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Abstract
1.	 Biodiversity	conservation	requires	modeling	tools	capable	of	predicting	the	pres‐
ence	or	absence	(i.e.,	occurrence‐state)	of	species	in	habitat	patches.	Local	habitat	
characteristics	of	a	patch	(lh),	the	cost	of	traversing	the	landscape	matrix	between	
patches	(weighted	connectivity	[wc]),	and	the	position	of	the	patch	in	the	habitat	
network	topology	(nt)	all	influence	occurrence‐state.	Existing	models	are	data	de‐
manding	or	consider	only	 local	habitat	characteristics.	We	address	these	short‐
comings	and	present	a	network‐based	modeling	approach,	which	aims	to	predict	
species	occurrence‐state	in	habitat	patches	using	readily	available	presence‐only	
records.

2. For	the	tree	frog	Hyla arborea	in	the	Swiss	Plateau,	we	delineated	habitat	network	
nodes	from	an	ensemble	habitat	suitability	model	and	used	different	cost	surfaces	
to	generate	the	edges	of	three	networks:	one	limited	only	by	dispersal	distance	
(Uniform),	another	incorporating	traffic,	and	a	third	based	on	inverse	habitat	suit‐
ability.	For	each	network,	we	calculated	explanatory	variables	 representing	 the	
three	 categories	 (lh,	wc,	 and	 nt).	 The	 response	 variable,	 occurrence‐state,	 was	
parametrized	by	a	sampling	 intensity	procedure	assessing	observations	of	com‐
parable	species	over	a	threshold	of	patch	visits.	The	explanatory	variables	from	
the	three	networks	and	an	additional	non‐topological	model	were	related	to	the	
response	variable	with	boosted	regression	trees.

3. The	habitat	network	models	had	a	similar	fit;	they	all	outperformed	the	non‐topo‐
logical	model.	Habitat	suitability	index	(lh)	was	the	most	important	predictor	in	all	
networks,	followed	by	third‐order	neighborhood	(nt).	Patch	size	(lh)	was	unimpor‐
tant	in	all	three	networks.

4. We	 found	 that	 topological	 variables	 of	 habitat	 networks	 are	 relevant	 for	 the	
prediction	 of	 species	 occurrence‐state,	 a	 step‐forward	 from	 models	 consider‐
ing	only	 local	habitat	characteristics.	For	any	habitat	patch,	occurrence‐state	 is	
most	prominently	influenced	by	its	habitat	suitability	and	then	by	the	number	of	
patches	in	a	wide	neighborhood.	Our	approach	is	generic	and	can	be	applied	to	
multiple	species	in	different	habitats.
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1  | INTRODUC TION

Knowledge	about	the	spatial	distribution	of	species	is	a	key	element	
for	any	conservation	effort.	To	gain	insights	on	the	presence	or	ab‐
sence	of	a	species	at	specific	locations	(occurrence‐state;	from	oc‐
currence	in	Kéry	&	Schaub,	2012),	it	is	necessary	but	not	sufficient	
to	consider	the	conditions	that	make	the	specific	sites	suitable	for	a	
species,	that	is,	to	define	patches	of	suitable	habitats	(sensu	Guisan	
&	Zimmermann,	2000).	One	also	needs	to	take	into	account	habitat	
connectivity,	which	is	the	way	the	suitable	habitat	patches	are	acces‐
sible	and	thus	connected	to	each	other,	or	“the	degree	to	which	the	
landscape	facilitates	or	 impedes”	the	movement	of	species	(Taylor,	
Fahrig,	Henein,	&	Merriam,	1993).	The	consideration	of	connectivity	
is	 important,	as	a	habitat	patch	 in	which	the	environmental	condi‐
tions	are	suitable	 for	a	certain	species	can	actually	be	unoccupied	
due	 to	 the	 inability	 or	 low	probability	 of	 the	 species	 to	 reach	 the	
patch	 (Barve	 et	 al.,	 2011).	 In	 such	 a	 case,	 the	occurrence‐state	 of	
the	known	suitable	habitat	patch	would	be	0,	 as	occurrence‐state	
is	 a	property	of	habitat	patches	with	 two	alternative	 states:	 pres‐
ence	(1)	or	absence	(0).	To	better	capture	the	factors	influencing	the	
occurrence‐state	of	 a	 species,	 and	 to	be	able	 to	make	predictions	
about	this	state,	it	is	necessary	to	develop	new	modeling	approaches	
that	do	not	only	consider	the	local	conditions	in	a	habitat	patch,	but	
also	 the	connectivity	between	patches.	This	was	 the	main	goal	of	
the	present	study.

Habitat	patches	and	their	connectivity	can	be	represented	in	a	
network‐theoretical	framework.	Since	the	work	of	Bunn,	Urban,	and	
Keitt	 (2000),	 spatially	 explicit	 habitat	 network	 models	 have	 been	
in	common	use	(e.g.,	Duflot,	Avon,	Roche,	&	Bergès,	2018;	Saura	&	
Pascual‐Hortal,	2007;	Urban,	Minor,	Treml,	&	Schick,	2009).	In	such	
networks,	nodes	usually	represent	habitat	patches	potentially	inhab‐
ited	by	a	 species,	 and	edges	 commonly	 represent	potential	move‐
ment	 among	 them.	 In	many	 habitat	 networks,	 edges	 are	modeled	
with	cost	 surfaces	 (i.e.,	 raster	maps	 in	which	each	cell	has	a	value	
of	resistance	to	movement)	from	which	likely	movement	routes	can	
be	derived	(Adriaensen	et	al.,	2003;	McRae,	2006).	 In	other	cases,	
edges	 are	 modeled	 with	 straight‐line	 transects	 (Jordán,	 Magura,	
Tóthmérész,	Vasas,	&	Ködöböcz,	2007;	van	Strien	et	al.,	2014).	The	
specific	arrangement	of	nodes	and	edges	 is	 the	network	 topology	
(Kauffman,	1993;	Urban	et	al.,	2009),	which	can	be	analyzed	at	dif‐
ferent	scales,	ranging	from	the	immediate	vicinity	of	a	patch	to	the	
whole	network	(Baranyi,	Saura,	Podani,	&	Jordán,	2011).	Following	
this	logic,	the	presence	of	a	species	in	a	certain	habitat	patch	is	in‐
fluenced	by	three	different	key	categories	of	factors,	which	can	be	
summarized	with	the	following	conceptual	equation:

where ψ i	is	the	occurrence‐state	of	a	species	(whether	it	is	present	
or	absent)	in	a	habitat	patch	i,	 lhi	refers	to	the	local	habitat	charac‐
teristics	of	such	patch,	wci	is	the	weighted	connectivity	of	the	patch	
to	surrounding	patches,	and	nti	is	the	place	of	the	patch	(node)	in	the	
network	topology.

