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Abstract
1.	 Biodiversity conservation requires modeling tools capable of predicting the pres‐
ence or absence (i.e., occurrence‐state) of species in habitat patches. Local habitat 
characteristics of a patch (lh), the cost of traversing the landscape matrix between 
patches (weighted connectivity [wc]), and the position of the patch in the habitat 
network topology (nt) all influence occurrence‐state. Existing models are data de‐
manding or consider only local habitat characteristics. We address these short‐
comings and present a network‐based modeling approach, which aims to predict 
species occurrence‐state in habitat patches using readily available presence‐only 
records.

2.	 For the tree frog Hyla arborea in the Swiss Plateau, we delineated habitat network 
nodes from an ensemble habitat suitability model and used different cost surfaces 
to generate the edges of three networks: one limited only by dispersal distance 
(Uniform), another incorporating traffic, and a third based on inverse habitat suit‐
ability. For each network, we calculated explanatory variables representing the 
three categories (lh, wc, and nt). The response variable, occurrence‐state, was 
parametrized by a sampling intensity procedure assessing observations of com‐
parable species over a threshold of patch visits. The explanatory variables from 
the three networks and an additional non‐topological model were related to the 
response variable with boosted regression trees.

3.	 The habitat network models had a similar fit; they all outperformed the non‐topo‐
logical model. Habitat suitability index (lh) was the most important predictor in all 
networks, followed by third‐order neighborhood (nt). Patch size (lh) was unimpor‐
tant in all three networks.

4.	We found that topological variables of habitat networks are relevant for the 
prediction of species occurrence‐state, a step‐forward from models consider‐
ing only local habitat characteristics. For any habitat patch, occurrence‐state is 
most prominently influenced by its habitat suitability and then by the number of 
patches in a wide neighborhood. Our approach is generic and can be applied to 
multiple species in different habitats.
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1  | INTRODUC TION

Knowledge about the spatial distribution of species is a key element 
for any conservation effort. To gain insights on the presence or ab‐
sence of a species at specific locations (occurrence‐state; from oc‐
currence in Kéry & Schaub, 2012), it is necessary but not sufficient 
to consider the conditions that make the specific sites suitable for a 
species, that is, to define patches of suitable habitats (sensu Guisan 
& Zimmermann, 2000). One also needs to take into account habitat 
connectivity, which is the way the suitable habitat patches are acces‐
sible and thus connected to each other, or “the degree to which the 
landscape facilitates or impedes” the movement of species (Taylor, 
Fahrig, Henein, & Merriam, 1993). The consideration of connectivity 
is important, as a habitat patch in which the environmental condi‐
tions are suitable for a certain species can actually be unoccupied 
due to the inability or low probability of the species to reach the 
patch (Barve et al., 2011). In such a case, the occurrence‐state of 
the known suitable habitat patch would be 0, as occurrence‐state 
is a property of habitat patches with two alternative states: pres‐
ence (1) or absence (0). To better capture the factors influencing the 
occurrence‐state of a species, and to be able to make predictions 
about this state, it is necessary to develop new modeling approaches 
that do not only consider the local conditions in a habitat patch, but 
also the connectivity between patches. This was the main goal of 
the present study.

Habitat patches and their connectivity can be represented in a 
network‐theoretical framework. Since the work of Bunn, Urban, and 
Keitt (2000), spatially explicit habitat network models have been 
in common use (e.g., Duflot, Avon, Roche, & Bergès, 2018; Saura & 
Pascual‐Hortal, 2007; Urban, Minor, Treml, & Schick, 2009). In such 
networks, nodes usually represent habitat patches potentially inhab‐
ited by a species, and edges commonly represent potential move‐
ment among them. In many habitat networks, edges are modeled 
with cost surfaces (i.e., raster maps in which each cell has a value 
of resistance to movement) from which likely movement routes can 
be derived (Adriaensen et al., 2003; McRae, 2006). In other cases, 
edges are modeled with straight‐line transects (Jordán, Magura, 
Tóthmérész, Vasas, & Ködöböcz, 2007; van Strien et al., 2014). The 
specific arrangement of nodes and edges is the network topology 
(Kauffman, 1993; Urban et al., 2009), which can be analyzed at dif‐
ferent scales, ranging from the immediate vicinity of a patch to the 
whole network (Baranyi, Saura, Podani, & Jordán, 2011). Following 
this logic, the presence of a species in a certain habitat patch is in‐
fluenced by three different key categories of factors, which can be 
summarized with the following conceptual equation:

where ψ i is the occurrence‐state of a species (whether it is present 
or absent) in a habitat patch i, lhi refers to the local habitat charac‐
teristics of such patch, wci is the weighted connectivity of the patch 
to surrounding patches, and nti is the place of the patch (node) in the 
network topology.

Local habitat characteristics (lhi) are defined by the properties 
of suitability and size of a habitat patch. Patch size is an important 
factor in metapopulation biology (Hanski, 1992), and its relevance 
is widely acknowledged in studies dealing with occurrence and dis‐
tribution of species (Hodgson, Moilanen, Wintle, & Thomas, 2011; 
Saura & Pascual‐Hortal, 2007). The suitability of a patch is deter‐
mined by the environmental requirements (i.e., environmental niche) 
of species. These requirements can be assessed with habitat suit‐
ability modeling (HSM), which aims to predict the distribution of 
species across a study area based on mapped environmental factors 
(Guisan & Zimmermann, 2000; Thuiller & Münkemüller, 2010).

Habitat connectivity depends on the movement ability and be‐
havior of a species, reflected in species‐specific maximum dispersal 
distances (Jenkins et al., 2007). It also depends on factors that fa‐
cilitate or inhibit the movement of a species through the landscape 
between neighboring suitable patches (Prevedello & Vieira, 2009). 
The weighted connectivity (wc) component of conceptual Equation 
(1) includes those variables that explicitly incorporate the probabil‐
ity of traversing the landscape matrix (the latter determining the 
“weights”) into their calculation. The wc factors give rise to the emer‐
gent large‐scale structure of a network. The network topology (nt) 
refers to this large‐scale structure (Albert & Barabási, 2000). For a 
given node i, nti refers to variables that describe its neighborhood, 
position, and importance in the whole network, independent of any 
weights specific to a certain environmental or species‐specific con‐
text. The context‐independent nature of nt variables makes them 
ideal to compare habitat networks of different species in different 
environments, as well as to compare habitat networks with other 
kinds of natural networks (Watts & Strogatz, 1998).

Determining the occurrence‐state of a habitat patch is diffi‐
cult for non‐sessile species (MacKenzie et al., 2002). Although 
it can be performed by site occupancy models (Kéry & Schaub, 
2012), these can only be used in situations where sites have been 
sampled in a regular and systematic way (MacKenzie et al., 2006). 
Another difficulty is the empirical estimation of connectivity be‐
tween habitat patches, which is usually performed by means of 
mark–recapture, radio tracking, GPS sensors, or genetic methods 
(Kool, Moilanen, & Treml, 2013; Straka, Paule, Ionescu, Štofík, & 
Adamec, 2012). Due to their high costs and labor intensity, these 
methods are usually not implemented over large spatial scales, 
for several species, or by institutions under economic hardship. 
In summary, the determination of both the occurrence‐state of (1)�i= f

(

lhi,wci,nti
)

K E Y W O R D S

connectivity, cost surface, habitat network, habitat suitability, network topology, species 
occurrence
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habitat patches and of the connectivity among them is based on 
data that are relatively expensive, laborious, and time‐consuming 
to obtain. In contrast, spatially explicit data on species observa‐
tions are readily available in many countries, such as the data ag‐
gregated in the GBIF international database (www.gbif.org) or in 
the Swiss InfoSpecies database (www.infos​pecies.ch). These data 
consist of confirmed presences, but usually do neither contain any 
absences nor information on whether all potential habitat patches 
were surveyed. Given these biases, it is a challenge to parame‐
terize habitat networks with such incomplete data. Nevertheless, 
given the high prevalence of such data, it is worthwhile to explore 
the possibilities of using it to parametrize habitat network models 
aiming to predict species occurrence. By aggregating observation 
data from groups of comparable species (Anderson, 2003) to de‐
termine a habitat patch's sampling intensity, we expect that likely 
absences for a focal species can be estimated.

