
	
	
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
	

Year : 2018 

 

 
ESSAYS ON FUNDING MECHANISMS, ASSET ALLOCATION AND 

CALIBRATION OF AN NUITEES IN SWISS PENSION FUNDS 

 
Müller Philipp 

 
 
 
 
 
 
Müller Philipp, 2018, ESSAYS ON FUNDING MECHANISMS, ASSET ALLOCATION AND 
CALIBRATION OF AN NUITEES IN SWISS PENSION FUNDS 

 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_E55432F293677 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/�


 

 

FACULTÉ DES HAUTES ÉTUDES COMMERCIALES 
 

DÉPARTEMENT DE SCIENCES ACTUARIELLES 
 
 

 
 

ESSAYS ON FUNDING MECHANISMS, ASSET 

ALLOCATION AND CALIBRATION OF ANNUITIES 

IN SWISS PENSION FUNDS 

 
 

 
 

THÈSE DE DOCTORAT 
 

présentée à la 
 

Faculté des Hautes Études Commerciales 
de l'Université de Lausanne 

 
 

pour l’obtention du grade de 
Docteur ès Sciences Actuarielles 

 
par 

 
Philipp Müller 

 
 
 
 

Directeur de thèse 
Prof. Joël Wagner 

 
 

Jury 
 

Prof. Olivier Cadot, Président 
Prof. François Dufresne, expert interne 
Prof. Hato Schmeiser, expert externe 

 
 
 
 

 
 

LAUSANNE 
2018 





 

 

FACULTÉ DES HAUTES ÉTUDES COMMERCIALES 
 

DÉPARTEMENT DE SCIENCES ACTUARIELLES 
 
 

 
 

ESSAYS ON FUNDING MECHANISMS, ASSET 

ALLOCATION AND CALIBRATION OF ANNUITIES 

IN SWISS PENSION FUNDS 

 
 

 
 

THÈSE DE DOCTORAT 
 

présentée à la 
 

Faculté des Hautes Études Commerciales 
de l'Université de Lausanne 

 
 

pour l’obtention du grade de 
Docteur ès Sciences Actuarielles 

 
par 

 
Philipp Müller 

 
 
 
 

Directeur de thèse 
Prof. Joël Wagner 

 
 

Jury 
 

Prof. Olivier Cadot, Président 
Prof. François Dufresne, expert interne 
Prof. Hato Schmeiser, expert externe 

 
 
 
 

 
 

LAUSANNE 
2018 





Members of the Thesis Committee
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Summary

This thesis focuses on the pension fund system in Switzerland. As the conditions on the financial markets

have changed, the funds are facing a plethora of challenges. These involve, among others, the increasing

lifetime of individuals, the conditions on the capital markets, the political system as well as governance

and regulation. There is consequently a need for reforming the pension fund legislation. In this thesis,

three selected topics that are connected to this, are studied more closely. The first topic addresses

the stability of a fund. By raising additional contributions and distributing surpluses, it can maintain

a desired safety level. It is studied how different choices for the governance affect the stability. It is

found that raising additional contributions is beneficial for safety, while risk averse members dislike the

instability originating from bonus payments. The second topic deals with the investment strategy of

a pension fund. It is analyzed how the asset allocation changes when historical return characteristics

are taken into account in a more detailed way. Different distributions assumptions are compared with

respect to how they are able to replicate the characteristics of the investment classes. It is found that

there is a considerable change in the portfolio and in the investment returns when the third and fourth

moments and different distribution assumptions. The final topic revolves around the right calibration

of the pension payment during retirement. It depends on the lifetime of the retiree and the investment

strategy of the pension fund whether the savings suffice to cover the payments. It is compared how these

factors influence the choice of the pension amount. The results indicate that a higher lifetime and a lower

investment return require a decrease of the pension. Therein, the impact of the investment is found to

be higher than the one of the lifetime.

Cette thèse est axée sur le système des caisses de pension en Suisse. Avec le changement des conditions

sur les marchés financiers, les caisses font face à une pléthore de défis. Ceux-ci incluent, parmi d’autres,

l’allongement de la durée de vie des individus, les conditions sur les marchés financiers, le système

politique, ainsi que la gouvernance et la réglementation. Par conséquent, il y a une nécessité de réformer

la législation concernant les caisses de pension. Dans cette thèse, trois sujets sélectionnés, liés à ce thème,

sont étudiés plus en détail. Le premier sujet aborde la stabilité d’une caisse de pension. En exigeant

des contributions supplémentaires ou en distribuant les excédents, le niveau de sûreté est maintenu.

L’impact sur la stabilité d’une caisse selon les choix de gouvernance est étudié. Il est constaté que

la levée de contributions supplémentaires est bénéfique pour la sûreté, tandis que les membres averses

aux risques n’apprécient pas l’instabilité provenant des prestations supplémentaires. Le deuxième sujet

traite de la stratégie d’investissement d’une caisse de pension. On analyse comment l’allocation des

actifs change quand les caractéristiques historiques sont prises en compte d’une façon plus détaillée.

Différentes hypothèses sur les distributions du rendement sont comparées par rapport à leur capacité de

reproduire les caractéristiques des classes d’actifs. Un changement considérable dans le portefeuille et

les rendements est constaté si les troisième et quatrième moments, ainsi que les différentes hypothèses

sur les distributions sont utilisés. Le dernier sujet porte sur la calibration appropriée de la rente pendant

la retraite. Elle dépend de la durée de vie du retraité et de la stratégie d’investissement de la caisse

7



Summary

de pension si l’épargne est suffisante pour couvrir les paiements. On compare comment ces facteurs

influencent le niveau de la rente. Les résultats indiquent qu’une durée de vie supérieure et un rendement

inférieur des investissements impliquent des rentes plus faibles. De plus, l’impact de l’investissement

s’avère plus important que celui de la durée de vie.
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Chapter 1

Introduction

The pension fund systems in many countries are under pressure these days. As many of them were

originally set a long time ago, they are facing problems with respect to the changed conditions that

are present today. Consequently, there is a need to reform the systems and adjust them to the new

circumstances. The challenges that pension funds are facing are manifold. It is therefore of great

importance to address the prevailing problems in a timely manner. For the pension fund system in

Switzerland, the challenges correspond to the ones that can also be found in many other countries. In

addition to this, there are certain topics that originate from the specific characteristics of the Swiss

legislation. This thesis takes a close look at the Swiss pension fund system and the problems that it is

facing. This encompasses analyzing the origin and the scope as well as consequential difficulties. Going

further, selected topics are closely examined and analyzed in detail.

In the second Chapter of this thesis, the challenges that the Swiss pension fund system is facing, are

presented and discussed in detail. This involves factors that influence the system from the outside as

well as internal ones that originate from the need for adjustments. One of the trends that have been

discussed most in connection to pension funds is longevity. With constant improvements in healthcare

and other fields, the lifetime of individuals has increased significantly. At the same time, the fertility

rate in developed countries has been decreasing over the last decades. These two developments represent

parameter risks that need to be accounted for in the modeling of the fund. Along with individuals living

longer, the age structure of the members is changing. Adding to this, the returns from investing on the

capital market are under pressure, as the historic returns exhibit high volatility and the risk-free interest

rate is on a historical low. In response to this, the investment strategies of the funds need to be adapted.

One of the biggest influences on the pension fund system lies with the legislator. It is the government

who chooses the regulatory aspects and sets the parameters of the social security system. In addition to

this, it is the responsibility of the pension funds to set up their organizations in accordance with safety

requirements while taking the structure of their members into consideration. In this process, the societal

changes in today’s society need to be accounted for. Individuals change their employer more frequently

and demand more flexibility with respect to the moment of their retirement. A reform of the pension

fund system also needs to be carried out in such a way that it preserves the financial stability. With

respect to this, there have been attempts to improving the standards for the risk reporting.

The financial stability of a pension fund is studied more closely in the third Chapter. There, the impact

of funding mechanisms on the stability of pension funds and the utility of their members is analyzed. To

this end, the Swiss second pillar of old age provisions and the different risk dimensions that it inherits,

are examined. This involves a comparison of the savings account at retirement to the overall payments

9



Introduction

of an individual member. With the help of stochastic simulations, sensitivity analyses and capital return

scenarios, the effects of extra contributions and surplus distributions with respect to the funding ratio

are analyzed over time. For the fund, this involves finding a choice of parameters that leads to a better

financial stability. With respect to the insureds, the goal is to reach a higher utility. The results show

that the payment of remediation measures is an effective tool in stabilizing the fund. For the distribution

of surpluses the outcomes reveal that they lead to a higher overall volatility of the savings account. This

is not favored by risk averse individuals. In addition, the sensitivity analysis shows that a proper choice

for the model parameters is important.

With respect to the investment returns, Chapter 4 looks at the optimal investment strategy of a pension

fund. As the risk-free interest rate does not suffice to meet the required investment goals, an optimal

mix of the available assets is of importance. In this context, the optimal asset allocation according to

minimum variance theory is compared to one that makes use of an extended utility function. This is

achieved by optimizing a utility function that takes the third and fourth moments of the returns into

account as well. This way, the skewness and the kurtosis of the asset returns are used for determining

the optimal allocation. For the simulation of the different asset classes, several return distributions are

compared. The goal of this is to find the best fit for the historic data and consequently improve the

simulation results. Using the optimal asset allocation and the distributions that provide the best fit, the

assets and the liabilities of a pension fund are simulated in a one-period model. The results are then

analyzed by looking at different key measures such as the funding ratio, the underfunding probability and

selected quantiles of the funding ratio. Besides the simulation done for a target return, the optimization

process is also carried out with target values for the funding ratio and the underfunding probability. For

the extended utility function, a sensitivity analysis with respect to risk aversion towards the third and

fourth moments is performed. This way, the impacts from the preferences for the different moments of

the portfolio return are compared.

In the fifth Chapter, the retirement phase of a defined contribution pension fund is studied. In Switzer-

land, the annuity payments to the pensioners are calculated based on the available savings at retirement

by using a conversion rate. The adequate choice of the used conversion rate is therefore of great impor-

tance for the financial stability of the pension fund. A value that is too high would lead to a lack of

savings. Conversely, choosing it too low would not be favored by the pensioners. The conversion rate,

within legal limits, depends on the capital market returns from investing the savings, the mortality of

the members, and the technical interest rate. It is studied what impact these financial and biometric

risk parameters have on the choice of the conversion rate. To this end, a sensitivity analysis regarding

the three factors is carried out using as far as possible analytic expressions. Going further into detail,

selected scenarios for the asset returns are considered. In order to reflect the dispersion in the historic

investment returns, the impact of the capital market is studied for different values of the volatility. All of

the three factors are found to have an important influence on the conversion rate. When looking at the

results, it can be concluded that the impact of the investment returns exceeds the one of the mortality

rate. Further, a decrease of the technical interest rate needs to meet with a decrease of the conversion

rate as well. Overall, the conversion rate is found to be very sensitive to changes in the different factors.

Its appropriate choice by the regulator is therefore of high importance for the stability of the pension

funds in the retirement phase.
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Chapter 2

Challenges in the Swiss Pension

Fund System

The pension fund system is facing great challenges in today’s environment. While the risk-free returns

from the capital market have hit bottom, the lifetimes of the members are ever-increasing. Along with

that, the lifestyle of individuals has changed. These altered conditions make an adjustment of the pension

system necessary. In this regard, there is disagreement in the political system in Switzerland about the

type and scope of reforms. The changed conditions on the market are consequently putting the financial

state of the pension funds under pressure. As the conditions on the market are becoming more difficult,

there are further efforts to change the governance and regulation with respect to reporting more risk-

oriented financial figures. In this Chapter, we give an overview of the challenges that are present in the

Swiss pension fund market. This encompasses factors that influence the system externally such as the

demography, the capital markets, the politics and the governance and regulation as well as ones that

follow from it such as the societal changes, the financial state and the financial figures of funds.

Demography

Capital

Markets Politics

Governance and

Regulation

Societal

Changes

Financial

State

Financial

Figures

Pension Fund

System
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Challenges in the Swiss Pension Fund System

2.1 Demography

Over the past years and decades, there has been a strong worldwide trend of the population growing older.

Thanks to better medical treatments as well as life- and workstyle improvements, the life expectancy of

individuals has been increasing constantly. For Switzerland, the life expectancy of newborns has increased

from 77.9 years in 1990 to 83.6 years in 2018 (United Nations, 2018). Projections further suggest that

this trend in increasing longevity will continue. Estimations suggest that by 2050 individuals will be

living for 87.4 years and by 2100 they are expected to reach 93.3 years. Figure 2.1 shows the historic and

predicted future development of the curtate expected lifetime for individuals at age 65 in Switzerland

based on own modeling using data from the Human Mortality Database and by fitting a Lee-Carter

model. The increase in the curtate expected lifetime for the male, the female and the overall population

is relatively constant. With respect to the future, we further notice that the lifetimes of the different

groups can be expected to continue increasing onwards with a linear slope. It can further be seen, that

the difference in expected lifetime for men and women has been decreasing over the last decades.
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Figure 2.1: Plot of e65, the curtate life expectancy of 65-year old individuals in Switzerland.

This demographic development is posing a great challenge for the social security system and pension

funds in particular. As individuals live longer, they are requiring a higher total of pension payments.

This, in turn, is posing problems for the pension funds, as the old-age savings of the members may

not suffice in order to make those additional payments. The consequence would be a redistribution of

the savings from the younger generation towards the older one. This solidarity between young and old

fund members is under pressure from the development of the birth rate. The birth rate for European

countries has decreased from 1.98 in 1980 down to 1.62 in 2018. For the Swiss population, the values

are more stable, albeit lower, amounting to 1.54 in 1980 and 1.55 in 2018. For the future, only a small

increase is expected, with an estimated birth rate of 1.7 in the year 2100. Together, the developments

of increasing lifetime and low birth rates lead to a shift in the distribution of age groups. For 2018, the

share of individuals under the age of 25 from the Swiss population amounts to 26%. At the same time,

elderly people over the age of 60 already make up 24% of the population. For the future, these values are

expected to change in favor of the elder. Consequently, it can be expected that there are fewer individuals

who will be paying contributions while there will be more pensioners who will receive payments. The

financial state of pension funds could therefore be under pressure, as the contribution might not suffice

anymore in order to make the annuity payments. While in defined contribution pension schemes this

evolution is critical to an individual level account (insufficient funds compared to the longevity), in
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defined benefit schemes the inter-generational equilibrium is even more at risk.

It has been discussed widely in the literature what the consequences for the social system will be. Some

authors argue that countries that already have a high share of older people are well prepared for the future

changes (Herrmann, 2011). Others argue that the impacts of longevity can be compensated for (Bloom

et al., 2011). Necessary changes that are suggested include higher savings contributions, a higher retire-

ment age and lower pension payments. This way, the misbalance between the accumulated savings at

retirement and the pension payments can be reduced. In addition, a higher labor participation of the

elderly and a reduction of early retirement appear necessary (Dorn and Sousa-Poza, 2005). The lower

birth rate is further assumed to lead to a higher work participation of women (Bloom et al., 2010). The

necessary changes to the pension system depend on the action-taking of the regulator (cf. Section 2.3).

With the demographical changes already solidifying today, the stability of the pension funds depends on

the political system making changes and proposing reforms in response to the altered circumstances in

order to make the pension system sustainable.

2.2 Capital Markets

The members of a defined contribution pension fund are entitled to an interest on their savings. For the

Swiss pension fund system, the legislator sets a minimum interest rate that active members should receive

on the obligatory part of the accumulated capital (see BVV2, Art. 12). For the fund, this consequently

poses the challenge of investing its assets in a way such that the demanded return is achieved while

satisfying a certain safety level. As the risk-free interest rate has been decreasing over the last years, this

is becoming more difficult. As an illustration for the (quasi) risk-free interest rate, Figure 2.2 shows the

return of 10-year Swiss government bonds over the last 20 years. We observe that, while the return was
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Figure 2.2: Plot of the return of 10-year Swiss government bonds and the BVV2 minimum guaranteed
interest rate from 1998 to 2018.

higher than 4% in 2000, it has since dropped and even taken negative values. In response to this, the

guaranteed interest rate has been adjusted over the last years. For 2017, it has been fixed to 1%. The

historic course of the minimum interest rate is given in Table 2.1. While the minimum guaranteed interest

rate used to be below or close to the risk-free interest rate (represented by 10-year Swiss government

bonds), it is now higher than it (Swisscanto, 2018). The consequence of this is that pension funds need to

engage in a riskier investment strategy in order to reach higher returns. This involves investing more in

asset classes such as real estate, stocks and hedge funds and other alternative classes. For the year 2017
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Year Interest rate Year Interest rate

1985 4.00% 2009 2.00%

2003 3.25% 2012 1.50%

2004 2.25% 2014 1.75%

2005 2.50% 2016 1.25%

2008 2.75% 2017 1.00%

Table 2.1: Evolution of the BVV2 minimum guaranteed interest rate.

for example, pension funds in Switzerland have been investing 22.5% of their assets in real estate, 30.7%

in stocks and merely 6.3% in alternative investments (Swisscanto, 2018). As the share of bonds has

been decreasing over the past years, many pension funds state that one of their main goals is to reach

a higher real estate share. In addition to this, more than half of the funds support the elimination of

the investment limits proposed by the legislator (BVV2, Art. 55). While this change of the investment

strategy makes higher investment returns possible, it comes at the price of a higher volatility and risk.

Figure 2.3 shows the annual return of the Pictet BVG 40 pension fund index, an index that is often

taken as reference.1 It can be seen, that the average annual return fluctuates strongly, reaching values
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Figure 2.3: Historic annual returns rt of the Pictet BVG 40 pension fund index together with the five-year
moving average.

between 20% and −20% over the last 20 years. This consequently increases the risk of being underfunded

in given years and requiring remediation measures. A survey among Swiss pension funds showed that

the target investment return for 2018 amounts to 3.1% on average (Swisscanto, 2018).

The higher share of the real estate in the portfolios of pension funds comes at a risk. As the risk-free

interest rate has been at a low value over the past few years, it has led to a strong increase of building

activities (Credit Suisse, 2018). This has led to an increase of unused housing especially in rural areas.

Due to this, the risk of a bubble on the real estate market in Switzerland has been increasing. For the

cities of Zurich and Geneva, for example, housing prices are moderately overvalued (UBS, 2017). The

situation remains sensitive to interest rate changes as an increase of the risk-free interest rate has a

greater impact when yields are lower.

The development of the capital market returns also plays an important role for the technical interest

rate. The technical interest rate represents the discounting factor on the liabilities that is used in order

1See https://www.am.pictet/en/switzerland/articles/lpp-indices for further information.
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to calculate the technical reserves of a pension fund. The pension fund has to choose the technical

interest rate in a way such that it takes the composition and the characteristics of the institution into

account. At the same time, it is supposed to remain below the capital market return that is to be

expected (BVG, Art. 52). Within these guidelines, the board of the pension fund is free to choose a

value for the technical interest rate. In order to give guidance, a formula for calculating a reference value

for the technical interest rate has been defined by the Swiss chamber of pension fund experts (SKPE,

2015). It states that the technical interest rate should be calculated as a weighted average of 2/3 of the

average performance over the last 20 years and 1/3 of the return of ten-year Swiss government bonds.

In order to remain below the expected capital market return, this value is then reduced by 0.5% and

rounded down. An overview of the historic values of the technical reference interest rate is given in

Table 2.2. As the liabilities of the pension funds in Switzerland are very high, a change of the technical

Year Technical Interest Rate Year Technical Interest Rate

2005 4.50% 2012 3.50%

2006 4.50% 2013 3.00%

2007 4.50% 2014 3.00%

2008 4.00% 2015 2.75%

2009 3.75% 2016 2.25%

2010 4.25% 2017 2.00%

2011 3.50%

Table 2.2: Evolution of the technical reference interest rate from 2005 to 2017.

interest rate can lead to strong changes in the required capital. In fact, in 2016, the pensions that

were paid out, reached a total of CHF 42.5 bn (BSV, 2017a). It is consequently of high importance to

set the technical interest in a reasonable and appropriate way. To this end, the regulatory authority

seeks to revise the regulations for calculating and setting the technical interest rate (OAK BV, 2017b).

The challenges and difficulties that lie around this process are described more in detail in the following

Section.

2.3 Politics

The legislator plays a key role in the pension funds system as the laws and regulations are set by politics.

This is especially the case with respect to reforms of the laws that are in force. It is therefore important

for the regulator to monitor the pension system, check that it works properly and correct possible

shortcomings. The pension system that is in force in Switzerland today has been introduced in 1985. As

there have been changes with respect to the lifetime of the members and the birth rate (cf. Section 2.1)

however, the contributions and the payments are not in balance anymore. For the first pillar of the

system, which is based on redistributing the savings of the actives to the pensioners, there has been a

deficit of CHF 767 Mio. in 2016 (BSV, 2017a). For that year, the missing funds were compensated for by

high investment returns. A small capital reserve is still available in the first pillar funds as well (OAK BV,

2018). In the second pillar, a redistribution from the insureds to the retirees also takes place As noted

before (cf. Section 2.2), the conditions on the capital market have changed considerably over the last

years, leading to lower and more volatile returns. It has consequently become necessary to adapt the

pension system to these new circumstances. In this regard, several attempts have been made in order

to reform the social security system in Switzerland (BSV, 2017b). In 2004, the first major revision of

15



Challenges in the Swiss Pension Fund System

the social security system was made (BSV, 2016). The changes included, among others, an increase of

the retirement age for women from 62 up to 64 years. In addition, the conversion rate was decreased

from 7.2% to 6.8%, with both adjustments taking place gradually over the course of ten years. The

annual values are given in Table 2.3.