Local	 habitat	 characteristics	 (lhi)	 are	defined	by	 the	properties	
of	suitability	and	size	of	a	habitat	patch.	Patch	size	is	an	important	
factor	 in	metapopulation	biology	 (Hanski,	1992),	 and	 its	 relevance	
is	widely	acknowledged	in	studies	dealing	with	occurrence	and	dis‐
tribution	of	species	 (Hodgson,	Moilanen,	Wintle,	&	Thomas,	2011;	
Saura	&	Pascual‐Hortal,	 2007).	 The	 suitability	 of	 a	 patch	 is	 deter‐
mined	by	the	environmental	requirements	(i.e.,	environmental	niche)	
of	 species.	These	 requirements	 can	be	assessed	with	habitat	 suit‐
ability	 modeling	 (HSM),	 which	 aims	 to	 predict	 the	 distribution	 of	
species	across	a	study	area	based	on	mapped	environmental	factors	
(Guisan	&	Zimmermann,	2000;	Thuiller	&	Münkemüller,	2010).

Habitat	connectivity	depends	on	the	movement	ability	and	be‐
havior	of	a	species,	reflected	in	species‐specific	maximum	dispersal	
distances	 (Jenkins	et	al.,	2007).	 It	also	depends	on	factors	that	fa‐
cilitate	or	inhibit	the	movement	of	a	species	through	the	landscape	
between	neighboring	suitable	patches	 (Prevedello	&	Vieira,	2009).	
The	weighted	connectivity	(wc)	component	of	conceptual	Equation	
(1)	includes	those	variables	that	explicitly	incorporate	the	probabil‐
ity	 of	 traversing	 the	 landscape	matrix	 (the	 latter	 determining	 the	
“weights”)	into	their	calculation.	The	wc	factors	give	rise	to	the	emer‐
gent	large‐scale	structure	of	a	network.	The	network	topology	(nt)	
refers	to	this	large‐scale	structure	(Albert	&	Barabási,	2000).	For	a	
given	node	 i,	nti	refers	to	variables	that	describe	its	neighborhood,	
position,	and	importance	in	the	whole	network,	independent	of	any	
weights	specific	to	a	certain	environmental	or	species‐specific	con‐
text.	 The	 context‐independent	 nature	 of	nt	 variables	makes	 them	
ideal	to	compare	habitat	networks	of	different	species	 in	different	
environments,	 as	well	 as	 to	 compare	 habitat	 networks	with	 other	
kinds	of	natural	networks	(Watts	&	Strogatz,	1998).

Determining	 the	 occurrence‐state	 of	 a	 habitat	 patch	 is	 diffi‐
cult	 for	 non‐sessile	 species	 (MacKenzie	 et	 al.,	 2002).	 Although	
it	 can	 be	 performed	 by	 site	 occupancy	models	 (Kéry	 &	 Schaub,	
2012),	these	can	only	be	used	in	situations	where	sites	have	been	
sampled	in	a	regular	and	systematic	way	(MacKenzie	et	al.,	2006).	
Another	difficulty	 is	the	empirical	estimation	of	connectivity	be‐
tween	 habitat	 patches,	which	 is	 usually	 performed	 by	means	 of	
mark–recapture,	radio	tracking,	GPS	sensors,	or	genetic	methods	
(Kool,	Moilanen,	&	Treml,	2013;	Straka,	Paule,	 Ionescu,	Štofík,	&	
Adamec,	2012).	Due	to	their	high	costs	and	labor	intensity,	these	
methods	 are	 usually	 not	 implemented	 over	 large	 spatial	 scales,	
for	 several	 species,	 or	 by	 institutions	 under	 economic	 hardship.	
In	 summary,	 the	 determination	 of	 both	 the	 occurrence‐state	 of	(1)�i= f

(

lhi,wci,nti
)
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habitat	patches	and	of	the	connectivity	among	them	is	based	on	
data	that	are	relatively	expensive,	laborious,	and	time‐consuming	
to	obtain.	 In	contrast,	 spatially	explicit	data	on	species	observa‐
tions	are	readily	available	in	many	countries,	such	as	the	data	ag‐
gregated	 in	 the	GBIF	 international	database	 (www.gbif.org)	or	 in	
the	Swiss	InfoSpecies	database	(www.infos	pecies.ch).	These	data	
consist	of	confirmed	presences,	but	usually	do	neither	contain	any	
absences	nor	information	on	whether	all	potential	habitat	patches	
were	 surveyed.	 Given	 these	 biases,	 it	 is	 a	 challenge	 to	 parame‐
terize	habitat	networks	with	such	incomplete	data.	Nevertheless,	
given	the	high	prevalence	of	such	data,	it	is	worthwhile	to	explore	
the	possibilities	of	using	it	to	parametrize	habitat	network	models	
aiming	to	predict	species	occurrence.	By	aggregating	observation	
data	from	groups	of	comparable	species	(Anderson,	2003)	to	de‐
termine	a	habitat	patch's	sampling	intensity,	we	expect	that	likely	
absences	for	a	focal	species	can	be	estimated.

In	 this	 study,	 we	 developed	 a	 habitat	 network	 modeling	 ap‐
proach	to	predict	species	occurrences	 in	habitat	patches	following	
conceptual	 Equation	 (1).	 We	 aimed	 to	 develop	 a	 generic	 method	
that	(a)	includes	insights	about	the	topology	of	the	habitat	networks	
and	 (b)	 makes	 use	 of	 readily	 available	 presence‐only	 records.	We	
expected	 that	 the	 incorporation	 of	 network	 topological	 variables	
would	 increase	 the	 explanatory	 power	 of	models	 as	 compared	 to	
nontopological	ones,	addressing	the	omission	of	connectivity	factors	
incurred	by	traditional	models	capable	of	predicting	species	occur‐
rences	(such	as	HSM	and	resource	selection	models;	Boyce,	Vernier,	
Nielsen,	 &	 Schmiegelow,	 2002).	We	 anticipate	 that	 the	 approach	
can	be	applied	to	a	multitude	of	species	 in	different	environments	
at	minimal	cost.	We	exemplify	our	approach	with	the	European	tree	
frog	(Hyla arborea	L.)	in	the	Swiss	Plateau.

