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Abstract

In this paper we study the influence of random network fluctuations on the behavior of evolutionary games on Barabási–
Albert networks. This network class has been shown to promote cooperation on social dilemmas such as the Prisoner’s
Dilemma and the Snowdrift games when the population network is fixed. Here we introduce exogenous random
fluctuations of the network links through several noise models, and we investigate the evolutionary dynamics comparing
them with the known static network case. The results we obtain show that even a moderate amount of random noise on
the network links causes a significant loss of cooperation, to the point that cooperation vanishes altogether in the Prisoner’s
Dilemma when the noise rate is the same as the agents’ strategy revision rate. The results appear to be robust since they are
essentially the same whatever the type of the exogenous noise. Besides, it turns out that random network noise is more
important than strategy noise in suppressing cooperation. Thus, even in the more favorable situation of accumulated payoff
in which links have no cost, the mere presence of random external network fluctuations act as a powerful limitation to the
attainment of high levels of cooperation.
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Introduction

In the last decade, thanks to advances in network science, a

large number of studies dealing with evolutionary games on

networks have appeared. The underlying idea is that the classical

infinite, well-mixed populations used in the theory [1] are not a

particularly good approximation to the actual shape of the

contacts that take place in society, although they do allow rigorous

mathematical results to be reached. Indeed, social interactions

between agents are mediated by finite networks of contacts, which

is why there is a strong interest in the study of this kind of collective

systems. For a synthesis of the main results obtained in the

last years, we refer the reader to the following reviews which,

altogether, give the state of the art in the field of evolutionary

games on networks [2–4].

At the beginning, investigations were targeted at static networks,

i.e. networks that do not change during time. A very good

summary of this case is provided by Roca et al. [3]. This is an

acceptable approximation when network changes are slow with

respect to behavioral changes of the agents and it is a useful first

step. However, actual social networks are dynamical entities in

which agents may leave the network, new agents may join it, and

links can be formed and dismissed as well. So, the more general

models should be dynamical, and several approaches have been

suggested to deal with these time-dependent aspects of the network

structure in evolutionary games; an excellent recent review is

contained in [4]. Most models assume a constant population

structure, i.e. no agent leaves or join the network, which means

that the system is at equilibrium with respect to exchanges of

‘‘matter’’. This of course removes the need of dealing with the rate

of change _NN of N, since _NN~0. The condition also holds when the

number of agents entering the system is the same as those leaving

it, but this would complicate matters since contacts would change.

For this reason it is assumed that there is no flow through the

system boundaries. On the other hand, the number of links L may

be subject to internal change and, even if L stays constant ( _LL~0),

it will generally be the case that links are actually being rewired

among different pairs of agents. The above is the most often used

scenario, although some works have also dealt with growing

networks under strategic conditions, e.g. see [5] and the abundant

economic literature on strategic network formation as summa-

rized, for example, in [6]. In all cases, only pairwise interactions

are considered at first: although n-person interactions are

important, it is believed that two-person games are a first useful

and necessary step and will be assumed here too.

Now, link rewiring can be either an exogenous random

phenomenon, or it can obey some other rule. If it is completely

random, then the network drifts toward randomness itself, in the

sense that its degree distribution tends to be Poissonian. This is not

an interesting case since we already know from the static case [3,7]

that random graphs are not particularly conducive to cooperative

interactions between agents. Besides, actual social networks are not

random and thus this is not a realistic case either. Thus others,

perhaps more socially-inspired relinking patterns, have been

postulated. For example, the models presented in [8,9] try to

take into account a kind of strategic ‘‘negotiation’’ between the

concerned pair of connected nodes in order to decide whether a

given link must be cut or not, while in other cases the decision is
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unilateral [10,11] and only affects certain types of links, usually

defector-defector ones. The rewiring phase, on the other hand, has

often been related to triadic closure i.e., the formation of links

among agents that have a neighbor in common have been favored

[9,10]. Starting from a random graph whose clustering coefficient

tends to 0 as N??, this will cause a bias towards an increase of

the mean clustering coefficient of the whole network. The reason

behind this bias is that triadic closure is a well known observed

feature of actual social networks. A recent related theoretical work

on the dynamics of link rewiring in games, using explicit rewiring

probabilities based on link type and Markov chains analysis has

appeared in [12].