Year Conversion Rate Year Conversion Rate

1985 – 2004 7.20% 2010 7.00%

2005 7.15% 2011 6.95%

2006 7.10% 2012 6.90%

2007 7.10% 2013 6.85%

2008 7.05% 2014 – 2018 6.80%

2009 7.05%

Table 2.3: Evolution of the conversion rate.

The conversion rate is of importance with respect to the pension payments as the annual annuity that

pensioners receive is calculated by multiplying the savings at retirement with the conversion rate. While

this reform was accepted by the electorate, further changes need to be made. In 2010, an attempt

to decrease the conversion rate further and to increase the retirement age for women to 65 years, was

declined. Another reform proposal called “Reform 2020”, was made in 2017 (BSV, 2014). It included,

among others:

• A uniform retirement age of 65 years for men and women.

• More flexibility with respect to retiring earlier or later, allowing individuals to retire from the age

of 62 up to the age of 70.

• A decrease of the conversion rate from 6.8% down to 6%.

This reform was rejected by the electorate as well. The consequence is that the funding gap of the

pension system persists and grows further over time.

The recent reform proposals were mainly targeted at changing the retirement age and the conversion

rate. However, the possibilities are more extensive. While a decrease of the conversion rate would lead

to a lowering of the pension payments, the goal of increasing the retirement age is to increase the savings

and reduce the annuity duration. Instead of increasing the retirement age, it would also be possible

to increase the contributions from working individuals. This way, the actives would accumulate more

funds throughout their work live and could still retire at the same age. As the regulations for calculating

the savings contribution are extensive, there are many ways to adjust the legislation. By changing

the regulations, the regulator is able to restore the stability of the pension system in general and the

equilibrium of the payment streams in particular. In order to assess the state of the pension funds, the

legislator can examine different parameters. One key figure that describes the ratio of the assets and the

liabilities of a fund, is the funding ratio (cf. Section 2.6).

2.4 Governance and Regulation

The regulation of pension funds in Switzerland is taking place on three levels. The base is set by the

regulator who establishes the laws that the pension fund system is based on. In addition to this, the

Supervisory Commission for occupational pensions (OAK BV) sets up a regulation for the supervisory

practice for all pension funds. At the level of the pension funds is the Swiss Chamber of Pension
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Actuaries (SKPE). Its function is to act as an advisor for funds. To this end, it gives recommendations

with respect to the practical application of the regulations, legal aspects and the investment. The board

of the pension fund is taking final decisions. Its duties lie in setting up the regulations of the fund

in accordance with the existing legislation and statutory orders. This involves setting up the policies

with respect to the savings plans of the actives as well as the pension schemes for the members. Going

more into detail, they are responsible for choosing an investment strategy for the assets and setting the

technical interest rate for the valuation of its liabilities (typically following the expert’s advice).

Especially for the supplementary part that exceeds the legal minimum, the board has in comparison a lot

of freedom with respect to choosing the framework of the fund. The consequence of this is that there is

a high complexity involved in leading a pension fund. As the regulations are giving them great freedom,

the members of the foundation of the fund need to take all the existing risks and difficulties into account

as well as possible. This has led to a consolidation, coming with a strong decrease of the number of funds

in Switzerland over the past years. At the same time, the number of actives has increased. Figure 2.4

shows the development of the number of Swiss pension funds and the active members from 2004 to 2016.
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Figure 2.4: Number of pension funds and active members in Switzerland from 2004 to 2016.

As we can see, the number of funds has been decreasing almost linearly from close to 3 000 in 2004

down to about 1 700 in 2016. The number of funds has consequently almost halved over the course

of 12 years. Meanwhile, the number of active members increased from 3.2 Mio. in 2004 up to more

than 4 Mio. in 2016, corresponding to an increase of almost 30%. A strong trend of consolidation is

observed in the market. As mentioned before, this is linked to a complex environment from a capital,

demographic, and regulatory point of view. Together with the steady increase in the number of members,

this has a concentration effect on the market. As there a fewer, yet larger funds, the cluster risk also

increases. Along with this, the level of freedom for funds to choose many aspects on their own makes

their supervision challenging.

An advantage of this setup is that the board of the fund is able to structure the fund more closely in

accordance with the age and member structure. However, as a consequence, the demands of corporate

governance are increasing. This is especially posing challenges for institutions that are still of small and

medium size. Overall, the current system is characterized by great flexibility but also a high responsibility

that comes together with it. Going forward, it needs to be asked whether this is an advantage or if it

would be preferable to have a more restrictive system (e.g. principle-based or rule-based regulation).

While this would take some of the flexibility away, it could in turn improve the ability of pension funds
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to remain on the market and consequently lead to a higher safety level. In Section 2.7, we further discuss

current plans and discussions with respect to reporting financial risk figures of pension funds to the

supervisory authorities.

2.5 Societal Changes

Together with the increased lifetime of individuals (cf. Section 2.1), changes are taking place in the

structure of the society. As people live longer, they also spend more time in good health. Being

consequently more active at a higher age, their spending behavior changes as well. The legislator in

Switzerland has set itself as a goal that retired members should receive a pension that corresponds to

about 60% of their last salary (BBL, 1976). With respect to the change in lifestyle of the elderly, it

is to be questioned whether this value is still appropriate as of today or if it needs to be adjusted.

Furthermore, working biographies are more heterogeneous with people changing their employers more

often than in the past. This entails also changes of the pension fund affiliation with ever-changing rules

and uncertainties in pension planning.

In order to relieve the retirement system, it is necessary to either increase the capital at retirement, reduce

the pension payments or apply a mixture of the two. To this end, increasing the retirement age would

help with achieving both these goals. The life expectancy in Switzerland is among the highest worldwide

with men living 81.5 years on average and women 85.3 years (BFS, 2017). Yet still, the retirement age

remains at 65 years for men and 64 years for women (BVG, Art. 13), while there is currently a worldwide

trend of increasing it as more than half of the OECD countries have decided on increases of the retirement

age (OECD, 2017). There is great potential for a relieve of the social security system in increasing the

retirement age. To this end, 61% of the companies in Switzerland already offer possibilities to work

past the legal retirement age today (Cosandey, 2015). However, political initiatives to protect old age

employees may aggravate their chances on the job market. Measures such as a prohibition of releases

from a certain age and generous pension plans in the case of early retirement would serve to protect

employed individuals. At the same time, this would lead to difficulties to find a new job and consequently

increase the risk of long-time unemployment. Other measures that would lead to an increase of the labor

costs, would have a comparable effect. While employers should therefore be encouraged to employ old

age individuals, protective measures for older individuals could have a contrary effect.

In addition to an increase of old age occupation, a more flexible transition into retirement should also

be strived for. In this fashion, plans that involve part-time work at the end of the work life should

be offered by companies. The reduced income that is connected to this, could be compensated for by

already obtaining a part of the pension benefits.

2.6 Financial State

It is the task of the pension fund to ensure that there is a balance between the assets and the liabilities

that it has (BVG, Art. 65). In this, the assets contain, among others, the contributions of the members,

a contribution reserve from the employers and the technical reserves (SKPE, 2014). The liabilities are

mainly made up of the savings accounts of the actives and the retired members as well as additional

reserves. The ratio of the assets over the liabilities denotes the funding ratio of the pension fund.2 If

the funding ratio is below 100%, the institution is said to be underfunded. Conversely, a ratio of more

than 100% is denoted as overfunding. A plot of the funding ratios from 2004 to 2017 is presented in

Figure 2.5 (Swisscanto, 2009, 2018). As we can see, the values have been above 100% in almost every

2An extensive overview of the management of assets and liabilities in pension funds can be found in Solari (2002).
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Figure 2.5: Average funding ratio of Swiss pension funds from 2004 to 2017.

year. Pension institutions were only underfunded on average in 2008 with a value of 96.7%. The reason

for this lies in negative investment returns due to the financial crisis in that year. On average, pension

funds had a capital market return of –12.7% in 2008 (Swisscanto, 2018). In the following years, the

gap between assets and liabilities was closed. At the end of 2017, the average funding ratio amounted

to 113.8%.

Once a pension fund has become underfunded, it is obliged to inform the authorities and take measures

in order to increase the funding ratio to 100% again (BVG, Art. 65d). To this end, it is supposed to

work out measures in order to correct the underfunding. The legislation lists several ways how to restore

the financial state of a fund. Those include, among others (SKPE, 2014):

• A temporary reduction of the interest rate on the savings below the legal minimum.

• Additional contributions by the employer.

• Remediation measures from the actives and their employers.

• Contributions from the retired individuals.

The effectiveness of the remediation measures depends on the age structure and the ratio of active

and retired members of the pension fund. For example, additional contributions can pose considerable

additional expenditures for young members. Consequently, they would tend to prefer a reduction of the

interest rate. Conversely, older members would most likely prefer to avoid a reduction of the interest

rate. As their savings accumulate to much higher amounts, the impact on their accounts would be more

significant. It is the task of the pension fund to choose the measures in a way such that the stabilization

of the fund is achieved without causing too much stress to its members.

The recovery plan has to be reported to and approved by the supervisory authorities. In addition, the

regulator is surveilling the proper execution of the measures. The pension funds are supposed to aim

for the duration of the recovery measures to be as short as possible. The reasoning behind this is that

the institution should be exposed to a further deterioration of the financial state for as little time as

possible. Consequently, the remediation measures are not supposed to last for longer than five to seven

years (OAK BV, 2017c).

In the case of overfunding, i.e. a funding ratio above 100%, the pension fund has to establish a reserve

for future return fluctuations. This way, it is able to mitigate the impact of years with low investment

returns (BVV2, Art. 48e). Once the reserves are high enough, the fund is able to distribute additional
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funds as a bonus to its members. This bonus can be conducted by increasing the interest rate as well as

by paying monetary amounts.

In Chapter 3, we analyze the impact of pension funding mechanisms with respect to the stability and

payoff of a pension funds. To this end, we analyze the accumulation phase of a Swiss pension fund.

We assume that depending on the state of the fund, additional contributions from the members may be

required or that surpluses can be distributed as a bonus. Among others, we find that while remediation

measures are helpful with respect to stabilization, they also lead to an increased volatility. Surplus

distributions, in turn, lower the relative payoff utility of the members and lead to an increased frequency

of additional payments. We therefore conclude that pension funds can profit from a cautious funding

policy that targets an increased stability and achieves a lower volatility.

2.7 Financial Figures

Following the current risks and challenges on the Swiss pension fund market, a more thorough and

timely surveillance of the risk profile and financial status of funds appears necessary. The legislator is

therefore trying to establish a regular report of the financial risk figures of every pension fund (OAK BV,

2016). This report is supposed to encompass the three risk dimensions of financial safety, the ability

to be restructured and the current financing situation. To this end, a number of parameters have been

proposed that should help in assessing the risk status of a pension fund (OAK BV, 2017a). These include,

among others, the following parameters:

• Pension capital

• Technical reserves

• Sum of the savings of the members

• Expected investment return

• Technical interest rate

• Target value for the fluctuation reserve

• Target value for the funding ratio

• Biometric assumptions (e.g. mortality tables)

In addition, it is to be stated what impact the following scenarios have:

• Reduction of the funding ratio when reducing the technical interest rate by 0.5%.

• Impact on the funding ratio when reducing the return on the savings on the actives by 1%.

• Impact on the funding ratio when raising 1% of the contributions of the actives as remediation

measures.

• Effect of a reduction the interest rate with respect to remediation.

These risk figures are meant to help the board of the pension funds as well as the supervisory authorities

in assessing the risk situation of the fund. By looking at the various parameters and sensitivities, the

structure of the members of the funds and the long-term horizon of the business are to be taken into

consideration.

The reactions from pension fund representatives to this proposal were mostly negative in 2017. The main

criticism was that the majority of the figures are already included in the respective annual reports. The
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additional value of a risk report would therefore be comparatively small. In addition, it has been argued

that it is not clear yet whether certain figures are supposed to be based on estimates or if they should

be computed with all technical reserves taken into consideration. The latter case would be connected

to additional costs for the funds. In a similar fashion, it has been asked if the risk report would be

legally binding or not. As the added value of the proposed report was perceived as rather small and

open questions about certain parameters remained, the introduction of the report has been postponed

in order to review the criticism from practitioners. While the opinions on the proposed report of the

risk figures diverge, there is a broad agreement that a more risk oriented reporting and surveillance is

necessary. While this is still work in progress, an extensive risk reporting from the proposed report up

to some kind of solvency test for pension funds could be possible in the future.
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Chapter 3

The Impact of Pension Funding

Mechanisms on the Stability and the

Payoff from Swiss DC Pension

Schemes

Adequately funding occupational pension funds is a major concern for society in general and individual

contributors in particular. The low returns accompanied with high volatility in capital markets have put

many funds in distress. While the basic contributions are mostly defined by the state, the fund’s situation

may require additional contributions from the insureds or may allow the distribution of surpluses. In

this Chapter, we focus on the accumulation phase of a defined contribution plan in Switzerland with

minimum returns and annual solvency targets in terms of an assets-to-liabilities funding ratio. From the

viewpoint of the pension fund, we evaluate the outcome of selected funding mechanisms on the solvency

situation. Taking the perspective of the contributors, we analyze the payoff and the utility. Combining

both prospects, we discuss the boundary values that trigger the various participation mechanisms and

their impact. We find that remediation measures, while stabilizing the fund, yield a higher volatility in

the insured’s contributions. Further, surplus distributions lower the relative payoff utility of the fund’s

members and increase the frequency of remediation measures. Overall, insureds and pension funds will

profit from a cautious surplus distribution policy that focuses on keeping the stability high and lowers

the volatility of the result.

Note: This is joint work with J. Wagner and has been published in the The Geneva Papers on Risk and Insurance -

Issues and Practice, volume 42, issue 3, pp. 423–452. The authors are thankful for the comments on earlier versions

of this manuscript by participants of the Western Risk and Insurance Annual Meeting 2016, the International

Conference Mathematical and Statistical Methods for Actuarial Sciences and Finance 2016, the Lyon-Lausanne

Seminar 2016, the European Actuarial Journal Conference 2016, the European Group of Risk and Insurance

Economists Seminar 2016 and the Annual Meeting of the German Association for Actuarial Science 2017.
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3.1 Introduction

Since the introduction of the Swiss pension system and occupational pension funds (second pillar) in

particular, the demographic and capital market framework conditions have changed. Life expectancy is

increasing, while birthrate is decreasing, causing the ratio of the number of active workers to the number

of retirees to decline over the years (see OECD, 2015b). In the financial markets, many asset classes

have delivered historically low returns and at the same time exhibited increased volatility in the last two

decades (see OECD, 2015a).

The demographic issues and changing capital markets from the last financial crisis and ongoing turbu-

lences are highlighted by most practitioners (see Credit Suisse, 2014). There are also other factors that

change the environment. For example, at the society level, family and living structures along with work

conditions have changed (see, e.g., Maas et al., 2015). Flexibility in work time management, statutory

and effective retirement age and new disability and old-age dependency challenges need to be considered.

Many technical parameters in Swiss pension funds (e.g., the minimum interest rate, the conversion rate)

and their adaptations depend on political decisions. Reforms have been strongly rejected in the last

few years, and the definitions of technical and actuarial parameters have undergone lengthy political

processes. The currently planned reform in Switzerland called “Altersvorsorge 2020”1 only yields partial

answers. In the 2008 financial crisis and its aftermath, the solvency of many pension funds has been

stressed. The funding ratio has dropped below 100% in many cases, which has put pressure on funds

to move towards consolidation and sustainability considerations (see Swisscanto, 2015). This pressure

comes along with operational risks with regard to compliance, higher transparency and governance re-

quirements. Furthermore, one has to consider increasing wealth transfers between younger and older

contributor groups (Avanzi and Purcal, 2014; Eling, 2012) or potentially unfair mechanisms regarding

employees who change their employer and pension fund.2 These changes pose challenges to the Swiss

system and the ones in other countries. Many aspects of these problems have been discussed by practi-

tioners and politicians, but they have been given much less attention in academic research. For example,

pension funds in good shape have started paying bonuses to their members while it is unclear whether

this is optimal and increases their utility (see, e.g. Jacquemart, 2014; Lisse, 2014). Independent research

and a solid academic foundation are important in an area where the stakeholders, contributors, pension

funds, actors from the industry and politicians have diverging interests and opinions. This is why we

focus on the following research question: What is the impact of funding mechanisms on the pension fund

stability and the utility of the insured?

While our research holds true for the accumulation of funds in pension funds in many countries (with

certain adaptations), we apply our modeling to the Swiss second pillar pension system and study different

dimensions of risk that affect pension schemes and their members. We study the impact that remediation

measures and surplus distribution have on the stability and the payoff of a fund and the utility of its

members. For this, we put the available funds at the term of the savings phase in relation to the total

payments, i.e. regular contributions and remediation costs. Our research involves, among others, the

adequate choice of parameters, the model’s sensitivity and the impact of capital market scenarios. While

this is adequate when analyzing the pension fund for the active insureds during the accumulation phase,

limitations for drawing conclusions on the overall state of the fund exist (e.g., exclusion of the bonuses

legally due to pensioners, credits and debits from mortality).

The academic literature analyzing different types of pension schemes is abundant. Sharpe (1976) is

1See http://www.bsv.admin.ch/altersvorsorge_2020, September 2016.
2Contributors changing their employer must change to the pension linked to the new company. Thereby, the assets are

transferred whereas, e.g. potential remediation measures to improve the overall state of the pension fund, remain with the
previous institution. Exceptions may apply in the case of partial liquidation of the fund (see BVG, Art. 53).
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one of the first to rigorously analyze pension insurance provided by a sponsor. Black (1976) discusses

both the optimal pattern of contributions and the optimal investment policy for the assets of a pension

fund. Typically, stochastic pension fund modeling is used, as can be found in, e.g., O’Brien (1986),

Bacinello (1988) and Dufresne (1989). The topic of asset allocation is studied from different perspectives

in the literature as well. By using a simple stochastic model, Cairns et al. (2006) incorporate asset, salary

and interest rate risk in the derivation of optimal investment strategies. While many actuarial papers

analyze risk from demographic changes, financial risk in pension funds is less extensively considered in the

existing literature: Most recently, by integrating assets and liabilities as well as solvency requirements,

Berdin and Gründl (2015) consider a representative German life insurer and its asset allocation and

outstanding liabilities. Generating a stochastic term structure of interest rates and stock market returns,

the authors simulate investment returns in a multi-period setting. Based on empirically calibrated

parameters, the evolution of the balance sheet is observed with a special focus on the solvency situation.

Looking at participating life insurance contracts, Schmeiser and Wagner (2014) try to find a suitable

value for the guaranteed interest rate. Their results show that as the risk-free interest rate approaches

the guaranteed one, the equity falls to zero, as there is no longer any benefit from risky investments.

This is relevant for pension funds too, as a minimum interest rate must be credited annually to the

accounts of the contributors (see Broeders et al., 2011; Mirza and Wagner, 2016). A study of the impact

of product features and contributor types on lapse in life insurance contracts can be found in Eling and

Kiesenbauer (2013). Using a data set from a German life insurer, they conclude that the contract age

and the premium type have the most important impact on the lapse rate. An analysis of the relationship

between the liability structure and the asset allocation of defined benefit pension funds is performed by

Alestalo and Puttonen (2006). Examining data from Finnish pension funds, the authors find that the

liability structure does indeed influence the asset allocation, with the age structure of the members being

one source of correlation. Examining data from different countries, Ghilarducci (2010) finds that there

is a positive correlation between the spending for pensions and education. By combining a stochastic

pension fund model with a traffic light approach, Braun et al. (2011) measure the shortfall probability of

Swiss occupational pension funds in order to assist stakeholders in making decisions. Examining Dutch

pension funds, Broeders et al. (2016) find empirical evidence for herding behavior in the asset allocation

of institutions. By analyzing the optimality of supervisory rules, Chen and Clever (2015) show that both

the security mechanisms and risk measures used by regulators influence the optimality of the regulations.

The optimality of the boundaries used for the objective funding ratio and the optimal dividends are also

discussed by Gerber and Shiu (2003). Finally, in a recent working paper, and closest to our undertaking,

Avanzi et al. (2016) formally analyze the iteration of surplus dividend payments and the funding ratio

of pension funds.

Recent statistical and industrial publications in Switzerland consider the current state of pension funds

from a practical point of view. Often, they focus on the ongoing reforms, underline challenges that the

system is facing, and discuss relevant funding ratios or intergenerational wealth transfers. An overview

of the situation can be found in Albrecher et al. (2016). Some authors analyze the financial situation of

funds, discuss possible reforms and ways to go forward (Bischofberger and Walser, 2011). Eling (2012)

considers the current wealth distribution and transfer mechanisms among young and old generations in

Switzerland. The aging population and the long-term (financial) perspectives are also in the focus of

UBS (2014). In his recent book, Cosandey (2014) discusses reforms for fair intergenerational mechanisms

and justice.