In this study, we developed a habitat network modeling ap‐
proach to predict species occurrences in habitat patches following 
conceptual Equation (1). We aimed to develop a generic method 
that (a) includes insights about the topology of the habitat networks 
and (b) makes use of readily available presence‐only records. We 
expected that the incorporation of network topological variables 
would increase the explanatory power of models as compared to 
nontopological ones, addressing the omission of connectivity factors 
incurred by traditional models capable of predicting species occur‐
rences (such as HSM and resource selection models; Boyce, Vernier, 
Nielsen, & Schmiegelow, 2002). We anticipate that the approach 
can be applied to a multitude of species in different environments 
at minimal cost. We exemplify our approach with the European tree 
frog (Hyla arborea L.) in the Swiss Plateau.

We followed a multistep procedure with two modeling stages 
(Figure 1). First, we used HSM to delineate suitable patches, that 
is, the nodes of the network. We then defined the edges based on 
least‐cost calculations on different cost surfaces, which incorpo‐
rated different environmental, biological, and human influences 
on the landscape, generating three different networks. From these 

networks, we calculated several variables quantifying the three cat‐
egories of factors (i.e., lh, wc, and nt) in Equation (1), which were used 
as explanatory variables in models that related them to the response 
variable occurrence‐state. We then compared the fit of models with 
and without the wc and nt variables. In order to calculate occurrence‐
state, we developed an approach inspired by Anderson (2003) that 
uses comparative sampling intensity to define absences of the focal 
species in habitat patches. Finally, by means of boosted regression 
trees (BRTs), we tested the explanatory power of predictor variables 
related to the three factors of Equation (1) on occurrence‐state.

2  | METHODS

2.1 | Study area, focal species and presence records

Our study area consisted of the Swiss Plateau, a densely populated 
region (426  inhabitants/km2; Müller‐Jentsch, 2012) of 11,168 km2, 
where strong increases in landscape fragmentation and urban sprawl 
have recently occurred (Roth, Schwick, & Spichtig, 2010). The area 
is dominated by human land use, with a patchy distribution of set‐
tlements, agricultural land, and forests. The exact shape of the study 
area (Figure 2) was defined by the boundaries of the Swiss Plateau 
from the official map of the biogeographical regions of Switzerland 
(OFEV, 2011) minus a 2 km (i.e., commonly reported amphibian dis‐
persal distances; Smith & Green, 2005) negative buffer away from 
the international borders of Switzerland to prevent border effects. 
We chose the European tree frog (H. arborea L.) as our focal spe‐
cies, as it is a neither abundant nor rare habitat specialist, vulnerable 
to environmental disturbances and restricted to well‐defined natu‐
ral features, which are areas close to sunny forest edges and bushy 
landscape elements surrounding vegetation‐poor ponds, in which it 
spawns (Clauzel, Girardet, & Foltete, 2013).

Our dataset on species occurrences consisted of geopositioned 
records of 13 amphibian species (Appendix A1) that were sam‐
pled from water bodies (mainly ponds, but also shallow lakeshores) 
between 2006 and 2015 across the Swiss Plateau, provided by 

F I G U R E  1  Workflow of steps used 
in this study. The numbers indicate the 
relation of each step to Equation (1) (inset 
below)
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InfoSpecies‐KARCH (www.infos​pecies.ch). The records in this data‐
set originated from a variety of sources and observers and are limited 
to sites visited and reported on during the above‐mentioned period. 
Some sites were visited only once, while others were visited annually 
or many times. It was also not clear whether observers reported all 
species encountered at a visit, an arbitrary subset of species or a sin‐
gle species. Absences of particular species from particular sites were 
thus not explicitly reported. Such data limitations are frequently 
encountered in national and international observation databases. 
Records on amphibian occurrences were aggregated at a 1 ha reso‐
lution. In total, the dataset consisted of 2,354 locations with at least 
one amphibian species presence in one or more years. Out of these, 
291 contained the focal species H. arborea (Figure 2).

2.2 | Habitat suitability modelling

For HSM, we compiled a dataset of 25 environmental predictor 
variables based on previous studies describing the environmental 
preferences of pond‐based amphibians in general and H. arborea in 
particular (Pellet, Hoehn, & Perrin, 2004; Van Buskirk, 2005; Zanini, 
Pellet, & Schmidt, 2009), as well as additional variables quantify‐
ing human influence on ecosystems. Our final HSM predictors fell 
under three basic categories: human influence, natural landscape 
features, and climate variables. All predictor variables were con‐
verted to a resolution of 1 ha. Circular moving windows with a 2 km 
radius (common dispersal distance of amphibians) were used for 
calculating many of the predictors. We eliminated collinear predic‐
tor variables based on pairwise Pearson's correlation coefficients 
(Gillham, 2001) with a reference threshold of 0.75 and based on var‐
iance inflation factors (VIF) with a threshold of 0.9, using the pack‐
ages USDM (Naimi, Hamm, Groen, Skidmore, & Toxopeus, 2014) 
and stats in R 3.3 (R Development Core Team, 2016). The removed 
variables were mean annual precipitation, total noise at daytime, 

recreation intensity, highway density, and density of roads. This 
led to a final selection of 20 predictor variables for HSM (Appendix 
A2 lists the HSM predictors; Appendix A3 gives a short description 
and the sources of the data). All data processing was carried out 
with ArcGIS 10.4.1. (ESRI, 2016) in Python 2.7 (Python Software 
Foundation, 1995).

In order to delineate potential habitat patches of H. arborea, we 
generated an ensemble habitat suitability model (HSm) in which the 
291 presences of H. arborea constituted the response variable. To 
prevent pseudoreplication, we included only one record of H.  ar‐
borea per sampling site, even if the species was observed in multiple 
years. We generated 10,000 pseudoabsences as recommended by 
Barbet‐Massin, Jiguet, Albert, and Thuiller (2012), with one round of 
pseudoabsence selection. We developed an ensemble using the R‐
package Biomod2 (Thuiller, Georges, Engler, & Breiner, 2016), which 
does multiple runs of different models, projects the models spatially, 
and generates consensus projections between the different mod‐
els. In this study, we used the mean ensemble of a generalized lin‐
ear (GLM), a random forest (RF), and a maximum entropy (MaxEnt) 
model. The models were evaluated with ROC AUC, with a quality 
threshold of AUC ≥ 0.7 (Bulluck, Fleishman, Betrus, & Blair, 2006). 
To binarize the continuous habitat suitability maps, the applied cri‐
terion was the point in the ROC curve that minimizes the difference 
between sensitivity and specificity. We used default settings unless 
otherwise specified.

2.3 | Node delineation

HSM resulted in a map indicating where the environmental condi‐
tions were potentially suitable for H.  arborea. In order to delimit 
suitable habitat patches for this species, we intersected the binary 
results of the ensemble HSm with those areas in which H. arborea 
can reproduce, namely water bodies in the Swiss Plateau. Water 

F I G U R E  2  Location of the study area 
(Swiss Plateau; black line) in Switzerland 
(gray line, solid gray in inset) and presence 
records of Hyla arborea (black dots)
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bodies were defined by merging several spatial datasets: lakeshores 
(Swisstopo, 2016), mires (OFEV, 2010), amphibian spawning sites 
(BAFU, 2016), and all locations with at least one occurrence of at 
least one amphibian species in the period 2006–2015. The merged 
layer constituted a mask that was overlaid with the binarized HSm 
(Guisan et al., 2006; Figure 3). A habitat patch was considered unique 
if it was not connected to any other patch under a Moore neighbor‐
hood criterion (i.e., considering all eight neighbors of a raster cell). 
For each patch, we determined its size (ha) and its mean habitat suit‐
ability, which were later used as explanatory variables for the oc‐
currence‐state modeling (see below). The identified habitat patches 
constituted the nodes of the habitat network.

