to 400 Å2 (Supplementary Fig. 1), a value close to the median size of 
the buried interface of transient interactions (Supplementary Fig. 1). 
Exceptionally, for the MaSIF-site application (described below), we 
limited the patch to 9 Å or 100 points to reduce the required GPU RAM 
for this application10.

Computing angular and radial coordinates. An essential geometric 
deep-learning component in our pipeline is to compute angular and 
radial coordinates in the patch that enable MaSIF to map features in a 
2D plane. The radial coordinate is computed using the Dijkstra algo-
rithm, whereby the geodesic distance (meaning the distance taken to 
‘walk’ along the surface) from the centre of the patch to every vertex 
is computed. To compute the angular coordinate, all pairwise geo-
desic distances between vertices in the patch are computed, and the 
multidimensional scaling algorithm47 in scikit-learn48 is then used to 
map all vertices to the 2D plane. A random direction in the 2D plane 
is next computed as the 0° frame of reference, and the angle of every 
vertex in the plane with respect to this frame of reference is computed. 
Computing the angular and radial coordinates is the slowest step in the 
MaSIF precomputation. However, we have provided experimental code 

to compute these coordinates much faster in our GitHub repository 
under a branch called ‘fast-masif-seed’.

Geometric and chemical features. Each point in a patch of the 
computed molecular surface was assigned an array of two geometric 
features (shape index49, distance-dependent curvature50), and three 
chemical features (hydrophobicity51, Poisson–Boltzmann electrostat-
ics52 and a hydrogen bond potential53). These features are identical to 
those described previously10.

Largest circumscribed patch computation. From each labelled in-
terface point, we used the Dijkstra algorithm to compute the shortest 
distance to a non-interface point. The interface point with the great-
est distance to a non-interface point was labelled as the centre of the 
interface, and the distance to the nearest non-interface point as the 
radius of the largest circumscribed patch.

Calculation of surface planarity
The surface planarity of all target interfaces with respect to a data-
base of PPIs (Supplementary Fig. 16) was calculated as follows. A 
total of 690 PPIs crystallized as dimers from the PDBBind database 
was used as the dataset, resulting in 1,380 interfaces as each chain 
was analysed separately. Interfaces with an approximate area of 
lower than 150 Å2 or higher than 1,000 Å2 were discarded, resulting 
in 1,068 interfaces. The vertices in the buried interface area of each 
chain were computed, as explained in the ‘Computing buried surface 
areas’ section above, and the 3D coordinates of those vertices in the 
interface were extracted from each chain. The multidimensional scal-
ing method47 from scikit-learn48 was then used to position interface 
vertices in a 2D plane, with the optimization goal of maintaining the 
distances between all pairs of vertices as close as possible in the 2D 
embedding as they were in 3D space. The RMSD of all pairwise distances 
between surface points in the original 3D space versus the 2D space 
was used as the measure of planarity. Interfaces that are very planar 
in 3D have small values under this metric as an embedding in 2D pre-
serves the distance between vertices, whereas non-planar interfaces 
have larger values as an embedding in 2D must significantly alter their  
3D distances.

Geometric deep-learning layer in MaSIF
Geometric deep learning enables the application of traditional tech-
niques from deep learning to data that do not lie in Euclidean spaces, 
such as a protein molecular surface. At the core of MaSIF lies a map-
ping from a molecular surface patch to a 2D Euclidean tensor. The 
mapping is performed through a learned soft polar grid around each 
patch centre vertex, using the angular and radial coordinates. Once 
the mapping is performed, a traditional convolutional neural network 
layer is performed, with an angular max pooling layer, which deals with 
the rotation ambiguity of geodesic patches. Further details on these 
techniques were described previously10,54.

Prediction of protein interaction sites
The MaSIF-site tool10 was trained to predict areas with a propensity 
to form PPIs on the surface of proteins. Here, MaSIF-site was used to 
predict surface areas with a propensity to form a PPI in 114 targets of 
our benchmark (Extended Data Fig. 2) and all of the design targets 
(SARS-CoV-2 RBD, PD-L1, PD-1 and CTLA4). MaSIF-site receives as input 
a protein decomposed into patches and outputs a per-vertex regression 
score on the propensity of each point to become a buried surface area 
within a PPI. MaSIF-site computes a regression score on each point of 
the surface, yet it becomes necessary to identify the precise patch that 
we will use to define each interface. Thus, to select interface patches 
in target proteins, the output of MaSIF-site was decomposed into 12 Å 
overlapping patches, and the per-vertex prediction for all points in the 
patch was averaged to obtain a score for each patch.
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Training of MaSIF-site. MaSIF-site was trained on a database of 
PPIs sourced from PRISM55, PDBBind43, the ZDock benchmark56 and  
SabDab57. Proteins from these databases that failed to run through the 
MaSIF pipeline due to, for example, too many incomplete residues in the 
deposited structure, were discarded. Each instance of these databases, 
which we refer to as ‘subunits’ could consist of one or multiple chains 
(for example, an antibody), and was crystallized in a complex with a 
partner subunit. In total, 12,002 subunits from deposited structures 
passed the threshold. These subunits were then clustered by sequence 
identity at 30% identity and up to one representative from each clus-
ter was selected, resulting in 3,362 subunits. A matrix of all pairwise 
template modelling (TM) scores for this set was then computed, and 
a hierarchical clustering algorithm was used on this matrix to split 
the dataset into 3,004 subunits for the training set and 358 for the 
testing set.

The molecular surface for each subunit was computed using MSMS44 
and the buried interface area was labelled as described above. The 
architecture of MaSIF-site (Extended Data Fig. 1b and further described 
in a previous paper10) consisted of three layers of geodesic convolution. 
The network received as input the full surface of a protein (with batch 
size of 1) decomposed into overlapping patches of size 9 Å. During 
training, each vertex of the input was labelled with the ground truth, 
with a value of 1 if the vertex belonged to the buried area and a label of 
zero otherwise. The output of the network is a per-vertex assignment of 
between 0 and 1 for the prediction of that vertex on whether it belongs 
to the buried surface area or not. A sigmoid activation function was used 
as the output layer, and a binary cross function as the loss function. 
Adam58 was used as the optimization function. MaSIF-site was imple-
mented in Tensorflow (v.1.12)59, and trained for 40 h on a single-GPU 
machine, which allowed for 43 epochs. The MaSIF-site neural network 
implementation in Tensorflow contains a total of 9,267 parameters.