Our research aims at building on and extending the current state of knowledge by considering the frame-

work of private Swiss pension funds, accounting for the currently changing environmental conditions,

and including both the asset and liability perspectives. Using stochastic simulations and considering an
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individual contributor’s account, we construct a model to assess the extra contribution and the surplus

distribution mechanisms of defined contribution pension plans.3 From the institutional perspective, the

funding ratio and the stability of the fund are taken into consideration. In particular, we look at the

changes in the funding ratio over time for different funding mechanisms. This includes limits for the

distribution of bonuses and methods for determining the additional contributions. We analyze what

leads to greater stability of the fund and to higher final contributor utility. We study several scenarios

for the capital market returns in order to examine the fund’s ability to cope with periods of low and

high market returns. We obtain the distribution of the final payoff and its sensitivity to the different

mechanisms.

Our results indicate that the distribution of bonuses is connected to a higher volatility of the account

value at retirement. For risk averse individuals, this leads to a decrease of their relative certainty

equivalent. Thus, from an insured’s perspective, it is typically favorable not to get surpluses credited

to the account during the contract period. With respect to pension fund policies, we believe that funds

should consider measures that help reducing the volatility in the outcomes (e.g. by distributing less,

less often, or accumulating larger reserves before doing so). From this increased stability, the insured as

well as the fund would be able to profit. More specifically, our main findings are as follows. First, it is

deduced that charging remediation measures helps secure the stability of the fund in years following low

market returns. Funds in good health can distribute bonuses to their clients while still maintaining their

good state. However, this may be detrimental to the utility of the insured since remediation measures

may be required afterwards. For these methods to be fully effective, the right choice of parameters is

crucial, as our sensitivity analysis shows. Long-lasting periods of low returns have a strong impact on

the fund because remediation and bonus measures influence the contributor’s payoff.

The remainder of the Chapter is structured as follows. The second section introduces the model frame-

work and explains the processes that take place. The implementation and choice of parameters are given

in the third part. Section 4 covers the numerical analysis. This includes several funding mechanisms and

a sensitivity analysis of the results. Additionally, the accounts of the insured at interim time points and

capital market scenarios are studied. The final section discusses the results and concludes.

3.2 Model Framework

To properly control for actuarial gains and losses over time, a scenario-based stochastic approach seems

natural. By performing numerical simulations, we examine how the accounts of members evolve over

time. For this, we look at an individual model contributor in a multi-period setting and take the simplified

balance sheet approach comparable to that in Eling and Holder (2013) or Broeders et al. (2011), which

is depicted in Figure 3.1.

Assets Liabilities

Assets At

Remediation measures Kt

Accumulated Contributions Ct

Bonuses Bt

Figure 3.1: Simplified balance sheet in time t.

The annual contributions of an individual insured in time periods t = 0, . . . , T increase the pension

assets (At) and lead to a liability changing over time (cf. Figure 3.2) linked directly to the contribu-

3The work in this thesis mostly applies to defined contribution pension funds. Other schemes, in particular defined
benefit ones, exist in Switzerland as well.
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tions (Ct). Additional contributions (cf. remediation measures Kt introduced below) are accounted to

the asset side while bonus payments (Bt) account for the liabilities. We model a pension fund by simu-

lating the assets of the fund limited to an individual contributor. The assets follow a stochastic process

for the rates of return at time t. The liabilities evolve according to the legally fixed minimum interest

rate rPL.

For every year that has passed, the fund compares how assets and liabilities relate to each other. This

involves looking at the funding ratio Ft = (At + Kt) / (Ct + Bt) (Equation (3.8)), which is the key

regulatory measure for Swiss pension funds (BVV2, Art. 44). Depending on Ft being higher or lower

than some predefined threshold, actions are modeled along predefined mechanisms (cf. Sections 3.2.2

and 3.3.3).

Time Period t + 1

Contributions

Assets

Add. contrib.

Bonus

Liabilities

Funding ratio

Ct

At

Kt

Bt

Lt

Ft

0 +

Ct

At

Kt

Bt

Lt

Ft

− t +

Ct+1

At+1

Kt+1

Bt+1

Lt+1

Ft+1

−(t + 1)+

CT

AT

KT

BT

LT

FT

− T

Ct+
+ct+1 ·erPL

At+
+ct+1 ·ert+1

Kt+
+kt+1 ·ert+1

B(t+1)−
·erPL +bt+1

Lt+
+ct+1 ·erPL

L(t+1)−
+bt+1

. . .

. . .

. . .

. . .

Figure 3.2: Illustration of the contract variables and the cash flows during the saving period along the
contract timeline from time t = 0 until T . In our model t+ denotes the beginning of period t + 1
and (t + 1)− the end of it. Contributions are credited at the beginning of the period (t+) just after the
calculation of the funding ratio in t. Bonus payments are granted in (t + 1)− and thereafter the end-
of-period funding ratio is evaluated (time t + 1). For the description of the variables see Sections 3.2.1
and 3.2.2.

3.2.1 Contributions, Asset Evolution and Funding Ratio

We consider an active insured at age x contributing during its working time. The time horizon covers

the T periods, i.e., times t = 0, . . . , T . Adjustments of the key variables occur at the beginning and end

of a period, i.e., in t+ and (t + 1)−.

Basic Contributions The annual contributions ct depend on the salary and conversion factors linked

to the age of the insured. From the salary St+1 in period t + 1, the coordinated period salary Ŝt+1 is

calculated by subtracting the coordination deduction Scd
t . Only the part between a minimum value Ŝmin

t

and a maximum Ŝmax
t falls under the legal minimum rates (BVG, Art. 8). The coordinated salary in

period t + 1, t = 0, . . . , T − 1, is

Ŝt+1 = min
{

max
{

St+1 − Scd
t ; Ŝmin

t

}

; Ŝmax
t

}

. (3.1)
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The contribution ct+1 is determined by multiplication of the coordinated salary Ŝt+1 with a contribution

rate fS
x,t, depending on the age x and the time t = 0, . . . , T − 1 (BVG, Art. 16), i.e.,

ct+1 = fS
x,t · Ŝt+1. (3.2)

Contributions are assumed to be paid at the beginning of each period, i.e., for period t + 1, the contri-

bution ct+1 is paid at time t+. While in practice the payment of ct+1 is split up between employees and

employers, we do not distinguish the origin of the contributions in our model. The member is assumed

to be concerned by the total account value (see also Section 3.2.3). During every period, the member

receives a minimum interest rate rPL on the sum of its contributions Ct. The value at time t + 1 is

Ct+1 = (Ct + ct+1) · e
rPL , (3.3)

with C0 = 0.

Asset Evolution The assets At represent the funds that are available for paying the liabilities towards

the members. They consist of the paid contributions and the returns from investing them. As for Ct, ct+1

is added to the assets at the beginning of each period, i.e.,

At+ = At + ct+1, (3.4)

with A0 = 0. The fund must be self-financing with the contributions and capital market earnings. To

simulate the return from the capital market, a basic stock model is applied. We use a geometric Brownian

motion with drift µB and volatility σB, i.e.,

dAt = µBAtdt + σBAtdWt, (3.5)

where W = (Wt)t≥0 is a standard Brownian motion (Björk, 2004). The return in period t + 1, then, is

rt+1 = ln

[

At+1

A+
t

]

= µB −
σ2
B

2
+ σB ·N0,1, (3.6)

with N0,1 a standard normally distributed random variable. At the end of the period, the assets At+1

are

At+1 = At+ · ert+1 = (At + ct+1) · e
rt+1 . (3.7)

Funding Ratio The funding ratio is determined by dividing the total assets, i.e., equity and addi-

tional contributions over the liabilities. Additional contributions may be due in case of periods with

underfunding (cf. Section 3.2.2). The funding ratio therefore is

Ft+1 =
At+1 + Kt+1

Lt+1
=

At+1 + Kt+1

Ct+1 + Bt+1
, (3.8)

where the liabilities Lt+1 equal the contributions Ct+1 and surpluses Bt+1. Bonuses are distributed when

the fund is in good health (cf. Section 3.2.2).

The funding ratio is calculated at the end of period t+ 1. Depending on its value, it is decided whether

bonuses can be distributed or whether additional contributions need to be charged. A value below 100%

corresponds to underfunding, while Ft+1 > 100% means overfunding.
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3.2.2 Monitoring of the Funding Ratio and Funding Mechanisms

When the funding ratio exceeds a certain threshold, the surpluses can be distributed to the members.

In the case of underfunding, remediation measures may be necessary. The concept of using boundaries

for the funding ratio, that we apply therein, has been discussed earlier by, e.g., Gerber and Shiu (2003).

In the following, the corresponding mechanisms, that are used in our analysis, are explained.4

Situation of Underfunding and Additional Contributions

We consider a procedure that automatically determines recovery contributions. In practice this is not

an automated process. The board of the fund evaluates the underfunding with consideration of the

fund’s overall situation (e.g., market environment, investment portfolio, characteristics of the members).

If recovery measures have been decided upon, the employers of the insured may also be involved in

covering deficits (BVG, Art. 65d).

Once Ft drops below 100%, the assets do not suffice to meet the obligations. Therefore, the insured may

be requested to pay additional contributions. Additional contributions are paid at the beginning of the

following year. We present two methods for calculating the additional contributions kt+1 in period t+1.

Our first method (UF1) is based on a share z of the funding gap Lt − (At + Kt). This comes into action

once the funding ratio drops below a limit Fmin. Additional contributions at time t+ then are

kt+1 = z · (Lt − (At + Kt)) , (3.9)

where z represents the share of Lt − (At + Kt) to be paid.

The second method (UF2) is based on a Value-at-Risk approach.5 Here, kt+1 is set such that at the

end of the next period, the funding ratio falls below 100% only with probability q. The probability q

is typically a small number. In the Solvency II regulation for private insurances, for example, q is set

to 0.5%. In our sensitivity analyses, we use a 1% to 10% one-year underfunding probability threshold (see

Table 3.3). In our model, realizations of the funding ratio are evaluated through

F̂t+1 (kt+1) =
(At + ct+1) · e

rt+1 + (Kt + kt+1) · e
rt+1

(Lt + ct+1) · erPL
, (3.10)

where rt+1 is a realization of the asset return in the following period. Thus, additional contributions kt+1

must satisfy the equation

V aR1−q

(

1 − F̂t+1

)

= inf
{

x
∣

∣

∣P

(

F̂t+1 (kt+1) < 100% − x
)

≤ q
}

!
= 0, (3.11)

with
!
= denoting that the Value-at-Risk has to be equal to zero. Thus, the equation

inf

{

x

∣

∣

∣

∣

P

(

(At + ct+1) · e
rt+1 + (Kt + kt+1) · e

rt+1

(Lt + ct+1) · erPL
< 100% − x

)

≤ q

}

= 0 (3.12)

4In contrast to life insurance companies, regulations such as Solvency II and the Swiss Solvency Test (SST) do not
apply to Swiss pension funds. The reason why a transfer of these regulations has not been performed yet can be found in
the differences between funds and insurers. In contrast to insurance companies, gains and losses are distributed among the
members. Additionally, the contractual relationship between the member and the pension fund is quite rigid. For example,
employees are automatically affiliated in the pension plan connected to the employer. Due to these characteristics, a
temporary phase of underfunding can be dealt with. Pension funds stay in business and pursue their investment strategies
even when they are underfunded. Also, it is the decision of the board of the fund if, and to what extent, remediation
measures and surplus payments are to be made. This stands in strong contrast to life insurance companies regulated by
market authorities that require strict solvency calculations and adequate capitalization on a year-to-year basis. While there
have been efforts to suggest regulations comparable to Solvency II and the SST for pension funds (see, e.g. Schweizerische
Kammer der Pensionskassen-Experten, 2012; Braun et al., 2011), there are currently no regulations with respect to this.

5Note that in practice, the use of method (UF1) is more common among Swiss pension funds. Furthermore, it is the
board of the fund that ultimately decides on when charging remediation measures as well as on their amount.
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needs to be solved numerically for kt+1.
6 The intuition behind this is that higher additional contribu-

tions kt+1 increase the funding ratio and decrease the probability of financial distress, i.e., the probability

that the funding ratio falls below 100% in the next period. We therefore aim to find the smallest value

for kt+1 for which the probability that the funding ratio falls below 100% (x
!
= 0) is smaller or equal to

a small value q. The contributions kt+1 are added to the assets, but not to the account of the insured.

Because Kt is invested on the capital market, the return in period t + 1 is rt+1. We have

Kt+1 = Kt+ · ert+1 = (Kt + kt+1) · e
rt+1 . (3.13)

Situation of Overfunding and Surplus Distribution

In years where market returns exceed rPL, the assets of the pension fund grow. Part of the surplus can

be distributed to the members (BVG, Art. 68a). Additionally, it is required that the fund holds a reserve

in case of fluctuation of the assets (BVV2, Art. 48e). Therefore, we assume for our base scenario (see,

e.g., the cases shaded in gray in our sensitivity analysis, Table 3.3) that surpluses can only be distributed

once a certain reserve on the liabilities has been accumulated (see the definition of the parameters in

Table 3.1 and Footnote 14 in Section 3.3.3). We assume that a bonus bt+1 is paid out at the end of a

period if F(t+1)− exceeds a limit FL
t+1.

7 Because it represents an obligation, the sum of surpluses Bt+1 is

part of the liabilities. Such payments cause a drop of the funding ratio. We assume that bt+1 is chosen

such that from the threshold FL
t+1, the decrease equals ∆Ft+1. Subsequently, bt+1 is derived from

Ft+1 =
At+1 + Kt+1

Ct+1 + B(t+1)− + bt+1

!
= FL

t+1 − ∆Ft+1. (3.14)

The bonuses Bt grow with the rate rPL and their value at time t + 1 is

Bt+1 = B(t+1)− + bt+1 = Bt · e
rPL + bt+1. (3.15)

While in our model Bt increases with a rate of rPL, this is not required in practice, as bonuses do not fall

under the legal minimum (see, e.g., Avanzi and Purcal (2014)). In the above, we assume that surpluses

are paid out as a lump sum. In practice, it is more common to assign bonuses as increased interest rates

on the insured’s account. The methods can be converted into each other, i.e.,

Lt+1 = (Lt + ct+1) · e
rPL + bt+1 ≡ (Lt + ct+1) · e

rPL+rb = (Lt + ct+1) · e
reff , (3.16)

with

reff = rPL + rb ≥ rPL. (3.17)

In our discussion, we focus on the lump sum payments.

3.2.3 Contributor Valuation

To evaluate the payoff and utility of the members, we use several indicators. To assess the contributor’s

return on its contributions, we use the internal rate of return rc+b+k defined as follows: If the insured

were only to receive the return rc+b+k on its regular contributions, the account value would equal the

6For solving Equation (3.12), we use a numerical root-finding algorithm. A reliable and quick method is, e.g., the
method proposed by Brent (1974).

7This can be compared with the dividend distribution analyzed in Avanzi et al. (2016).
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value of contributions and bonuses minus remediation measures at time T , i.e.,

T
∑

t=1

ct · e
rc+b+k·(T−t+1) !

= CT + BT −KT .
8 (3.18)

To measure the utility, we use the certainty equivalent u−1 (E [u (LT )]). For this, we use a constant

relative risk aversion utility as introduced, e.g., in Broeders et al. (2011),

u(x) =
x1−ρ

1 − ρ
, with ρ > 0, ρ 6= 1. (3.19)

In order to take the amounts paid in the various cases (regular contributions and irregular remediation

measures) into account in our analysis, we focus on the relative certainty equivalent given by

u−1 (E [u (LT )])

CT + E [KT ]
. (3.20)

3.3 Implementation and Parameterization

In order to simulate the course of the assets we use Monte Carlo simulations. The results are obtained

using N = 100 000 realizations in every period. We first introduce a reference case setting with the

starting values for the various model parameters. The parameters are summarized in Table 3.1 and

described in the following.

Parameter Variable Value

Number of periods T 40

Legislation

Coordination deduction (at time t = 0) Scd
0 CHF 24 675

Minimum coordinated salary (t = 0) Ŝmin
0 CHF 3 525

Maximum coordinated salary (t = 0) Ŝmax
0 CHF 59 925

Total contribution rate of age class 25 – 34 fS
x,t 7%

Total contribution rate of age class 35 – 44 fS
x,t 10%

Total contribution rate of age class 45 – 54 fS
x,t 15%

Total contribution rate of age class 55 – 65 fS
x,t 18%

Salary growth rate rS 1%
Minimum interest rate rPL 1.25%
Risk-free interest rate rf 1%

Capital market

Drift of the geometric Brownian motion process µB 3.0%
Volatility of the geometric Brownian motion process σB 6.0%

Pension fund governance

Minimum funding ratio Fmin 100%
Proportion of missing assets to be paid z 90%
Quantile for additional contributions q 1%
Upper bound for distributing surpluses FL

t+1 ≡ FL 110%
Difference of bonus bounds ∆Ft+1 ≡ ∆F 2%

Utility of the member

Risk aversion ρ 30

Table 3.1: Input parameters for the reference case.

8While the internal rate of return is commonly used in practice, it has certain drawbacks. Those include, among others,
assumptions on the reinvestment. For further details, see e.g. Lorie and Savage (1955).

33



The Impact of Pension Funding Mechanisms on the Stability and the Payoff from Swiss DC Pension Schemes

3.3.1 Legislation

We consider one type of insured working from age 25 until retirement at 65, corresponding to T = 40

working years. Their salary starts at CHF 55 000 (first period) and grows linearly to CHF 82 300 (present

value), corresponding to the Swiss average at time zero. Additionally, the salary grows with a rate

of rS = 1% per year in order to reflect the increase of salaries related to the increase of prices.9 The pen-

sion fund contributions are set by the legislator. The coordination deduction Scd
0 for 2016 is CHF 24 675.

The minimum and maximum coordinated salaries Ŝmin
0 and Ŝmax

0 are CHF 3 525 and CHF 59 925 (BVV2,

Art. 5). They are adapted over time with the rate rS. The contribution factor fS
x,t changes with the age

of the contributor. We consider total contributions, i.e. the factors correspond to the contributions by

employers and employees.10 Since the salary St and the contribution rates fS
x,t grow with age and time, ct

is higher in later years. For 2016, the minimum interest rate rPL is 1.25% (BVV2, Art. 12).11 We first

use this as a constant value as we do for the distribution of the capital market returns, since the general

interest environment remains unchanged. When studying the capital market scenarios in Section 3.4.4,

we allow for variations in rPL, however (see also Footnote 15). For the risk-free interest rate rf, a value

of 1% is chosen. This is related to rS, the increase in prices. It follows that
∑40

t=1 ct/
∑40

t=1 Ŝt is constant

and equals 13.71%. When no bonuses are paid, a fixed value for rPL leads to constant liabilities at

retirement, i.e. L40 = 361 212.

3.3.2 Capital Market

To calibrate the parameters of the asset process, the LPP-40 sub-index of the Pictet LPP 2000 index

is utilized. With an equity portion of 40%, this index is close to the average investments of larger

pension funds in Switzerland. It also contains approximately 40% of foreign currency investments.12 We

parametrize a geometric Brownian motion based on the annualized average monthly performance from

January 2000 to December 2015, i.e., we calculate the index performance using monthly data and choose

the (rounded) annualized values of µB = 3% for the drift and σB = 6% for the volatility.13

3.3.3 Pension Fund Governance and Utility of the Members

If Ft falls below Fmin, the fund can ask for remediation measures. In the reference case, we use a

lower limit of Fmin = 100% (legal minimum). For our first method, a proportion z = 90% of Lt −At

is used. The purpose of this is to reduce the one-time capital outlay for the members and spread the

remediation expenses over a longer time. The second method is based on a Value-at-Risk approach. The

additional payment kt is set such that in the following period, the fund is underfunded with a probability

of q = 1%. Once the funding ratio exceeds FL
t+1, a bonus can be distributed. We use a constant upper

limit of FL
t+1 ≡ FL = 110%14 and assume that surpluses are distributed until the funding ratio has

9This corresponds to the historical salary changes also found in the adaptations of the BVV2 salary boundaries.
10In our analysis, we do not differentiate between the sources of the contributions, but we focus on the total payoff at

time T .
11In our work we use the term erPL for crediting the minimum guaranteed interest rate. This represents an approximation

in continuous time of the value 1 + rPL in discrete time that is required by law. The minimum interest rate is adjusted
periodically and equals 1% for the year 2018.

12The composition of the index is 60% bonds and 40% equities, with about 40% of the investments made in foreign
currencies. For further information, see https://www.group.pictet/corporate/en/home/institutional_investors/lpp_

indices/lpp2000.html, September 2016.
13We chose to use annualized values based on the monthly observations to have a larger statistical basis (192 observations).

The annualized expected return is calculated from the monthly expected return by multiplying by 12. The corresponding
volatility is obtained from multiplication by

√

12. For comparison, when calculating the performance on the base of the
only 16 annual data points, we find that the expected return remains unchanged and yields 3% while the volatility is
about 2% higher in the considered period.

14In our base case, bonuses can only be distributed if the funding ratio exceeds 110%, i.e. when reserves of 10% on top
of the value of the liabilities are accumulated. This reference scenario corresponds to the target values mostly observed in
practice (5% to 10%). In our sensitivity analysis, we vary FL = 110% through very low and high values ranging from 102%
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(a) Quantiles of the funding ratio Ft in case (A)
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(b) Quantiles of the funding ratio Ft in case (B)

Figure 3.3: Illustration of the funding ratio Ft in the cases (A) (no additional contributions, no bonus
payments) and (B) (additional contributions, no bonus payments). The graphs depict the 1%, 50%
and 99% quantiles of Ft. The parameters are as in the reference case given in Table 3.1.

decreased to FL − ∆F = 108%, corresponding to ∆Ft+1 ≡ ∆F = 2%. In the insured’s utility, we use a

risk aversion factor of ρ = 30.