We	 followed	 a	multistep	 procedure	with	 two	modeling	 stages	
(Figure	 1).	 First,	we	 used	HSM	 to	 delineate	 suitable	 patches,	 that	
is,	the	nodes	of	the	network.	We	then	defined	the	edges	based	on	
least‐cost	 calculations	 on	 different	 cost	 surfaces,	 which	 incorpo‐
rated	 different	 environmental,	 biological,	 and	 human	 influences	
on	the	landscape,	generating	three	different	networks.	From	these	

networks,	we	calculated	several	variables	quantifying	the	three	cat‐
egories	of	factors	(i.e.,	lh,	wc,	and	nt)	in	Equation	(1),	which	were	used	
as	explanatory	variables	in	models	that	related	them	to	the	response	
variable	occurrence‐state.	We	then	compared	the	fit	of	models	with	
and	without	the	wc	and	nt	variables.	In	order	to	calculate	occurrence‐
state,	we	developed	an	approach	inspired	by	Anderson	(2003)	that	
uses	comparative	sampling	intensity	to	define	absences	of	the	focal	
species	in	habitat	patches.	Finally,	by	means	of	boosted	regression	
trees	(BRTs),	we	tested	the	explanatory	power	of	predictor	variables	
related	to	the	three	factors	of	Equation	(1)	on	occurrence‐state.

2  | METHODS

2.1 | Study area, focal species and presence records

Our	study	area	consisted	of	the	Swiss	Plateau,	a	densely	populated	
region	 (426	 inhabitants/km2;	Müller‐Jentsch,	2012)	of	11,168	km2,	
where	strong	increases	in	landscape	fragmentation	and	urban	sprawl	
have	recently	occurred	(Roth,	Schwick,	&	Spichtig,	2010).	The	area	
is	dominated	by	human	land	use,	with	a	patchy	distribution	of	set‐
tlements,	agricultural	land,	and	forests.	The	exact	shape	of	the	study	
area	(Figure	2)	was	defined	by	the	boundaries	of	the	Swiss	Plateau	
from	the	official	map	of	the	biogeographical	regions	of	Switzerland	
(OFEV,	2011)	minus	a	2	km	(i.e.,	commonly	reported	amphibian	dis‐
persal	distances;	Smith	&	Green,	2005)	negative	buffer	away	from	
the	international	borders	of	Switzerland	to	prevent	border	effects.	
We	chose	 the	European	 tree	 frog	 (H. arborea	 L.)	 as	our	 focal	 spe‐
cies,	as	it	is	a	neither	abundant	nor	rare	habitat	specialist,	vulnerable	
to	environmental	disturbances	and	restricted	to	well‐defined	natu‐
ral	features,	which	are	areas	close	to	sunny	forest	edges	and	bushy	
landscape	elements	surrounding	vegetation‐poor	ponds,	in	which	it	
spawns	(Clauzel,	Girardet,	&	Foltete,	2013).

Our	dataset	on	species	occurrences	consisted	of	geopositioned	
records	 of	 13	 amphibian	 species	 (Appendix	 A1)	 that	 were	 sam‐
pled	from	water	bodies	(mainly	ponds,	but	also	shallow	lakeshores)	
between	 2006	 and	 2015	 across	 the	 Swiss	 Plateau,	 provided	 by	

F I G U R E  1  Workflow	of	steps	used	
in	this	study.	The	numbers	indicate	the	
relation	of	each	step	to	Equation	(1)	(inset	
below)
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InfoSpecies‐KARCH	(www.infos	pecies.ch).	The	records	in	this	data‐
set	originated	from	a	variety	of	sources	and	observers	and	are	limited	
to	sites	visited	and	reported	on	during	the	above‐mentioned	period.	
Some	sites	were	visited	only	once,	while	others	were	visited	annually	
or	many	times.	It	was	also	not	clear	whether	observers	reported	all	
species	encountered	at	a	visit,	an	arbitrary	subset	of	species	or	a	sin‐
gle	species.	Absences	of	particular	species	from	particular	sites	were	
thus	 not	 explicitly	 reported.	 Such	 data	 limitations	 are	 frequently	
encountered	 in	 national	 and	 international	 observation	 databases.	
Records	on	amphibian	occurrences	were	aggregated	at	a	1	ha	reso‐
lution.	In	total,	the	dataset	consisted	of	2,354	locations	with	at	least	
one	amphibian	species	presence	in	one	or	more	years.	Out	of	these,	
291	contained	the	focal	species	H. arborea	(Figure	2).

2.2 | Habitat suitability modelling

For	 HSM,	 we	 compiled	 a	 dataset	 of	 25	 environmental	 predictor	
variables	 based	on	previous	 studies	 describing	 the	 environmental	
preferences	of	pond‐based	amphibians	in	general	and	H. arborea	in	
particular	(Pellet,	Hoehn,	&	Perrin,	2004;	Van	Buskirk,	2005;	Zanini,	
Pellet,	 &	 Schmidt,	 2009),	 as	well	 as	 additional	 variables	 quantify‐
ing	human	influence	on	ecosystems.	Our	final	HSM	predictors	fell	
under	 three	 basic	 categories:	 human	 influence,	 natural	 landscape	
features,	 and	 climate	 variables.	 All	 predictor	 variables	 were	 con‐
verted	to	a	resolution	of	1	ha.	Circular	moving	windows	with	a	2	km	
radius	 (common	 dispersal	 distance	 of	 amphibians)	 were	 used	 for	
calculating	many	of	the	predictors.	We	eliminated	collinear	predic‐
tor	 variables	 based	 on	 pairwise	 Pearson's	 correlation	 coefficients	
(Gillham,	2001)	with	a	reference	threshold	of	0.75	and	based	on	var‐
iance	inflation	factors	(VIF)	with	a	threshold	of	0.9,	using	the	pack‐
ages	 USDM	 (Naimi,	 Hamm,	 Groen,	 Skidmore,	 &	 Toxopeus,	 2014)	
and	stats	in	R	3.3	(R	Development	Core	Team,	2016).	The	removed	
variables	were	mean	 annual	 precipitation,	 total	 noise	 at	 daytime,	

recreation	 intensity,	 highway	 density,	 and	 density	 of	 roads.	 This	
led	to	a	final	selection	of	20	predictor	variables	for	HSM	(Appendix	
A2	lists	the	HSM	predictors;	Appendix	A3	gives	a	short	description	
and	 the	 sources	 of	 the	 data).	 All	 data	 processing	was	 carried	 out	
with	ArcGIS	 10.4.1.	 (ESRI,	 2016)	 in	 Python	 2.7	 (Python	 Software	
Foundation,	1995).