2.4 | Edge definition

Between pairs of nodes, we defined edges based on least‐cost cal‐
culations (Etherington, 2016). We developed an algorithm that takes 
as input a binary raster of habitat patches and a cost surface. The al‐
gorithm determines the least cumulative cost between patches and 
draws an edge between patches if the total cost is below a certain 
threshold. Translation of dispersal probabilities into dispersal costs 

and vice versa was performed following the p2p function of the R‐
package PopGenReport (Adamack & Gruber, 2014):

in which d0 is the dispersal distance of a proportion p of individuals, 
prob is the probability of dispersal between patches, and cost is the 
cost–value associated with a certain probability prob. We set p = .5, 
so that d0 equaled the median dispersal distance. We set the dis‐
persal probability threshold beyond which no edges were drawn to 
0.0001. Subsequently, d0 was set to 200 m so that no edges were 
formed over cost distances of 2,658. When cost distances are just 
Euclidian distances, 2,658 m is slightly above the reported average 
maximum dispersal distance of H. arborea (Clauzel et al., 2013).

Making use of three different cost surfaces, we created three 
different networks: a Uniform, a Traffic, and an Inverse Habitat 
Suitability network. In the Uniform network, the cost distance was 
equal to the Euclidean distance among habitat patches. In the Traffic 
network, the default cost–value of a raster cell was 1, and for all the 
raster cells that intersected with a road (excluding tunnels), the traf‐
fic intensity on the respective road was converted to a cost–value. 
To do this, we calculated the probability that an animal successfully 

(2)cost= log (prob) ∕ log (p) ∗d0

F I G U R E  3  Continuous (a) and binary (b; close‐up of red area in a) suitability maps yielded by the ensemble habitat suitability model for 
Hyla arborea in the Swiss Plateau. Discrete habitat patches (d; same close‐up as in b) were produced by the application of a mask (c; same 
close‐up as in b)
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crosses a road according to van Langevelde and Jaarsma (2009, 
equation A1.4). These authors include speed and physical dimen‐
sions of vehicles and animals, as well as traffic volumes on inter‐
secting roads, to calculate probabilities of successful road crossing. 
The parameter settings for H. arborea were taken from Van Strien 
and Grêt‐Regamey (2016). Subsequently, the calculated probabilities 
were transformed to costs using Equation (2). The traffic values per 
road segment were those calculated by the 2010 version of the Swiss 
national passenger transport model (ARE, 2010). For the Inverse 
Habitat Suitability network (HabSuit), we assumed that the probabil‐
ities of dispersing through the most unsuitable and suitable terrain 
were 0 and 1, respectively. Therefore, the continuous habitat suit‐
ability raster from HSM was divided by the maximum suitability and 
the inverse value was then taken as cost–value (sensu Ziółkowska, 
Ostapowicz, Radeloff, & Kuemmerle, 2014). With this approach, not 
only the network topology differed between the cost surfaces, but 
also the weight of individual edges in the network. Edge weights 
were calculated by transforming the least‐cost values to dispersal 
probabilities following Equation (2); hence, costlier paths have lower 
dispersal probabilities. Edge calculations were performed using the 
Python packages numpy (Oliphant, 2006), arcpy (ESRI, 2016), and 
igraph (Csardi & Nepusz, 2006).

2.5 | Calculation of explanatory variables for 
occurrence‐state modeling

We prepared a set of explanatory variables for network model as‐
sessment, which quantified the three types of factors from Equation 
(1) as patch (node) properties. To address the aspect of network to‐
pology (nti) at different scales, we calculated for each habitat patch 
the degree, third‐order neighborhood, and betweenness centrality. 
The degree is the number of connections (edges) a specific node i 
has to other nodes (Jordán & Scheuring, 2004). The third‐order 
neighborhood measures the number of nodes (patches) that can be 
reached in maximally three topological steps through the network 
(Csardi & Nepusz, 2006). To measure the influence of topology at the 
whole‐network scale, we used betweenness centrality, which meas‐
ures how many connections between all node pairs in the network 
pass‐through node i (Freeman, 1978). While Baranyi et al. (2011) de‐
fine it as a meso‐scale measure, it is actually calculated considering 
all other nodes in the network, so it is an appropriate proxy to check 
how the whole‐network structure affects a node‐specific property.

To account for the weighted connectivity of patches (wci), the 
calculated variable was the strength, which is the sum of the weights 
of all the edges connecting a node to others (Barrat, Barthélemy, 
Pastor‐Satorras, & Vespignani, 2004). It is thus also considered a to‐
pological variable. We also calculated the habitat availability, which 
is a hybrid variable incorporating aspects of nt and lh. This measure 
calculates a weighted sum of all patch sizes that can be reached from 
a focal patch i. The weights are calculated as the maximum prod‐
uct probability between two patches. Habitat availability is similar 
to the probability of connectivity index of Saura and Pascual‐Hortal 
(2007), with the main difference that it is calculated for each node 

separately (not summed over all nodes) and not divided by the total 
habitat area. In order to achieve efficient computation times, we lim‐
ited the process to consider patches only up to second‐order neigh‐
borhood, after having observed only negligible change for higher 
neighborhood order values.

In addition to those network topological variables, we also in‐
cluded the size (ha) and the mean habitat suitability (habitat suitabil‐
ity index; HSI) values of the patches to evaluate the influence of local 
habitat characteristics (lhi). The habitat suitability values per patch 
were obtained by calculating the mean habitat suitability of all pixels 
that made up a discrete patch. The size was an attribute generated 
when defining the discrete patches.

2.6 | Determination of absences of H. arborea

To define the absence values of the binary response variable oc‐
currence‐state, we used an adapted version of the approach used 
by Anderson (2003), based on comparative sampling intensity. For 
each habitat patch, we assumed that a presence record of any am‐
phibian species in a particular year represented a confirmed visit 
to the patch in that year by an observer familiar with amphibians. 
Furthermore, we assumed that if a patch was visited a considerable 
number of years and a certain focal species was not reported, it is 
likely that such species was indeed not present in that patch dur‐
ing these years. We calculated the total number of times a patch 
had been visited (Vt) by aggregating all observations of the 13 am‐
phibian species in the data set (Appendix A1). Multiple amphibian 
species recorded in one particular year for a certain location were 
counted as only one visit. As we had 10 years of observations with 
a temporal resolution of 1 year, the maximum number of visits (Vt) 
was 10. For each patch, we also calculated the number of times 
H. arborea was observed (Vh), and for each Vt value, we calculated 
the mean Vh. We assigned a likely absence (occurrence‐state = 0) 
to all those patches with a Vt value that corresponded to a mean 
Vh  ≥  1 (i.e., on average H.  arborea was found at least once over 
the years) and in which H. arborea had not been recorded. Patches 
that neither contained a confirmed presence (from the original oc‐
currence data on H. arborea) nor a likely absence had an unknown 
occurrence‐state and were therefore excluded from subsequent 
analyses.

2.7 | Occurrence‐state network model fitting

In order to test what kind of variables were most important for ex‐
plaining the occurrence‐state of a species in a habitat patch, we ran 
boosted regression trees (BRTs; Elith & Leathwick, 2017). This mod‐
eling technique has been proven useful for the analysis of complex 
ecological data. It can handle interactions among variables and non‐
parametric relationships, and integrates the calculation of variable 
importance (Elith, Leathwick, & Hastie, 2008). The three different 
habitat networks (Uniform, Traffic, and HabSuit) were used to build 
three separate models. In all of them, we used the seven explana‐
tory variables described above. In addition, we built a model without 
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topological variables (noTopo), for which the only explanatory vari‐
ables were patch size and HSI. For all four models (Summarized 
in Table 1), the response variable was the occurrence‐state of 
H. arborea.