In this study we take a different approach and treat network

dynamics as an exogenous phenomenon that is undoubtedly present

to a larger or smaller extent but of which we do not know neither

the exact origins nor the actual stochastic behavior. Thus, we shall

assume that the network links are simply subject to noise. This

point of view is justified by the fact that there is a large variety of

social networks and, although some global statistical features such

as degree distribution, mean degree, degree correlations, mean

clustering coefficient and so on tend to be similar across networks,

there is not, as yet, a general theory that explains every single

network aspect when it comes to their dynamical behavior. In

other words, instead of formulating some mechanisms that are

supposed to be responsible for link evolution, we shall take

inspiration from empirical data coming from some time-resolved

studies of social network evolution to postulate general forms of

network noise that are expected to describe, in a statistical sense,

how the network links fluctuate. It is not the case that strategic

network formation issues are unimportant; we only think that

many networks are under the influence of largely unknown

exogenous dynamically changing variables and we would like to

lump all of them together under the form of unspecified

fluctuations. The following step is to study through numerical

simulations the effects of such network fluctuations on the behavior

of paradigmatic evolutionary games.

Games on Networks
We have studied the four classical two-person, two-strategies

games described by the payoff bi-matrix of Table 1.

In this matrix, R stands for the reward the two players receive if

they both cooperate (C), P is the punishment for bilateral defection

(D), and T is the temptation, i.e. the payoff that a player receives if

she defects while the other cooperates. In the latter case, the

cooperator gets the sucker’s payoff S. The parameters’ values are

restricted to the standard configuration space defined by R = 1,

P = 0, 21#S#1, and 0#T#2. In the resulting TS-plane, each

game’s space corresponds to a different quadrant depending on

the ordering of the payoffs. If the payoff values are ordered such

that T.R.P.S then defection is always the best rational

individual choice, so that (D,D) is the unique Nash Equilibrium

(NE) and also the only Evolutionarily Stable Strategy (ESS) [1] and

we get the Prisoner’s Dilemma (PD) game. Mutual cooperation would

be socially preferable but C is strongly dominated by D.

In the Snowdrift (SD) game, the order of P and S is reversed,

yielding T.R.S.P. Thus, in the SD when both players defect

they each get the lowest payoff. (C,D)and (D,C) are NE of the game

in pure strategies. There is a third equilibrium in mixed strategies

which is the only dynamically stable state, while the two pure NE

are not [1]. Players have a strong incentive to play D, which is

harmful for both parties if the outcome produced happens to be

(D,D).

With the ordering R.T.P.S we get the Stag Hunt (SH) game

in which mutual cooperation (C,C) is the best outcome, Pareto-

superior, and a NE. The second NE, where both players defect is

less efficient but also less risky. The dilemma is represented by the

fact that the socially preferable coordinated equilibrium (C,C)

might be missed for ‘‘fear’’ that the other player will play D

instead. The third mixed-strategy NE in the game is evolutionarily

unstable [1].

Finally, the Harmony game has R.S.T.P or R.T.S.P. C

strongly dominates D and the trivial unique NE is (C,C). This game

is non-conflictual by definition and does not cause any dilemma: we

include it just to complete the quadrants of the parameter space.

With the above conventions, in the figures that follow, the PD

space is the lower right quadrant; the SH is the lower left

quadrant, and the SD is in the upper right one. Finally, Harmony

is represented by the upper left quadrant.

Results

Recent research on evolutionary games on static networks has

shown that network reciprocity effects may favor cooperation to a

fair extent in games, such as the PD, in which it would be doomed if

the interacting population were well mixed [3,7,13]. In particular,

largely degree-inhomogeneous networks topologies such as Bar-

abási–Albert (BA) scale-free networks seem to possess the ingredi-

ents that boost cooperation the most. Network reciprocity in this

case is facilitated and stabilized by cooperators that get hold of hub

nodes, are surrounded mostly by cooperators, and are connected to

other cooperator hubs [14]. Social networks also seem to be able to

enhance cooperation [15,16], albeit to a lesser extent than the ideal

scale-free case. In social networks too there is degree inhomogeneity

expressed by broad-scale degree distribution functions, although

usually the tails fall off faster than in scale-free networks. Here other

mechanisms play a role besides highly connected nodes: they

manifest themselves through clustering and the presence of

community boundaries, which are almost absent in BA networks.