In	order	to	delineate	potential	habitat	patches	of	H. arborea,	we	
generated	an	ensemble	habitat	suitability	model	(HSm)	in	which	the	
291	presences	of	H. arborea	 constituted	 the	 response	variable.	To	
prevent	 pseudoreplication,	 we	 included	 only	 one	 record	 of	H. ar‐
borea	per	sampling	site,	even	if	the	species	was	observed	in	multiple	
years.	We	generated	10,000	pseudoabsences	as	recommended	by	
Barbet‐Massin,	Jiguet,	Albert,	and	Thuiller	(2012),	with	one	round	of	
pseudoabsence	selection.	We	developed	an	ensemble	using	the	R‐
package	Biomod2	(Thuiller,	Georges,	Engler,	&	Breiner,	2016),	which	
does	multiple	runs	of	different	models,	projects	the	models	spatially,	
and	 generates	 consensus	 projections	 between	 the	 different	mod‐
els.	In	this	study,	we	used	the	mean	ensemble	of	a	generalized	lin‐
ear	(GLM),	a	random	forest	(RF),	and	a	maximum	entropy	(MaxEnt)	
model.	The	models	were	evaluated	with	ROC	AUC,	with	a	quality	
threshold	of	AUC	≥	0.7	(Bulluck,	Fleishman,	Betrus,	&	Blair,	2006).	
To	binarize	the	continuous	habitat	suitability	maps,	the	applied	cri‐
terion	was	the	point	in	the	ROC	curve	that	minimizes	the	difference	
between	sensitivity	and	specificity.	We	used	default	settings	unless	
otherwise	specified.

2.3 | Node delineation

HSM	resulted	 in	a	map	 indicating	where	the	environmental	condi‐
tions	 were	 potentially	 suitable	 for	H. arborea.	 In	 order	 to	 delimit	
suitable	habitat	patches	for	this	species,	we	intersected	the	binary	
results	of	the	ensemble	HSm	with	those	areas	 in	which	H. arborea 
can	 reproduce,	 namely	 water	 bodies	 in	 the	 Swiss	 Plateau.	Water	

F I G U R E  2  Location	of	the	study	area	
(Swiss	Plateau;	black	line)	in	Switzerland	
(gray	line,	solid	gray	in	inset)	and	presence	
records	of	Hyla arborea	(black	dots)
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bodies	were	defined	by	merging	several	spatial	datasets:	lakeshores	
(Swisstopo,	 2016),	 mires	 (OFEV,	 2010),	 amphibian	 spawning	 sites	
(BAFU,	2016),	 and	 all	 locations	with	 at	 least	one	occurrence	of	 at	
least	one	amphibian	species	in	the	period	2006–2015.	The	merged	
layer	constituted	a	mask	that	was	overlaid	with	the	binarized	HSm	
(Guisan	et	al.,	2006;	Figure	3).	A	habitat	patch	was	considered	unique	
if	it	was	not	connected	to	any	other	patch	under	a	Moore	neighbor‐
hood	criterion	 (i.e.,	considering	all	eight	neighbors	of	a	raster	cell).	
For	each	patch,	we	determined	its	size	(ha)	and	its	mean	habitat	suit‐
ability,	which	were	 later	 used	 as	 explanatory	 variables	 for	 the	oc‐
currence‐state	modeling	(see	below).	The	identified	habitat	patches	
constituted	the	nodes	of	the	habitat	network.

2.4 | Edge definition

Between	pairs	of	nodes,	we	defined	edges	based	on	least‐cost	cal‐
culations	(Etherington,	2016).	We	developed	an	algorithm	that	takes	
as	input	a	binary	raster	of	habitat	patches	and	a	cost	surface.	The	al‐
gorithm	determines	the	least	cumulative	cost	between	patches	and	
draws	an	edge	between	patches	if	the	total	cost	is	below	a	certain	
threshold.	Translation	of	dispersal	probabilities	into	dispersal	costs	

and	vice	versa	was	performed	following	the	p2p	function	of	the	R‐
package	PopGenReport	(Adamack	&	Gruber,	2014):

in	which	d0	is	the	dispersal	distance	of	a	proportion	p	of	individuals,	
prob	is	the	probability	of	dispersal	between	patches,	and	cost	is	the	
cost–value	associated	with	a	certain	probability	prob.	We	set	p = .5,	
so	 that	d0	equaled	 the	median	dispersal	distance.	We	set	 the	dis‐
persal	probability	threshold	beyond	which	no	edges	were	drawn	to	
0.0001.	Subsequently,	d0	was	set	to	200	m	so	that	no	edges	were	
formed	over	cost	distances	of	2,658.	When	cost	distances	are	just	
Euclidian	distances,	2,658	m	is	slightly	above	the	reported	average	
maximum	dispersal	distance	of	H. arborea	(Clauzel	et	al.,	2013).

Making	 use	 of	 three	 different	 cost	 surfaces,	we	 created	 three	
different	 networks:	 a	 Uniform,	 a	 Traffic,	 and	 an	 Inverse	 Habitat	
Suitability	network.	In	the	Uniform	network,	the	cost	distance	was	
equal	to	the	Euclidean	distance	among	habitat	patches.	In	the	Traffic	
network,	the	default	cost–value	of	a	raster	cell	was	1,	and	for	all	the	
raster	cells	that	intersected	with	a	road	(excluding	tunnels),	the	traf‐
fic	intensity	on	the	respective	road	was	converted	to	a	cost–value.	
To	do	this,	we	calculated	the	probability	that	an	animal	successfully	

(2)cost= log (prob) ∕ log (p) ∗d0

F I G U R E  3  Continuous	(a)	and	binary	(b;	close‐up	of	red	area	in	a)	suitability	maps	yielded	by	the	ensemble	habitat	suitability	model	for	
Hyla arborea	in	the	Swiss	Plateau.	Discrete	habitat	patches	(d;	same	close‐up	as	in	b)	were	produced	by	the	application	of	a	mask	(c;	same	
close‐up	as	in	b)
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crosses	 a	 road	 according	 to	 van	 Langevelde	 and	 Jaarsma	 (2009,	
equation	 A1.4).	 These	 authors	 include	 speed	 and	 physical	 dimen‐
sions	 of	 vehicles	 and	 animals,	 as	well	 as	 traffic	 volumes	 on	 inter‐
secting	roads,	to	calculate	probabilities	of	successful	road	crossing.	
The	parameter	settings	 for	H. arborea	were	taken	from	Van	Strien	
and	Grêt‐Regamey	(2016).	Subsequently,	the	calculated	probabilities	
were	transformed	to	costs	using	Equation	(2).	The	traffic	values	per	
road	segment	were	those	calculated	by	the	2010	version	of	the	Swiss	
national	 passenger	 transport	 model	 (ARE,	 2010).	 For	 the	 Inverse	
Habitat	Suitability	network	(HabSuit),	we	assumed	that	the	probabil‐
ities	of	dispersing	through	the	most	unsuitable	and	suitable	terrain	
were	0	and	1,	respectively.	Therefore,	the	continuous	habitat	suit‐
ability	raster	from	HSM	was	divided	by	the	maximum	suitability	and	
the	inverse	value	was	then	taken	as	cost–value	(sensu	Ziółkowska,	
Ostapowicz,	Radeloff,	&	Kuemmerle,	2014).	With	this	approach,	not	
only	the	network	topology	differed	between	the	cost	surfaces,	but	
also	 the	weight	 of	 individual	 edges	 in	 the	 network.	 Edge	weights	
were	 calculated	by	 transforming	 the	 least‐cost	 values	 to	dispersal	
probabilities	following	Equation	(2);	hence,	costlier	paths	have	lower	
dispersal	probabilities.	Edge	calculations	were	performed	using	the	
Python	packages	numpy	 (Oliphant,	2006),	 arcpy	 (ESRI,	2016),	 and	
igraph	(Csardi	&	Nepusz,	2006).