BRT models are based on an aggregation of numerous classifi‐
cation trees (at least 1,000 as recommended by Elith et al., 2008). 
The learning rate (lr) and tree complexity (tc) influence the number 
of trees that are used in a final BRT model. As stochastic factors give 
rise to differences in the prediction each time the model is run, we 
used 100 runs with lr = 0.001, tc = 5, and a bagging fraction of 0.75 
(following the general guidelines of Elith et al., 2008) with the gbm.
step function of the R‐package dismo (Hijmans, Phillips, Leathwick, 
& Elith, 2017). This function searches for the number of trees that 
yields the lowest deviance. We evaluated the predictive power of 
the models by comparing the distribution of their cross‐validated 
AUC values (cv‐AUC) over the 100 runs. We assessed the different 
variables with the distributions of their importance scores over all 
100 runs.

3  | RESULTS

3.1 | Habitat suitability modeling and patch 
delineation

The ensemble HSm, a mean of nine models, yielded a continuous and 
a binarized habitat suitability map (Figure 3a,b). The mask (Figure 3c) 
applied on the binarized suitability map yielded the definitive de‐
lineation of habitat patches (Figure 3d). The total number of habitat 
patches was 1900.

3.2 | Edge definition

The three different cost surfaces yielded different networks. The 
Traffic network comprised 254 components (groups of linked patches) 
and the Uniform network 134 components. The HabSuit network was 
the most sparsely connected, divided into 850 components (Figure 4).

3.3 | Values of explanatory variables

Mean values of all variables are shown in Table 2. For most net‐
work variables, the HabSuit network exhibited much smaller values 
(Table 2) than the Uniform and Traffic networks. For habitat avail‐
ability, the differences were less pronounced.

3.4 | Determination of absences

The mean number of times that H.  arborea was sighted (mean Vh) 
increased with the number of times a patch was visited (Vt). At Vt ≥ 6, 
mean Vh ≥ 1.8125, indicating that on average there was more than 
one sighting of H. arborea when a site was visited six or more times 
(Figure 5). Therefore, we regarded every patch with Vt ≥ 6 and no 
confirmed H.  arborea sighting as a likely absence. In doing so, we 
determined 46 likely absences of H. arborea, complementing the 209 
confirmed presences.

3.5 | Occurrence‐state network model fitting

The boosted regression trees showed a similar predictive per‐
formance among the three network models, as indicated by the 

Model
Resistance surface used to define 
edges Predictors included

Uniform Cost–value equal to Euclidean 
distance among habitat patches; 
edge formation limited by disper‐
sal distance only.

Degree
Strength
Third‐order neighborhood
Habitat availability
Betweenness centrality
Mean HSI
Mean patch area

Traffic Traffic intensity on intersecting 
roads converted to cost–value.

Degree
Strength
Third‐order neighborhood
Habitat availability
Betweenness centrality
Mean HSI
Mean patch area

HabSuit Cost–value defined by inverse of 
maximum‐weighted habitat suit‐
ability index.

Degree
Strength
Third‐order neighborhood
Habitat availability
Betweenness centrality
Mean HSI
Mean patch area

noTopo None. Network topology not 
considered.

Mean HSI
Mean patch area

TA B L E  1  Summary of the three 
network‐based models (Uniform, Traffic, 
and HabSuit) and the model without 
topological predictors fitted by BRT's
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distributions of their cv‐AUC scores (Figure 6). The model without 
topological measures (noTopo) was outperformed by all three mod‐
els with topological variables (Table 3).

HSI was the variable with the highest importance in all mod‐
els. While the lowest mean HSI value in a suitable patch deter‐
mined by the ensemble HSm was 382, the partial dependence 
plots for all models (Appendix A4) pointed toward a threshold HSI 

value above 500. In all the network models, third‐order neigh‐
borhood was consistently the second most important variable 
(importance above 13%), followed by strength in the Uniform and 
Traffic models, and by habitat availability in the HabSuit model. 
Patch size was consistently among the least important variables 
in all models (Table 4).

4  | DISCUSSION

The goal of this study was to develop an approach to assess the 
occurrence‐state of a species in habitat patches, one which would 
be inexpensive and practical by using widely available species 
presence data, and which would have an added predictive value 
by incorporating topological properties of the species' habitat net‐
works as predictor variables. Our results support the expectation 
that topological variables of habitat networks are indeed relevant 
for explaining and predicting the occurrence‐state of a species in 
habitat patches. This is showcased by the results on BRT model 
comparison, in which the model without topological variables (no‐
Topo) had the poorest performance in terms of its mean cv‐AUC 
score (Figure 6).

F I G U R E  4  Habitat networks of Hyla arborea in the Swiss Plateau (same close‐up as in Figure 3). The networks were based on three 
different cost surfaces: Uniform (a), Traffic (b), and Inverse Habitat Suitability (HabSuit; c)

TA B L E  2  Mean values of explanatory variables for the three 
different networks of Hyla arborea in the Swiss Plateau: Uniform, 
Traffic, and Inverse Habitat Suitability (HabSuit)

  Uniform Traffic HabSuit

Degree 11.32 8.86 4.02

Strength 0.58 0.49 0.22

Third‐order 
neighborhood

41.63 30.39 11.65

Habitat availability 311,578.5 297,289.4 265,234.7

Betweenness 
centrality

1,029.20 911.85 34.19

Mean HSI 650.15 650.15 650.15

Mean patch area (ha) 18.97 18.97 18.97
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Following our other main objective, a novel aspect we present 
in this study is the derivation of likely absences from presence‐
only data. Given that we use unsystematically collected data with 
low temporal resolution, it was not possible to use traditional site 

occupancy models (Kéry & Schaub, 2012). Instead, we developed a 
comparative sampling intensity approach, which yielded the likely 
absences necessary to model occurrence‐state. A drawback of this 
approach was that we could only define likely absences for a small 
fraction of the habitat patches originally defined: our BRT models 
were built on 255 out of 1,900 patches, and the final response vari‐
able only included 46 absences. Nevertheless, even with this rel‐
atively small dataset, all of the network models had mean cv‐AUC 
scores above the 0.75 AUC threshold of acceptability for good mod‐
els (Elith, 2002).

The difference in predictive power between the three differ‐
ent network models was slight. While the Uniform network had a 
better mean predictive performance than the others did (Table 3), 
the difference was too small to warrant any conclusions regard‐
ing a most probable movement hypothesis for the focal species 
H. arborea. In order to study this aspect, it may be worthwhile to 
experiment with different combinations of cost factors or ways to 
define them (such as nonlinear cost increase; Duflot et al., 2018). 
The application of the method to ecologically different taxa and 
landscapes of various sizes might reveal greater differences among 
network models. The contrast between different models as pre‐
sented here could be used to identify the most likely movement 
hypothesis for a given target species and therefore indicate the op‐
timal kinds of network models to use in other ecological contexts.