Complementary surface identification
MaSIF-search10 was used to compute fingerprints for every overlapping 
patch in proteins of interest. MaSIF-search was trained on a dataset 
of 6,001 PPIs (described previously10) to receive as input the features 
of the target, a binder and a random patch from a different protein. 
MaSIF-search was designed as a Siamese neural network architecture19 
trained to produce similar fingerprints for the target patch versus the 
binder patch, and dissimilar fingerprints for the target patch versus the 
random patch. To decrease the training time and improve the perfor-
mance, the features of the target were multiplied by −1 (with the excep-
tion of hydropathy), turning the problem from one of complementarity 
to one of similarity.

Training of MaSIF-search. MaSIF-search was trained on a database of 
6,001 PPIs in co-crystal structures sourced from PRISM55, PDBBind43, 
the ZDock benchmark56 and SabDab57. A split between the training and 
testing set was performed by extracting the atoms at the interface for all 
6,001 PPIs and computing a TM-score between all pairs using TM-align. 
A hierarchical clustering algorithm was used to cluster the pairwise 
matrix, which was used to split the data into a training set of 4,944 PPIs 
and a testing set of 957 PPIs. As in MaSIF-site, each side of the interaction 
could consist of one or multiple chains (for example, an antibody), and 
we refer to each side as a subunit. In each PPI, pairs of surface vertices 
within 1.0 Å of each other were selected as interacting pairs.

MaSIF-search produces fingerprints for patches with a radius of up 
to 12.0 Å in geodesic distance from a central vertex, and is trained to 
make these patches similar for interacting patches and dissimilar for 
non-interacting patches (Fig. 1a and Extended Data Fig. 1). We find that 
MaSIF-search performs best when trained on interacting pairs that lie 
in the centre of highly complementary interfaces and these pairs were 
filtered to remove points outside of the interfaces or in interfaces with 
poor complementarity (described previously10).

The MaSIF-search network receives as input the features of a patch 
from one of these pairs (the binder), the inverted input features of its 
interacting patch (the target) and a patch randomly chosen from a dif-
ferent interface in the training set (the random patch) (Extended Data 
Fig. 1). The neural network was trained on a Siamese neural network 
architecture to produce fingerprints that are similar for the binder 
and target patches while, at the same time, being dissimilar between 
target and random. Similarity and dissimilarity were measured as the 
Euclidean distance between the fingerprints. A total of 85,652 true 
interacting pair patches and 85,652 non-interacting pair patches was 
used for training/validation, and 12,678 true interacting and 12,678 
non-interacting pairs were used for the testing set.

Each of the five input features was computed in a separate channel 
consisting of a MaSIF geometric deep-learning convolutional layer. 
The output from all channels was then concatenated, and a fully 
connected layer was used to output a fingerprint of size 80. In each 
batch, 32 pairs of interacting patches and 32 pairs of non-interacting 
patches were used. Adam was used as the optimizer, and a learning 
rate of 10−3 was used. The d-prime cost function60 was used as the loss 
function. MaSIF-search was trained for 40 h in a GPU, after which it 
was automatically killed, resulting in 260,000 iterations of the data. 
The MaSIF-search neural network implementation contained a total 
of 66,080 trainable parameters and was implemented in Tensorflow.

Patch alignment and IPA scoring
In the MaSIF-search pipeline, surfaces are computed for each protein 
of interest, and both a MaSIF-search fingerprint and a MaSIF-site pre-
diction are computed for each surface vertex. All fingerprints within 
a user-defined threshold for similarity to a target patch (defined at 1.7 
by default) are then selected for a second-stage alignment and rescor-
ing. In this step, the patch is extracted from the source protein, along 
with all the fingerprints for all vertices in the patch (as they were all 
precomputed). The random sample consensus (RANSAC) algorithm 
implemented in Open3D61 then uses the fingerprints of all the ver-
tices in the target and matched patch to find an alignment between 
the patches. The RANSAC algorithm chooses three random points in 
the binder patch and computes the Euclidean distance of the surface 
MaSIF-search fingerprints between these points and all those points 
in the target patch; the most similar fingerprints provide the RANSAC 
algorithm with three correspondences to compute a transformation 
between the patches.

Once a candidate patch is aligned, the IPA neural network is used to 
score the alignment with a score between 0 and 1 on the prediction of 
whether the alignment corresponds to a real interaction or not. After 
patch alignment, each vertex in the candidate patch is matched to the 
closest vertex in the target patch, and three features are computed per 
pair of vertices: (1) 1/(distance), the Euclidean distance in 3D between 
the vertices; (2) the product of the normal between the vertices; 
and (3) 1/(fingerprint distance), the Euclidean distance between the 
MaSIF-search fingerprints between the two vertices. A fourth feature, 
which we call ‘penetration’ is computed by computing the distance 
between each of the vertices in the candidate patch and all the atoms 
in the target. Thus, the IPA neural network receives as input a vector 
of size N × 4, where N is the number of vertices in the candidate patch 
(up to 200 vertices). The IPA neural network consists of five layers of 
one-dimensional convolution, followed by a global averaging pool layer 
and seven fully connected layers. The five layers of one-dimensional 
convolution contain 16, 32, 64, 128 and 256 filters, respectively, with a 
kernel size of 1 and a stride of 1, and each layer was followed by a batch 
normalization layer and a rectified linear unit layer. The fully connected 
layers contained 128, 64, 32, 16, 8, 4 and 2 dimensions. Each fully con-
nected layer was also followed by a rectified linear unit layer, with the 
exception of the last layer, which was followed by a softmax layer. The 
network was optimized using Adam58, with a learning rate of 10−4 and 
a categorical cross entropy loss function.



The IPA neural network was trained as follows. The same dataset 
used for MaSIF-search, containing 4,944 PPIs and a testing set of 957 
PPIs was used. For each protein pair, one protein was chosen as the 
target, and the patch at the centre of the interface was selected as the 
target patch. The partner protein along with ten randomly chosen 
other proteins were then aligned to it. Any alignment of the true part-
ner within 3 Å RMSD of the co-crystal structure was considered to be 
a positive. Any alignment from the true partner at greater than that 
RMSD or of any other protein was considered to be a negative. Fea-
tures were computed for all alignments and used for the IPA neural 
network training. The IPA neural network was trained with batches of  
32 for 50 epochs.