3.4 Numerical Analysis and Discussion

3.4.1 Funding Mechanisms: Impact over Time

We assess the impact of remediation measures and surplus distributions by analyzing Ft, kt and bt for

• case (A), with neither additional contributions nor surplus distribution,

• case (B), with only additional contributions, and

• case (C), with both remediation measures and surplus distribution.

The additional contributions are calculated along method (UF1). The parameters are as in Table 3.1.

Funding Ratios and Remediation Measures In Figure 3.3, the 1%, 50% and 99% quantiles of Ft

are given for the cases (A) and (B). In Figure 3.3(a) (case A), the 1% quantile of Ft always stays

below 100%. It starts at approximately 90% and subsequently drops to about 80%. The 50% quan-

tile q50%(Ft) starts at almost 100% and grows to about 130% in t = 40. This drift is related to the

difference between µB and rPL. In case (B), in Figure 3.3(b), the additional contributions only affect

the 1% quantile, now reaching almost 100% in T . Remediation measures lead to an improvement of

underfunding situations, while the other quantiles remain unchanged. The 99% quantile grows from

nearly 120% to 220% making the distribution of surpluses possible.

Expected Remediation Measures For case (B), Figure 3.4 shows the development of kt and Kt.

Figure 3.4(a) shows the expected present value of kt and the 99% quantile. The 99% quantile of the

additional contributions grows and reach more than CHF 10 000 at time T . The present expected value

stays close to zero. As in Figure 3.3, the fund is always overfunded in the upper 50% of all cases.

For the present value of Kt (see Figure 3.4(b)), the 99% quantile reaches about CHF 50 000. The

shape of the q99%
(

Kt · e
−(t−1)rf

)

curve follows from the additional contributions being credited with

the returns rt+1. The expected value exceeds zero (see line 7 in Table 3.3 from the sensitivity analysis

to 118% corresponding to reserves of 2% to 18% of the liabilities (see Table 3.3).
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(a) Present value and 99% quantile of the additional
contributions kt in case (B)
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(b) Present value and 99% quantile of the sum of addi-
tional contributions Kt in case (B)

Figure 3.4: Illustration of the discounted remediation measures kt and their sum Kt in case (B) (addi-
tional contributions, no bonus payments). The graphs depict the expected present value and the 99%
quantile of kt and Kt. The parameters are as in the reference case in Table 3.1.

in Section 3.4.2). The expected remediation measures discounted to time zero E
[

kt · e
−(t−1)rf |kt > 0

]

amount to CHF 1 520. They are levied four times on average (cf. Table 3.3). The overall expected

payments are approximately CHF 6 080.

Surplus Distribution For case (C), Figure 3.5 depicts the 1%, 50% and 99% quantiles of Ft from

periods 1 to 40. Distributing surpluses leads to the 1% quantile q1%(Ft) being around 90%. The 99%

quantile q99%(Ft) lies at 110%, which equals FL. The 50% quantile q50%(Ft) starts at approximately 100%

and converges to about 107% (below FL − ∆F = 110% − 2% = 108%).
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Figure 3.5: Illustration of the funding ratio Ft in case (C) (additional contributions, bonus payments).
The graph depicts the 1%, 50% and 99% quantiles of Ft. The parameters are as in the reference case
given in Table 3.1.

Additional Contributions and Bonus Payments Figure 3.6 depicts the expected present value and

the 99% quantile of kt and bt. The expected present value of kt exceeds CHF 3 000 at time T , whereas bt

reaches approximately CHF 8 000. The surpluses that are paid out on average are thus approximately

double of what needs to be paid in remediation cases. A similar conclusion can be drawn for the quantile

values where the surpluses of best cases are twice the value of remediation measures. Due to the drift

of the investment process, they increase exponentially. In T , E
[

kt · e
−(t−1)rf

]

reaches almost CHF 250

while E [bt · e
−t rf ] is about CHF 10 000. This matches the observations made regarding the funding ratio

where q50%(Ft) is around 107%. With the given bonus bounds, µB = 3% and rPL = 1.25%, the fund is
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likely to be overfunded, i.e. bt grows faster than kt. This causes higher volatility in the payout stream,

i.e., despite bonuses in some years, additional contributions need to be made in others (cf. discussion in

Section 3.4.2).

0 10 20 30 40

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Time t

A
d
d
it
io

n
al

 c
on

tr
ib

u
ti
on

s 
k
t

Expected value  E [k te
−(t−1)rf]

99% quantile  q99%(k te
−(t−1)rf)

(a) Present value and 99% quantile of the additional
contributions kt in case (C)
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Figure 3.6: Illustration of the discounted extra contributions kt and the bonus payments bt in case C (ad-
ditional contributions, bonus payments). The graphs depict the expected present value as well as the 99%
quantile of kt and bt. The parameters are as in the reference case given in Table 3.1.

3.4.2 Sensitivity Analysis

We study key indicators at time T = 40 from the contributor’s and the fund’s perspectives and analyze

how sensitive the results are to parameter changes. In Table 3.3, the columns labeled 1 to 7 contain the

input values, columns 8 to 13 the insured’s perspective, 14 to 19 the funding levels and 20 to 25 the

surplus distribution and the remediation measures. A detailed explanation of the columns is given in

Table 3.2.

In the first line of Table 3.3, case (A) with neither remediation measures nor surplus distributions is

analyzed. Rows 2 to 11, show case (B) with additional contributions. This includes changing Fmin for

method (UF1) and q for (UF2). Lines 12 to 32 cover case (C) with remediation measures and bonus

payments. There, FL is altered first. Next, we vary the difference of bonus bounds ∆F . Subsequently,

the parameters Fmin and q are changed as for case (B). When changing one variable, the others are kept

constant (cf. Table 3.1).

Item Description

1 Case

(A) no additional contributions, no bonus payments, (B) only

additional contributions, (C) additional contributions and bonus

payments (Section 3.4.1)

2 UF (indicator)
Calculation method for remediation measures: 1 = percentage of

funding ratio, 2 = Value-at-Risk approach (Section 3.2.2)

3 Fmin
Minimum funding ratio targeted (Equation (3.8))

4 q
Probability for the funding ratio to fall below 100% within one

year (Equation (3.11))

5 Bonus (indicator)
Use of surplus distribution: 0 = no bonus payments, 1 = bonus

is distributed (Section 3.2.2)
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6 FL Upper bound for distributing bonus (Equation (3.14))

7 ∆F Difference of bonus bounds (Equation (3.14))

8 E [L40] Expected liabilities in t = 40

9 σ[L40]
E[L40]

Relative volatility of L40

10 γ [L40] Skewness of L40

11 u−1 (E [u (L40)]) Certainty equivalent in t = 40 (Equation (3.19))

12 u−1(E[u(L40)])
C40+E[K40]

Relative certainty equivalent in t = 40

13 E [rc+b+k] Internal rate of return (Equation (3.18))

14 E [Ft] Expected funding ratio

15 E [q1% (Ft)] Expected 1% quantile of the funding ratio

16 E [q50% (Ft)] Expected 50% quantile of the funding ratio

17 E [q99% (Ft)] Expected 99% quantile of the funding ratio

18 q1%

(

∑40
t=1 1{Ft<1}

)

1% quantile of the number of years in underfunding

19 q50%

(

∑40
t=1 1{Ft>FL}

)

50% quantile of the number of years with Ft exceeding FL

20
E[

∑40
t=1 kt·e

−(t−1)rf ]
∑40

t=1 ct·e
−(t−1)rf

Ratio of the expected present sum of additional contributions

over the sum of present regular contributions

21 E

[

∑40
t=1 1{kt>0}

]

Expected number of years with remediation measures required

22 E
[

kt · e
−(t−1)rf |kt > 0

]

Expected present value of remediation measures when required

23
E[

∑40
t=1 bt·e

−t rf ]
∑40

t=1 ct·e
−(t−1)rf

Ratio of the expected present sum of distributed surpluses over

the sum of present regular contributions

24 E

[

∑40
t=1 1{bt>0}

]

Expected number of years with surpluses required

25 E [bt · e
−t rf |bt > 0] Expected present value of distributed surpluses when required

Table 3.2: Description of the items in Table 3.3.

Impact of Minimum Funding Ratio Fmin For case (A), the mean of the effective return E [rc+b+k]

in column 13 (Table 3.3) equals the minimum interest rate rPL = 1.25%. Introducing remediation

measures according to (UF1) in case (B) leads to higher overall payments. Since kt is not credited to

the liabilities, E [rc+b+k] decreases from 1.16% for a lower boundary of Fmin equal to 90% down to 1.10%

for Fmin = 100%. For the additional contributions, a lower value for Fmin leads to fewer remediation

payments (column 21). The average amount kt paid is highest for a low value of Fmin and decreases as the

boundary is raised (column 22). Column 20 contains the ratio E[
∑40

t=1 kt · e
−(t−1)rf ]/

∑40
t=1 ct · e

−(t−1)rf :

lower values of Fmin lead to lower additional contributions, ranging from 2.6% for Fmin = 100% to 1.5%

for Fmin = 90%. While there are considerable changes in the amount and frequency of additional

contributions, E[Ft] is nearly constant at approximately 1.20.

Value-At-Risk Approach For the Value-at-Risk approach (UF2) in case (B), the sensitivity is more

important. The remediation measures resulting from 1 − q increasing from 90% up to 99% are higher
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than for (UF1). Columns 21 and 22 show that additional contributions are more frequent. The payments

remain at a similar level as for high values of Fmin. The E

[

∑40
t=1 kt · e

−(t−1)rf
]

/
∑40

t=1 ct · e
−(t−1)rf ratio

goes up to 8%. Due to the increased contributions, Ft increases too. With q decreasing from 10% to 1%,

the mean of Ft grows from 1.24 to 1.29.

Impact of the Upper Distribution Limit FL In case (C), significantly higher effective returns are

observed. Changing FL from 102% to 118% leads to fewer bonus payments (column 24). Since bonuses

on average decrease by more than CHF 1 000, the ratio E

[

∑40
t=1 bt · e

−t rf

]

/
∑40

t=1 ct · e
−(t−1)rf decreases

too. Meanwhile, the amount and the frequency of additional contributions decrease. For E[rc+b+k], a

higher threshold for surplus distributions leads to a decrease. Overall, E[Ft] rises together with FL.

Bonus Bounds ∆F As seen in columns 23 to 25, increasing ∆F from 0.01 to 0.06 leads to a strong in-

crease in average bonuses. While the expected number of payments decreases, a growth of about 25% take

place in E

[

∑40
t=1 bt · e

−t rf

]

/
∑40

t=1 ct · e
−(t−1)rf . Due to larger amounts being distributed, remediation

measures become higher and more frequent. The expected return E[rc+b+k] and the certainty equiv-

alent u−1 (E [u (L40)]) increase. While ∆F = 0.01 leads to a certainty equivalent that equals approxi-

mately CHF 420 000, a change to ∆F = 0.06 leads to an increase in u−1 (E [u (L40)]) of about CHF 14 000.

Insured Perspective When raising the upper bound for distributing bonuses FL, the certainty equiv-

alent u−1 (E [u (L40)]) decreases together with E[rc+b+k] by more than 20% (Table 3.3, lines 12 – 16).

Insureds should thus prefer lower values of FL, coming along with regular bonus payments. This is

supported by the relative certainty equivalent being the highest for FL = 102%. Contrary movements

follow from varying ∆F . While u−1 (E [u (L40)]) grows together with it, the relative certainty equiv-

alent (column 12) decreases by approximately 5%. This is due to higher bonus payments causing an

increased need for remediation measures in years with lower market returns.

In fact, members should prefer that no bonuses are distributed, as can be seen in Figure 3.7. In this, the

relative certainty equivalent is depicted depending on the difference of bonus bounds ∆F and the upper

boundary for distributing bonuses FL in case C with Fmin = 100%. The different colors correspond

to the values of the relative certainty equivalent u−1 (E [u (L40)]). In this, darker colors represent a

higher relative certainty equivalent and lighter ones a lower one. As the graph shows, the influence

of FL is bigger than that of ∆F as the changes when moving horizontally on the graph are much larger

than the ones when moving vertically. This is consistent with the results of the sensitivity analysis in

Table 3.3 (lines 12 – 22). Overall, it can be seen that the relative certainty equivalent is larger for smaller

values of the upper bound FL. Therefore, members should prefer that no bonuses are distributed, as this

gives them the highest relative certainty equivalent. It can thus be said, that the common belief of clients

profiting from surplus distributions is a fallacy. As we can see, the benefit from keeping additional funds

as protection against times with lower capital market returns, is higher than the one from distributing

them to the insureds. Pension funds should therefore put more stress on accumulating reserves rather

than distributing funds to their clients.

Impact of Remediation Measures on Surpluses Varying Fmin, the changes for the additional

contributions kt correspond to case (B). With an increasing value for Fmin, additional payments become

lower but more frequent. Consequently, the ratio E

[

∑40
t=1 kt · e

−(t−1)rf
]

/
∑40

t=1 ct · e
−(t−1)rf of addi-

tional over regular contributions increases with a higher threshold Fmin inducing an increase in E [L40].

Bonuses are, on average, distributed at approximately 1.3 more points in time. Together with an increase

of E [bt · e
−t rf |bt > 0] by approximately 2%, E

[

∑40
t=1 bt · e

−t rf

]

/
∑40

t=1 ct · e
−(t−1)rf grows by nearly 15%

from one extreme to the other. For the Value-at-Risk approach, we see that for low values of q, both kt
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Figure 3.7: Illustration of the relative certainty equivalent depending on the difference of bonus
bounds ∆F and the upper bound FL for distributing bonuses.

and bt grow considerably. For q = 2.5%, E

[

∑40
t=1 bt · e

−t rf

]

/
∑40

t=1 ct · e
−(t−1)rf exceeds 150%. The

remediation measures grow similarly, reaching a ratio of approximately 249.1% for q = 1%. This follows

from the additional contributions causing a rise of the funding ratio. Subsequently, Ft often exceeds FL

and the additional contributions are redistributed as bonuses, leading to an increase in the certainty

equivalent of approximately 80%. As the relative certainty equivalent drops down to almost 70%, this is

unfavorable for insureds.

3.4.3 Interim Valuation

In today’s working environment, employees change their jobs more frequently than before (see e.g.

Cosandey, 2014). Often this is linked to a change of the pension fund associated with the employer.

For the fund, remediation is most important. If contributors leave, they are entitled by law to receive

their regular contributions and the minimum interest rate that has been paid. Remediation measures

are only credited to the assets At but not to the accounts and remain with the fund. For our model,

bonuses are credited to the accounts of the members and therefore remain with the insured when leaving.

Exceptions may apply in the case of a partial liquidation (see, e.g., FZG, Art. 23), where bonuses could

be canceled by required remediation measures. We examine the results after 10 years (insured aged 35)

and 20 years (age 45) and compare them with the ones at retirement for the scenarios (A), (B) and (C).

Numerical results are reported in Table 3.4.

Valuation at Time t = 10 For cases (B) and (C) in t = 10, E [Kt] stays below CHF 1 000. Since Ct

is no more than CHF 25 000 at that time, this can be considered a low amount. Compared to t = 40,

less than 10% of E [Kt] is paid in the first ten years in case (B). Introducing surpluses in (C) leads

to a small increase of the remediation measures. Simultaneously, the ratio of the expected sums of

additional contributions in t = 10 and 40 decreases to less than 3% (0.85 vs. 32.10). The bonuses

lead to a growth in the expected liabilities of more than CHF 2 000, more than twice the amount of

the remediation measures. The ratio E [Lt] /(Ct + E [Kt]) grows and is larger than one. The same

holds for u−1 (E [u (Lt)]) /(Ct + E [Kt]). The distribution of surpluses also leads to higher remediation

measures and to a higher volatility causing the relative certainty equivalent to be almost 5% lower

than E [Lt] / (Ct + E [Kt]) (1.008 vs. 1.054).

Valuation at Time t = 20 In case (B), E [Kt] exceeds CHF 2 000, corresponding to an increase by

a factor of three (against 670 in t = 10). They reach approximately 30% (2.11 vs. 7.69) of the value

40



The Impact of Pension Funding Mechanisms on the Stability and the Payoff from Swiss DC Pension Schemes

Cases and parameters Valuation of final payoff in T and effective returns
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1 A 361.2 0 361.2 1.000 1.25

2 B 1 0.90 0 361.2 0 361.2 0.988 1.16
3 B 1 0.92 0 361.2 0 361.2 0.986 1.15
4 B 1 0.94 0 361.2 0 361.2 0.983 1.13
5 B 1 0.96 0 361.2 0 361.2 0.981 1.12
6 B 1 0.98 0 361.2 0 361.2 0.980 1.11
7 B 1 1.00 0 361.2 0 361.2 0.979 1.10

8 B 2 10.0 0 361.2 0 361.2 0.961 0.96
9 B 2 5.0 0 361.2 0 361.2 0.954 0.90
10 B 2 2.5 0 361.2 0 361.2 0.948 0.85
11 B 2 1.0 0 361.2 0 361.2 0.938 0.76

12 C 1 1.00 1 1.02 0.02 623.9 15.0 0.80 504.6 1.100 3.37
13 C 1 1.00 1 1.06 0.02 544.3 15.1 0.93 450.7 1.089 2.99
14 C 1 1.00 1 1.10 0.02 501.7 15.2 1.04 423.2 1.076 2.74
15 C 1 1.00 1 1.14 0.02 475.0 15.1 1.13 407.0 1.063 2.54
16 C 1 1.00 1 1.18 0.02 455.7 14.9 1.22 396.4 1.050 2.36

17 C 1 1.00 1 1.10 0.01 495.2 15.1 1.06 419.8 1.075 2.69
18 C 1 1.00 1 1.10 0.02 501.7 15.2 1.04 423.2 1.076 2.74
19 C 1 1.00 1 1.10 0.03 508.3 15.3 1.01 426.2 1.076 2.78
20 C 1 1.00 1 1.10 0.04 514.8 15.4 0.99 429.0 1.074 2.82
21 C 1 1.00 1 1.10 0.05 521.6 15.5 0.96 431.6 1.072 2.86
22 C 1 1.00 1 1.10 0.06 528.6 15.7 0.93 434.0 1.068 2.90

23 C 1 0.90 1 1.10 0.02 483.7 15.6 1.10 409.9 1.088 2.74
24 C 1 0.92 1 1.10 0.02 487.4 15.5 1.09 412.9 1.086 2.73
25 C 1 0.94 1 1.10 0.02 491.5 15.4 1.08 415.9 1.083 2.73
26 C 1 0.96 1 1.10 0.02 496.0 15.3 1.06 419.2 1.080 2.73
27 C 1 0.98 1 1.10 0.02 499.9 15.2 1.05 421.9 1.077 2.74
28 C 1 1.00 1 1.10 0.02 501.7 15.2 1.04 423.2 1.076 2.74

29 C 2 10.0 1 1.10 0.02 581.9 14.7 0.88 479.2 1.044 2.87
30 C 2 5.0 1 1.10 0.02 685.0 16.2 0.83 534.7 0.991 3.09
31 C 2 2.5 1 1.10 0.02 903.2 19.3 0.86 635.8 0.888 3.43
32 C 2 1.0 1 1.10 0.02 1 430.6 23.2 0.90 854.3 0.742 4.04

Table 3.3: Valuation of final payoff and effective returns in cases (A), (B) and (C) (see Section 3.4.1).
The parameter values are as in Table 3.1.
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Funding levels, bonuses and additional contributions
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1 1.17 0.84 1.14 1.57 0 25

2 1.19 0.90 1.15 1.58 0 26 1.5 0.5 6.41
3 1.19 0.90 1.15 1.58 0 26 1.8 0.8 5.01
4 1.20 0.91 1.16 1.58 0 26 2.0 1.2 3.87
5 1.20 0.92 1.16 1.58 0 27 2.3 1.8 2.93
6 1.20 0.93 1.16 1.58 0 27 2.5 2.7 2.16
7 1.20 0.93 1.16 1.58 0 27 2.6 4.0 1.52

8 1.24 0.98 1.19 1.61 0 31 4.9 6.6 1.74
9 1.26 1.00 1.21 1.62 0 33 5.8 7.4 1.84

10 1.27 1.01 1.22 1.63 0 35 6.7 8.1 1.94
11 1.29 1.03 1.24 1.65 0 36 8.0 8.9 2.11

12 0.98 0.88 1.00 1.02 10 19 31.0 15.6 4.64 73.7 18.8 9.14
13 1.01 0.90 1.03 1.05 4 15 16.8 10.9 3.60 51.4 14.7 8.14
14 1.04 0.91 1.05 1.09 1 11 10.3 7.9 3.04 39.4 11.6 7.91
15 1.07 0.91 1.07 1.12 0 9 7.0 6.2 2.64 31.9 9.4 7.92
16 1.09 0.92 1.09 1.15 0 7 5.2 5.2 2.33 26.6 7.7 8.03

17 1.05 0.91 1.06 1.09 1 12 9.4 7.4 2.94 37.6 12.6 6.96
18 1.04 0.91 1.05 1.09 1 11 10.3 7.9 3.04 39.4 11.6 7.91
19 1.04 0.90 1.05 1.09 2 11 11.2 8.3 3.13 41.3 10.8 8.94
20 1.03 0.90 1.05 1.09 2 10 12.2 8.8 3.23 43.1 10.0 10.04
21 1.03 0.90 1.04 1.09 2 9 13.2 9.3 3.33 45.0 9.4 11.20
22 1.03 0.90 1.03 1.09 3 9 14.4 9.7 3.45 47.0 8.8 12.43

23 1.03 0.87 1.04 1.09 1 10 5.0 1.0 11.21 34.4 10.3 7.78
24 1.03 0.88 1.05 1.09 1 10 6.1 1.5 9.17 35.4 10.6 7.81
25 1.04 0.89 1.05 1.09 1 11 7.3 2.3 7.37 36.6 10.9 7.84
26 1.04 0.90 1.05 1.09 1 11 8.6 3.5 5.77 37.8 11.2 7.87
27 1.04 0.90 1.05 1.09 1 11 9.8 5.2 4.33 38.9 11.5 7.90
28 1.04 0.91 1.05 1.09 1 11 10.3 7.9 3.04 39.4 11.6 7.91

29 1.06 0.94 1.07 1.09 0 17 31.2 16.8 4.34 61.9 16.7 8.67
30 1.06 0.96 1.09 1.09 0 21 57.0 37.5 3.54 90.9 20.7 10.24
31 1.07 0.98 1.11 1.11 0 26 112.7 39.0 6.74 152.3 25.4 13.96
32 1.07 1.00 1.13 1.13 0 31 249.1 39.0 14.89 301.0 30.7 22.89

Table 3.3: Valuation of final payoff and effective returns in cases (A), (B) and (C) (see Section 3.4.1).
The parameter values are as in Table 3.1 (continued).