The explanatory variable with the highest importance across all 
three network models was the mean habitat suitability index per patch 
(HSI). This was partially expected, as the baseline requirement for oc‐
cupancy of a patch is to be suitable habitat. However, the values of HSI 
related to presence or absence had a different threshold than the one 
from the initial habitat suitability model (see partial dependence plots, 

F I G U R E  5  Relationship between the 
number of times a patch has been visited 
(Vt) in the period 2006–2015 and the 
mean number of times that Hyla arborea 
has been spotted for any number of visits 
(mean Vh) in the Swiss Plateau

1

1

4

3
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2

4 852 1063 7 9

M
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F I G U R E  6  Distributions of cross‐validated AUC scores over 100 
runs for four models (Uniform, Traffic, and HabSuit networks, and 
noTopo) for Hyla arborea occurrence‐state in the Swiss Plateau

TA B L E  3  Mean cross‐validated AUC scores over 100 runs 
of four models (Uniform, Traffic, HabSuit, and noTopo) for Hyla 
arborea occurrence‐state in the Swiss Plateau

  Uniform Traffic HabSuit noTopo

Cross‐validated AUC 
score

0.7610 0.7552 0.7597 0.7309
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Appendix A4). This was probably due to the contrast of confirmed 
presences with an informed selection of likely absences instead of 
random pseudoabsences as in HSM. The approach to determine likely 
absences applied here could thus be used to fine‐tune binarization 
thresholds of habitat suitability models in other applications.

The consistent importance of the third‐order neighborhood vari‐
able shows that the number of patches at this wider scale influences 
the occurrence‐state of a species more than in the immediate vicin‐
ity (as shown by the lower importance of degree). The centrality of a 
patch at the whole‐network scale did not prove to be especially rele‐
vant for the occupancy‐state of a species. Another variable that was 
not important in any of the models was patch area. This arrangement 
of variable performances shows the complementarity of the differ‐
ent factors of Equation (1) in determining species occurrence‐state. 
Local habitat characteristics are important, but offer an incomplete 
assessment, which can be enhanced by the incorporation of topo‐
logical variables.

Our multistep approach of occurrence‐state assessment thus 
achieved the expectation of improving predictive performance 
with the integration of connectivity and network topological con‐
siderations. Methods that incorporate these considerations should 
lead to better‐targeted conservation actions, with more satisfactory 
outcomes. Our approach is generic and can be applied to any other 
wildlife species. In addition to presence observations of the focal 
and related species, the main data requirements for its application 
are spatial datasets of variables deemed important for the habitat 
suitability (for patch delineation) or connectivity (for edge definition) 
of the focal species. Patch delineation, easier for habitat specialists 
such as H. arborea (Van Buskirk, 2011), can be helped by the imple‐
mentation of masks (e.g., excluding roads) to reduce patch size for 
more generalist species.

Further testing of our approach will indicate how widely it can 
be implemented, and ground‐truthing likely absences would be par‐
ticularly interesting. Although confirming absences is a difficult en‐
deavor, novel techniques like eDNA (Deiner et al., 2017) could help 

with this task. An interesting expansion of our approach would be 
to incorporate temporal dynamics. With a higher temporal reso‐
lution (we only had 10 time points), one could get further insights 
into how occurrences in one time step influence those in the next, 
thereby incorporating perspectives from metapopulation theory 
(Hanski, 1998) or research on dynamical complex networks in other 
disciplines (e.g., Alvarez‐Buylla et al., 2007; Sinatra, Wang, Deville, 
Song, & Barabási, 2016). Our approach also opens the possibility for 
multi‐species analyses, comparing the networks of different taxa. 
With such an analysis, it would become possible to identify key spa‐
tial elements across multiple networks and areas of strategic impor‐
tance for the conservation of groups of species (Foltête, 2019). Our 
approach is fully expandable, and we hope it can find use in conser‐
vation management in different contexts around the world, often in 
dire need of effective and inexpensive methods.

ACKNOWLEDG MENTS

We thank InfoSpecies‐KARCH, especially Benedikt Schmidt, for pro‐
viding presence data on amphibians, Andreas Justen (UVEK–ARE) 
for help with traffic data, and Frank Breiner (Wetlands International) 
as well as Olivier Broenimann (ECOSPAT‐UNIL) for technical and 
statistical advice and support. We also thank two anonymous ref‐
erees and the associate editor for helpful comments on the manu‐
script. This study is part of the CHECNET project, financed by the 
Swiss National Science Foundation (Grant nr. CR30I3_159250).

CONFLIC T OF INTERE S TS

None declared.

AUTHOR CONTRIBUTIONS

All authors conceived the ideas and designed the methodology. 
DOR analyzed the data and wrote the manuscript. RH, AG, and MvS 
reviewed and commented critically on the manuscript. All authors 
gave final approval for publication.

DATA AVAIL ABILIT Y S TATEMENT

The scripts used to develop the method are available from the Dryad 
Digital Repository (https​://doi.org/10.5061/dryad.sc818d5). The 
original data are either conservation‐relevant or property of Swiss 
public institutions, only available by independent agreements with 
them; therefore, it is not included in the Dryad data package of this 
article. Upon request, the authors can give indications on how to 
request access to the data from the relevant institutions.

ORCID

Damian O. Ortiz‐Rodríguez   https://orcid.org/0000-0003-2781-4146 

Maarten J. Strien   https://orcid.org/0000-0002-4311-0926 

Antoine Guisan   https://orcid.org/0000-0002-3998-4815  

TA B L E  4  Mean relative importance (in %) of seven predictors 
over 100 runs of boosted regression trees (BRTs) for four models 
(Uniform, Traffic, HabSuit, and noTopo) for occurrence‐state of Hyla 
arborea in the Swiss Plateau

Explanatory variable

Mean relative importance

Uniform Traffic HabSuit noTopo

Habitat Suitability 
Index (HSI)

43.10 44.96 53.67 84.34

Third‐order 
neighborhood

13.05 19.49 19.80 –

Strength 12.86 11.25 5.87 –

Habitat availability 10.01 9.08 13.26 –

Degree 8.46 5.55 0.33 –

Betweenness 
centrality

7.69 3.77 0.79 –

Patch area 4.82 5.90 6.27 15.66

https://doi.org/10.5061/dryad.sc818d5
https://orcid.org/0000-0003-2781-4146
https://orcid.org/0000-0003-2781-4146
https://orcid.org/0000-0002-4311-0926
https://orcid.org/0000-0002-4311-0926
https://orcid.org/0000-0002-3998-4815
https://orcid.org/0000-0002-3998-4815


     |  10467ORTIZ‐RODRÍGUEZ et al.

OPEN RE SE ARCH BADG E S

This article has earned an Open Data Badge for making publicly avail‐
able the digitally‐shareable data necessary to reproduce the reported 
results. The data is available at https​://doi.org/10.5061/dryad.sc818d5.

R E FE R E N C E S

Adamack, A. T., & Gruber, B. (2014). PopGenReport: Simplifying basic 
population genetic analyses in R. Methods in Ecology and Evolution, 5, 
384–387. https​://doi.org/10.1111/2041-210x.12158​

Adriaensen, F., Chardon, J. P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, 
H., & Matthysen, E. (2003). The application of ‘least‐cost’ modelling 
as a functional landscape model. Landscape and Urban Planning, 64, 
233–247. https​://doi.org/10.1016/S0169-2046(02)00242-6

Albert, R., & Barabási, A.‐L. (2000). Topology of evolving networks: Local 
events and universality. Physical Review Letters, 85, 5234. https​://doi.
org/10.1103/PhysR​evLett.85.5234

Alvarez‐Buylla, E. R., Benítez, M., Dávila, E. B., Chaos, Á., Espinosa‐Soto, 
C., & Padilla‐Longoria, P. (2007). Gene regulatory network models for 
plant development. Current Opinion in Plant Biology, 10, 83–91. https​:// 
doi.org/10.1016/j.pbi.2006.11.008

Anderson, R. P. (2003). Real vs. artefactual absences in species dis‐
tributions: Tests for Oryzomys albigularis (Rodentia : Muridae) 
in Venezuela. Journal of Biogeography, 30, 591–605. https​://doi.
org/10.1046/j.1365-2699.2003.00867.x

ARE (2010). Nationales Personenverkehrsmodell des UVEK (NPVM). Berne, 
Switzerland: ARE.