Binding seed database
α-Helix seed library generation. A snapshot of the non-redundant set 
of the PDB was downloaded and decomposed into α-helices, remov-
ing all non-helical elements. The DSSP program62 was used to label 
each residue according to their secondary structure. Fragments with 
ten or more consecutive residues with a helical (H) label assigned by 
DSSP were extracted. Each extracted helical fragment was treated as a 
monomeric protein, and surface features were computed for each one. 
MaSIF-search fingerprints and MaSIF-site labels were then computed 
for all extracted helices. MaSIF-seed uses both fingerprint similarity and 
interface propensity to identify suitable seeds. Ultimately, our binding 
seed database was composed of approximately 250,000 helical motifs 
from which 140 million fingerprints were extracted.

β-Strand seed library generation. To collect β-strand motifs, a snap-
shot of the non-redundant set of the PDB was preprocessed with the 
MASTER software63 to enable fast structural matches. Two template 
motifs, one consisting of two β-strands and one consisting of three 
β-strands, were deprived of loops and served as input to MASTER to find 
sets of structurally similar motifs that would ultimately become the mo-
tif dataset for MaSIF. The search allowed for a variable backbone length 
of 1–10 amino acids connecting the β-strands of the template. RMSD 
cut-offs were set at 2.1 Å and 3 Å for two-stranded and three-stranded 
β-sheets, respectively. Similar to the preparation of helical motifs, 
each β-fragment was treated as a monomeric protein and surface 
features were generated, followed by the generation of MaSIF-search 
fingerprints and MaSIF-site labels. Ultimately, our β-strand binding 
seed database comprised approximately 390,000 motifs from which 
260 million fingerprints were extracted.

Binding seed identification
On the basis of the different modules within the MaSIF framework10, 
we developed a pipeline to identify potential binding seeds to targets. 
For each target, first MaSIF-seed was used to label each point in the 
surface for the propensity to form a buried surface region. A finger-
print was then computed for the target site. Finally, after scanning the 
entire protein, the best patch was selected. In one case, the SARS-CoV-2 
RBD, the fourth best site was selected as it was the site with the highest 
potential to disrupt binding to the natural receptor. A MaSIF-search 
fingerprint was then computed for the target patch, inverting the tar-
get features before inputting them to the MaSIF-search network. The 
Euclidean distances between the target fingerprint and the millions of 
fingerprints in the binding seed database were then computed, and all 
of the patches with a fingerprint distance below the defined thresholds 
were accepted. In this paper, the thresholds used were <2.0 for PD-L1, 
PD-1 and CTLA-4, and <1.7 for the RBD.

Once fingerprints are matched, a second-stage alignment and scoring 
method uses the RANSAC algorithm as described above. After RANSAC 
produces an alignment, the IPA neural network classifies true bind-
ers versus non-binders10 and outputs an IPA score (described above). 
Those candidate binders with an IPA score of more than 0.90–0.97 in 
the neural network score were accepted.

Computational benchmark
Helix–receptor motifs. A set of transient interactions from PDBBind 
was scanned to identify proteins that bind to helical motifs. A binding 
motif was determined to be a helix if 80% of residues are helical and the 
total number of residues does not exceed 60. The selected complexes 
were filtered to remove pairs of PPIs with high homology and a set of 
31 unique PPIs was used; MaSIF-search fingerprints and MaSIF-site 
fingerprints were subsequently computed. MaSIF-seed was bench-
marked against a hybrid pipeline of existing, fast, well-established 
docking tools on the dataset of helix–receptor proteins: PatchDock64, 
ZDock23,65 and ZRank2 (ref. 24). For each helix–receptor pair, the helix 
from the co-crystal structure was placed along 1,000 randomly selected 
helices from the motif database. The methods were then benchmarked 
to evaluate their ability to rank the correct helix from the co-crystal 
structure, with an alignment RMSD < 3.0 Å from the conformation of 
the co-crystal structure, versus the remaining 1,000 helices. Note that 
each helix can potentially bind in many possible orientations and, in 
the case of methods that were not preceded by a MaSIF-site prediction 
of the target site, the helix can bind at many sites on the receptor. The 
measured time for all methods included only the scoring time, except 
for MaSIF-seed, for which the alignment time was also included in the 
calculation.
MaSIF-seed. All of MaSIF-seed’s neural networks (MaSIF-search, 
MaSIF-site and the IPA score) were retrained for this benchmark 
to remove helix–receptor pairs from the training set. In each case, 
MaSIF-site was used to identify the patch in the target protein with the 
highest interface propensity, and the fingerprint for the selected patch 
was compared to the fingerprints of all patches in the database. The 
rigid orientation of each helix in the benchmark was randomly rotated 
and translated before any alignment. Patches were discarded if their 
MaSIF-search fingerprint’s Euclidean distance to that of the target site 
was greater than 1.7. After alignment, patches were further filtered if 
the IPA score was less than 0.96.
PatchDock + MaSIF-site. On each receptor protein, MaSIF-site was 
used to identify and label the target site, while PatchDock64 was used 
to dock all 1,001 helices, setting the target site based on a specific resi-
due using the ReceptorActiveSite flag in PatchDock. The PatchDock 
score was used to produce the ranking of all conformations for all 1,001 
helices.
ZDock. ZDock was run on standard parameters and its standard scoring 
was used similar to PatchDock.
ZDock + MaSIF-site. All residues outside of the MaSIF-site-selected 
patch were blocked using ‘compute_blocked_res_list.sh’ provided in 
ZDock.
ZDock + ZRank2. In this variant, the top 2,000 results from ZDock 
with each of the 1,001 peptides for each of the 31 receptors were res-
cored using ZRank2. The ZRank2 score was then used to score all of 
the docking poses.

Non-helix–receptor motifs. The same set of transient interactions 
from PDBBind was filtered for proteins interacting through non-helical 
motifs. The secondary structure types of the proteins were annotated 
with DSSP62, followed by computing the contribution of helical seg-
ments (DSSP annotation of H, G or I) to the interface. Only interfaces 
with less than 50% helical segments were selected. Additional filter-
ing was performed by requiring a mean shape complementary at the  
interface of >0.55 and a maximum inscribed patch area of >150 Å2. From 
these native complexes, seeds were extracted by selecting residues 
within a distance of 4 Å to the receptor and extending the backbone 
of these residues on their N and C terminus until the DSSP annotation 
changed to capture complete secondary structure elements. In total, 
83 complexes were collected for the benchmark.