42



The Impact of Pension Funding Mechanisms on the Stability and the Payoff from Swiss DC Pension Schemes

C
as

e

C
t
·e

−
t
r
f

(i
n

th
ou

sa
n
d
s)

E
[K

t
·e

−
t
r
f
]

(i
n

th
ou

sa
n
d
s)

E
[L

t
·
e−

t
r
f
]

(i
n

th
ou

sa
n
d
s)

C
t

(i
n

th
ou

sa
n
d
s)

E
[K

t
]

(i
n

th
ou

sa
n
d
s)

E
[L

t
]

(i
n

th
ou

sa
n
d
s)

E
[L

t
]

C
t
+
E
[K

t
]

u
−

1
(E

[u
(L

t
)]
)

C
t
+
E
[K

t
]

t = 10 A 23.8 0 23.8 26.3 0 26.3 1 1
B 23.8 0.61 23.8 26.3 0.67 26.3 0.975 0.975
C 23.8 0.77 25.9 26.3 0.85 28.6 1.054 1.008

t = 20 A 65.4 0 65.4 79.9 0 79.9 1 1
B 65.4 1.73 65.4 79.9 2.11 79.9 0.974 0.974
C 65.4 3.43 77.7 79.9 4.18 94.9 1.129 1.032

t = 40 A 242.1 0 242.1 361.2 0 361.2 1 1
B 242.1 5.16 242.1 361.2 7.69 361.2 0.979 0.979
C 242.1 21.52 336.3 361.2 32.10 501.7 1.276 1.076

Table 3.4: Simulation results for cases (A), (B) and (C) after 10, 20 and 40 years. The parameter values
are as in Table 3.1.

in t = 40. Distributing surpluses increases E [Kt]. While it doubles, the ratio of E [Kt] for t = 20 and 40

decreases to less than 15% (4.18 vs. 32.10). The distribution of bonuses leads to the expected liabilities

gaining approximately CHF 15 000. This is more than six times larger than in time t = 10 (15 vs. 2.3).

Thus, while the remediation measures increase, the distributed bonuses increase even more. This also

holds for E [Lt] / (Ct + E [Kt]) which grows by approximately 7% (1.129 vs. 1.054). In case (B), it stays

at 0.974. The relative certainty equivalent experiences a gain of more than 2% (1.032 vs. 1.008) in

case (C) and is smaller than E [Lt] / (Ct + E [Kt]).

Discussion In early years, the paid amounts remain rather low. As the salary and the conversion factor

grow over time, most of the contributions are paid towards the end of the time frame. The required

amounts in the case of underfunding remain low in early years. Consequently, when changing pension

funds in early years, the effect of contributors not taking remediation measures with themselves remains

fairly low. Distributing surpluses increases the relative certainty equivalent.

3.4.4 Impact of Capital Market Scenarios

Focusing on case (C), we analyze capital market scenarios. We consider the reference case and let the

drift µB follow a predefined path using two scenarios. In the first one, µB equals the reference value in the

first five periods. This is followed by ten periods with high returns of 5% (i.e. 2% increase). Subsequently,

it drops to 1% for another ten periods (mimicking a crisis and a post-crisis environment, see e.g. Europe

after the 2008 financial crisis). For the last five time points it returns to 3%. For scenario two, the course

of µB is mirrored. The minimum interest rate rPL follows µB at a ratio of rPL/µB = 1.25/3 = 41.67%

with a delay of two years. This simulates a delayed adaptation of rPL, reflecting practice, e.g., in

Switzerland, where the minimum interest rate is adapted through a political process (BVG, Art. 15).15

The paths of µB and rPL for both scenarios are depicted in Figure 3.8.

Simulation Results Table 3.5 reports the results. Figures 3.9 to 3.11 illustrate the development of

the means of Ft, kt and bt. The periods of increased and decreased drift µB are shown as light and dark

15In the Swiss system, a commission regularly decides about changes of rPL. For this, they take the market conditions
into account by using a rolling average of government bonds as a benchmark. We mirror this process in our analysis by
adjusting the guaranteed interest rate rPL with a delay of two years at a fixed ratio of rPL/µB .
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(a) µB and rPL for Scenario 1.
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Figure 3.8: Illustration of the drift µB of the geometric Brownian motion and the minimum interest
rate rPL for scenarios 1 and 2.
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Reference case 1.04 7.9 3.04 11.6 7.91 501.7 2.74 15.2 423.2 1.076
Scenario 1 1.04 8.1 3.71 11.8 6.94 468.1 2.17 14.2 403.1 1.041
Scenario 2 1.04 8.2 2.67 11.8 9.26 549.5 3.33 16.1 450.8 1.111

Table 3.5: Simulation results for the reference case (C) and scenarios 1 and 2 (cf. Table 3.1).

Funding Ratio Ft From Figure 3.9(a) it can be seen that during the times of increased market returns,

the funding ratio increases sharply. From approximately 101%, it rises to more than 105%. The decrease

of µB has an immediate impact on Ft which falls below 103%. As in the case of high returns, Ft converges

quickly to this value and subsequently changes only little. The recovery of µB to 3% at the end of the

time frame also leads to the funding ratio returning to 104%. It can be seen in Table 3.5 that, as in the

reference case, E[Ft] equals 104%.

For the second scenario, the development of Ft is analogous. After an increase during the first periods,

the lower drift causes the mean funding ratio to drop to approximately 102.5%. In the subsequent

periods with higher market returns, Ft rises to nearly 106%. With µB returning to 3%, the funding ratio

decreases to 104%. As in the first scenario, Ft reacts quickly to changes in µB and stays nearly constant

once the drift stabilizes. The expected value of Ft over all 40 periods is again equal to 104%. It can thus

be concluded that two periods of high and low capital market returns of similar severity and length do

not influence the expected funding ratio, regardless of how they are ordered.

Remediation Measures kt Figure 3.10 depicts the present values of the remediation measures payed.

In the first case, kt initially stays very low, hardly exceeding CHF 200. This is because the high returns

lead to overfunding. With the subsequent drop of µB, the additional payments escalate quickly, reaching
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(a) Mean of the funding ratio Ft in scenario 1.
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(b) Mean of the funding ratio Ft in scenario 2.

Figure 3.9: Illustration of the means of the funding ratio Ft in scenarios 1 and 2.

almost CHF 2 000. Towards the end of the time frame, the curve first decreases and then rejoins the

course of the reference case, settling at approximately CHF 1 500. The remediation measures for the
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(b) Present value of the remediation measures kt in sce-
nario 2.

Figure 3.10: Illustration of the present values of the remediation measures kt in scenarios 1 and 2.

second scenario grow regularly until the end of period 20, exceeding CHF 500. The successive higher

market returns then cause them to halve. While µB equals 5%, the remediation measures again grow only

slowly. With the drift returning to 3%, kt increases strongly. In time T , its mean is above CHF 2 000.

Comparing the two cases through Table 3.5, the expected number of additional payments is almost the

same, exceeding the reference case. The expected amount that is paid is higher for the first scenario,

reaching more than CHF 3 710. The second scenario is approximately 30% lower than that with the

reference case located almost in the middle between the two cases. The reason for the differences

in E
[

kt · e
−(t−1)rf |kt > 0

]

can be found in the development of the contributor accounts over time. When

capital market returns are low at early time points, the amounts needed to compensate are still relatively

low. At later times, the required amounts are much larger as assets At and contributions Ct are much

higher.

Distributed Surpluses bt For the first scenario, the present value of the bonus payments increases

very little at the beginning, reaching approximately CHF 2 000. The low capital market returns then

cause a slight decline, which is followed by an increase similar to that at the beginning. The recovery

of µB to 3% then leads to a strong increase to about CHF 6 000. For the second case, the payments

during the first 20 periods only reach approximately CHF 1 000. The high returns in later times lead to
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Figure 3.11: Illustration of the present values of the distributed surpluses bt in scenarios 1 and 2.

very high mean surpluses being distributed reaching a maximum of about CHF 7 000. The return of µB

to 3% only leads to a small decrease before the curve proceeds to grow as in the reference case.

While the expected number of bonus payments in Table 3.5 amounts to nearly 12 for both scenarios, the

expected distributed surpluses are a lot higher in the second scenario (CHF 9 260). The reference case

has fewer time points where bonuses are being paid and an expected value for bt that lies between the

two cases.

Liabilities and Certainty Equivalent For the second scenario the expected value of the liabili-

ties E[L40] is higher than for the first, amounting to a difference of more than CHF 80 000. For E [rc+b+k],

there is an increase. The lower remediation measures lead to a growth of the effective return. Both im-

pacts together cause a strong increase of E [rc+b+k]. In the second scenario, the effective return is 3.33%.

The first case only reaches 2.17%. For the certainty equivalent, the results are similar to the expected

liabilities. While the second scenario reaches about CHF 450 000, the first one only exceeds CHF 400 000.

This also holds for u−1 (E [u (L40)]) /(E [C40] + E [K40]). Here, the reference case has a value of 1.076.

The first scenario is close to this, reaching 1.041. The second one reaches 1.111. Analyzing the relative

volatility σ [L40] /E [L40], the first scenario has the lowest fluctuation, with a value of 14.2%. While

obtaining the highest effective returns, the second scenario is also coupled to a high volatility of 16.1%.

3.5 Discussion and Conclusion

Remediation Measures Considering the cases without (A) and with additional contributions (B), we

observe an improvement of funding levels connected with their charging. While the higher quantiles are in

good funding, the 1% quantile remains below 100% if no remediation measures are charged. In case (B),

we see an improvement of this subgroup. Utilizing remediation measures thus leads to a stabilization of

the fund.

Surplus Distribution When only charging remediation measures, the funding ratio rises above 100%

in the considered reference setting. Therefore, excessive funds can be distributed, leading to an increase

in the insured’s absolute certainty equivalent. Additionally, bonuses exceed remediation measures. How-

ever, with increasing bonuses remediation costs increase as well, causing higher volatility in the annual

payments and thus lower utility relative to the total costs for the insured.
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Calibration Remediation measures lead to an improved stability of pension funds. For this to be fully

effective, an adequate assignment of all model parameters is essential. Small changes in variables can

already lead to a strong impact on the outcomes. For example, a decrease in Fmin of only 2% in case (C)

leads to an increase of kt of more than 40%.

Interim Valuation When members leave a fund, additional contributions remain with the fund while

bonuses leave with the insured. Our results show that the insured’s account is still fairly low after 10

and 20 years. It can therefore be concluded that a change of pension funds can be made without a large

impact on the savings. This circumstance, however, changes dramatically in later years.

Capital Market Scenarios Letting the capital market returns follow a predefined path, we imitate

periods of both very low and very high returns. The results show that, especially for later years, additional

contributions can rise substantially if a funding gap occurs. The same is true for the distributed surpluses.

The amounts that are charged or distributed can make up a great percentage of the overall cash flows.

Capital market scenarios therefore need to be taken into account with close attention.

Risk Bearing With the worldwide trend from defined benefit (DB) plans towards defined contribu-

tion (DC) plans, it is interesting to put our findings into this overall context. In fact, while in DC plans

the members can often choose the investment strategy, they bear a large part of the capital market

risks since mostly only minimum benefits are guaranteed upfront. Looking at changing interest rate

assumptions, Godwin et al. (1996) find that funds are likely to change their interest rate assumptions to

increase their latitude concerning contractual relationships. Poterba et al. (2007) find that on average the

retirement wealth from DC plans exceeds the one from DB plans. However, DC schemes are more likely

to generate very low outcomes. In a similar spirit, Vigna and Haberman (2001) analyze the financial

risk in a DC pension plan to derive an optimal investment strategy. They conclude that there is a large

variability in the level of pension achieved at retirement. Our results are in line with these findings. As

the distribution of bonuses increases the volatility of the payoff, the relative certainty equivalent of risk

averse individuals decreases.

Policy Recommendations This work analyzes the value of the accounts of the insured at retirement.

We observe that the utilized funding mechanisms and their specific calibration can have an important

impact on the stability of the fund and the utility of its contributors. In our model, the charging of

remediation measures and the distribution of surpluses takes place automatically. In practice, decisions

concerning these actions would typically be made by the board of the fund. From this we conclude that

the role of the board and the governance is crucial for the management of a fund. Although our model

is fitted to the Swiss pension fund system, an interpretation of our findings in the light of the rules

in place in other countries and an extension of the results to other types of DC pension plans should

be straightforward. Also, in practice, the administration costs, the mortality of the members and the

decumulation phase where pensions are paid out should be accounted for to get more realistic results.

Nevertheless, we observe that while considering solvency constraints, distributing bonuses may increase

the risks borne by members and the common belief of the insured profiting from surplus distribution is

a fallacy. Given the current trends of the low interest rate environment and volatility in many markets,

such mechanisms should be used with caution.
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Chapter 4

Optimal Asset Allocation in Pension

Funds Under Consideration of

Higher Moments

The low interest rates that prevail on many capital markets impose great challenges for the asset man-

agement of financial organizations. They try to achieve target returns for their clients, a solid one-period

funding ratio and a low one-period underfunding probability. Optimal investment shares obtained from

minimum variance theory only take the first two moments of the asset return distribution into account

and leave important properties disregarded. In our work, we aim to study the impact of capital allo-

cation strategies for pension funds in Switzerland. Thereby, we compare classic Markowitz theory with

an extended Taylor series approach for the utility function. It is further analyzed how the assumption

of normally distributed returns drives the asset allocation when compared with using the distributions

corresponding to the best fit of the historical data. Taking the extended utility function including the

first four central moments and the alternative return distributions, we simulate the assets of a pension

fund in a one-period model with the Monte Carlo method. A comparison of these results with those

obtained from the classic minimum variance theory concludes that a considerable change of the portfolio

weights takes place. Additionally, we find that multi-dimensional risk factors corresponding to prefer-

ences with respect to the different moments of the portfolio return distribution significantly affect the

asset allocation. Our research is relevant for theory and practice alike. Financial institutions can profit

from making use of higher dimensional utility functions in their asset allocation strategies.

Note: This is joint work with J. Wagner and is currently under review by The Journal of Risk Finance. The

authors are thankful for the comments on earlier versions of this manuscript by participants of the Western Risk

and Insurance Annual Meeting 2017, the Annual Meeting of the German Association for Actuarial Science 2018

and the Conference in Actuarial Science & Finance 2018.
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4.1 Introduction

In the current low interest rate environment, a proper asset allocation strategy is crucial for financial

institutions like life insurers and pension funds. Often being obliged to grant their clients a guaranteed

interest rate on their savings, they face the issue of having to find a suitable combination of asset classes

to invest in. With respect to Swiss pension funds, this topic is of great importance. As funds face

large obligations towards their members, it is necessary for them to have an investment strategy that

balances expected return and volatility. While the expected return must suffice to earn the promised

interest for the clients, the volatility should not be too high. Otherwise, years with very low capital

market returns could lead to a strong decrease of the funding ratio and thus put the fund’s solvency

at risk. It is therefore crucial to choose a combination of assets that meets the needed returns while

maintaining a certain safety level. In our work, we seek to examine this subject by looking at specific

asset allocation techniques under selected return distribution assumptions. To this respect, we study the

impact that higher moments have when included in the decision taker’s utility function. We analyze how

using different distributions for simulating the assets leads to a better fit of the historic data and thus

to improved simulation results. In order to compare the resulting allocations, we simulate the assets of

a fund and analyze the results after one period.

Classical portfolio selection based on the minimum variance approach dates back to Markowitz (1952).

By taking only the first two moments into consideration, it is possible to derive a closed-form solution

for the minimum variance portfolio and make statements about the future development of the asset re-

turns (Samuelson, 1970). For modeling return distributions, it is well known that the normal distribution

does not suffice in order to model the characteristics of asset returns (Mandelbrot, 1963; Maringer, 2008).

Since the normal distribution is symmetric and puts only little weight on the tails, it misses impor-

tant aspects. Among others, it has been found that skewness is present in asset returns (Harvey and

Siddique, 1999; Jondeau and Rockinger, 2003) and therefore has an impact on pricing (Harvey and

Siddique, 2000; Hwang and Satchell, 1999; Chang et al., 2013). Consequently, alternative models have

been developed that extend utility theory to further moments and to incorporate three or more param-

eters (Jean, 1971, 1973; Ingersoll, 1975). This makes it possible to consider, among others, the skewness

of return distributions (Athayde and Flôres, 2004). With respect to pension funds, the funding ratio

and the optimal portfolio selection have been studied from different perspectives (O’Brien, 1986). Those

include, among others, determining the optimal asset allocation with respect to longevity, income and

inflation (Yang and Huang, 2009; Battocchio and Menoncin, 2004; Haberman and Vigna, 2002). For the

Swiss pension fund system, research has been conducted considering the solvency and overall stability

of a pension fund (Braun et al., 2011; Eling, 2013). Drawing from this, recommendations for regulatory

application are given in order to ensure the stability of the system. Being aimed at the Swiss pension

system, our research focuses on the correct choice of asset classes as well as their simulation. To this

end, we look at five different types of assets. In order to find the optimal allocation strategy, classic

Markowitz theory uses the first two moments of expected returns and covariance in order to find the

efficient portfolio. In our work, we look at extensions of this by comparing how the use of higher mo-

ments, such as the skewness and the kurtosis, changes the results. With research having shown both,

an impact from higher moments on some financial products (Prakash et al., 2003), as well as none for

several others (Jondeau and Rockinger, 2006; Peiró, 1999), we aim to analyze their implications in the

case of typical asset allocations of pension funds in Switzerland. Our research question is: How does

the use of higher moments change the optimal asset allocation and do alternative distributions lead to a

better fit of the historical data?
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To start our study, we consider a pension fund with a given asset-liability situation and which is regulated

by prevalent rules of the Swiss pension fund system. Our aim is to find the asset allocation that allows the

fund to reach a given expected target return, a given funding ratio or a given low underfunding probability.

Having established an optimal allocation strategy, we simulate the assets of the fund. For this, we first

make use of a multivariate normal distribution. However, asset returns exhibit characteristics such as

skewness and heavy tails, that cannot be fully reflected by using a normal distribution. Therefore, we

perform the simulation also by using alternative distributions taking their specific correlation structure

into account. This way, the historic data can be fitted in a more flexible way that should lead to improved

simulation results. With the optimal allocation corresponding to the objective return and a distribution

that fits the historic data, we simulate the assets and liabilities of the pension fund in a one-period model.

While the assets evolve according to the simulated returns, the liabilities are assumed to be credited with

the guaranteed interest rate. Based on the results, it is analyzed in what state the fund is at the end

of the period. Among others, this involves examining key figures such as the expected funding ratio,

selected quantiles of that ratio and the underfunding probability. In this context, we compare what

implications the use of an asset-liability approach has compared to a classical analysis. In this, the asset

allocation can be set up with regard to a desired funding ratio or underfunding probability rather than

a target return.

The remainder of the Chapter is organized as follows. Section two introduces the framework that we

use for modeling the pension fund. Additionally, the optimization problem for determining the optimal

asset allocation is presented. The third section presents the asset classes together with their descriptive

statistics and the fitting of return distributions. Section four presents the optimization and simulation

results. This comprises both, the results for the minimum variance portfolio with normally distributed

returns as well as the extended utility along with the best-fit return distributions. Following this, we

compare the results and conduct a sensitivity analysis regarding the preference of risk with respect to

the different moments. The final section concludes.

4.2 Model Framework

In the following, we introduce a simple asset allocation framework and solvency indicators for pension

funds. This involves describing the processes that take place within the fund as well as in the assets

that it invests in. We formally describe the use of higher moments of the asset return distributions and

develop on optimal portfolio theory in which we use different utility functions that incorporate higher

moments.