BAFU (2016). Amphibienlaichgebiete. Berne, Switzerland: BAFU.
Baranyi, G., Saura, S., Podani, J., & Jordán, F. (2011). Contribution of hab‐

itat patches to network connectivity: Redundancy and uniqueness of 
topological indices. Ecological Indicators, 11, 1301–1310. https​://doi.
org/10.1016/j.ecoli​nd.2011.02.003

Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting 
pseudo‐absences for species distribution models: How, where and 
how many? Methods in Ecology and Evolution, 3, 327–338. https​://doi.
org/10.1111/j.2041-210X.2011.00172.x

Barrat, A., Barthélemy, M., Pastor‐Satorras, R., & Vespignani, A. (2004). 
The architecture of complex weighted networks. Proceedings of the 
National Academy of Sciences of the United States of America, 101, 
3747–3752. https​://doi.org/10.1073/pnas.04000​87101​

Barve, N., Barve, V., Jiménez‐Valverde, A., Lira‐Noriega, A., Maher, S. P., 
Peterson, A. T., … Villalobos, F. (2011). The crucial role of the accessi‐
ble area in ecological niche modeling and species distribution model‐
ing. Ecological Modelling, 222, 1810–1819. https​://doi.org/10.1016/j.
ecolm​odel.2011.02.011

BFS (2013). Waldmischungsgrad der Schweiz. Berne, Switzerland: BFS.
BFS (2015). Statistik der Bevölkerung und der Haushalte (STATPOP). Berne, 

Switzerland: BFS.
Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. A. (2002). 

Evaluating resource selection functions. Ecological Modelling, 157, 
281–300. https​://doi.org/10.1016/S0304-3800(02)00200-4

Broennimann, O., Randin, C., Zimmermann, N. E., & Guisan, A. (2003). 
Swiss Eco‐Climatic GIS data. Lausanne, Switzerland: Ecospat Spatial 
Ecology Group, University of Lausanne.

Bulluck, L., Fleishman, E., Betrus, C., & Blair, R. (2006). Spatial and tem‐
poral variations in species occurrence rate affect the accuracy of oc‐
currence models. Global Ecology and Biogeography, 15, 27–38. https​://
doi.org/10.1111/j.1466-822X.2006.00170.x

Bunn, A. G., Urban, D. L., & Keitt, T. H. (2000). Landscape connectivity: 
A conservation application of graph theory. Journal of Environmental 
Management, 59, 265–278. https​://doi.org/10.1006/jema.2000.0373

Clauzel, C., Girardet, X., & Foltete, J. C. (2013). Impact assessment of 
a high‐speed railway line on species distribution: Application to 
the European tree frog (Hyla arborea) in Franche‐Comte. Journal of 
Environmental Management, 127, 125–134. https​://doi.org/10.1016/j.
jenvm​an.2013.04.018

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex 
network research. InterJournal Complex Systems, 1695, 1–9.

Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel, A., 
Altermatt, F., … Bernatchez, L. (2017). Environmental DNA metabar‐
coding: Transforming how we survey animal and plant communities. 
Molecular Ecology, 26, 5872–5895.

Duflot, R., Avon, C., Roche, P., & Bergès, L. (2018). Combining habitat 
suitability models and spatial graphs for more effective landscape 
conservation planning: An applied methodological framework and a 
species case study. Journal for Nature Conservation, 46, 38–47. https​
://doi.org/10.1016/j.jnc.2018.08.005

Elith, J. (2002). Quantitative methods for modeling species habitat: com‐
parative performance and an application to Australian plants. In S. 
Ferson, & M. Burgman (Eds.), Quantitative methods for conservation 
biology (pp. 39–58). New York: Springer.

Elith, J., & Leathwick, J. (2017). Boosted Regression Trees for ecological 
modeling. R documentation. Retrieved from https​://cran.r-proje​
ct.org/web/packa​ges/dismo/​vigne​ttes/brt.pdf

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted 
regression trees. Journal of Animal Ecology, 77, 802–813. https​://doi.
org/10.1111/j.1365-2656.2008.01390.x

EMPA (2011). Aufbereitung von flächendeckenden Grundlagen für die 
Schallausbreitungsmodellierung in den Bereichen Meteorologie und 
Bodeneigenschaften. Dübendorf, Switzerland: EMPA.

ESRI (2016). ArcGIS Desktop: Release 10.4.1. Redlands, CA: Environmental 
Systems Research Institute.

Etherington, T. R. (2016). Least‐cost modelling and landscape ecology: 
Concepts, applications, and opportunities. Current Landscape Ecology 
Reports, 1, 40–53. https​://doi.org/10.1007/s40823-016-0006-9

Foltête, J.‐C. (2019). How ecological networks could benefit from 
landscape graphs: A response to the paper by Spartaco Gippoliti 
and Corrado Battisti. Land Use Policy, 80, 391–394. https​://doi.
org/10.1016/j.landu​sepol.2018.04.020

Freeman, L. C. (1978). Centrality in social networks concep‐
tual clarification. Social Networks, 1, 215–239. https​://doi.
org/10.1016/0378-8733(78)90021-7

Gillham, N. W. (2001). A life of Sir Francis Galton: From African exploration 
to the birth of eugenics. Oxford, UK: Oxford University Press.

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N. G., Lehmann, 
A., & Zimmermann, N. E. (2006). Using niche‐based models to im‐
prove the sampling of rare species. Conservation Biology, 20, 501–
511. https​://doi.org/10.1111/j.1523-1739.2006.00354.x

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution 
models in ecology. Ecological Modelling, 135, 147–186. https​://doi.
org/10.1016/S0304-3800(00)00354-9

Hanski, I. (1992). Inferences from ecological incidence functions. The 
American Naturalist, 139, 657–662. https​://doi.org/10.1086/285349

Hanski, I. (1998). Metapopulation dynamics. Nature, 396, 41. https​://doi.
org/10.1038/23876​

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017) Package 
‘dismo’. dismo: species distribution modeling. R package version 1.1‐4. 
Retrieved from https​://CRAN.R-proje​ct.org/packa​ge=dismo​

Hodgson, J. A., Moilanen, A., Wintle, B. A., & Thomas, C. D. (2011). 
Habitat area, quality and connectivity: Striking the balance for effi‐
cient conservation. Journal of Applied Ecology, 48, 148–152. https​://
doi.org/10.1111/j.1365-2664.2010.01919.x

Jenkins, D. G., Brescacin, C. R., Duxbury, C. V., Elliott, J. A., Evans, J. A., 
Grablow, K. R., … Williams, S. E. (2007). Does size matter for dispersal 
distance? Global Ecology and Biogeography, 16, 415–425. https​://doi.
org/10.1111/j.1466-8238.2007.00312.x

https://doi.org/10.5061/dryad.sc818d5
https://doi.org/10.1111/2041-210x.12158
https://doi.org/10.1016/S0169-2046(02)00242-6
https://doi.org/10.1103/PhysRevLett.85.5234
https://doi.org/10.1103/PhysRevLett.85.5234
https://doi.org/10.1016/j.pbi.2006.11.008
https://doi.org/10.1016/j.pbi.2006.11.008
https://doi.org/10.1046/j.1365-2699.2003.00867.x
https://doi.org/10.1046/j.1365-2699.2003.00867.x
https://doi.org/10.1016/j.ecolind.2011.02.003
https://doi.org/10.1016/j.ecolind.2011.02.003
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1016/j.ecolmodel.2011.02.011
https://doi.org/10.1016/j.ecolmodel.2011.02.011
https://doi.org/10.1016/S0304-3800(02)00200-4
https://doi.org/10.1111/j.1466-822X.2006.00170.x
https://doi.org/10.1111/j.1466-822X.2006.00170.x
https://doi.org/10.1006/jema.2000.0373
https://doi.org/10.1016/j.jenvman.2013.04.018
https://doi.org/10.1016/j.jenvman.2013.04.018
https://doi.org/10.1016/j.jnc.2018.08.005
https://doi.org/10.1016/j.jnc.2018.08.005
https://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf
https://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1007/s40823-016-0006-9
https://doi.org/10.1016/j.landusepol.2018.04.020
https://doi.org/10.1016/j.landusepol.2018.04.020
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1111/j.1523-1739.2006.00354.x
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1086/285349
https://doi.org/10.1038/23876
https://doi.org/10.1038/23876
https://CRAN.R-project.org/package=dismo
https://doi.org/10.1111/j.1365-2664.2010.01919.x
https://doi.org/10.1111/j.1365-2664.2010.01919.x
https://doi.org/10.1111/j.1466-8238.2007.00312.x
https://doi.org/10.1111/j.1466-8238.2007.00312.x


10468  |     ORTIZ‐RODRÍGUEZ et al.