2.5 | Calculation of explanatory variables for 
occurrence‐state modeling

We	prepared	a	set	of	explanatory	variables	for	network	model	as‐
sessment,	which	quantified	the	three	types	of	factors	from	Equation	
(1)	as	patch	(node)	properties.	To	address	the	aspect	of	network	to‐
pology	(nti)	at	different	scales,	we	calculated	for	each	habitat	patch	
the	degree,	third‐order	neighborhood,	and	betweenness	centrality.	
The	degree	 is	 the	number	of	connections	 (edges)	a	specific	node	 i 
has	 to	 other	 nodes	 (Jordán	 &	 Scheuring,	 2004).	 The	 third‐order	
neighborhood	measures	the	number	of	nodes	(patches)	that	can	be	
reached	 in	maximally	 three	topological	steps	through	the	network	
(Csardi	&	Nepusz,	2006).	To	measure	the	influence	of	topology	at	the	
whole‐network	scale,	we	used	betweenness	centrality,	which	meas‐
ures	how	many	connections	between	all	node	pairs	in	the	network	
pass‐through	node	i	(Freeman,	1978).	While	Baranyi	et	al.	(2011)	de‐
fine	it	as	a	meso‐scale	measure,	it	is	actually	calculated	considering	
all	other	nodes	in	the	network,	so	it	is	an	appropriate	proxy	to	check	
how	the	whole‐network	structure	affects	a	node‐specific	property.

To	 account	 for	 the	weighted	 connectivity	 of	 patches	 (wci),	 the	
calculated	variable	was	the	strength,	which	is	the	sum	of	the	weights	
of	 all	 the	 edges	 connecting	 a	 node	 to	 others	 (Barrat,	 Barthélemy,	
Pastor‐Satorras,	&	Vespignani,	2004).	It	is	thus	also	considered	a	to‐
pological	variable.	We	also	calculated	the	habitat	availability,	which	
is	a	hybrid	variable	incorporating	aspects	of	nt	and	lh.	This	measure	
calculates	a	weighted	sum	of	all	patch	sizes	that	can	be	reached	from	
a	 focal	 patch	 i.	 The	weights	 are	 calculated	 as	 the	maximum	prod‐
uct	probability	between	two	patches.	Habitat	availability	 is	similar	
to	the	probability	of	connectivity	index	of	Saura	and	Pascual‐Hortal	
(2007),	with	the	main	difference	that	it	is	calculated	for	each	node	

separately	(not	summed	over	all	nodes)	and	not	divided	by	the	total	
habitat	area.	In	order	to	achieve	efficient	computation	times,	we	lim‐
ited	the	process	to	consider	patches	only	up	to	second‐order	neigh‐
borhood,	 after	 having	 observed	 only	 negligible	 change	 for	 higher	
neighborhood	order	values.

In	 addition	 to	 those	network	 topological	 variables,	we	 also	 in‐
cluded	the	size	(ha)	and	the	mean	habitat	suitability	(habitat	suitabil‐
ity	index;	HSI)	values	of	the	patches	to	evaluate	the	influence	of	local	
habitat	characteristics	 (lhi).	The	habitat	suitability	values	per	patch	
were	obtained	by	calculating	the	mean	habitat	suitability	of	all	pixels	
that	made	up	a	discrete	patch.	The	size	was	an	attribute	generated	
when	defining	the	discrete	patches.

2.6 | Determination of absences of H. arborea

To	define	the	absence	values	of	the	binary	response	variable	oc‐
currence‐state,	we	used	an	adapted	version	of	the	approach	used	
by	Anderson	(2003),	based	on	comparative	sampling	intensity.	For	
each	habitat	patch,	we	assumed	that	a	presence	record	of	any	am‐
phibian	species	in	a	particular	year	represented	a	confirmed	visit	
to	the	patch	in	that	year	by	an	observer	familiar	with	amphibians.	
Furthermore,	we	assumed	that	if	a	patch	was	visited	a	considerable	
number	of	years	and	a	certain	focal	species	was	not	reported,	it	is	
likely	that	such	species	was	indeed	not	present	in	that	patch	dur‐
ing	these	years.	We	calculated	the	total	number	of	times	a	patch	
had	been	visited	(Vt)	by	aggregating	all	observations	of	the	13	am‐
phibian	species	in	the	data	set	(Appendix	A1).	Multiple	amphibian	
species	recorded	in	one	particular	year	for	a	certain	location	were	
counted	as	only	one	visit.	As	we	had	10	years	of	observations	with	
a	temporal	resolution	of	1	year,	the	maximum	number	of	visits	(Vt)	
was	10.	For	each	patch,	we	also	calculated	 the	number	of	 times	
H. arborea	was	observed	(Vh),	and	for	each	Vt	value,	we	calculated	
the	mean	Vh.	We	assigned	a	likely	absence	(occurrence‐state	=	0)	
to	all	those	patches	with	a	Vt	value	that	corresponded	to	a	mean	
Vh	 ≥	 1	 (i.e.,	 on	 average	H. arborea	was	 found	 at	 least	 once	 over	
the	years)	and	in	which	H. arborea	had	not	been	recorded.	Patches	
that	neither	contained	a	confirmed	presence	(from	the	original	oc‐
currence	data	on	H. arborea)	nor	a	likely	absence	had	an	unknown	
occurrence‐state	 and	were	 therefore	 excluded	 from	 subsequent	
analyses.

2.7 | Occurrence‐state network model fitting

In	order	to	test	what	kind	of	variables	were	most	important	for	ex‐
plaining	the	occurrence‐state	of	a	species	in	a	habitat	patch,	we	ran	
boosted	regression	trees	(BRTs;	Elith	&	Leathwick,	2017).	This	mod‐
eling	technique	has	been	proven	useful	for	the	analysis	of	complex	
ecological	data.	It	can	handle	interactions	among	variables	and	non‐
parametric	 relationships,	 and	 integrates	 the	calculation	of	variable	
importance	 (Elith,	 Leathwick,	&	Hastie,	2008).	The	 three	different	
habitat	networks	(Uniform,	Traffic,	and	HabSuit)	were	used	to	build	
three	separate	models.	 In	all	of	 them,	we	used	the	seven	explana‐
tory	variables	described	above.	In	addition,	we	built	a	model	without	
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topological	variables	(noTopo),	for	which	the	only	explanatory	vari‐
ables	 were	 patch	 size	 and	 HSI.	 For	 all	 four	 models	 (Summarized	
in	 Table	 1),	 the	 response	 variable	 was	 the	 occurrence‐state	 of	
H. arborea.