The decoy set was constructed from 1,000 randomly selected 
β-strand seeds from the MaSIF-seed pipeline, containing 500 
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two-stranded and 500 three-stranded β motifs. The benchmark was 
performed similarly to the helix–receptor benchmark described above 
with adapting the fingerprint’s Euclidean distance cut-off to a value 
of 2.5 and allowing MaSIF-seed to evaluate the top two sites in each 
receptor. These modifications were performed for this benchmark as 
it increased the accuracy while still performing at least 20 times faster 
than comparable competing tools. Only ZDock and ZDock/ZRank2 
were benchmarked in the non-helical benchmark as ZDock/ZRank2 
was shown to be the best in the helical benchmark.

Clustering of seed solutions
In each design case, all of the top matched seeds were clustered by 
first computing the RMSD between all pairwise helices, computed on 
the Cα atoms of each pair of helices, in the segment overlapping over 
the buried surface area. The pairwise distances were then clustered 
using metric multidimensional scaling66 implemented in scikit-learn48.

Seed and interface refinement
For the one-shot protocol, seed candidates proposed by MaSIF were 
refined using Rosetta and a FastDesign protocol with a penalty for 
buried unsatisfied polar atoms in the scoring function31. β-Sheet-based 
seeds containing >33% contact residues found in loop regions were 
discarded. In total, 33, 200 and 109 refined seeds were selected on the 
basis of the computed binding energy, shape complementarity, number 
of hydrogen bonds and counts of buried unsatisfied polar atoms for 
PD-1, CTLA-4 and PD-L1, respectively.

Seed grafting and computational design
A representative seed was selected from each solution space, and then 
matched using Rosetta MotifGraft to a database of 1,300 monomeric 
scaffolds in the case of the RBD and PD-L1 designs. For the optimized 
protocol, selected seeds were grafted to a database of 4,347 small 
globular proteins (<100 amino acids), originating from the PDB67, two 
computationally designed miniprotein databases32,33 and one AF2 pro-
teome prediction database12,68. Seeds were cropped to the minimum 
number of side chains making contact before grafting. Moreover, loop 
regions from β-sheet-based seeds were completely removed. After 
side-chain grafting by Rosetta (v.3.13), a computational design protocol 
was used to design the remaining interface. Final designs were selected 
for experimental characterization on the basis of the computed Rosetta 
binding energy, the shape complementarity, the number of hydrogen 
bonds and counts of buried unsatisfied polar atoms.

Yeast surface display of single designs
DNA sequences of designs were purchased from Twist Bioscience con-
taining homology overhangs for cloning. DNA was transformed with 
linearized pCTcon2 (Addgene, 41843) or a modified pNTA vector with 
V5 tag into EBY-100 yeast using the Frozen-EZ Yeast Transformation II 
Kit (Zymo Research). Transformed yeast were passaged once in minimal 
glucose medium (SDCAA) before induction of surface display in mini-
mal galactose medium (SGCAA) overnight at 30 °C. Transformed cells 
were washed in cold PBS with 0.05–0.1% BSA and incubated with the 
binding target for 2 h at 4 °C. Cells were washed once and incubated for 
an additional 30 min with the appropriate antibodies (Supplementary 
Table 5). Cells were washed and analysed using the Gallios flow cytom-
eter (Beckman Coulter). For quantitative binding measurements, bind-
ing was quantified by measuring the fluorescence of a PE-conjugated 
anti-human Fc antibody (Invitrogen) detecting the Fc-fused protein 
target. Yeast cells were gated for the displaying population only  
(V5, MYC or HA positive) (Extended Data Fig. 3a).

Yeast libraries
Combinatorial sequence libraries were constructed by assembling 
multiple overlapping primers (Supplementary Table 6) containing 
degenerate codons at selected positions for combinatorial sampling of 

the binding interface, core residues or hydrophobic surface residues. 
Primers were mixed (10 µM each) and assembled in a PCR reaction 
(55 °C annealing for 30 s, 72 °C extension time for 1 min, 25 cycles). To 
amplify full-length assembled products, a second PCR reaction was 
performed, with forward and reverse primers specific for the full-length 
product. For SSM libraries and oligo pools, DNA was ordered from 
Twist Biosciences and amplified with primers to give homology to the 
pCTcon2/pNTA backbone. In all cases, the PCR product was desalted 
and used for transformation.

Yeast surface display of libraries
Combinatorial libraries, SSM libraries and oligo pools were trans-
formed as linear DNA fragments at a 5:1 ratio with linearized pCTcon2 
or pNTA_V5 vector as described previously into EBY-100 yeast69. Trans-
formation efficiency generally yielded around 107 transformants per 
cuvette. Transformed yeast were passaged at least once in minimal 
glucose medium (SDCAA) before induction of surface display in mini-
mal galactose medium (SGCAA) overnight at 30 °C. Induced cells were 
labelled in the same manner as the single designs. Labelled cells were 
washed and sorted using the Sony SH800 cell sorter (acquired using 
LE-SH800SZFCPL Cell Sorter, v.2.1.5). For combinatorial libraries and 
oligo pool libraries, sorted cells were grown in SDCAA and prepared 
similarly for two additional rounds of sorting. After the third sort, cells 
were plated on SDCAA agar and single colonies were sequenced. SSM 
libraries were sorted once, collecting both binding and non-binding 
populations, and grown in liquid culture for plasmid preparation. For 
flow cytometry analysis of single clones, data were collected with the 
Galios (Beckman Coulter) cytometer using Kaluza software (Beckman 
Coulter, v.1.1.20388.18228). Flow cytometry data were analysed using 
FlowJo (BD Biosciences, v.10.8.1).

MiSeq Sequencing
After sorting, yeast cells were grown in SDCAA medium, pelleted and 
plasmid DNA was extracted using the Zymoprep Yeast Plasmid Mini-
prep II (Zymo Research) according to the manufacturer’s instructions. 
The coding sequence of the designed variants was amplified using 
vector-specific primer pairs, Illumina sequencing adapters and Nextera 
barcodes were attached using an additional overhang PCR, and the PCR 
products were desalted using the Qiaquick PCR purification kit (Qiagen) 
or AMPure XP selection beads (Beckman Coulter). Next-generation 
sequencing was performed using the Illumina MiSeq system with 
appropriate read length, yielding between 0.5–1 million reads per 
sample. For bioinformatics analysis, sequences were translated in 
the correct reading frame, and enrichment values were computed  
for each sequence.