Jordán, F., Magura, T., Tóthmérész, B., Vasas, V., & Ködöböcz, V. (2007). 
Carabids (Coleoptera: Carabidae) in a forest patchwork: A connec‐
tivity analysis of the Bereg Plain landscape graph. Landscape Ecology, 
22, 1527–1539. https​://doi.org/10.1007/s10980-007-9149-8

Jordán, F., & Scheuring, I. (2004). Network ecology: Topological con‐
straints on ecosystem dynamics. Physics of Life Reviews, 1, 139–172. 
https​://doi.org/10.1016/j.plrev.2004.08.001

Kauffman, S. A. (1993). The origins of order: self‐organization and selection 
in evolution. Oxford, UK: Oxford University Press.

Kéry, M., & Schaub, M. (2012). Estimation of occupancy and species dis‐
tributions from detection/nondetection data in metapopulation de‐
signs using site‐occupancy models. In M. Kéry, & M. Schaub (Eds.), 
Bayesian population analysis using WinBUGS (pp. 413–461). Boston, 
MA: Academic Press.

Kool, J. T., Moilanen, A., & Treml, E. A. (2013). Population connectivity: 
Recent advances and new perspectives. Landscape Ecology, 28, 165–
185. https​://doi.org/10.1007/s10980-012-9819-z

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, 
J. A., & Langtimm, C. A. (2002). Estimating site occupancy rates 
when detection probabilities are less than one. Ecology, 83, 2248–
2255. https​://doi.org/10.1890/0012-9658(2002)083[2248:Esorw​
d]2.0.Co;2

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., 
& Hines, J. E. (2006). Occupancy estimation and modeling: Inferring 
patterns and dynamics of species occurrence. San Diego, CA: Elsevier.

McRae, B. H. (2006). Isolation by resistance. Evolution, 60, 1551–1561. 
https​://doi.org/10.1111/j.0014-3820.2006.tb005​00.x

Müller‐Jentsch, D. (2012). Wie dicht ist die Schweiz besiedelt? Avenir 
Suisse. Retrieved from https​://www.avenir-suisse.ch/wie-dicht-ist-
die-schwe​iz-besie​delt/

Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., & Toxopeus, A. 
G. (2014). Where is positional uncertainty a problem for spe‐
cies distribution modelling? Ecography, 37, 191–203. https​://doi.
org/10.1111/j.1600-0587.2013.00205.x

OFEV (2010). Inventaire fédéral des bas‐marais d'importance nationale. 
Berne, Switzerland: OFEV.

OFEV (2011). Régions biogéographiques de Suisse. Neuchâtel, Switzerland: 
OFEV.

OFS (2010). Statistique de la superficie selon nomenclature 2004 – 
Occupation du sol (Land Cover). Berne, Switzerland: OFS.

Oliphant, T. E. (2006). A guide to NumPy. USA: Trelgol Publishing.
Pellet, J., Hoehn, S., & Perrin, N. (2004). Multiscale determinants of tree 

frog (Hyla arborea L.) calling ponds in western Switzerland. Biodiversity 
and Conservation, 13, 2227–2235. https​://doi.org/10.1023/B:B‐
IOC.00000​47904.75245.1f

Prevedello, J. A., & Vieira, M. V. (2009). Does the type of matrix matter? A 
quantitative review of the evidence. Biodiversity and Conservation, 19, 
1205–1223. https​://doi.org/10.1007/s10531-009-9750-z

R Development Core Team (2016). R: A language and environment for 
statistical computing. Vienna, Austria: R Foundation for Statistical 
Computing.

Roth, U., Schwick, C., & Spichtig, F. (2010). Zustand der Landschaft in der 
Schweiz. Zwischenbericht Landschaftsbeobachtung Schweiz (LABES). 
Berne, Switzerland: ARE.

Saura, S., & Pascual‐Hortal, L. (2007). A new habitat availability index 
to integrate connectivity in landscape conservation planning: 
Comparison with existing indices and application to a case study. 
Landscape and Urban Planning, 83, 91–103. https​://doi.org/10.1016/j.
landu​rbplan.2007.03.005

Sinatra, R., Wang, D., Deville, P., Song, C., & Barabási, A.‐L. (2016). 
Quantifying the evolution of individual scientific impact. Science, 
354, aaf5239. https​://doi.org/10.1126/scien​ce.aaf5239

Smith, M. A., & Green, D. M. (2005). Dispersal and the metapopulation 
paradigm in amphibian ecology and conservation: Are all amphibian 

populations metapopulations? Ecography, 28, 110–128. https​://doi.
org/10.1111/j.0906-7590.2005.04042.x

Straka, M., Paule, L., Ionescu, O., Štofík, J., & Adamec, M. (2012). 
Microsatellite diversity and structure of Carpathian brown bears 
(Ursus arctos): Consequences of human caused fragmentation. 
Conservation Genetics, 13, 153–164. https​://doi.org/10.1007/
s10592-011-0271-4

Swisstopo (2016). Catalogue des objets swissTLM3D 1.4. Berne, 
Switzerland: Swisstopo.

Swisstopo (2018). swissALTI3D: The high precision digital elevation model of 
Switzerland. Berne, Switzerland: Swisstopo.

Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a 
vital element of landscape structure. Oikos, 68, 571–573. https​://doi.
org/10.2307/3544927

Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2016). biomod2: ensem‐
ble platform for species distribution modeling. R package version 3.3‐7. 
Retrieved from https​://CRAN.R-proje​ct.org/packa​ge=biomod2

Thuiller, W., & Münkemüller, T. (2010). Habitat suitability modeling. In A. 
P. Møller, W. Fiedler, & P. Berthold (Eds.), Effects of climate change on 
birds (pp. 77–85). New York, NY: Oxford University Press.

Urban, D. L., Minor, E. S., Treml, E. A., & Schick, R. S. (2009). Graph 
models of habitat mosaics. Ecology Letters, 12, 260–273. https​://doi.
org/10.1111/j.1461-0248.2008.01271.x

Van Buskirk, J. (2005). Local and landscape influence on amphibian 
occurrence and abundance. Ecology, 86, 1936–1947. https​://doi.
org/10.1890/04-1237

Van Buskirk, J. (2011). Amphibian phenotypic variation along a gradient 
in canopy cover: Species differences and plasticity. Oikos, 120, 906–
914. https​://doi.org/10.1111/j.1600-0706.2010.18845.x

van Langevelde, F., & Jaarsma, C. F. (2009). Modeling the effect of traffic 
calming on local animal population persistence. Ecology and Society, 
14, 39. https​://doi.org/10.5751/ES-03061-140239

van Rossum, G. (1995). Python tutorial, Technical Report CS-R9526. 
Amsterdam, The Netherlands: Centrum voor Wiskunde en 
Informatica (CWI). 