BRT	models	are	based	on	an	aggregation	of	numerous	classifi‐
cation	trees	 (at	 least	1,000	as	recommended	by	Elith	et	al.,	2008).	
The	learning	rate	(lr)	and	tree	complexity	(tc)	influence	the	number	
of	trees	that	are	used	in	a	final	BRT	model.	As	stochastic	factors	give	
rise	to	differences	in	the	prediction	each	time	the	model	is	run,	we	
used	100	runs	with	lr	=	0.001,	tc	=	5,	and	a	bagging	fraction	of	0.75	
(following	the	general	guidelines	of	Elith	et	al.,	2008)	with	the	gbm.
step	function	of	the	R‐package	dismo	(Hijmans,	Phillips,	Leathwick,	
&	Elith,	2017).	This	function	searches	for	the	number	of	trees	that	
yields	 the	 lowest	deviance.	We	evaluated	 the	predictive	power	of	
the	models	 by	 comparing	 the	 distribution	 of	 their	 cross‐validated	
AUC	values	(cv‐AUC)	over	the	100	runs.	We	assessed	the	different	
variables	with	the	distributions	of	 their	 importance	scores	over	all	
100	runs.

3  | RESULTS

3.1 | Habitat suitability modeling and patch 
delineation

The	ensemble	HSm,	a	mean	of	nine	models,	yielded	a	continuous	and	
a	binarized	habitat	suitability	map	(Figure	3a,b).	The	mask	(Figure	3c)	
applied	 on	 the	 binarized	 suitability	map	 yielded	 the	 definitive	 de‐
lineation	of	habitat	patches	(Figure	3d).	The	total	number	of	habitat	
patches	was	1900.

3.2 | Edge definition

The	 three	 different	 cost	 surfaces	 yielded	 different	 networks.	 The	
Traffic	network	comprised	254	components	(groups	of	linked	patches)	
and	the	Uniform	network	134	components.	The	HabSuit	network	was	
the	most	sparsely	connected,	divided	into	850	components	(Figure	4).

3.3 | Values of explanatory variables

Mean	 values	 of	 all	 variables	 are	 shown	 in	 Table	 2.	 For	most	 net‐
work	variables,	the	HabSuit	network	exhibited	much	smaller	values	
(Table	2)	than	the	Uniform	and	Traffic	networks.	For	habitat	avail‐
ability,	the	differences	were	less	pronounced.

3.4 | Determination of absences

The	mean	number	of	 times	 that	H. arborea	was	 sighted	 (mean	Vh)	
increased	with	the	number	of	times	a	patch	was	visited	(Vt).	At	Vt	≥	6,	
mean	Vh	≥	1.8125,	indicating	that	on	average	there	was	more	than	
one	sighting	of	H. arborea	when	a	site	was	visited	six	or	more	times	
(Figure	5).	Therefore,	we	regarded	every	patch	with	Vt	≥	6	and	no	
confirmed	H. arborea	 sighting	 as	 a	 likely	 absence.	 In	 doing	 so,	we	
determined	46	likely	absences	of	H. arborea,	complementing	the	209	
confirmed	presences.

3.5 | Occurrence‐state network model fitting

The	 boosted	 regression	 trees	 showed	 a	 similar	 predictive	 per‐
formance	 among	 the	 three	 network	 models,	 as	 indicated	 by	 the	

Model
Resistance surface used to define 
edges Predictors included

Uniform Cost–value	equal	to	Euclidean	
distance	among	habitat	patches;	
edge	formation	limited	by	disper‐
sal	distance	only.

Degree
Strength
Third‐order	neighborhood
Habitat	availability
Betweenness	centrality
Mean	HSI
Mean	patch	area

Traffic Traffic	intensity	on	intersecting	
roads	converted	to	cost–value.

Degree
Strength
Third‐order	neighborhood
Habitat	availability
Betweenness	centrality
Mean	HSI
Mean	patch	area

HabSuit Cost–value	defined	by	inverse	of	
maximum‐weighted	habitat	suit‐
ability	index.

Degree
Strength
Third‐order	neighborhood
Habitat	availability
Betweenness	centrality
Mean	HSI
Mean	patch	area

noTopo None.	Network	topology	not	
considered.

Mean	HSI
Mean	patch	area

TA B L E  1  Summary	of	the	three	
network‐based	models	(Uniform,	Traffic,	
and	HabSuit)	and	the	model	without	
topological	predictors	fitted	by	BRT's
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distributions	of	their	cv‐AUC	scores	 (Figure	6).	The	model	without	
topological	measures	(noTopo)	was	outperformed	by	all	three	mod‐
els	with	topological	variables	(Table	3).

HSI	was	the	variable	with	the	highest	importance	in	all	mod‐
els.	While	 the	 lowest	mean	HSI	 value	 in	 a	 suitable	patch	deter‐
mined	 by	 the	 ensemble	 HSm	was	 382,	 the	 partial	 dependence	
plots	for	all	models	(Appendix	A4)	pointed	toward	a	threshold	HSI	

value	 above	 500.	 In	 all	 the	 network	models,	 third‐order	 neigh‐
borhood	 was	 consistently	 the	 second	 most	 important	 variable	
(importance	above	13%),	followed	by	strength	in	the	Uniform	and	
Traffic	models,	and	by	habitat	availability	 in	 the	HabSuit	model.	
Patch	size	was	consistently	among	the	 least	 important	variables	
in	all	models	(Table	4).

4  | DISCUSSION

The	goal	of	this	study	was	to	develop	an	approach	to	assess	the	
occurrence‐state	of	a	species	in	habitat	patches,	one	which	would	
be	 inexpensive	 and	 practical	 by	 using	 widely	 available	 species	
presence	data,	 and	which	would	have	an	added	predictive	value	
by	incorporating	topological	properties	of	the	species'	habitat	net‐
works	as	predictor	variables.	Our	results	support	the	expectation	
that	topological	variables	of	habitat	networks	are	indeed	relevant	
for	explaining	and	predicting	the	occurrence‐state	of	a	species	in	
habitat	patches.	This	 is	 showcased	by	 the	 results	on	BRT	model	
comparison,	in	which	the	model	without	topological	variables	(no‐
Topo)	had	the	poorest	performance	in	terms	of	 its	mean	cv‐AUC	
score	(Figure	6).