These features of actual social networks may favor cooperation with

respect to well mixed populations. Because they are the best

cooperation amplifiers among the studied network models, and thus

they represent a kind of upper bound, we focus our numerical

simulation study on Barabási–Albert scale-free networks. The

construction of BA networks is well known and will be briefly

described in the Methods section. The simulations start by

randomly distributing cooperators and defectors among the

networks’ nodes in the same proportion. The simulations then

proceed until a steady state is reached and, at this point averages are

computed. In a steady state strategy fluctuations are smoothed out

both in static and noisy networks. For more details the reader is

referred to the Methods section.

Sequence of Random BA networks
The first numerical experiment is to compare the behavior of

evolutionary games on static BA networks and time-varying

Table 1. Generic payoff bi-matrix for the two-person,
two-strategies symmetric games.

C D

C (R,R) (S,T)

D (T,S) (P,P)

C and D are the possible strategies, and R,T,P, and S are payoff values as
discussed in the text.
doi:10.1371/journal.pone.0025555.t001
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networks of the same family. In the latter case, we create a

stochastic process fG(t),t~0,1, . . .g in which each G(t) is an

independently generated BA graph with the same size and mean

degree while in the static case there is a single graph G(0) which is

used all along. Clearly, by construction all the graphs in the

sequence fG(t)g have equivalent degree distributions. During an

epoch t the players, which initially randomly receive a strategy

s[fC,Dg, will synchronously play the given game with their

neighbors. In the dynamic case, with a certain frequency

v~1=Dt, the population graph is rebuilt at each Dt time steps.

Players are numbered, and their current strategies are conserved

when the network changes, but their neighborhood will in general

be different. This process is not a likely one socially because it

entails too much uncorrelated change, but it is simple and clear

from a theoretical point of view. It will thus be used as a

benchmark case in the following, as it represents the extreme case

in which there is no correlation between successive instances of the

network and each new network is an i.i.d. random variable. In all

cases we start with the same number of cooperators and defectors

randomly distributed over the network nodes. Other initial

proportions are also interesting to investigate, as it has been done

for the static case by Roca et al. [3]. Here, however, we shall focus

on the comparison between the static and the dynamic cases and

not so much on the robustness of results with respect to the initial

conditions.

Fig. 1 shows the average amount of cooperation at the end of

the simulations on dynamically generated BA networks (central

and right image) with respect to the static case (leftmost image).

The strategy update rule is replicator dynamics (see Methods Sect.

for details on this revision protocol).

The trend is clear: cooperation is negatively affected by the

network noise, and the effect is more pronounced the higher the

noise from left to right. The two games that are the most affected

are the PD and the SH, while the SD game is the least affected.

This was expected since, while PD and SH have monomorphic

dynamically stable states, in the SD the equilibrium state is a

dimorphic population.

Figure 2 shows the same dynamics but using unconditional

imitation of the best instead of replicator dynamics. Here the focal

player imitates the strategy of the neighbor having obtained the

highest payoff, including himself (see Methods section). Looking at

the static case (leftmost image) it is already clear that there is a

lower amount of cooperation to start with in the PD quadrant, as

well as in the SH case with respect to random graphs, while

cooperation is high for the SD game (see Roca et al. [3] for a

detailed discussion of these effects). Adding network noise has little

effect but still the tiny amount of cooperation existing is almost

completely lost when the noise level reaches the value one. A

tentative qualitative explanation of the relative insensitivity to

noise in this case is the following. The way in which a new network

is generated in the noisy case (see above) tells us that, on the

average, a given player will have more or less the same proportion

of cooperators and defectors as neighbors in the new network as in

the previous one. Since deterministic unconditional imitation rule

depends on the global state of the neighborhood, it seems likely

that the network dynamics will not have a large effect in this case.