4.2.1 Pension Funds and Key Funding Indicators in a One-Period Model

For the pension fund, we focus on a simplified representation of the accumulation phase of a defined

contribution fund in Switzerland. We examine how the assets A0 and the liabilities L0 evolve in a one-

period model from time t = 0 to t = 1, given an asset allocation and legal minimum increases of the

liabilities. Thereby, we disregard fluctuations, annuitization and deaths. At the end of the period, the

state of the fund is analyzed by considering the funding ratio and the probability of underfunding.

The assets A0 represent the capital that is available to the fund for investing on the capital market at time

zero. This way, it is able to earn the amount that needs to be awarded to its clients as annual interest

returns. In our model, we assume that the fund invests in n different asset classes i = 1, . . . , n. The

shares αi, that are invested in the respective classes i, are summarized in the vector α = (α1, . . . , αn)
′
.

These shares are in the focus of the present study. In Switzerland, the regulator imposes limits on the asset
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shares that can be invested in the various asset types (see BVV2, 2017, Art. 55). Therefore, we introduce

an upper limit αmax
i for each asset class i. We assume that the entire assets are invested and suppose that

no short sales are made. Consequently, it holds for the asset shares αi that 0 ≤ αi ≤ αmax
i , i = 1, . . . , n

and
∑n

i=1 αi = 1.

The stochastic asset returns in the period are denoted by r = (r1, . . . , rn)
′
. They are the only source of

risk in our study. With the returns ri denoting the different assets and αi the investment shares, the

overall portfolio return is

rA = α′ · r =

n
∑

i=1

αi · ri. (4.1)

Starting with a value of A0 at time t = 0 and considering continuous compounding of the interest return,

the value of the assets at time t = 1 is given by

A1 = A0 · e
rA = A0 · e

∑
n

i=1 αi·ri . (4.2)

The liabilities Lt represent the obligations that the fund has towards its members. This includes the

regular contributions that have been paid by the actives as well as surpluses that the fund can distribute

when being in good health. In the Swiss system, funds are required to credit their members at least a

minimum interest rate rL on the compulsory part of their second pillar pension savings. The value of rL

is set by the legislator at the end of every year according to the prevailing conditions on the financial

market (see BVV2, 2017, Art. 12). In our model, we assume that the liabilities start with a value of L0

at time zero and are compounded with rL over the course of the period. Their value at time one therefore

is

L1 = L0 · e
rL . (4.3)

While in our model L1 is deterministic (no fluctuations, no mortality, no payouts, no surpluses cred-

ited), A1 is a stochastic outcome and depends on the asset allocation and the market returns. Having

obtained the values of the assets and the liabilities at time t = 1, we analyze the distribution of the

state of the fund. For this, we first consider the funding ratio Ft calculated by dividing the assets by the

liabilities, i.e.

Ft =
At

Lt

, t = 0, 1. (4.4)

We analyze the mean E [F1] as well as selected quantiles qx of F1 in order to examine the range of the

distribution of the funding ratio at time one in our simulations. We consider the 1%, 50% and 99%

quantiles, denoted by q1% (F1), q50% (F1) and q99% (F1).

Further, we compute the probability of underfunding, i.e. the probability of the funding ratio falling be-

low 100% at time one. This way, it is measured how exposed to insolvency the fund is. The underfunding

probability at time one is defined as

P [F1 < 100%] . (4.5)

The asset returns r are of particular importance, as they influence the allocation α and the distribution

of A1. For this, it is important to have information about the distribution and the dependency structure

of the asset portfolio.

4.2.2 Analyzing Higher Moments of the Return Distribution

For analyzing the returns of the asset portfolio, and subsequently the impact of utility preferences, we

examine the first four moments introduced in the following. These first four moments are the expected

return µ, the volatility σ, the skewness γ̄ and the kurtosis κ̄ (see, e.g., Bhandari and Das, 2009) of the
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investment portfolio return. For the expected return of the portfolio, it holds that

µ = E[rA] = E

[

n
∑

i=1

αi · ri

]

=

n
∑

i=1

αi · µi = α′ · µ, (4.6)

with µ = {µi} the vector of mean returns corresponding to the first moment of the asset classes i.

The volatility σ of the portfolio return is calculated as the square root of the portfolio variance σ2 which

in turn is defined as

σ2 = Var[rA] = Var

[

n
∑

i=1

αi · ri

]

=

n
∑

i=1

n
∑

j=1

αi · αj · σ
2
ij = α′ · Σ ·α, (4.7)

with σ2
ij , the covariance of assets i and j, being the elements of the covariance matrix Σ = {σij}, for

which it holds that

Σ = E[(r − µ)(r − µ)′]. (4.8)

The variance σ2 corresponds to the second central moment.

In order to calculate skewness and variance of the portfolio return, it is necessary to determine the third

and fourth central moments γ and κ. They are defined as

γ =

n
∑

i=1

n
∑

j=1

n
∑

k=1

αi · αj · αk · γijk = α′ · Γ · (α⊗α), (4.9)

and

κ =

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

αi · αj · αk · αl · κijkl = α′ ·K · (α⊗α⊗α), (4.10)

with ⊗ representing the Kronecker product. In this, γijk represents the co-skewness between assets i, j

and k and κijkl the co-kurtosis of asset classes i, j, k and l. They are the elements of the co-skewness

matrix Γ = {γijk} and the co-kurtosis matrix K = {κijkl}, which are defined as

Γ = E[(r − µ) · (r − µ)′ ⊗ (r − µ)′], (4.11)

and

K = E[(r − µ) · (r − µ)′ ⊗ (r − µ)′ ⊗ (r − µ)′]. (4.12)

The co-skewness matrix is of dimension n× n2 and the co-kurtosis matrix of dimension n× n3.

When analyzing the results of our simulations, we use the standardized moments to facilitate the com-

parison of different distributions. Using the central moments, the portfolio skewness, which describes

the “asymmetry” of the return distribution, is then calculated as the standardized third central moment,

i.e.

γ̄ =
γ

σ3
. (4.13)

The portfolio kurtosis, which measures the “heaviness” of the tails of the return distribution, is defined

as the fourth standardized central moment (see, e.g., Boudt et al., 2008), i.e.

κ̄ =
κ

σ4
. (4.14)

4.2.3 Optimal Portfolio Theory

In this section, we first derive a formulation of a utility function U(α, r) based on a limited number of

moments of the distribution of r. We then consider two particular cases for optimizing the choice of the

55



Optimal Asset Allocation in Pension Funds Under Consideration of Higher Moments

asset allocation, the minimum variance approach by Markowitz (1952) as well as an alternative one that

includes the third and fourth moments of skewness and kurtosis.

When deciding on how to invest in the various asset classes, a rational investor would aim to choose the

portfolio that yields the highest utility U(α, r). The utility, in return, depends both, on the (uncertain)

return vector r = (r1, . . . , rn)
′

from the available asset classes as well as on the (selected) portfolio

weights α = (α1, . . . , αn)
′
. Looking at a Taylor series expansion with respect to the variable r of the

utility function, we get

U(α, r) = U(α, r)+
U ′(α, r)

1!
·(r−µ)+

U ′′(α, r)

2!
·(r−µ)2+

U ′′′(α, r)

3!
·(r−µ)3+

U (4)(α, r)

4!
·(r−µ)4+. . .

(4.15)

Taking the expected value of U(α, r), we get the expected utility E[U(α, r)], defined as

E[U(α, r)] = U(α, r) +
U ′(α, r)

1!
· E[(r − µ)] +

U ′′(α, r)

2!
· E

[

(r − µ)2
]

+
U ′′′(α, r)

3!
· E

[

(r − µ)3
]

+
U (4)(α, r)

4!
· E

[

(r − µ)4
]

+ . . . (4.16)

As it holds that

E[(r − µ)] = 0,

E
[

(r − µ)2
]

= α′ · Σ ·α,

E
[

(r − µ)3
]

= α′ · Γ · (α⊗α), and

E
[

(r − µ)4
]

= α′ ·K · (α⊗α⊗α), (4.17)

we can simplify the expected utility function above and get the following approximation of order four

in α (see, e.g., Beardsley et al., 2012)

E[U(α, r)] ≈ U(α, r)+
U ′′(α, r)

2!
·α′·Σ·α+

U ′′′(α, r)

3!
·α′·Γ·(α⊗α)+

U (4)(α, r)

4!
·α′·K ·(α⊗α⊗α). (4.18)

Normally Distributed Returns

In the case of multivariate normally distributed asset returns, the third and fourth moment equal zero.

Consequently, the expected utility function in Equation (4.18) reduces to

E[U(α, r)] = U(α, r) +
1

2
· U ′′(α, r) ·α′ · Σ ·α. (4.19)

As the utility function is invariant with respect to positive and monotone transformations (see, e.g., Levy

and Markowitz, 1979), we are able to define a function of equivalent utility V1(α, r), for which it holds

that (see, e.g., Braun et al., 2017)

V1(α, r) = µ− λ1 ·α
′ · Σ ·α. (4.20)

In this, λ1 > 0 implies U ′′(α, r) < 0 and thus serves as a measure for risk aversion. Conversely, λ1 < 0

corresponds to a risk taking behavior while λ1 = 0 stands for a risk-neutral decision making. Conse-

quently, as V1(α, r) is of equivalent utility to E[U(α, r)], the combination of parameters (shares α) that

maximize V1(α, r) will also turn out to maximize the expected utility E[U(α, r)].

To find the portfolio that maximizes the utility function, we search for the classic Markowitz (1952) min-

imum variance portfolio. In this, the aim is to find an optimal set of portfolio weights α∗ = (α∗
1, . . . , α

∗
n)

′
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for the different asset classes that minimizes the variance of the resulting portfolio while achieving a

certain target return µ∗. We therefore have the constrained optimization problem

α∗ = arg min
α

[λ1 ·α
′ · Σ ·α] , (4.21)

with the objective

α′ · µ = µ∗, (4.22)

where

0 ≤ αi ≤ αmax
i , i = 1, . . . , n, (4.23)

and

α′ · 1 = 1. (4.24)

The investment restrictions on αi require that no short sales are made, the share αi, that is invested

in each asset class, remains below the respective regulatory upper limit αmax
i (Equation 4.23) and the

entire assets are invested on the capital market (Equation 4.24).

Depending on the perspective taken, the objective in Equation (4.22) is interchangeable with other target

conditions considering the funding ratio or the underfunding probability, leading to conditions of the type

E [F1] = F̄ , (4.25)

where F̄ is a given funding ratio target, and

P [F1 < 100%] = ǫ. (4.26)

where ǫ is a predetermined one-year probability for underfunding (i.e., F1 < 100%).1

General Case

While the optimization problem introduced in Equations (4.21 ff.) can be solved relatively easily and

yields the minimum variance portfolio, it relies on the assumption that the asset returns follow a mul-

tivariate normal distribution. Research shows that in practice, capital market returns do not show

Gaussian properties (see, e.g., Jondeau et al., 2007; Cont, 2001). As the historical values exhibit clear

signs of asymmetry and heavy tails, it is in many situations not reasonable to assume that the third and

fourth moment are equal to zero (cf. Section 4.3.1, Table 4.1). Therefore, the expected utility function

can in general not be simplified to only include the variance of the asset returns. Instead, we aim to

find the optimal investment weights α∗ with respect to the (still approximate) expected utility function

given in Equation (4.18). If we again follow the above procedure of applying positive and monotone

transformations, we obtain the utility function V2(α, r), which is defined as

V2(α, r) = µ− λ1 ·α
′ · Σ ·α + λ2 ·α

′ · Γ · (α⊗α) − λ3 ·α
′ ·K · (α⊗α⊗α). (4.27)

Again, λ1 serves as a measure for risk aversion, with λ1 > 0 being equivalent to U ′′(α, r) < 0. Anal-

ogously, the new parameters, λ2 and λ3 represent risk preferences (for λ2, λ3 > 0) regarding the third

and fourth moments of skewness and kurtosis. As individuals prefer odd moments and try to avoid even

ones (see, e.g. Chiu, 2010; Scott and Horvath, 1980), the signs of the terms in V2(α, r) alternate. The

reasoning behind this is, that the second moment represents the dispersion of the asset returns, which

1When the investment restrictions on αi from Equation (4.23) are used, a closed-form solution of the optimization
problem can not be derived. We consequently solve the constrained optimization problem using numerical approximations.
For further details, see, e.g. Samuelson (1970) and Harvey et al. (2010).
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a risk averse investor would aim to keep as low as possible. For the skewness, it holds that a negative

skewness corresponds to the mass of the distribution being concentrated on the right with a longer left

tail. Correspondingly, a positive third moment has the mass of the distribution shifted towards the left

while the right tail is longer. Due to the characteristics of the tails, a risk-averse investor would prefer a

positive skewness of the asset returns, as it reduces the risk of extreme losses (low returns). The kurtosis

serves as a measure for the tails of the distribution. For this, a large value corresponds to distinctive

peaks with little weight on tails, whereas a small value signifies lower peaks and heavy tails. Risk-averse

individuals would therefore prefer a smaller kurtosis.

Taking the equivalent utility function V2(α, r) into account, Equation (4.21) of the optimization problem

becomes

α∗ = arg min
α

[λ1 ·α
′ · Σ ·α− λ2 ·α

′ · Γ · (α⊗α) + λ3 ·α
′ ·K · (α⊗α⊗α)] , (4.28)

with the same target conditions laid out above in Equations (4.22), (4.25) or (4.26), and under the

investment restrictions of Equations (4.23) and (4.24) on α.

In the following, we aim to compare the two optimization problems and their outcomes with each other.

This involves fitting distributions to the historical asset return data presented in the following section, as

well as determining the covariance, co-skewness and co-kurtosis. Based on those, we aim to compute the

optimal solutions of the two optimization problems and consequently analyze their simulation results.

4.2.4 Outline of the Methodology

To conclude the model presentation, we present the steps that are performed in our model. This involves

solving the optimization problem, simulating the asset process and analyzing the corresponding results.

A visualization of the model is given in Figure 4.1.

Utility optimization using

V1(α, r) or V2(α, r)

under invest. restrictions

(Equations 4.23 and 4.24)

Optimization problem

+

α′ · µ = µ∗ (4.22)

E [F1] = F̄ (4.25)

P [F1 < 100%] = ǫ (4.26)

Target condition

→ α∗

Portfolio weights

Return distribution

– Normal

– Best fitA
ss

u
m

p
-

ti
on

s

Portfolio

characteristics
µ, σ, γ̄, κ̄

Funding ratio F1

E [F1], qx (F1)

P [F1 < 100%]

Results at t = 1

Figure 4.1: Synopsis of the steps involved in the model.

Starting with the optimization problem, we choose whether to use the utility function V1(α, r) or V2(α, r).

This way, the optimal portfolio weights are calculated either based on the second or on the second, third

and fourth moment of the asset classes. Additionally, we select one of the three target conditions from

Equations (4.22), (4.25) and (4.26), which correspond to target values for the return µ∗, the funding

ratio F̄ and the underfunding probability ǫ. All optimizations are subject to the investment constraints

in Equations (4.23) and (4.24), i.e. the assets are invested entirely on the capital market with no short

sales being made and the respective shares αi having to remain below a legal upper limit of αmax
i .

By solving the optimization problem (either using V1 or V2) with a target condition and the investment

restrictions (4.23) and (4.24), we obtain the optimal portfolio weights α∗ = (α∗
1, . . . , α

∗
n)

′
.2 In the next

2For solving the optimization problem, we use a numerical algorithm. A reliable and quick method is, e.g., the augmented
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step, we then simulate the asset returns at time t = 1. In order to do this, we select the distribution

of the asset classes by choosing between the normal distribution and the one obtained from fitting the

historic data. Using the asset weights, we simulate the assets A1 at time t = 1 and analyze the resulting

portfolio return rA as well as the funding ratio F1. Among others, this involves looking at key figures

such as the mean drift µ, the volatility σ, the standardized third central moment γ̄ and the standardized

fourth central moment κ̄. For the funding ratio F1, we analyze the expected value E [F1], selected

quantiles qx (F1) and the underfunding probability P [F1 < 100%].

For the optimization problem with a target return µ∗ from Equation (4.22), the optimization process can

be performed directly. For the target conditions in Equations (4.25) and (4.26) this cannot be done in

one step, as they depend on the funding ratio F1 at time one. Therefore, the optimization and simulation

need to be performed iteratively in order to obtain the optimal portfolio weights yielding the expected

funding ratio F̄ and respectively the underfunding probability ǫ.

4.3 Asset Return Statistics and Distribution

In order to model the assets that the pension fund can invest in, we use five different asset classes that

represent the most common investment types. Those involve the money market, government bonds, real

estate, stocks and hedge funds (representing riskier investments). As our research focuses on the Swiss

pension fund system, we make use of financial products that are connected to the Swiss market. For the

money market, we use the 3-month CHF Libor interest rate (Bloomberg: SZC0TR03). The government

bonds are represented by the SBI government total return index (Bloomberg: SBIDGT). It mimics the

market for Swiss obligations and, this way, gives information about the level of interest rates in the Swiss

market. For the real estate data, we use the Swiss Exchange real estate funds (Bloomberg: SWIIT). They

include a multitude of real estate stocks and trusts based in Switzerland. For an asset that represents

stock returns, we choose the Swiss Performance Index SPI (Bloomberg: SPI:IND). It encompasses the

stocks of all companies that are traded on the Swiss exchange market. For hedge funds, there is a lack

of funds that have been operating over the whole time span. We therefore choose to utilize an equally

weighted basket of 14 different hedge funds.3 We base our study on historical data from the beginning

of 1996 till the end of 2015, i.e. a time horizon of 20 years. As for the returns, we look at monthly

values (due to daily data not being available for hedge funds).

4.3.1 Descriptive Statistics of Asset Returns

An overview of the characteristics of the asset classes introduced above is given in Table 4.1. For the

Asset class Mean return µi Volatility σi Skewness γ̄i Kurtosis κ̄i

Money Market (MM) 1.14% 0.34% 16.54% 19.81%

Government Bonds (GB) 3.95% 3.72% 3.74% 28.28%

Real Estate (RE) 5.28% 7.07% −12.70% 33.34%

Stocks (ST) 7.27% 15.57% −27.13% 41.76%

Hedge Funds (HF) 8.72% 7.58% 0.45% 24.04%

Table 4.1: Overview of asset classes with their respective annualized mean return µi, volatility σi,
skewness γ̄i and kurtosis κ̄i in the time period 1996–2015.4

lagrangian adaptive barrier minimization algorithm provided by the package Alabama in R.
3The hedge funds that are comprised in our basket have the Bloomberg codes ORBOPEF BH, SCHFODH SW,

GLOINVA KY, GABINTL VI, EDFAGFI BH, ROTNEMI GU, GAMMUTI VI, CGUTUSD BA, EDFGCBE NA, ED-
FGCFI NA, SLRGLII KY, TALWNDI VI, EDFCURI BH and PHFUNDI BH.
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annualized mean returns µi, it can be seen that the money market achieves about one percent, whereas

the government bonds reach almost four percent in the given period. The real estate and stocks have

an average return that is about one, respectively three percent higher than that. The highest value is

obtained by the hedge funds with a value of 8.72%, about 1.5% higher than the one of the stocks. We

observe that money market investments show low volatility with a value of 0.34%. For the government

bonds and the real estate, higher values of 3.72% and 7.07% can be observed. The highest volatility can

be found in the stock market, which reaches more than 15%. The variation in the hedge funds reaches

about half of that with a value of 7.58%. For the skewness, we observe that the real estate and the stocks

are strongly negatively skewed with values of −12.70% and −27.13%. This corresponds to the mass of

the returns being shifted to the right (above the mean) and the left tail being longer (corresponding to

lower returns). Therefore, while positive returns are overall more likely, extreme losses can occur as well.

For the money market, we calculate a value of 16.54%. Thus, while the mass of the distribution is to

the left, the left tail is very thin as well. For the government bonds and the hedge funds, the skewness

takes comparatively small positives values. For the kurtosis, we obtain only positive values, ranging from

about 20% for the money market to roughly 40% for the stocks. All assets therefore exhibit fatter tails.

The correlation matrix of the five asset classes is given in Table 4.2. The money market (MM) returns

show only little to almost no correlation with the returns from other classes. For the government

bonds (GB), an increase in the correlations can be noticed. At the same time, all the values stay

below 0.2. The returns from the real estate (RE) show a higher correlation with those from stocks (ST)

and hedge funds (HF). The highest correlation can be observed between the stocks and the hedge funds

with a value of about 0.3.

Asset class MM GB RE ST HF

MM 1 0.134 −0.094 −0.167 0.109

GB 0.134 1 0.191 −0.183 0.052

RE −0.094 0.191 1 0.229 0.210

ST −0.167 −0.183 0.229 1 0.304

HF 0.109 0.052 0.210 0.304 1

Table 4.2: Correlation matrix of the five asset classes.

4.3.2 Fitting of Return Distributions

For simulating the asset returns, the multivariate normal distribution is not able to take the skewness

and kurtosis of the returns into account. Furthermore, it is not suited for the modeling of fat tails.

We therefore fit the historic data with alternative distributions in order to better describe the empirical

distribution. This includes, among others, a better fit of the asymmetry as well as the tails of the returns.

In this section, we present the distributions that we consider in our study, show the results that we obtain

when fitting them to the historical return data and demonstrate how we simulate the multivariate asset

returns. The distributions we consider are the Cauchy, Logistic and Normal-Inverse-Gaussian (NIG)

distribution.