F I G U R E  4  Habitat	networks	of	Hyla arborea	in	the	Swiss	Plateau	(same	close‐up	as	in	Figure	3).	The	networks	were	based	on	three	
different	cost	surfaces:	Uniform	(a),	Traffic	(b),	and	Inverse	Habitat	Suitability	(HabSuit;	c)

TA B L E  2  Mean	values	of	explanatory	variables	for	the	three	
different	networks	of	Hyla arborea	in	the	Swiss	Plateau:	Uniform,	
Traffic,	and	Inverse	Habitat	Suitability	(HabSuit)

 Uniform Traffic HabSuit

Degree 11.32 8.86 4.02

Strength 0.58 0.49 0.22

Third‐order	
neighborhood

41.63 30.39 11.65

Habitat	availability 311,578.5 297,289.4 265,234.7

Betweenness	
centrality

1,029.20 911.85 34.19

Mean	HSI 650.15 650.15 650.15

Mean	patch	area	(ha) 18.97 18.97 18.97
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Following	our	other	main	objective,	a	novel	aspect	we	present	
in	 this	 study	 is	 the	 derivation	 of	 likely	 absences	 from	 presence‐
only	data.	Given	 that	we	use	unsystematically	 collected	data	with	
low	 temporal	 resolution,	 it	was	not	possible	 to	use	 traditional	 site	

occupancy	models	(Kéry	&	Schaub,	2012).	Instead,	we	developed	a	
comparative	 sampling	 intensity	 approach,	which	 yielded	 the	 likely	
absences	necessary	to	model	occurrence‐state.	A	drawback	of	this	
approach	was	that	we	could	only	define	likely	absences	for	a	small	
fraction	of	 the	habitat	patches	originally	defined:	our	BRT	models	
were	built	on	255	out	of	1,900	patches,	and	the	final	response	vari‐
able	 only	 included	 46	 absences.	Nevertheless,	 even	with	 this	 rel‐
atively	small	dataset,	all	of	 the	network	models	had	mean	cv‐AUC	
scores	above	the	0.75	AUC	threshold	of	acceptability	for	good	mod‐
els	(Elith,	2002).

The	difference	 in	predictive	power	between	 the	 three	differ‐
ent	network	models	was	slight.	While	the	Uniform	network	had	a	
better	mean	predictive	performance	than	the	others	did	(Table	3),	
the	 difference	was	 too	 small	 to	warrant	 any	 conclusions	 regard‐
ing	 a	most	 probable	movement	 hypothesis	 for	 the	 focal	 species	
H. arborea.	 In	order	to	study	this	aspect,	 it	may	be	worthwhile	to	
experiment	with	different	combinations	of	cost	factors	or	ways	to	
define	them	(such	as	nonlinear	cost	increase;	Duflot	et	al.,	2018).	
The	application	of	 the	method	 to	ecologically	different	 taxa	 and	
landscapes	of	various	sizes	might	reveal	greater	differences	among	
network	models.	 The	 contrast	 between	different	models	 as	pre‐
sented	here	 could	be	used	 to	 identify	 the	most	 likely	movement	
hypothesis	for	a	given	target	species	and	therefore	indicate	the	op‐
timal	kinds	of	network	models	to	use	in	other	ecological	contexts.

The	explanatory	variable	with	 the	highest	 importance	across	all	
three	network	models	was	the	mean	habitat	suitability	index	per	patch	
(HSI).	This	was	partially	expected,	as	the	baseline	requirement	for	oc‐
cupancy	of	a	patch	is	to	be	suitable	habitat.	However,	the	values	of	HSI	
related	to	presence	or	absence	had	a	different	threshold	than	the	one	
from	the	initial	habitat	suitability	model	(see	partial	dependence	plots,	

F I G U R E  5  Relationship	between	the	
number	of	times	a	patch	has	been	visited	
(Vt)	in	the	period	2006–2015	and	the	
mean	number	of	times	that	Hyla arborea 
has	been	spotted	for	any	number	of	visits	
(mean	Vh)	in	the	Swiss	Plateau
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F I G U R E  6  Distributions	of	cross‐validated	AUC	scores	over	100	
runs	for	four	models	(Uniform,	Traffic,	and	HabSuit	networks,	and	
noTopo)	for	Hyla arborea	occurrence‐state	in	the	Swiss	Plateau

TA B L E  3  Mean	cross‐validated	AUC	scores	over	100	runs	
of	four	models	(Uniform,	Traffic,	HabSuit,	and	noTopo)	for	Hyla 
arborea	occurrence‐state	in	the	Swiss	Plateau

 Uniform Traffic HabSuit noTopo

Cross‐validated	AUC	
score

0.7610 0.7552 0.7597 0.7309
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Appendix	A4).	 This	was	probably	due	 to	 the	 contrast	of	 confirmed	
presences	with	 an	 informed	 selection	 of	 likely	 absences	 instead	 of	
random	pseudoabsences	as	in	HSM.	The	approach	to	determine	likely	
absences	 applied	here	 could	 thus	be	used	 to	 fine‐tune	binarization	
thresholds	of	habitat	suitability	models	in	other	applications.

The	consistent	importance	of	the	third‐order	neighborhood	vari‐
able	shows	that	the	number	of	patches	at	this	wider	scale	influences	
the	occurrence‐state	of	a	species	more	than	in	the	immediate	vicin‐
ity	(as	shown	by	the	lower	importance	of	degree).	The	centrality	of	a	
patch	at	the	whole‐network	scale	did	not	prove	to	be	especially	rele‐
vant	for	the	occupancy‐state	of	a	species.	Another	variable	that	was	
not	important	in	any	of	the	models	was	patch	area.	This	arrangement	
of	variable	performances	shows	the	complementarity	of	the	differ‐
ent	factors	of	Equation	(1)	in	determining	species	occurrence‐state.	
Local	habitat	characteristics	are	important,	but	offer	an	incomplete	
assessment,	which	can	be	enhanced	by	the	 incorporation	of	topo‐
logical	variables.

Our	 multistep	 approach	 of	 occurrence‐state	 assessment	 thus	
achieved	 the	 expectation	 of	 improving	 predictive	 performance	
with	 the	 integration	of	 connectivity	 and	network	 topological	 con‐
siderations.	Methods	that	 incorporate	these	considerations	should	
lead	to	better‐targeted	conservation	actions,	with	more	satisfactory	
outcomes.	Our	approach	is	generic	and	can	be	applied	to	any	other	
wildlife	 species.	 In	 addition	 to	 presence	 observations	 of	 the	 focal	
and	related	species,	the	main	data	requirements	for	 its	application	
are	spatial	datasets	of	variables	deemed	 important	 for	 the	habitat	
suitability	(for	patch	delineation)	or	connectivity	(for	edge	definition)	
of	the	focal	species.	Patch	delineation,	easier	for	habitat	specialists	
such	as	H. arborea	(Van	Buskirk,	2011),	can	be	helped	by	the	imple‐
mentation	of	masks	 (e.g.,	excluding	roads)	to	reduce	patch	size	for	
more	generalist	species.