Table 2 summarizes the numerical results by giving the average

value of cooperation in the three non-trivial games for static and

dynamic networks, and for the two strategy revision rules. From

the table, the trend towards loss of cooperation in randomly

fluctuating networks becomes very clear.

Fluctuations from Network Edge Swap
The independent sequence of BA graphs used above constitutes

an ideal situation that can be considered as a baseline case, but it is

quite far from a realistic link evolution in a given single network.

To do a step towards more realism, we shall now assume that the

sequence of graphs fG(0),G(1), . . .g is generated by successively

rewiring an initial given graph as suggested in [17]. We begin with

G(0) being a Barabási–Albert network; then, starting at time t = 1,

each successive graph G(t) in the sequence is generated by

swapping two randomly chosen non-adjacent pair of edges in the

previous graph G(t21). In contrast to the previous case, where the

sequence of graphs was an i.i.d. one, this process is a Markov chain

since each new graph in the sequence depends on the previous

one. The edge swap preserves the degree distribution P(k) of G and

obviously the node’s degree and the mean degree as well. The

graphs, however, become more and more randomized as time

goes by, as they tend to loose the historical degree correlations

between hubs that arise in the original BA construction. Note that

in this case we assume an asynchronous dynamics since it is, in our

opinion, qualitatively more adapted to the new situation. Results

are almost the same with either synchronous or asynchronous

dynamics as shown in [3]. For the BA networks and replicator

dynamics, this is also clear from the leftmost images in Figs. 1 and

3. Thus, instead of updating all the players’ strategies at once in

Figure 1. Asymptotic distribution of strategies in the TS plane in static and dynamic BA networks using replicator dynamics as an
update rule. Initial density of cooperators is 0.5 uniformly distributed at random in all cases. Leftmost image: the static case. Middle image:
frequency v of network generation is 0.1; rightmost image: v~1. Values are averages over 100 independent runs.
doi:10.1371/journal.pone.0025555.g001
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each time step as before, we randomly choose a player to update

(with replacement). This is called an elementary time step. The

period of network rewiring in this case is the number of elementary

steps before an edge swap takes place, and the frequency v is just

the reciprocal of this number.

The visual results for this kind of generic network noise under

replicator dynamics are shown in Fig. 3, while the measured final

average values are given in Table 3. It is clear that, in agreement

with the previous model of noise, even a moderate amount of

network links fluctuation gives rise to a serious loss of cooperation

in all the non-trivial games. To be more precise, after a good deal

of edge swapping, the resulting networks, although they keep the

original degree distribution, are close to scale-free random graphs

generated according to the configuration model [17]. Cooperation

frequencies on random scale-free graphs of the latter type are still

better than random Erdös-Rényi graphs results (see [8] and

especially [18], where a complete analysis of cooperation in the PD

in random scale-free graphs is provided). However, they are

significantly lower than those found in BA networks due to the loss

of some early hubs interconnections that are present in BA

networks because of the temporal growing process [18]. Thus, the

reasons for the loss of cooperation are both the topology changes

induced by the above loss of interconnected hubs, and especially

the noisy neighborhoods induced by the edge swaps.

Fluctuations from Edge Rewiring
Once more, the previous assumed network fluctuation, although

it is of theoretical interest, is still far from what happens in real

networks. Experimental observations on dynamically changing

social networks show that global statistics such as P(k), the mean

degree SkT, the mean clustering coefficient SCT all remain similar

but not exactly the same, they fluctuate to some extent during

network evolution. This is true for growing networks, which are

the majority of those that have been observed, but also for time-

resolved studies of constant-size ones. These kind of results have

been reported, among others, in [19–23]. Inspired by these

considerations, we shall thus examine a third random dynamics

that, without making strong assumptions on how players have

their links cut and rewired, nevertheless provides fluctuations of

the main network quantities similar to what seems to happen in

real social networks. This should allow us to check whether the

conclusions reached with the two previous models are robust

enough starting from a BA network. Rewiring works as follow:

1. a node i is chosen with probability proportional to its degree ki

and one of its neighbors j[V (i) is selected with uniform

probability

2. the corresponding fijg link is suppressed

3. node j creates a new link with a node l[V anywhere in the

graph with probability proportional to l’s degree (preferential

attachment)

4. to conserve minimum degree kmin, if nodes i or j have degree

kmin they are not considered for rewiring and two other nodes

are selected

This process makes highly connected nodes more likely to loose

a link but, on the other hand, it also gives them more probability of

being chosen for a new connection. The network statistics do

change but they remain relatively close to the starting BA graph.

In our simulations, after many rewirings, the network degree

distribution function does remain broad-scale in average, but the

tail tends to fall off faster than the original power-law. Figure 4

shows the degree distribution functions for the original and the

rewired networks for two levels of noise averaged over 1000 graph

realizations. For the rewired networks, the graphs refer to the final

configurations. From the curves, one can see that for low noise

(v~0:1) the rewired networks have almost the same distribution

as the original BA ones. On the other hand, when the noise is high

(v~1) the networks undergo a more marked change and the

resulting degree distributions are closer to an exponential, as seen

in the left image of Fig. 4 where the scales on the axes are lin-log.

Figure 2. Asymptotic distribution of strategies in the TS plane in static and dynamic BA networks using unconditional imitation of
the best neighbor as an update rule. Initial density of cooperators is 0.5 uniformly distributed at random in all cases. Leftmost image: the static
case. Increasing towards the right: frequency v of network generation is 0.1 and 1. Values are averages over 100 independent runs.
doi:10.1371/journal.pone.0025555.g002

Table 2. Asymptotic average cooperation fraction in static
and noisy BA networks.

PD, ib PD, rd SD, ib SD, rd SH, ib SH, rd

Static BA networks 0.030 0.131 0.863 0.823 0.597 0.615

Dynamic Network (v~0:1) 0.027 0.025 0.890 0.778 0.582 0.490

Dynamic Network (v~1:0) 0.021 0.009 0.870 0.572 0.538 0.364

‘ib’ and ‘rd’ stand for ‘imitate the best’ and ‘replicator dynamics’ update rules
respectively. PD, SD, and SH design the Prisoners Dilemma, Snowdrift, and Stag
Hunt games respectively. The table refers to Figs. 1 and 2.
doi:10.1371/journal.pone.0025555.t002
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Indeed, most empirical degree distributions sampled on actual

static social networks do give results that are between these two

limit cases, i.e. a power-law and an exponential distribution

[24,25].

The simulations proceed in an asynchronous manner, as

explained in the edge swap case above. Figure 5 depicts the

behavior of the four game classes on networks undergoing the

above link fluctuations. The leftmost image is given for

comparison; it refers to a static graph that has been first rewired

so as to randomize the links as explained above, before being used

as a fixed population topology. The middle and rightmost images

depict the noisy cases with a frequency of rewiring of 0.1 (middle)

and 1 (right). It is to be remarked that the static rewired network

does not become an Erdös-Rényi random graph, and still allows

for a fair amount of cooperation with respect to the pure BA case

reported in the leftmost image of Fig. 3. Thus, the loss of

cooperation observed as the network fluctuates is significant and

can lead to full defection for the PD when rewiring and revising

strategy have the same time scale (rightmost image). Snowdrift and

SH are less negatively affected. The average final values for the

three games are reported in Table 4. The conclusion that we can

draw from the results obtained with the three network fluctuation

models is the following: whatever the source of random link

fluctuations, as soon as the amount of noise becomes non-

negligible i.e., as soon as network changes are at least ten times

slower than strategy revision, the cooperation levels observed on

static networks become weaker and they are completely lost when

link noise and strategy update occur at the same rate. This

conclusion is valid for all the non-trivial games studied, but it is

particularly visible in the PD quadrant where defection becomes

complete for v~1.