Serving as a reference case, we first look at the normal distribution. This way, the fits of the alternative

distributions cannot only be compared to each other, but also to the one from the normal distribution.

4As the empirical moments of the third and fourth order are calculated by taking the third and fourth power of the
returns, they are particularly sensitive to changes in the data. Different historic values can consequently result in strong
changes in the empirical moments. This needs to be taken into account when calculating the skewness and kurtosis.
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The Cauchy distribution is symmetric and has two degrees of freedom, the location and the scale param-

eter. The logistic distribution has two parameters as well, a location and a scale parameter. While also

being symmetric, it puts more weight on the tails than the normal distribution. The NIG distribution

has four degrees of freedom, making it very flexible and able to replicate skewed and heavy-tailed return

distributions. We use the Akaike information criterion (AIC, see Akaike, 1973) values to evaluate the

goodness-of-fit. The results are reported in Table 4.3.

Money Market Gvt. Bonds Real Estate Stocks Hedge Funds

Normal −2 628.35 −1 485.09 −1 178.72 −800.79 −1 144.47

Cauchy −2 531.36 −1 410.13 −1 126.66 −775.29 −1 051.68

Logistic −2 616.45 −1 485.15 −1 186.16 −816.72 −1 138.91

NIG −2 651.30 −1 482.60 −1 183.97 −833.06 −1 140.47

Table 4.3: AIC values from fitting distributions to the historic monthly returns using 20 years of data.

When comparing the results, we conclude that the NIG distribution provides the best fit on our return

data for the money market and the stocks. For the government bonds and the real estate investments

the logistic distribution is suited best. For the hedge funds, the normal distribution achieves the best

fit of the data. For the Cauchy distribution, the results are mixed. While it is better than the logistic

and the NIG distribution for the hedge funds, it is not better than the normal distribution for any of

the asset classes.

The simulation of the assets over one period is done using multivariate random variables with a copula.

A copula C allows us to simulate the dependence structure of the returns (see, e.g., Korn et al., 2010).

It is defined as a distribution function on [0, 1]n for n ∈ N (in our case n = 5) with uniform distributed

marginals, i.e.

C (1, . . . , 1, xi, 1, . . . , 1) = xi, ∀i ∈ {1, . . . , n}. (4.29)

With Sklar’s theorem (see, e.g., Sklar, 1959), it is possible to separately calculate the dependence

structure and the marginal distributions of the different random variables. This way, we are able to

first simulate the dependence structure with a copula using univariate distribution functions and then

calculate the marginal distributions. In our work, we model the dependencies between the different

asset classes with the help of a Gaussian copula (see, e.g., McNeil et al., 2015). For random vari-

ables X1, . . . , Xn, with Φn
Σ denoting the joint n-dimensional normal distribution function and Φ being

the standard normal marginal distribution, the Gaussian copula CGauss with correlation matrix Σ is

defined as CGauss (x1, . . . , xn) = Φn
Σ

[

Φ−1 (x1) , . . . ,Φ
−1 (xn)

]

. Using the Gaussian copula CGauss, we

generate multivariate uniform random variables with Σ-dependence structure. The best-fit marginals (cf.

Table 4.3) allow to derive adequate random sets of returns. Together with the distribution parameters

from fitting the data, we are thus able to simulate the multivariate returns of our different asset classes.

Going forward, we simulate the portfolio return with the help of both, the normal distribution as well

as the best fit ones, and compare the outcomes to each other.

4.4 Numerical Application

In the following, we present the results of our simulations for a fund operating in Switzerland. Therein,

we initially look at the reference case of multivariate normally distributed assets in a minimum variance

portfolio under the utility function V1(α, r). We present the efficient frontier for our data as well as the

corresponding intersections for target funding ratios and underfunding probabilities. Following that, we
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look at the case of the portfolio weights being chosen in line with the extended utility function V2(α, r)

and the returns following the fitted distributions. We examine how the asset allocation changes and

analyze the outcome of the simulations. The risk factors λ1, λ2 and λ3 are set to one in these cases.

Going forward, we perform a sensitivity analysis on the values of the different factors. As risk preference is

usually treated as a one-dimensional variable, it is of interest to study how the extended utility function

reacts to changes in each of the three factors. The numerical application is performed by simulating

the efficient portfolios for target values between min(µi) = 1.14% and the maximum attainable return

of 6.73% using a step size of 0.1% and N = 107 realizations for every simulation.

Parameter Variable Value

Investment limits

Maximum share MM αmax
1 100%

Maximum share GB αmax
2 100%

Maximum share RE αmax
3 30%

Maximum share ST αmax
4 50%

Maximum share HF αmax
5 15%

Pension fund governance

Asset value at time t = 0 A0 110

Liability value at time t = 0 L0 100

Funding ratio at time t = 0 F0 110%

Minimum interest rate rL 1.25%

Risk preference with respect to

Volatility λ1 1

Skewness λ2 1

Kurtosis λ3 1

Table 4.4: Input parameters for the reference case.

With respect to the investment limits, αmax
i , there are no specific limitations for the shares invested in

the money market and the government bonds. For the real estate, the maximum share, that can be

invested, amounts to 30%. Conversely, the proportion of the assets, that is made up by the stocks, can

be up to 50%. The strictest limit is imposed on the hedge funds. For them, the maximum share amounts

to 15%. For our simulations, we therefore use the vector αmax = (100%, 100%, 30%, 50%, 15%)′ for the

investment limits (see BVV2, 2017, Art. 55). Furthermore, we assume that the fund starts in a “healthy”

situation with assets of A0 = 110 and liabilities of L0 = 100 at time t = 0. The funding ratio F0 = A0/L0

consequently equals 110% (see Table 4.4 for the parameters), which corresponds to the average value for

private pension funds in Switzerland over the past years (see Swisscanto, 2016). While the return on

the assets rA is random following the distributions laid out in Section 4.3, the interest rate rL for the

liabilities is set to the legal minimum. For 2016, it equals 1.25% (see BVV2, 2017, Art. 12).

4.4.1 Classic Markowitz Optimization with Normally Distributed Returns

Serving as a reference case, we first simulate the pension fund using the asset allocation derived from

minimum variance theory. Therein, the asset classes are multivariate normally distributed and the risk

aversion coefficient λ1 = 1. Figure 4.2 depicts the efficient frontier for the asset portfolios in the cases
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with and without investment restrictions.5 Namely, the solid line represents the restricted case while

the dashed one shows the unrestricted setting. Additionally, dashed isolines for selected funding ratios

at time t = 1 put the (µ, σ) asset portfolio characteristics and the resulting funding ratio E [F1] into

relation.
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Figure 4.2: Plot of the efficient frontier for the cases with and without investment restrictions as well as
isolines for the expected funding ratio E [F1] at time t = 1.

The case with investment restrictions is derived from the unrestricted one by setting the maximum asset

shares to αmax. Consequently, the achievable returns are lower (see the solid line). While it can only

reach a maximum return of 6.73%, the dashed line of unrestricted investments continues further and

allows for returns of up to 8.72% by investing only in hedge funds. Conversely, the maximum volatility is

higher for the restricted case, as it has a 15% investment limit for the hedge funds. A higher share for the

stocks is therefore required in order to reach high returns. As a results of that, there is a strong increase

in the portfolio volatility and the efficient frontier runs flatter. The solid line thus reaches further to

the right, while staying lower than the dashed one. Focusing on the restricted case, we observe that the

highest funding ratio that can be reached with an efficient portfolio after one year is about 116%. On

the other end, the cases with the lowest returns (1.14%) yield a funding ratio slightly below 110% after

one period. We can therefore deduce that there is an overall improvement in the funding ratio with the

assets chosen in our case. On average, a return of around 1.25% on the assets must be met in order to

keep the funding ratio constant. Examining the shape of the two frontiers, we can observe that they are

identical up to a volatility of about 2% and start to differ from thereon. The reason for this is that the

investment in hedge funds reaches its upper limit αmax
5 (cf. Figure 4.4). Consequently, portfolios with

higher returns can still be achieved up to a certain point, but the optimal portfolio has a higher volatility

than in the unrestricted case. Additionally, a kink in the frontier is observed for the restricted case for a

volatility of about 3.5%. The reason for this is that the share of government bonds experiences a steeper

decrease from this point onwards.

Staying with the same graphs of the efficient frontiers with and without investment restrictions, Figure 4.3

shows selected isolines for the probability of underfunding. As the pension fund starts with a funding

ratio of 110% at time zero, the probability P [F1 < 100%] at time t = 1 is low. In the case without

investment restrictions, it exceeds 1% only in the most extreme cases. As can be seen in the plot, these

cases are the ones with the highest drift and volatility: Increased returns come at the price of a higher

volatility, which causes the underfunding probability to increase as well. The case with investment

5When using resampling methods for obtaining the efficient frontier, the confidence regions of the resampled efficient
frontiers need to be considered (see, e.g., Michaud, 1998).

63



Optimal Asset Allocation in Pension Funds Under Consideration of Higher Moments

0 2 4 6 8 10

Volatility σ (in %)

D
ri

ft
 µ

 (
in

 %
)

0
2

4
6

8
10

12 Efficient frontier with restrictions
Efficient frontier without restrictions
Underfunding probability

4%3%2%1%0.5%0.1%

Figure 4.3: Plot of the efficient frontier for the cases with and without investment restrictions as well as
underfunding probability isolines.

restrictions reaches a value of about 4% for P [F1 < 100%] in its most extreme case. The depicted

isolines for underfunding probabilities of 0.1%, 0.5% and 1% show that for low returns µ the probability

of becoming underfunded is even smaller. We conclude that the risk of an average pension fund (starting

from F0 = 110%) becoming underfunded is very low. As the returns rise and consequently the efficient

frontier flattens, the volatility σ and the underfunding probability start to grow strongly. Going more

into detail, Figure 4.4 displays the asset allocations in the efficient portfolios for the restricted case.
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Figure 4.4: Optimal asset allocations for target return µ for V1(α, r) and normally distributed returns.

For every combination of target returns and corresponding minimum variances, it depicts the optimal

shares α∗ of the five asset classes. It can be seen that for low target returns the efficient portfolio mainly

consists of money market investments (the portfolio with the lowest variance yields a drift of 1.14%,

corresponding to 100% money market). As the drift µ increases, this share decreases while the shares

of the remaining assets increase, with the government bonds having the second-highest percentage.

As µ grows further, the share of the hedge funds and the government bonds evolve similarly at first.
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The stocks are hardly represented in the portfolio. As they have a relatively high volatility of 15.57%

together with a mean return of 7.27% (cf. Table 4.1), it is more advantageous to invest in the hedge funds

instead. The fact that the share of the stocks is not equal to zero can be explained by the correlation

of 0.304 with the hedge funds (cf. Table 4.2). The changes in the asset shares are linear up to a drift of

almost 3.5%, where the hedge funds reach their maximum of αmax
5 = 15%. Subsequently, they remain at

this value. Comparing with Figures 4.2 and 4.3, this point corresponds to the curves for the restricted

and unrestricted case starting to differ from each other (where the first asset class reaches the restriction

ceiling). Subsequently, the share of the money market begins to decrease steeply and the portfolio weights

shift more towards the government bonds, the real estate and the stocks. For the stocks, it can be seen

that an increase of its share is taking place as a result of the hedge funds hitting their investment limit.

This effect enhances further when the share of the money market drops to zero. The same holds true

for the real estate. In Figure 4.4, these changes appear as kinks in the course of the asset shares. For

the government bonds a decrease takes place for high returns. For the portfolio with the highest return,

which is located on the right end of the graph, the hedge funds, the stocks and the real estate achieve

their investment limits of 15%, 50% and 30%. The remaining proportion of 5% is attributed to the

government bonds. The portfolio weights thus are α = (0%, 5%, 30%, 50%, 15%)′, which means that

the highest achievable portfolio return is 6.73% along with a volatility of 8.94%. Overall, changes of the

shares take place with kinks in the graphs when assets hit their investment limits or disappear from the

portfolio.

Figure 4.5(a) displays the 50% quantile q50% (F1) of F1, which is simulated from the multivariate normal

distribution of the asset classes at time t = 1 as a function of the target return µ∗. In addition to this, the

borders of the gray areas mark the 5% and 95% quantiles of the funding ratio, q5% (F1) and q95% (F1).

We observe that for low returns the 50% quantile stays close to 110% (cf. Figure 4.2), which is the same

as at time zero. With increasing drift, q50% (F1) also experiences an increase. Its magnitude corresponds

to the extent to which the market returns exceed the return rL credited to the liabilities. The plot shows

that F1 grows linearly in µ. As a higher drift also leads to a growth in volatility, the shaded area between

the 5% and 95% quantiles gets larger and grows uniformly up to a drift of about 5%. At this point,

the outer quantiles also exhibit kinks in their curves. Consequently, they increase, respectively decrease,

much more and the gray area grows a lot quicker. This can be connected to the observations made in

Figures 4.2 and 4.4. As the share invested in government bonds starts to decrease, a higher return needs

to be compensated by investing in more volatile asset classes. This causes the efficient frontier to change

its slope and consequently be flatter. As a result, the volatility grows considerably more for the same

rise in expected return.
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Figure 4.5: Plots of the 50% quantile of the funding ratio q50% (F1) and the underfunding probabil-
ity P [F1 < 100%] at time one.

65



Optimal Asset Allocation in Pension Funds Under Consideration of Higher Moments

Along with the strong increase of the volatility comes a higher probability P [F1 < 100%] for underfund-

ing. Figure 4.5(b) shows the probability for underfunding for different values for the drift µ and the

corresponding 50% quantile q50% (F1) of F1. It can be seen that up to a value of about 5.75% for the

drift, the value remains close to zero. Together with the higher share of risky assets that is needed for

higher returns, the underfunding probability increases as well. From 5.75% up to the maximum achiev-

able return, the graph experiences a sharp increase that ends at approximately 4%. This corresponds to

the results seen in Figure 4.3.

The numerical results for selected target values are given in Table 4.5. In the three parts of the table,

we fix target values for the mean return (part I), the expected funding ratio E [F1] at time one (part II)

and the one-year underfunding probability P [F1 < 100%] (part III). These objectives correspond to the

conditions described in Equations (4.22), (4.25) and (4.26).

Condition on I: Mean return II: Expected funding ratio III: Underfunding probability

µ 2.00 3.00 4.00 1.25 3.05 4.82 5.73 6.04 6.21
σ 0.74 1.48 2.29 0.34 1.52 3.06 4.75 5.89 6.58
γ̄ [×10−2] 0.11 0.13 0.12 0.01 0.13 0.11 0.25 0.32 0.35
κ̄ [×10−2] 0.03 0.03 0.03 0.00 0.04 0.02 0.13 0.21 0.24

α1 81.56 60.18 33.28 97.21 59.17 8.48 0.00 0.00 0.00
α2 9.78 21.57 39.90 1.42 22.02 58.18 35.48 26.18 21.06
α3 2.16 3.94 7.75 0.76 4.04 11.75 30.00 30.00 30.00
α4 1.07 1.85 4.07 0.56 1.85 6.59 19.52 28.82 33.94
α5 5.44 12.46 15.00 0.06 12.92 15.00 15.00 15.00 15.00

E [F1] 110.83 111.94 113.07 110.00 112.00 114.00 115.04 115.39 115.59
q1% (F1) 108.94 108.19 107.28 109.14 108.15 106.30 103.46 101.34 100.00
q50% (F1) 110.86 112.00 113.18 110.01 112.06 114.16 115.26 115.60 115.78
q99% (F1) 112.95 116.22 119.64 110.89 116.39 122.73 129.48 133.78 136.35

P [F1 < 100%] 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.50 1.00

Table 4.5: Simulation results using minimum variance and normal returns. Values in bold face correspond
to the target values. All reported values are given in %.

In part I, we set values for the target return µ∗ of 2%, 3% and 4%. The corresponding portfolio volatility σ

increases with the return, growing from 0.74% for µ∗ = 2% up to 2.29% for a target return of µ∗ = 4%.

Meanwhile, the skewness and kurtosis remain almost unchanged, taking values of about γ̄ = 0.12 for

the skewness and κ̄ = 0.03 for the kurtosis. The asset shares are dominated by the money market

with about 81.56% for a return of 2%. For a return of 3%, it can be seen that the weights shift as the

money market drops to around 60% and the government bonds increase to more than 20%. For the

remaining assets, we observe that the hedge funds obtain a share of about 12%, whereas the real estate

and stocks reach less than 6% when taken together. This trend continues when we look at the values for

a target return of 4%. There, the money market only makes up a share of about 33%. The government

bonds accumulate about 40% of the overall shares. The hedge funds have reached their maximum share

of αmax
5 = 15% and cannot grow any further. Therefore, increased returns are obtained by investing

more in the riskier asset classes. The expected value and the 50% quantile of the funding ratio, E [F1]

and q50% (F1) grow by about 1% for every increase of the target return µ∗ by 1%. While from µ∗ = 2%

to µ∗ = 4%, the 1% quantile q1% (F1) decreases from about 109% to 107.28%, the 99% quantile q99% (F1)

grows considerably stronger by about 7%. Since the 50% quantile grows by about 2% at the same time,

this results in the 1% and 99% being approximately symmetrical around the 50% quantile. We thus

observe that there is an increase in the general funding level despite the increased volatility. As the

volatility stays comparatively low for all return values, the resulting underfunding probability remains

zero (cf. Figure 4.5).
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In part II, we set target values for the expected funding ratio E [F1] at time t = 1 to F̄ = 110%, 112%

and 114%. Following this, the drift µ grows from 1.25% to 4.82%. Similarly, the volatility rises from

less than 0.5% to more than 3% while the skewness and kurtosis remain roughly unchanged. While

for a target value of E [F1] = 110% the portfolio contains almost only the money market, higher values

lead to a shift that results in the government bonds making up more than half of the portfolio and

the hedge funds reaching their maximum share of 15%. For the outer quantiles q1% (F1) and q99% (F1),

we observe that they stay fairly symmetrical around the 50% quantile, being separated by almost 1%

for E [F1] = 110%. This gap then increases to about 4% for E [F1] = 112% and 8% for E [F1] = 114%.

The median q50% (F1) stays very close to the expected value. With the volatility reaching 3.06% at most,

the dispersion still remains at a level that causes the underfunding probability to amount to zero.

Turning to part III, we set target values ǫ for the underfunding probability P [F1 < 100%]. This way, we

focus on the asset allocations that yield probabilities of financial distress that are equal to ǫ = 0.1%, 0.5%

and 1%. As can be observed in Figure 4.5(b), these values correspond to portfolios with much higher

values for the drift µ and the volatility σ. In fact, since F0 = 110%, there is room for risky investment.

From the simulation results, it can be noted that a probability of financial distress of 0.1% causes the

mean return to rise up to 5.73% and the volatility to 4.75%. For all of the three cases, the weight of the

money market in the asset portfolios is zero and the hedge funds and the real estate are at their respective

maximum shares of 15% and 30%. The proportion invested in the stocks is comparatively high, ranging

approximately between 20% and 30%. The share of the government bonds decreases from about 35%

for P [F1 < 100%] = 0.1% down to almost 20% for a target value of 1%. From the high volatility, it

follows that the outer quantiles of the funding ratio F1 spread out very far. While the 1% quantile

decreases to 100%, the 99% quantile reaches more than 136%. At the same time, the expected funding

ratio E [F1] and the 50% quantile q50% (F1) vary by less than 0.5% and remain mostly around 115%.

4.4.2 Asset Allocation with Best-Fit Distributed Returns

In the previous section, we have analyzed the resulting investment portfolios when using the utility

function V1(α, r) and normally distributed returns. In the following, we depart this approach and look

at the results when using the utility function V2(α, r) together with the return distributions that fit

the historic returns best (cf. Section 4.3.2). This way, we want to find out how using moments of

higher order in the utility function and more suitable return distributions alter the previously obtained

results in Section 4.4.1. In order to ensure comparability, the parameter values at time zero and the risk

factors remain unchanged (cf. Table 4.4). Figure 4.6 depicts the asset shares in the optimal portfolios

for V2(α, r) with returns that are in agreement with the best-fit distributions. It can directly be compared

with Figure 4.4.

As before, the portfolio with the smallest drift consists only of the money market. It thus accomplishes a

mean return of 1.14%, which is equal to the mean return µ1 of the money market (cf. Table 4.1). When

increasing the portfolio return from this point on, we can see that at first only the government bonds are

added to the portfolio, quickly obtaining a share of about 8%. After this, an investment in stocks takes

place. Up to a drift of 4%, their share grows up to about 25%. Meanwhile, the real estate and the hedge

funds remain at a single-digit value. From µ = 3.5%, the share of the hedge funds begins to increase

quickly. Together with the real estate growing as well, this leads to the share of the stocks remaining

constant. Once the hedge funds reach their maximum share at a portfolio return of about 5%, the

stocks increase their share again. This continues until they reach their maximum share of αmax
4 = 50%.