Van Strien, M. J., & Grêt‐Regamey, A. (2016). How is habitat connec‐
tivity affected by settlement and road network configurations? 
Results from simulating coupled habitat and human networks. 
Ecological Modelling, 342, 186–198. https​://doi.org/10.1016/j.ecolm​
odel.2016.09.025

van Strien, M. J., Keller, D., Holderegger, R., Ghazoul, J., Kienast, 
F., & Bolliger, J. (2014). Landscape genetics as a tool for con‐
servation planning: Predicting the effects of landscape change 
on gene flow. Ecological Applications, 24, 327–339. https​://doi.
org/10.1890/13-0442.1

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small‐world’ 
networks. Nature, 393, 440. https​://doi.org/10.1038/30918​

Zanini, F., Pellet, J., & Schmidt, B. R. (2009). The transferabil‐
ity of distribution models across regions: An amphibian case 
study. Diversity and Distributions, 15, 469–480. https​://doi.
org/10.1111/j.1472-4642.2008.00556.x

Ziółkowska, E., Ostapowicz, K., Radeloff, V. C., & Kuemmerle, T. (2014). 
Effects of different matrix representations and connectivity mea‐
sures on habitat network assessments. Landscape Ecology, 29, 1551–
1570. https​://doi.org/10.1007/s10980-014-0075-2

How to cite this article: Ortiz‐Rodríguez DO, Guisan A, 
Holderegger R, van Strien MJ. Predicting species occurrences 
with habitat network models. Ecol Evol. 2019;9:10457–
10471.  
https​://doi.org/10.1002/ece3.5567

https://doi.org/10.1007/s10980-007-9149-8
https://doi.org/10.1016/j.plrev.2004.08.001
https://doi.org/10.1007/s10980-012-9819-z
https://doi.org/10.1890/0012-9658(2002)083%5B2248:Esorwd%5D2.0.Co;2
https://doi.org/10.1890/0012-9658(2002)083%5B2248:Esorwd%5D2.0.Co;2
https://doi.org/10.1111/j.0014-3820.2006.tb00500.x
https://www.avenir-suisse.ch/wie-dicht-ist-die-schweiz-besiedelt/
https://www.avenir-suisse.ch/wie-dicht-ist-die-schweiz-besiedelt/
https://doi.org/10.1111/j.1600-0587.2013.00205.x
https://doi.org/10.1111/j.1600-0587.2013.00205.x
https://doi.org/10.1023/B:BIOC.0000047904.75245.1f
https://doi.org/10.1023/B:BIOC.0000047904.75245.1f
https://doi.org/10.1007/s10531-009-9750-z
https://doi.org/10.1016/j.landurbplan.2007.03.005
https://doi.org/10.1016/j.landurbplan.2007.03.005
https://doi.org/10.1126/science.aaf5239
https://doi.org/10.1111/j.0906-7590.2005.04042.x
https://doi.org/10.1111/j.0906-7590.2005.04042.x
https://doi.org/10.1007/s10592-011-0271-4
https://doi.org/10.1007/s10592-011-0271-4
https://doi.org/10.2307/3544927
https://doi.org/10.2307/3544927
https://CRAN.R-project.org/package=biomod2
https://doi.org/10.1111/j.1461-0248.2008.01271.x
https://doi.org/10.1111/j.1461-0248.2008.01271.x
https://doi.org/10.1890/04-1237
https://doi.org/10.1890/04-1237
https://doi.org/10.1111/j.1600-0706.2010.18845.x
https://doi.org/10.5751/ES-03061-140239
https://doi.org/10.1016/j.ecolmodel.2016.09.025
https://doi.org/10.1016/j.ecolmodel.2016.09.025
https://doi.org/10.1890/13-0442.1
https://doi.org/10.1890/13-0442.1
https://doi.org/10.1038/30918
https://doi.org/10.1111/j.1472-4642.2008.00556.x
https://doi.org/10.1111/j.1472-4642.2008.00556.x
https://doi.org/10.1007/s10980-014-0075-2
https://doi.org/10.1002/ece3.5567


     |  10469ORTIZ‐RODRÍGUEZ et al.

APPENDIX A1
The 13 amphibian species of which presence records in the Swiss 
Plateau were used in this study

Species Common name

Hyla arborea European Tree Frog

Alytes obstetricans Midwife Toad

Bombina variegata Yellow‐bellied Toad

Bufo bufo Common Toad

Epidalea calamita Natterjack Toad

Ichthyosaura alpestris Alpine Newt

Lissotriton helveticus Palmate Newt

Pelophylax sp. (P. lessonae + P. esculentus) Green Frog complex 
(Pool Frog and Edible 
Frog)

Pelophylax ridibundus Lake Frog

Rana dalmatina Agile Frog

Rana temporaria Grass Frog

Triturus carnifex Italian crested newt

Triturus cristatus Northern crested Newt

APPENDIX A2
Final set of 20 predictor variables used in habitat suitability model‐
ling (at a resolution of 1 ha), classified in three main categories

Category Predictor Variable type

Human influence Density of traffic Continuous

Density of railways Continuous

Total noise at nighttime Continuous

Population density Continuous

Agriculture density Continuous

Arable land Binary

Green settlements Binary

Grey settlements Binary

Meadows and farm pastures Binary

Orchards, vineyards, 
horticulture

Binary

Natural landscape 
features

Deciduous forest coverage Binary

Mixed forest coverage Binary

Coniferous forest coverage Binary

Density of forest (general) Continuous

Distance to forest edge Continuous

Presence of rivers Binary

Slope Continuous

Climatic variables Mean summer precipitation Continuous

Mean annual direct solar 
radiation

Continuous

Mean annual temperature Continuous

APPENDIX A3
Predictor variables in habitat suitability modeling, their content and source

Predictor Content Source

Density of traffic Individual vehicle traffic for 2010 NPVM with tunnels 
removed (ARE, 2010)

Density of railways Density of rail network SwissTLM3D (Swisstopo, 
2016)

Total noise at nighttime Nighttime rail noise combined with nighttime street noise EMPA (2011)

Population density Statistics on Swiss population, geolocated STATPOP (BFS, 2015)

Agriculture density Density of agricultural areas, derived from an aggregate of 
the four main categories of agricultural land use

Arealstatistik (OFS, 2010)

Arable land Agricultural area taken from point estimates on 72 land use 
categories

Arealstatistik (OFS, 2010)

Green settlements Area of green spaces in settlements taken from point esti‐
mates of 72 land use categories

Arealstatistik (OFS, 2010)

Grey settlements Area of grey (sealed areas and buildings) areas taken from 
72 land use categories

Arealstatistik (OFS, 2010)

Meadows and pastures Area of meadows and pastures taken from point estimates 
of 72 land use categories

Arealstatistik (OFS, 2010)

Orchards, vineyards, horticulture Area of orchards, vineyards and horticulture taken from 
point estimates of 72 land use

Arealstatistik (OFS, 2010)

Deciduous forest coverage Occurrence of deciduous forests Waldmischungsgrad (BFS, 
2013)

Continues
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Predictor Content Source

Mixed forest coverage Occurrence of mixed forests Waldmischungsgrad (BFS, 
2013)

Coniferous forest coverage Occurrence of coniferous forests Waldmischungsgrad (BFS, 
2013)

Density of forest Density of all forest types of Switzerland Waldmischungsgrad (BFS, 
2013)

Distance to forest edge Distance to forest edges Waldmischungsgrad (BFS, 
2013)

Presence of rivers Presence of rivers SwissTLM3D (Swisstopo, 
2016)

Slope Calculated from a digital elevation model swissALTI3D (Swisstopo, 
2018)

Mean summer precipitation Mean summer precipitation (1961–1990) Broennimann, Randin, 
Zimmermann, and 
Guisan (2003)

Mean annual direct solar radiation Mean annual direct solar radiation (1961–1990) Broennimann et al. (2003)

Mean annual temperature Mean annual temperature (1961–1990) Broennimann et al. (2003)

APPENDIX A3 (Continued)
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APPENDIX A4
Partial dependence plots of the three most important explanatory variables in sample iterations of the four models (Uniform, Traffic, HabSuit, 
noTopo). (a) Uniform; (b) Traffic; (c) HabSuit; (d) noTopo