Network and Strategy Noise
Until now, we have studied the impact of network fluctuations

on typical evolutionary games. Another common source of noise in

games arises from strategy errors. These are meant to capture

various sources of uncertainty such as deliberate and involuntary

decision errors which might play the role of experimentation in the

environment, or be related to insufficient familiarity with the

game. One easy way to include strategy noise is to use the Fermi

function [2] as an update rule (see the Methods section for

definitions). The parameter b in the function gives the amount of

noise: a low b corresponds to high probability of error and,

conversely, high b means that errors will be rare. One may ask

how much these errors influence cooperation in networks of

contacts, and whether they combine positively or negatively with

network noise. As for their influence on static BA networks, the

answer has been given in [3], where it is shown that for low noise

(b = 10) the equilibrium behavior is similar to the one seen with

replicator dynamics, while values of b close to 0.01 are enough to

suppress all residual cooperation in the PD. In this case selection is

weak, payoffs and network structure play a less important role. In

other words, only comparatively high rates of strategy errors are

really detrimental to cooperation. But when network fluctuations

are present, cooperation is quickly lost, even for values of b that

still allow for a fair amount of cooperation in the static case.

Figure 6 shows this for a static network (leftmost image) as well as

for two levels of network noise (central and right image) for

b = 0.1. Network noise has been created as in our first model, i.e.

by generating a sequence of independent BA networks with

frequency v.

Table 5 gives the asymptotic average values of cooperation in

the three non-trivial games for static and dynamic networks.

Although in the static case there is still a certain amount of

cooperation in spite of the fact that b is relatively low, adding

network noise quickly makes the situation worse. In conclusion, we

can say that both kinds of errors tend to hinder cooperation, but

network noise is more important than strategy noise in disrupting

cooperation on degree-heterogeneous networks.

Figure 3. Asymptotic distribution of strategies in the TS plane in static and dynamic BA networks using replicator dynamics as an
update rule. Strategy update dynamics is asynchronous and the initial BA graph is rewired as explained in the text. Initial density of cooperators is
0.5 uniformly distributed at random in all cases. Leftmost image: the static case. Middle image: frequency v of network rewiring is 0.1; rightmost
image: v~1. Values are averages over 100 independent runs.
doi:10.1371/journal.pone.0025555.g003

Table 3. Asymptotic average cooperation fraction in static
and dynamic networks with edge swap using replicator
dynamics as a strategy update rule.

PD SD SH

Static BA Networks 0.131 0.825 0.617

Dynamic Network (v~0:1) 0.055 0.699 0.576

Dynamic Network (v~1:0) 0.017 0.591 0.523

Values refer to Fig. 3.
doi:10.1371/journal.pone.0025555.t003
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Discussion

The finding that fixed Barabási–Albert scale-free networks of

contacts notably increase cooperation in social dilemmas has been

an important one [8,14] and has raised substantial hope, since

scale-free graphs are better representations of actual networks of

contacts than the random graphs and regular lattices that have

often been used in the past. However, subsequent studies have

somehow reduced its scope for various reasons. In the first place,

the gains in cooperation can be partially or totally offset if players

must pay an extra cost in order to maintain more contacts, as

suggested by Masuda [26]. In a similar way if average, instead of

accumulated payoff is used, the advantage of degree heterogeneity

is lost as the individual’s payoff is divided by its degree in the graph

[27,28]. The latter seems to be an extreme case but it still shows in

another way that the cost for an agent to maintain few or many

links cannot be the same, although it certainly depends on the

social context. Furthermore, if the players’ decision rule is partially

conventional, some of the advantage is equally lost. For example,

this has been shown to happen when agents have a conformist

component to their behavior [29]. Finally, even when none of the

above applies, the amount of cooperation gain due to network

reciprocity can still be slim or non-existent depending on the

strategy update rule and several other factors. This has been

shown, among many other things, in the extensive studies of Roca

et al. [3,30] where it appears that using deterministic best response

Figure 4. Empirical degree distribution functions for the original BA networks and for the final rewired ones. Left image: lin-log scales;
right image: log-log scales. The distributions for the rewired graphs are shown for two levels of network noise. For high levels of noise, distributions
tend to the exponential type, otherwise they are closer to the original power-law. Values are averages over 1000 graph realizations for each curve.
doi:10.1371/journal.pone.0025555.g004