Protein expression and purification
DNA sequences were ordered from Twist Bioscience and Gibson 
cloning or T7 ligation was used to clone into bacterial (pET21b) or 
mammalian (pHLSec) expression vectors. Lists of the protein binder 
and target constructs are provided in Supplementary Tables 2 and 7, 
respectively. Mammalian expression was performed using the Expi293 
expression system from Thermo Fisher Scientific (A14635). Cells were 
authenticated and tested negative for mycoplasma contamination 
(by quantitative PCR) by the provider and no additional authentica-
tion and tests were performed. The supernatant was collected 6 days 
after transfection, filtered and purified. E. coli expression was per-
formed using BL21 (DE3) cells and IPTG induction (1 mM at OD 0.6–0.8) 
and growth overnight at 16–18 °C. Pellets were lysed in lysis buffer 
(50 mM Tris, pH 7.5, 500 mM NaCl, 5% glycerol, 1 mg ml−1 lysozyme, 
1 mM PMSF and 1 µg ml−1 DNase) with sonication, and the lysate was 
clarified and purified. All proteins were purified using the ÄKTA pure 
system (GE healthcare) with either Ni-NTA affinity or protein A affinity 
columns followed by size-exclusion chromatography. If TEV cleavage 
was necessary, fused proteins were dialysed overnight at 4 °C (dialysis 



buffer: 20 mM Tris pH 7.5, 150 mM NaCl, 10% glycerol) with excess  
TEV enzymes.

SPR analysis
SPR measurements were performed on the Biacore 8K (Cytiva; 
v.4.0.8.19879) system with HBS-EP+ as the running buffer (10 mM 
HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% (v/v) Surfactant 
P20, GE Healthcare). Ligands were immobilized on the CM5 chip (GE 
Healthcare, 29104988) through amine coupling. In total, 500–1,000 
response units (RU) were immobilized and designed proteins were 
injected as an analyte in serial dilutions. The flow rate was 30 µl min−1 
for a contact time of 120 s followed by 800 s dissociation time. After 
each injection, the surface was regenerated using 3 M magnesium chlo-
ride (for PD-L1) or 10 mM glycine, pH 3.0 (for RBD). Data were fit with 
a 1:1 Langmuir binding model within the Biacore 8K analysis software 
(Cytiva, v.4.0.8.19879).

Biolayer Interferometry
Biolayer Interferometry measurements were performed on the Gator 
BLI system using the GatorOne software (Gator Bio, v.2.7.3.0728). 
The running buffer was 150 mM NaCl, 10 mM HEPES pH 7.5. Fc-tagged 
designs were diluted to 5 μg ml−1 and immobilized on the tips (1–2 nm 
immobilized). The loaded tips were then dipped into serial dilutions 
of either spike protein or RBD. Curves were fit using a 1:1 model on the 
Gator software after subtracting the background.

Size-exclusion chromatography–multi-angle light scattering
Size-exclusion chromatography (controlled by Chromeleon software; 
Thermo Fisher Scientific, v.7.2.10) with an online multi-angle light scat-
tering device (miniDAWN TREOS, Wyatt) was used to determine the 
oligomeric state and molecular mass of the protein in solution. Purified 
proteins were concentrated to 1 mg ml−1 in PBS (pH 7.4), and 100 µl of 
the sample was injected into the Superdex 75 300/10 GL column (GE 
Healthcare) at a flow rate of 0.5 ml min−1, and ultraviolet light (280 nm) 
and light scattering signals were recorded. Molecular mass was deter-
mined using the ASTRA software (Wyatt, v.8.0.2.5).

Circular dichroism
Far-ultraviolet circular dichroism spectra were measured using a Chiras-
can spectrometer (AppliedPhotophysics) in a 1 mm path-length cuvette. 
The protein samples were prepared in a 10 mM sodium phosphate 
buffer at a protein concentration of between 20 and 50 µM. Wave-
lengths between 200 nm and 250 nm were recorded with a scanning 
speed of 20 nm min−1 and a response time of 0.125 s. All spectra were 
averaged twice and corrected for buffer absorption. Temperature 
ramping melts were performed from 20 to 90 °C with an increment 
of 2 °C min−1. Thermal denaturation curves were plotted by the change 
of ellipticity at the global curve minimum to calculate the melting tem-
perature (Tm).

Cell binding analysis
Karpas-299 cells were purchased from Sigma-Aldrich (06072604-1VL) 
with the approval of the European Collection of Authenticated Cell Cul-
tures (ECACC). Cells were authenticated (PCR) and tested negative for 
mycoplasma contamination (PCR & Vero indicator) by the provider. For 
flow cytometry analysis of DBL1 designs binding to PD-L1 on Karpas-299 
cells, 2 × 105 cells were incubated with 50 µl Fc Block (BD Biosciences, 
553142) that was prediluted 1:50 in FACS buffer (PBS (Gibco/Thermo 
Fisher Scientific, 10010-015) and 2% BSA (Sigma-Aldrich, A7906)) for 
15 min on ice. The samples were subsequently supplemented with 
50 µl of PD-L1 binders prepared as follows. High-affinity PD-1_Fc: seri-
ally diluted 1:2 for 20 dilutions in FACS buffer, starting at 62.5 µg ml−1; 
DBL1_03_Fc and DBL1_04_Fc: serially diluted 1:2 for 16 dilutions in 
FACS buffer, starting at 125 µg ml−1; DBL1_03_KO_Fc and PD-1_Fc: seri-
ally diluted 1:2 for 14 dilutions in FACS buffer, starting at 125 µg ml−1. 

The cell solutions were incubated for 30 min. The samples were then 
washed three times, resuspended in 100 µL of FACS buffer containing 
secondary R-PE goat anti-human IgG antibody diluted 1:100 ( Jackson 
ImmunoResearch, 109-117-008) and incubated for 30 min. The samples 
were then washed three times to remove unbound antibody, resus-
pended in 100 µl of FACS buffer, and analysed using the LSR Fortessa 
flow cytometer (BD Biosciences).