Further	testing	of	our	approach	will	 indicate	how	widely	 it	can	
be	implemented,	and	ground‐truthing	likely	absences	would	be	par‐
ticularly	interesting.	Although	confirming	absences	is	a	difficult	en‐
deavor,	novel	techniques	like	eDNA	(Deiner	et	al.,	2017)	could	help	

with	this	task.	An	 interesting	expansion	of	our	approach	would	be	
to	 incorporate	 temporal	 dynamics.	 With	 a	 higher	 temporal	 reso‐
lution	 (we	only	had	10	time	points),	one	could	get	 further	 insights	
into	how	occurrences	in	one	time	step	influence	those	in	the	next,	
thereby	 incorporating	 perspectives	 from	 metapopulation	 theory	
(Hanski,	1998)	or	research	on	dynamical	complex	networks	in	other	
disciplines	 (e.g.,	Alvarez‐Buylla	et	al.,	2007;	Sinatra,	Wang,	Deville,	
Song,	&	Barabási,	2016).	Our	approach	also	opens	the	possibility	for	
multi‐species	 analyses,	 comparing	 the	 networks	 of	 different	 taxa.	
With	such	an	analysis,	it	would	become	possible	to	identify	key	spa‐
tial	elements	across	multiple	networks	and	areas	of	strategic	impor‐
tance	for	the	conservation	of	groups	of	species	(Foltête,	2019).	Our	
approach	is	fully	expandable,	and	we	hope	it	can	find	use	in	conser‐
vation	management	in	different	contexts	around	the	world,	often	in	
dire	need	of	effective	and	inexpensive	methods.
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APPENDIX A1
The	13	amphibian	 species	of	which	presence	 records	 in	 the	Swiss	
Plateau	were	used	in	this	study

Species Common name

Hyla arborea European	Tree	Frog

Alytes obstetricans Midwife	Toad

Bombina variegata Yellow‐bellied	Toad

Bufo bufo Common	Toad

Epidalea calamita Natterjack	Toad

Ichthyosaura alpestris Alpine	Newt

Lissotriton helveticus Palmate	Newt

Pelophylax	sp.	(P. lessonae + P. esculentus) Green	Frog	complex	
(Pool	Frog	and	Edible	
Frog)

Pelophylax ridibundus Lake	Frog

Rana dalmatina Agile	Frog

Rana temporaria Grass	Frog

Triturus carnifex Italian	crested	newt

Triturus cristatus Northern	crested	Newt

APPENDIX A2
Final	set	of	20	predictor	variables	used	in	habitat	suitability	model‐
ling	(at	a	resolution	of	1	ha),	classified	in	three	main	categories

Category Predictor Variable type

Human	influence Density	of	traffic Continuous

Density	of	railways Continuous

Total	noise	at	nighttime Continuous

Population	density Continuous

Agriculture	density Continuous

Arable	land Binary

Green	settlements Binary

Grey	settlements Binary

Meadows	and	farm	pastures Binary

Orchards,	vineyards,	
horticulture

Binary

Natural	landscape	
features

Deciduous	forest	coverage Binary

Mixed	forest	coverage Binary

Coniferous	forest	coverage Binary

Density	of	forest	(general) Continuous

Distance	to	forest	edge Continuous

Presence	of	rivers Binary

Slope Continuous

Climatic	variables Mean	summer	precipitation Continuous

Mean	annual	direct	solar	
radiation

Continuous

Mean	annual	temperature Continuous

APPENDIX A3
Predictor	variables	in	habitat	suitability	modeling,	their	content	and	source

Predictor Content Source

Density	of	traffic Individual	vehicle	traffic	for	2010 NPVM	with	tunnels	
removed	(ARE,	2010)

Density	of	railways Density	of	rail	network SwissTLM3D	(Swisstopo,	
2016)

Total	noise	at	nighttime Nighttime	rail	noise	combined	with	nighttime	street	noise EMPA	(2011)

Population	density Statistics	on	Swiss	population,	geolocated STATPOP	(BFS,	2015)

Agriculture	density Density	of	agricultural	areas,	derived	from	an	aggregate	of	
the	four	main	categories	of	agricultural	land	use

Arealstatistik	(OFS,	2010)

Arable	land Agricultural	area	taken	from	point	estimates	on	72	land	use	
categories

Arealstatistik	(OFS,	2010)

Green	settlements Area	of	green	spaces	in	settlements	taken	from	point	esti‐
mates	of	72	land	use	categories

Arealstatistik	(OFS,	2010)

Grey	settlements Area	of	grey	(sealed	areas	and	buildings)	areas	taken	from	
72	land	use	categories

Arealstatistik	(OFS,	2010)

Meadows	and	pastures Area	of	meadows	and	pastures	taken	from	point	estimates	
of	72	land	use	categories

Arealstatistik	(OFS,	2010)

Orchards,	vineyards,	horticulture Area	of	orchards,	vineyards	and	horticulture	taken	from	
point	estimates	of	72	land	use

Arealstatistik	(OFS,	2010)

Deciduous	forest	coverage Occurrence	of	deciduous	forests Waldmischungsgrad	(BFS,	
2013)

Continues
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Predictor Content Source

Mixed	forest	coverage Occurrence	of	mixed	forests Waldmischungsgrad	(BFS,	
2013)

Coniferous	forest	coverage Occurrence	of	coniferous	forests Waldmischungsgrad	(BFS,	
2013)

Density	of	forest Density	of	all	forest	types	of	Switzerland Waldmischungsgrad	(BFS,	
2013)

Distance	to	forest	edge Distance	to	forest	edges Waldmischungsgrad	(BFS,	
2013)

Presence	of	rivers Presence	of	rivers SwissTLM3D	(Swisstopo,	
2016)

Slope Calculated	from	a	digital	elevation	model swissALTI3D	(Swisstopo,	
2018)

Mean	summer	precipitation Mean	summer	precipitation	(1961–1990) Broennimann,	Randin,	
Zimmermann,	and	
Guisan	(2003)

Mean	annual	direct	solar	radiation Mean	annual	direct	solar	radiation	(1961–1990) Broennimann	et	al.	(2003)

Mean	annual	temperature Mean	annual	temperature	(1961–1990) Broennimann	et	al.	(2003)

APPENDIX A3 (Continued)
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APPENDIX A4
Partial	dependence	plots	of	the	three	most	important	explanatory	variables	in	sample	iterations	of	the	four	models	(Uniform,	Traffic,	HabSuit,	
noTopo).	(a)	Uniform;	(b)	Traffic;	(c)	HabSuit;	(d)	noTopo