Figure 5. Asymptotic distribution of strategies in the TS plane in rewired networks using replicator dynamics. Strategy update
dynamics is asynchronous. Leftmost image: static rewired network (see text). Middle and rightmost images refer to dynamic graphs with frequency v
of network rewiring of 0.1 and 1, respectively. Initial density of cooperators is 0.5 uniformly distributed at random in all cases. Values are averages
over 100 independent runs.
doi:10.1371/journal.pone.0025555.g005
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as an update rule instead of an imitative rule such as replicator

dynamics causes a serious loss of cooperation in the PD on BA

scale-free networks which recover the mean-field case.

In the present work, inspired by the empirical observation that

networks are never completely static, we have shown that several

forms of random fluctuation of the network links lead to a marked

loss of cooperation that affects all the games’ phase space, even for

moderate amounts of noise. The result is robust because,

irrespective of the precise form of network noise, the same

phenomenon manifests itself: asymptotically cooperation tends to

disappear in the PD, and it diminishes in the other games.

Moreover, network fluctuations appear to be more important than

strategy noise in provoking a loss of cooperation. All the above

refers to BA scale-free graphs and the general conclusion is that

these population structures are not robust enough as cooperation

amplifiers, as many factors may contribute to impair the ideal

results. Network fluctuations, which certainly must occur in real-

life, are among the most important factors. As a result, it can be

said that, when the amount of noise is non-negligible, the system

tends to behave in a mean-field way and thus the well-mixed

population description seems to be adequate. This can be seen

visually by comparing our figures with v~1 with those for

complete graphs that appear in [7] and [3]. The main reason for

this behavior is the fluctuation of the neighborhood seen by each

agent due to global network noise which, to some extent,

resembles population mixing.

However, it has to be said that these model networks, although

similar in some sense, do not represent well enough actual social

networks; for instance, they do not have enough clustering,

community structure, and degree correlations, among others. It

would be interesting to see what is the effect of noise on games on

social networks. Work is in progress in this direction. Finally, the

negative conclusion that cooperation in scale-free networks is

hindered by exogenous random network dynamics, should be

taken with caution. It is valid when strategy evolution and network

dynamics are completely uncorrelated as it was the case in the

present study. However, it has been shown that when cutting and

forming links in a co-evolving network has a strategic dimension to

it, then cooperation can thrive and be stable since severing and

reforming links is purposeful and based either on game payoff, or

on game-related considerations (see, for instance, [4,8–10]). From

a social point of view, the difference is whether an agent can

purposefully manipulate her environment, or is just under the

influence of external network forces that she cannot control. In our

opinion, both cases, as well as mixed situations may exist in reality.

The study presented here belongs to the first stylized situation.

Methods

Population Structure
The population of players is a connected undirected graph

G(V,E), where the set of vertices V represents the agents, while the

set of edges E represents their symmetric interactions. The

population size N is the cardinality of V. The set of neighbors of

an agent i is defined as: Vi~fj[V D dist(i,j)~1g, and its

cardinality is the degree ki of vertex i[V . The average degree of

the network is called SkT and P(k) denotes its degree distribution

function, i.e. the probability that an arbitrarily chosen node has

degree k. For the network topology we use the classical Barabási–

Albert [31] networks. BA networks are grown incrementally

starting with a clique of m0 nodes. At each successive time step a

new node is added such that its m#m0 edges link it to m nodes

already present in the graph. It is assumed that the probability p

that a new node will be connected to node i depends on the

current degree ki of the latter. This is called the preferential attachment

rule. The probability p(ki) of node i to be chosen is given by

p(ki)~ki=
P

j kj , where the sum is over all nodes already in the

graph. The model evolves into a stationary network with power-

law probability distribution for the vertex degree P(k)*k{c, with

c*3. For the simulations, we started with a clique of m0 = 9 nodes

and, at each time step, the new incoming node has m = 4 links.

Table 4. Asymptotic average cooperation fraction in static
and dynamic networks with edge rewiring (see text) using
replicator dynamics as a strategy update rule.