Protein purification for crystallography
PD-L1 extracellular domain fragment (UniProt: Q9NZQ7; from Phe19 
to Arg238) was overexpressed as inclusion bodies in the BL21 (DE3) 
strain of E. coli. Renaturation and purification of PD-L1 was performed 
as previously described70. In brief, inclusion bodies of PD-L1 were 
diluted against a refolding buffer (100 mM Tris, pH 8.0, 400 mM 
l-arginine, 5 mM EDTA-Na, 5 mM glutathione (GSH), 0.5 mM glu-
tathione disulfide (GSSG)) at 4 °C for 24 h. The PD-L1 was then con-
centrated and exchanged into a buffer of 20 mM Tris-HCl (pH 8.0) 
and 15 mM NaCl and further analysed using HiLoad 16/60 Superdex 
75 pg (Cytiva) chromatography. PD-L1 binder designs (DBL1_03 and 
DBL2_02) were overexpressed in E. coli as inclusion bodies. Renatura-
tion and purification of the PD-L1 binder designs were performed as for 
the PD-L1 protein. PD-L1 and binder designs were then mixed together 
at a molar ratio of 1:2 and incubated for 1 h on ice. The binder–PD-L1 
complex was further purified by HiLoad 16/60 Superdex 75 pg (Cytiva) 
chromatography.

Data collection and structure determination
For crystal screening, 1 μl of binder–PD-L1 complex protein solution 
(10 mg ml−1) was mixed with 1 μl of crystal growing reservoir solution. 
The resulting mixture was sealed and equilibrated against 100 μl of 
reservoir solution at 4 or 18 °C. Crystals of the DBL1_03–PD-L1 com-
plex were grown in 0.2 M potassium formate and 20% (w/v) PEG 3350. 
Crystals of the DBL2_02–PD-L1 complex were grown in 0.2 M potas-
sium/sodium tartrate, 0.1 M Bis-Tris propane, pH 6.5 and 20% (w/v) PEG 
3350. Crystals were flash-cooled in liquid nitrogen after incubating in 
anti-freezing buffer (reservoir solution containing 20% (v/v) glycerol). 
Diffraction data of crystals were collected at Shanghai Synchrotron 
Radiation Facility (SSRF) BL19U. The collected intensities were subse-
quently processed and scaled using the XDS package71 (v.Jan 10 2022, 
BUILT = 20220220). The structures were determined using molecular 
replacement with the program Phaser MR in PHENIX (v.1.20.1-4487), 
with the reported PD-L1 structure (PDB: 3RRQ) as the search model72. 
COOT (v.0.9.5) and PHENIX (v.1.20.1-4487) were used for subsequent 
model building and refinement73,74. The stereochemical qualities of 
the final model were assessed using MolProbity75 (v.4.5.1). Details 
of data collection and refinement statistics are shown in Extended  
Data Table 1.

Luminex binding assays
Luminex beads were prepared as previously published28. In brief, Mag-
Plex beads were covalently coupled to SARS-CoV-2 spike proteins of 
different variants. The serial dilutions of the antibodies or design were 
performed and binding curves were fit using Prism (GraphPad, v.9) 
nonlinear four-parameter curve fitting analysis of the log[agonist] 
versus response.

Live virus neutralization assays
The virus neutralization assays were performed as previously pub-
lished28. In brief, VeroE6 cells were seeded into 96-well plates the day 
before the infection. The DBR3_03-Fc compound in serial dilutions was 
mixed with Omicron-spike virus and incubated at 37 °C for 1 h before 
addition to the cells. The cells with virus were kept a further 48 h at 37 °C, 
and then washed and fixed for crystal violet staining and analysis. Neu-
tralization EC50 calculations were performed using Prism (GraphPad, v.9)  
nonlinear four-parameter curve fitting analysis.

https://www.uniprot.org/uniprot/Q9NZQ7
https://doi.org/10.2210/pdb3RRQ/pdb
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Cryo-EM preparation and data acquisition
For cryo-electron microscopy investigations, 3.0 µl aliquots at a con-
centration of 0.87 or 1.0 mg ml−1 of the spike(D614G)–binder sample or 
the spike(Omicron)–binder sample were applied onto glow-discharged 
carbon-coated copper grids (Quantifoil R2/1,400 mesh), blotted for 
4.0–8.0 s and flash-frozen in a liquid ethane/propane mixture cooled 
to liquid nitrogen temperature, using the Vitrobot Mark IV (Thermo 
Fisher Scientific) with 100% humidity and the sample chamber oper-
ated at 4 °C. The grids were screened in the Thermo Fisher Scientific 
200 kV Glacios cryo-EM instrument. Suitable grids were transferred to 
TFS Titan Krios instruments for data collection. Cryo-EM data collec-
tion statistics of this study are summarized in Extended Data Table 2. 
The spike(D614G)–binder data comprising 20,794 videos were col-
lected on the Titan Krios G4 microscope, equipped with a cold-FEG 
electron source and operated at 300 kV acceleration voltage. Videos 
were recorded with the automation program EPU (Thermo Fisher Sci-
entific, v.2.12.1) on a Falcon4 direct electron detector in counting mode 
at a physical pixel size of 0.40 Å per pixel and a defocus ranging from 
−0.8 to −2.0 μm. Exposures were collected as electron event record-
ings (EER) with a total dose of 80 e− Å−2 over approximately 3 s, corre-
sponding to a dose rate of 4.53 e− px−1 s−1. For spike(Omicron)–binder 
data, 22,266 videos were recorded on the Titan Krios G4 microscope, 
equipped with TFS SelectrisX imaging filter and Falcon4 camera. Expo-
sures were collected at 60 e− Å−2 total dose with a physical pixel size 
of 0.726 Å per pixel over approximately 6 s, corresponding to a dose 
rate of 5.4 e− px−1 s−1, at a defocus range of −0.8 to −2.5 μm. Data were 
analysed using cryoSPARC (v.3.3.1)76.

Cryo-EM image processing
Details of the image processing are shown in Supplementary 
Figs. 10–15 and Extended Data Table 2. Recorded videos in EER for-
mat were imported into cryoSPARC (v.3.3.1)76 and gain-normalized, 
motion-corrected and dose-weighted using the cryoSPARC imple-
mentation of patch-based motion correction. CTF estimation was 
performed using the patch-based option in cryoSPARC. A small set 
of particles was manually selected and followed by 2D classification 
to create a 2D template for the subsequent automatic particle pick-
ing. For the sample of spike(D614G) in complex with the de novo 
designed binder, 832,816 particles were automatically selected by 
a template-based picker and processed for three rounds of 2D clas-
sification, resulting in a particle set of 184,763 particles. The particles 
were grouped into three classes, using the ab initio and hetero-refine 
implementations in cryoSPARC. The best 3D class, comprising 97,804 
particles, was further processed for another round of ab initio recon-
struction and hetero-refinement. The well-resolved class consisting 
of 67,432 particles resulted in a 2.6 Å overall resolution global map in 
C1 symmetry. The binder–RBD region was refined with a soft mask, 
resulting in a local map at 3.1 Å resolution. For the data processing 
of the spike(Omicron)–binder complex sample, 1,820,333 particles 
were picked using the cryoSPARC template-based picker. After two 
rounds of 2D classifications, 981,561 particles were selected and pro-
cessed for ab initio reconstruction and hetero-refinement, resulting 
in a set of 595,599 particles. Subsequently, the selected particle set 
was classified by multiple rounds of 3D classifications in cryoSPARC. 
The best-resolved 3D class, containing 50,758 particles, resulted in a 
2.8 Å overall resolution map and the binder–RBD region was further 
improved by performing focused refinement with a soft mask, result-
ing in a map at a resolution of 3.3 Å. The resolution for all 3D maps was 
estimated based on the Fourier shell correlation with a cut-off value 
of 0.143.

For model building of the spike(D614G)–binder, the previous model 
(PDB: 7BNO; spike(D614G)) was used for the region of spike(D614G) 
as a starting model. The model was rigid-body fit into the cryo-EM 
density in UCSF Chimera77 and adjusted manually in Coot (v.0.9.4)78. 

De novo building for the binder parts was performed manually in Coot 
(v.0.9.4). For building the spike(Omicron)–binder structure, the model 
(PDB: 7QO7, spike(Omicron)) was fitted into the density and rebuilt 
and adjusted manually using UCSF Chimera and Coot (v.0.9.4). After 
the structural rebuilding, all of the atomic models were refined using 
the Phenix (v.1.19.2-4158) implementation of real.space.refine with 
general structural restraints79,80. Comprehensive validation (cryo-EM), 
model quality assessment and statistics are provided in Extended Data 
Table 2. EM densities and atomic models were visualized in ChimeraX 
(UCSF, v.1.3)81 and Pymol (Schrödinger, v.2.0).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Cryo-EM maps were deposited in the Electron Microscopy Data Bank 
under the following accession codes: EMD-14947 (spike(D614G)–
binder full and spike(D614G)–binder local maps), EMD-14922 
(spike(Omicron)–binder full) and EMD-14930 (spike(Omicron)–binder 
local). Atomic models were deposited at the PDB under the following 
accession codes: 7ZSS (spike(D614G)–binder), 7ZRV (spike(Omicron)–
binder full) and 7ZSD (spike(Omicron)–binder local). Crystal structures 
have been deposited at the PDB under the following accession codes: 
7XYQ (DBL1_03–PD-L1 complex) and 7XAD (DBL2_02–PD-L1 complex). 
The PDBbind database (2018 release), PRISM database, ZDock bench-
mark and SabDab database, respectively are available online (http://
pdbbind.org.cn/index.php; http://cosbi.ku.edu.tr/prism; https://zlab.
umassmed.edu/benchmark/; http://opig.stats.ox.ac.uk/webapps/sab-
dab). The scaffold database generated for grafting the seed provided 
by the MaSIF-seed is available at Zenodo (https://zenodo.org/record
/7643697#.Y-z533ZKhaQ).

Code availability
MaSIF-seed and the Rosetta design scripts are available at GitHub 
(https://github.com/LPDI-EPFL/masif_seed).
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Extended Data Fig. 1 | Overview of the neural network architectures used in 
the MaSIF protocols. a, General MaSIF framework. Molecular surfaces are 
decomposed into patches which are annotated with chemical and shape 
features. The MaSIF network translates these input features into fingerprints 
that describe the original surface patch. b, MaSIF-site neural network. 
MaSIF-site predicts partner-independent protein interface propensities based 
on per-vertex chemical and shape features of the protein surface. c, MaSIF- 
search neural network. MaSIF-search embeds protein patches into a space 
where complementary patches are close to each other. The network was 

trained on discriminating interacting patches from non-interacting protein 
surface patches. The network uses MaSIF fingerprints to identify which are 
compatible and therefore to predict likely interacting proteins. d, Interface 
post-alignment (IPA) scoring neural network. The IPA scoring neural network 
enables the scoring of protein interfaces based on several input features: 
fingerprint distance between contacting points, 3D distance of corresponding 
points, normal dot product, and the distance between surface points in the 
seed and the closest atom in the target, which we call ‘penetration’.



Extended Data Fig. 2 | MaSIF-seed benchmarking for the discrimination of 
helical or non-helical binding motifs. A non-redundant set of 31 helical and 83 
non-helical fragments that bind to known protein receptors was selected as a 
benchmark set to evaluate MaSIF-seed’s capacity to recover true binding 
motifs from decoys, and to correctly rank them among the top results. To 
generate the decoy set, a non-redundant set of all protein chains in the Protein 
Data Bank was decomposed into continuous helical segments (left) and two/

three-stranded beta sheets (right), resulting in over 250K helical and over 380K 
beta motifs, respectively. One thousand of these motifs each were randomly 
selected to act as decoys in the respective benchmarks. The surfaces for the 
two sets of 1000 motifs were computed and decomposed into radial patches 
and for each patch a fingerprint was computed. Recovered complexes were 
considered correct if an iRMSD < 3 Å was obtained. A comparable procedure 
was applied to the benchmark tools.
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Extended Data Fig. 3 | RBD-binder designs displayed on yeast. a, The yeast 
display protocol utilizes PE to label binding and FITC to label expression. Yeast 
appearing in the double positive quadrant are considered potential binders 
and sorted for enrichment. b, Pools of approximately 30 designs were 
displayed on the surface of yeast and the highest binding populations (red box) 
sorted for further analysis. c, Schematic of RBD (wheat) bound to the various 
members of the library (transparent silhouettes and purple for DBR3_01) and 

ACE2 (red) overlapping with the designed binders. d, Individual designs 
DBR1-DBR20. e, DBR3_01 design displayed on yeast binds to RBD-Fc (left panel) 
but the binding is blocked when the RBD-Fc is preincubated with an excess of 
ACE2, indicating a competitive binding mode. f, A point mutant in the binding 
interface (DBR3_01_RR) and the original scaffold protein (WT_scaffold) show 
lower binding signal than DBR3_01 with 1 μM RBD-Fc, indicating that the design 
is engaging the RBD with the predicted interface.