PD SD SH

Static Networks 0.072 0.696 0.588

Dynamic Network (v~0:1) 0.057 0.678 0.595

Dynamic Network (v~1:0) 0.009 0.544 0.528

Values refer to Fig. 5.
doi:10.1371/journal.pone.0025555.t004

Figure 6. Asymptotic distribution of strategies in the TS plane in static and dynamic BA networks using the Fermi rule (see text).
Initial density of cooperators is 0.5 uniformly distributed at random in all cases. In all cases b = 0.1. Leftmost image: the static case. Middle image:
frequency of graph renewal v~0:1. Right image: v~1. Values are averages over 100 independent runs.
doi:10.1371/journal.pone.0025555.g006
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Payoff Calculation and Strategy Revision Rules
In evolutionary game theory, one must specify how individual’s

payoffs are computed and how agents decide to revise their present

strategy. In the standard theory, there is a very large well-mixed

population; however, when the model is applied to a finite

population whose members are the vertices of a graph, each agent

j can only interact with agents contained in the neighborhood V(j),

i.e. only local interactions are permitted.

Let si[fa,bg be the current strategy of player i and let us call M

the payoff matrix of the game. The quantity

Pi(t)~
X

j[Vi

si(t) M sT
j (t)

is the accumulated payoff collected by agent i at time step t and

si(t) is a vector giving the strategy profile at time t. Several strategy

update rules are commonly used. Here we shall describe three of

them that have been used in our simulations.

The first rule is to switch to the strategy of the neighbor that has

scored best in the last time step. This imitation of the best policy can

be described in the following way: the strategy si(t) of individual i

at time step t will be

si(t)~sj(t{1),

where

j[fVi|ig s:t: Pj~ maxfPk(t{1)g, Vk[fVi|ig:

That is, individual i will adopt the strategy of the player with the

highest payoff among its neighbors including itself. If there is a tie,

the winner individual is chosen uniformly at random, but

otherwise the rule is deterministic.

The local replicator dynamics rule is stochastic [32]. Player i’s

strategy si is updated by drawing another player j from the

neighborhood Vi with uniform probability, and replacing si by sj

with probability:

p(si?sj)~(Pj{Pi)=K,

if PjwPi, and keeping the same strategy if PjƒPi.

K~ max (ki,kj)½( max (1,T){ min (0,S)�, with ki and kj being

the degrees of nodes i and j respectively, ensures proper

normalization of the probability p(si?sj).

The last strategy revision rule is the Fermi rule [2]:

p(si?sj)~
1

1z exp ({b(Pj{Pi))
:

This gives the probability that player i switches from strategy si

to sj , where j is a randomly chosen neighbor of i. Pj{Pi is

the difference of payoffs earned by j and i respectively. The

parameter b in the function gives the amount of noise: a low b
corresponds to high probability of error and, conversely, high b
means low error rates. This interpretation comes from physics,

where the reciprocal of b is called the temperature. Consequently,

payoffs will be more noisy as temperature is raised (b is lowered).

Simulation Parameters
The BA networks used in all simulations are of size N = 2000

with mean degree SkT~8. The TS plane has been sampled with a

grid step of 0.05 and each value in the phase space reported in the

figures is the average of 100 independent runs, using a fresh graph

realization for each run. The initial graph for each run doesn’t

change in the static case, while it evolves in the dynamic case, as

described in the main text. Note that steady states have always

been reached when strategies evolve on a static graph. We first let

the system evolve for a transient period of 2000|N^4|106 time

steps. After a steady state is reached past the transient, averages

are calculated during 2006N additional time steps. True

equilibrium states in the sense of stochastic stability are not

guaranteed to be reached by the simulated dynamics. For this

reason we prefer to use the terms steady states which are states that

have little or no fluctuation over an extended period of time. In the

case of fluctuating networks, the system as a whole never reaches a

steady state in the sense specified above. This is due to the fact that

the link dynamics remains always active. However, the distribution

of strategies on the network does converge to a state that shows

little fluctuation, i.e. a steady state.
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