Extended Data Fig. 4 | DBR3_03 binding is sensitive to the L452R mutation 
in the spike protein. a, Luminex binding assay of DBR3_03 or Imdevimab 
(REGN10987) with beads functionalized with SARS-CoV-2 spike protein of 
indicated variants. DBR3_03 has an EC50 of 3.2e−8 g ml−1 with WT and 3.5e−8 g ml−1 
with Omicron. Imdevimab has an EC50 of 8.2e−8 g ml−1 with WT and 1.7e−7 g ml−1 
with delta. The fits were calculated from technical replicates (n = 2) using a 

nonlinear four parameter curve fitting analysis. b, The L452R mutation on the 
spike protein leads to a clash with the DBR3_03 binding. A L24G mutation is 
proposed to avoid the clash. c, BLI data with DBR3_03 (WT KD<0.1 nM, delta KD 
not detected) or DBR3_03_L24G (delta KD = 6 nM, WT KD = 6 nM) immobilized 
on the tips, dipped into spike protein of different variants.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Yeast libraries, SSM and binding data of DBL1/
DBL2_02. a, Position of targeted residues in the structure of DBL1_01 to 
improve binding affinity. Logo plot of the allowed mutations in the library and 
alignment of initial design with library enriched design. b, Position of targeted 
residues in the structure of DBL1_02 to improve core packing. Logo plot of the 
allowed mutations in the library and alignment of DBL1_02 with library 
enriched design. c, Structural representation of all positions sampled in the 
SSM library (light blue). The four hotspot residues (red) were also sampled. 
Three positions were mutated in DBL1_04 (dark blue). d, Outcome of the entire 
SSM library of DBL1_03. Blue indicates enrichment in the binding population, 
while red shows enrichment in the non-binding population. e, Binding of 
DBL1_03 and DBL1_04 to KARPAS299 cells expressing PD-L1 compared to 
binding of WT PD-1, a high affinity version of PD-1 (PD-1_HA)35 and a V12R 

mutation of DBL1_03 (KO). All proteins contained a Fc domain. f, Position of 
targeted residues in the structure of DBL2_01 to improve binding affinity and 
solubility. Logo plot of the allowed mutations in the library and alignment of 
initial design with library enriched design. Hotspot residues red, targeted 
residues light blue, mutated residues dark blue. g, Structural representation of 
all positions sampled in the SSM library (light blue). The four hotspot residues 
(red) were also sampled. Three positions were mutated in DBL2_04 (dark blue). 
Position 35 was not mutated in DBL_04, because all mutations in this position 
led to the inability of the soluble expression of the protein. h, Outcome of the 
entire SSM library of DBL2_03. Blue indicates enrichment in the binding 
population, while red shows enrichment in the non-binding population.  
i, Binding affinities measured by SPR for the different versions of DBL2.
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Extended Data Fig. 6 | Competition and specificity binding assay of the 
different optimized binders on the surface of yeast. a, Competition between 
designed binders and a known protein binder (native binder or monoclonal 
Fab) in complex with the target structure. b, Flow cytometry histograms 
showing fluorescence signals on the surface of yeast displaying the different 
binders. Yeasts were labelled with 500 nM or their respective ligand (blue), 500 

nM of blocked ligand pre-incubated with 10-fold molar excess of Fab or 
high-affinity PD-1 (HA-PD-1) (orange) or labelled with secondary antibodies 
only (grey, Neg Ctrl). c, Flow cytometry histograms showing fluorescence 
signal on the surface of yeast displaying the different binders and labelled with 
500 nM of unrelated protein ligand (red) or labelled with secondary antibodies 
only (grey, Neg Ctrl).



Extended Data Fig. 7 | DBL3_01 and DBL4_01 comparison and DBL4_01 and 
DBC2_01 knock-out mutants. a, Superposition between DBL3_01 (cyan) and 
DBL4_01 (orange) in complex with PD-L1 (grey). Multiple sequence alignment 
of the two designs is shown at the bottom. b, DBL4_01 (orange) in complex with 
PD-L1 (grey) with knock-out mutant highlighted in red. Flow cytometry 
histograms showing fluorescence signals on the surface of yeast displaying 

DBL4_01 or the knock-out mutant, compared to unlabelled yeast (Neg Ctrl).  
c, DBC2_01 (green) in complex with CTLA-4 (blue) with two knock-out mutants 
highlighted in red. Flow cytometry histograms showing fluorescence signals 
on the surface of yeast displaying DBC2_01 or the knock-out mutants, 
compared to unlabelled yeast (Neg Ctrl).
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Extended Data Fig. 8 | Surface comparison between seeds, designs and 
final/predicted structures. Buried interfaces of models/structures when in 
complex with their target are coloured in red, while non-buried regions 

coloured in blue. The contour of the buried interface of the initial binding seed 
is drawn in green and is shown for the initial seed, for the designs and for the 
final/predicted structures.



Extended Data Table 1 | Crystallographic data collection and refinement statistics
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Extended Data Table 2 | Cryo-EM data collection and model validation statistics










	De novo design of protein interactions with learned surface fingerprints

	Design strategy and in silico validation

	Targeting a predicted SARS-CoV-2 site

	Targeting a flat surface in PD-L1

	One-shot design with native affinities

	Discussion

	Online content

	Fig. 1 Surface-centric design of de novo site-specific protein binders.
	Fig. 2 Design and optimization of a SARS-CoV-2 binder targeting the RBD.
	Fig. 3 De novo design and optimization of PD-L1 binders targeting a flat surface.
	Fig. 4 Optimized workflow and de novo binders for PD-1.
	Extended Data Fig. 1 Overview of the neural network architectures used in the MaSIF protocols.
	Extended Data Fig. 2 MaSIF-seed benchmarking for the discrimination of helical or non-helical binding motifs.
	Extended Data Fig. 3 RBD-binder designs displayed on yeast.
	Extended Data Fig. 4 DBR3_03 binding is sensitive to the L452R mutation in the spike protein.
	Extended Data Fig. 5 Yeast libraries, SSM and binding data of DBL1/DBL2_02.
	Extended Data Fig. 6 Competition and specificity binding assay of the different optimized binders on the surface of yeast.
	Extended Data Fig. 7 DBL3_01 and DBL4_01 comparison and DBL4_01 and DBC2_01 knock-out mutants.
	Extended Data Fig. 8 Surface comparison between seeds, designs and final/predicted structures.
	Table 1 Benchmarking of MaSIF-seed and other docking methods.
	Extended Data Table 1 Crystallographic data collection and refinement statistics.
	Extended Data Table 2 Cryo-EM data collection and model validation statistics.