Subsequently, the real estate replaces the government bonds up to their respective investment limit

of αmax
3 = 30%. The portfolio with the highest drift and return consequently is the same as in the

minimum variance case. The course of the portfolio volatility σ is given on the second horizontal axis
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Figure 4.6: Optimal asset allocations for target return µ for V2(α, r) and best-fit distributed returns.

in Figure 4.6. There, it can be seen that the increase of σ is not linear. Up to a portfolio return of

about 3.5%, when mainly the stocks are added to the portfolio, the volatility increases uniformly. Past

that point, more weight is put on the hedge funds which have a lower dispersion. The growth of the

portfolio volatility consequently slows down. Once the hedge funds reach the maximum share αmax
5 ,

the percentages of the remaining assets in the optimal portfolio increase again. As a consequence, the

portfolio volatility returns to increasing more strongly. We can also see this when looking at the 50%

quantile of the funding ratio q50% (F1) and the underfunding probability P [F1 < 100%] which are given

in Figure 4.7(a) and Figure 4.7(b), respectively.
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Figure 4.7: Plots of the 50% quantile of the funding ratio q50% (F1) and the underfunding probabil-
ity P [F1 < 100%] at time one.

When looking at the 50% quantile of the funding ratio F1 at time t = 1, we can see that it grows linearly

with the portfolio drift µ. As for the minimum variance case, q50% (F1) grows from about 110% for a

return of 1.14% up to about 116% for the highest value of the drift µ. Looking at the 5% and 95%

quantiles q5% (F1) and q95% (F1) in Figure 4.7(a), we can see a course that corresponds to the one of the

volatility. The shaded area that they mark, grows hardly at the beginning when only the government

bonds are added to the portfolio. Subsequently, the rise of the stock share leads to a stronger expansion

of that area, which is only interrupted by the hedge fund investment between the portfolio returns
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of µ = 3.5% and 5%. A significant change also takes place in the probability for underfunding in

Figure 4.7(b). In contrast to the minimum variance case depicted in Figure 4.5(b), it already takes non-

zero values for a portfolio drift of about 3% and does not grow as steadily. We can see that the curve

instead rises between values of µ = 3% and 3.5% because of the rise of stock shares. After that it almost

remains constant at a value of P [F1 < 100%] = 0.5% due to the stronger investment in hedge funds. The

rise that takes place for portfolio drifts higher than 5% follows from the higher investment in stocks. For

a drift of more than 6%, the probability to become underfunded experiences a steep increase. This is due

to the strong increase of the real estate share in the portfolio that we saw when looking at Figure 4.6.

Overall, we observe that the underfunding probability is higher when using utility function V2(α, r)

and best-fit distributed returns compared to V1(α, r) and normally distributed returns. Not only does

the curve attain non-zero values for lower values of µ, but it also achieves a higher maximum value of

about 5%.

Condition on I: Mean return II: Expected funding ratio III: Underfunding probability

µ 2.00 3.00 4.00 1.24 3.03 4.76 3.04 4.88 5.29
σ 1.36 3.40 4.32 0.37 3.41 4.62 3.47 4.85 5.55
γ̄ [×10−2] 0.09 0.10 0.10 0.24 0.10 0.10 0.10 0.10 0.10
κ̄ [×10−2] 0.09 0.10 0.09 0.15 0.10 0.09 0.10 0.09 0.09

α1 81.12 62.86 44.96 96.32 62.12 32.99 62.06 30.78 21.87
α2 8.22 10.48 13.97 3.68 10.62 15.03 10.66 15.86 19.06
α3 2.04 5.03 9.10 0.00 5.68 12.25 5.23 11.81 13.06
α4 8.62 21.63 25.72 0.00 21.58 24.92 22.05 26.54 31.01
α5 0.00 0.00 6.26 0.00 0.00 14.81 0.00 15.00 15.00

E [F1] 110.83 111.94 113.07 110.00 112.00 114.00 111.99 114.07 114.54
q1% (F1) 107.26 103.05 101.76 109.09 103.06 101.83 102.91 101.36 100.00
q50% (F1) 110.96 112.25 113.48 109.99 112.29 114.39 112.30 114.54 115.07
q99% (F1) 114.93 122.15 126.08 111.06 122.21 127.91 122.41 128.73 131.30

P [F1 < 100%] 0.00 0.08 0.35 0.00 0.08 0.37 0.10 0.50 1.00

Table 4.6: Simulation results using extended utility and alternative returns. All values are given in %.

This also becomes clear when we look at the simulation results in Table 4.6. As before, we have three

parts where we set target values for the mean return, the expected funding ratio and the underfunding

probability. In order to ensure the comparability of the results, we utilize the same target values as in

Table 4.5. Looking at the results for a target return of µ = 2%, we are able to see that the volatility

amounts to 1.36%. When we increase the target return, it leads to a growth of the volatility by about 2%.

Comparing the simulation results with the ones in Table 4.5, we can see a general increase in the volatility.

This is caused by departing from the minimum variance setting. At the same time, the skewness remains

unchanged at a value of γ̄ = 0.1, which is the same as before. For the kurtosis κ̄, a change of the

values has taken place. Instead of being close to 0.03, it now equals approximately 0.10 for all the

simulations. As a consequence to this increase, the portfolio return can be said to have become more

peaked. For the asset weights, the values mirror the observations made in Figure 4.6. While the share of

the money market decreases from 81.12% down to 44.96%, the stocks experience the strongest growth,

rising from 8.62% to 25.72%. At the same time, the money market only grows by 5.75%, while the

real estate stays below 10% and the hedge funds achieve at most 6%. Due to the increase in the drift,

the expected funding ratio E [F1] grows from 110.83% for µ = 2% up to 113.07% for µ = 4%, with

the 50% quantile q50% (F1) being close to those values. Due to the increased volatility of the returns,

the outer quantiles shift considerably. The 1% quantile q1% (F1) decreases from a value of 107.26% down

to 101.76%, and thus almost becomes underfunded. The 99% quantile q99% (F1) meanwhile grows by 11%

and exceeds 125% for a target portfolio drift of µ = 4%. The strong decrease of the 1% quantile of F1
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also impacts the underfunding probability. Despite being zero for a target return of 2%, P [F1 < 100%]

equals 0.08% for µ = 3% and even exceeds 0.3% for another increase of the return by 1%.

When setting target values for the expected funding ratio E [F1] of 110%, 112% and 114%, the drift µ

increases from 1.24% to almost 5%. Similarly, the volatility reaches 4.62%. While being equal to 0.1%

for the remaining values, the skewness γ̄ increases to 0.24% for E [F1] = 110%. In a similar fashion,

the kurtosis κ̄ amounts to 0.15%. Thus, the return distribution is more right skewed and peaked for an

expected funding ratio of 110%. Looking at the asset shares, we can see that the percentage of the money

market drops from nearly 96% down to 33%. In the meantime, the government bonds and the real estate

both grow, but stay at about 15%. The strongest growth is taking place for the stocks, which increase

from zero up to more than 25%. For E [F1] = 114%, the hedge funds reach almost 15%, while being zero

for lower values. For the quantiles of the funding ratio F1, we can make observations similar to the ones

when setting target returns. With the quantiles q1% (F1) and q99% (F1) reaching 101.83% and 127.91%

for a value of E [F1] = 114%, the gap between the most extreme outcomes widens. Consequently, the

resulting probability of financial distress reaches nearly 0.4%.

The simulation results for an underfunding probability of P [F1 < 100%] = 0.5% are almost identical

to the ones for an expected funding ratio of 114%. Increasing the probability of underfunding to 1%

increases the drift µ to about 5.30%, but the volatility σ to 5.55% as well. As a consequence, the shares

of the asset classes are distributed more evenly, with every value being approximately between 15%

and 30%. Due to the underfunding probability being 1%, q1% (F1) equals exactly 100%. At the same

time, the expected funding ratio exceeds 114.5% and the 99% quantile reaches about 131%. For an

underfunding probability of 0.1%, the results for the return distribution turn out less extreme. We can

see a clear shift in the asset weights since the biggest part of the portfolio is made up by the money

market and the stocks. We are therefore able to see that an increased underfunding probability leads to

an increased dispersion and drift, corresponding to an investment in assets with both higher returns and

volatility.

When comparing the optimal asset allocations to the ones obtained by using minimum variance theory (cf.

Table 4.5), we can see a clear shift in the percentages. In particular, the shares allocated to hedge

funds decrease. While they previously reached their maximum value of α5 = 15% for a target return

of µ∗ = 4%, they now achieve about half of that. Their replacement by stocks is linked to the moments of

the return distributions. The higher historical variance of the stock return compared to the hedge funds

is detrimental in the mean-variance case. In a similar fashion, a decrease in the percentages invested in

government bonds takes place. Depending on the target condition, this can even exceed 40%. While the

real estate shares change only little for target values for the mean return µ∗ and the expected funding

ratio E [F1], its shares more than half for a target underfunding ratio. The money market experiences

gains of up to 25% for target returns and funding ratios and are even larger ones for target underfunding

probabilities. There, the shares change from a value of zero to more than 60% for P [F1 < 100%] = 0.1%.

The other asset class that experiences an increase are the stocks. In the minimum variance portfolios,

their portion always remains fairly small as they are the asset class that has by far the highest volatility.

For the extended utility function, the stocks often reach between 20% and 30%. This way, they cause the

strong increase in the portfolio volatility σ that we observed. Overall, we conclude that there is a shift

towards the money market and the stocks when using the extended utility function and the alternative

returns. A possible explanation for this can be seen in Table 4.1 where the first four moments of the

asset classes are given. We observe that for the skewness γ̄i and the kurtosis κ̄i, the money market and

the stocks take the most extreme values. While for the skewness, the money market takes the highest

value and the stocks the lowest one, this relation is reversed for the kurtosis. The stock returns achieve

the highest percentage while the money market has the lowest one. It could therefore be inferred that a

shift to assets with more extreme skewness and kurtosis takes place when looking at the extended utility
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function.

4.4.3 Sensitivity Analysis on Risk Factors

In the previous section, we have examined how the optimization and simulation results change when

using the utility function V2(α, r) and assets distributed according to the best fitting distributions. In

this part, we want to go further into detail and analyze the effects of risk preferences. The utility

function V2(α, r) incorporates the risk coefficients λ1, λ2 and λ3, regarding the volatility, the skewness

and the kurtosis. We aim to study their influence on the outcome of the utility optimization. To this

end, we vary the parameters one after the other, taking values of λi = 0, 2 and 5, while fixing a target

portfolio drift of µ = 3%.6 The results from this are shown in Table 4.7.

I II III IV

λ1 1 0 2 5 1 1 1 1 1 1
λ2 1 1 1 1 0 2 5 1 1 1
λ3 1 1 1 1 1 1 1 0 2 5

µ 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
σ 3.40 3.49 3.31 2.75 2.37 2.15 2.33 2.33 2.87 2.56
γ̄ [×10−2] 0.10 0.10 0.10 0.10 0.12 0.12 0.12 0.12 0.10 0.11
κ̄ [×10−2] 0.10 0.10 0.10 0.10 0.23 0.06 0.07 0.07 0.11 0.15

α1 62.86 63.41 62.33 62.39 55.90 72.43 73.98 73.98 59.73 57.60
α2 10.48 9.89 11.06 11.83 16.51 2.82 0.01 0.00 13.39 15.16
α3 5.03 4.34 5.67 6.35 16.04 0.00 0.00 0.00 9.66 13.13
α4 21.63 22.35 20.94 16.55 11.55 9.75 11.02 11.02 17.23 14.11
α5 0.00 0.00 0.00 2.87 0.00 15.00 15.00 15.00 0.00 0.00

q1% (F1) 103.05 102.79 103.29 104.75 105.85 106.26 105.79 105.80 104.47 105.31
q50% (F1) 112.25 112.25 112.25 112.22 112.23 112.09 112.10 112.10 112.25 112.25
q99% (F1) 122.15 122.43 121.89 120.24 119.20 118.46 118.97 118.97 120.62 119.73

P [F1 < 100%] 0.08 0.11 0.06 0.00 0.00 0.00 0.00 0.00 0.01 0.00

Table 4.7: Results using extended utility and best-fit returns in %. Testing different risk preferences
for µ = 3% and E [F1] = 111.94%.

For guidance, the reference case of λ1 = λ2 = λ3 = 1 is given in part I. Following that, we vary one

coefficient at a time while keeping the other ones unchanged. This way, only the impact of the respective

coefficient λi is analyzed. Looking at part II, where we vary λ1, it can be seen that there is only little

change in the simulation results. From λ1 = 0 to λ1 = 5, the volatility decreases by less than 1%. The

skewness and kurtosis of the returns even remain constant at 0.1. For the asset weights, an increase of λ1

puts more weight on the portfolio variance. Consequently, the resulting asset weights start to converge

towards the outcome of the minimum variance case (cf. Table 4.5). For the outer quantiles q1% (F1)

and q99% (F1), the slight decrease of the volatility results in a change of less than 2%. Consequently,

the underfunding probability reduces from 0.11% to 0%. We can see noticeably bigger differences when

varying λ2. Setting it to zero causes the volatility to decrease to 2.37%. Furthermore, there is an increase

in both, the skewness and kurtosis. For the skewness γ̄, we observe a value of 0.12, while the kurtosis κ̄

reaches 0.23. Thus the returns are more right skewed and peaked. For the asset weights, the government

bonds and the real estate have shares of about 16%, while the stocks remain at a lower value and the

hedge funds at zero. The remainder is accounted for by the money market. The shares change much

6While the sensitivity analysis on the risk preferences in the utility function is performed by using arbitrary numbers, it
has been shown in the literature that there are interrelations between the preferences for the different return moments. As
this interdependence needs to taken into account, it is difficult to set values for the different factors. For further information,
see, e.g., Kraus and Litzenberger (1976) and Harvey et al. (2010).
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more when altering λ2 to a value of two. The investment in the government bonds and real estate almost

go down to zero, while the stocks decrease to 9.75%. The money market makes up more than 70%

of the portfolio while the portion of the hedge funds is 15%. As a consequence of this, the volatility

decreases slightly. The kurtosis returns to a value of 0.06, while the skewness remains at 0.12. The 99%

quantile q99% (F1) reaches 118.46%, while the 1% quantile q1% (F1) increases to 106.26%. As a result,

the underfunding probability P [F1 < 100%] remains at zero. Another change of the outcome can be seen

when setting λ2 = 5. For this value, the resulting portfolio consists mostly of the money market and the

hedge funds. The only other asset to be invested in, is the stocks. Due to this, the volatility increases

back to 2.33%, which causes an increase of the confidence interval. We can also see variations in the

simulation results when varying λ3 in part III. When we alternate the factor, the volatility changes by

less than 0.5%. Alterations in the quantiles of the funding ratio and the underfunding probability thus

remain small as well. For the kurtosis and the asset weights, there are more pronounced differences. The

kurtosis increases from 0.07 to 0.11 and 0.15. At the same time, the portfolio becomes more diversified.

While mostly consisting of the money market and hedge funds for λ3 = 0, the shares of the remaining

three asset classes already make up more than 40% for λ3 = 2. At the same time, the share of the

hedge funds drops to zero and the proportion invested in the money market decreases by about 14%.

For λ3 = 5, this trend continues, albeit in alleviated terms.

Overall, we are able to see that changes in the risk factors lead to considerable differences in the outcomes.

This does not involve a uniform trend. For changes with respect to the portfolio volatility, we observe

only little variation in the optimal portfolio for small values. For higher values of λ1, it can be seen that

the asset weights start to converge towards the outcome of the minimum variance case. The results are

relatively robust with respect to risk aversion linked to the second moment of the portfolio distribution.

The differences are more pronounced when we vary the second and third coefficient λ2 and λ3. As a

result of this, there are strong shifts in both, the portfolio weights and the return characteristics. We

conclude that preference with respect to the different moments plays an important role in simulations

and needs to considered with care.

4.5 Conclusion

In this research, we look at the impact that higher moments have on the optimal asset allocation of a

pension fund. The research question was: Do higher moments lead to a change in the optimal portfolio

weights and are different random distributions able to provide an improved fit of the return data. To this

end, we compare how the Markowitz efficient portfolio asset weights change when using a more complex

utility function that also involves the third and fourth moment of the historic asset returns. Using the so

obtained portfolio weights, we simulate the assets of the fund in a one-period model. Therein, normally

distributed returns are compared to alternative ones that fit the data in a better way. Furthermore, it

is examined how a more complex risk preference with respect to several return moments impacts the

optimization results. In order to perform this, we carry out a sensitivity analysis in which we vary the

different factors and analyze the changes in the outcome. In our work we consider three different key

indicators that are relevant for pension fund management in practice: the target return, the expected

one-period funding ratio and the one-period underfunding probability.

Expectedly, our results indicate that the use of an extended utility function does indeed lead to a shift

in the optimal portfolio weights. Consequently, main portfolio characteristics change. Among others, a

strong increase of the volatility takes place. Following this, the outer quantiles of the funding ratio spread

further and the underfunding probability increases. We are therefore able to say that using the minimum
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variance portfolio can cause misleading security. Working with an extended utility function that departs

from the minimum variance framework and incorporates higher moments of returns consequently allows

companies to assess their risk taking more adequately.

Along with the utility function, pension funds should also consider looking at the adequate distributions

for their asset classes. As previous research shows, the normal distribution is not able to fully reflect

the characteristics of asset returns. Comparing it to three other distributions, we are able to find a

distribution that fits the historic return data better for almost every type of assets. Using these, we are

able to simulate returns that are not symmetric and put more weight on the tails, properties that are

characteristic for capital market returns. Consequently, the characteristics of the optimal portfolios such

as the skewness and kurtosis change in our simulations. In particular, the return distribution alters to

having a longer right tail and being less peaked. We are therefore of the opinion that pension funds, and

financial institutions in general, need to consider using more suitable distributions for their assets.

Having analyzed the effects of an extended utility function and different asset distributions, we examine

the impact of risk preferences. To this end, we look at a vector of risk factors with respect to the second,

third and fourth moment of the portfolio return. The results show that the outcome changes only little

when varying the parameter related to the volatility. In contrast to this, we see strong variations when

changing the coefficients of the skewness and kurtosis. As a consequence of this, the optimal portfolio

weights shift together with its characteristics. It is thus necessary to use a more complex risk preference

when optimizing utility functions.

This work analyzes the impact of an extended utility function together with different asset distributions

and a more complex risk preference. We observe that there are strong changes in the resulting opti-

mal portfolios and their characteristics. It can therefore be concluded that pension funds would profit

considerably from utilizing the aforementioned changes. While the “best” asset allocation is still to be

interpreted in the light of the used hypotheses and objectives, the investment shares – differing little or

a lot – from the different methods give information about the stability and robustness of the calculated

allocations. While being focused on the pension fund system, we believe that our results hold true for

financial institutions in general. Possible extensions of our work would be to study a higher number of

asset classes relevant for various institutions. With respect to this, more detailed work on preferences

with respect to different moments would also be needed. Limitations of our work lie within the complex-

ity of solving the optimization problem for a higher number of assets. Practical implementation is often

impeded by the high number of parameters that must be estimated and set as input.
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Chapter 5

Optimal Calibration of Annuities in

Swiss Pension Funds under

Consideration of Financial and

Biometric Risks

The financing of the retirement phase plays a particularly important role for the insureds of a pension

fund. Since pension payments often represent the only source of income after retirement, securing the

payment of annuities for the remainder of the lifetime is crucial. In recent years, pension funds have been

under pressure from the longevity of individuals and lower and more volatile interest rates. Furthermore,

parameters like the conversion rate used to calculate the annuity from the available capital at retirement

need revision and are to some extend fixed by the regulator. In our research, we study the retirement

phase of a defined contribution (DC) Swiss pension scheme (second pillar), where annuities are calculated

from the available individual stock of capital using a conversion rate. Our study involves examining the

impact of external changes, such as longevity, financial market performance and the technical interest

rate. We analyze the impact of variations in the different risk factors using analytical expressions as

far as possible. Looking at the sensitivity of the results, we quantify and compare the impact of the

biometric and financial uncertainties and evaluate the parameters required to keep a long-term balance.

We find that both, the capital market returns and the lifetime, considerably impact the conversion rate.

Comparing the two factors, we see that the influence of the investment returns is significantly greater

than the one of longevity. This holds particularly when looking at scenarios and random distributions

for the return. Pension funds as well as regulators can profit from incorporating the dependency of the

conversion rate on financial and biometric factors into their procedures.

Note: This is joint work with J. Wagner. The authors are thankful for the comments on an earlier version of this

manuscript by participants of the Western Risk and Insurance Annual Meeting 2018.
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5.1 Introduction

The increasing lifetime of individuals has a strong impact on financial organizations. As their members

live longer, insurance companies and pension funds are facing challenges with respect to the duration of

their products. As they usually involve specific payments and guarantees, contracts are very sensitive

to changes in the expected lifetime of the members. For pension funds, this is especially true for the

retirement phase. As insureds enter the retirement phase, they are entitled to regular guaranteed annuity

payments until they die. Consequently, it is crucial for the fund that the accumulated savings suffice in

order to cover the future pension payments. With respect to this, investing the earnings on the capital

market plays an important role. As the pension fund is able to invest the savings and consequently

generate interest returns, it is able to make a significant contribution to the available funds. Regarding

the calibration of the pension fund system, it is therefore of importance to choose the parametrization

in a way, such that sufficient reserves are available in order to meet future obligations.

In this work, we study the retirement phase of a defined contribution Swiss pension scheme. To this end,

we study the adequate choice of the conversion rate with respect to the curtate expected lifetime of the

member and the expected capital market return. Using historic data, we quantify the impact of both

factors and compare their effects. For the life expectancy of the client, this involves using mortality data

in order to model the future development of the survival probability. For the investment return, we utilize

the past returns of a Swiss pension fund index. Furthermore, we make use of predefined capital market

scenarios and a simulation of random returns. This way, it is analyzed to what extend the pension fund

system might need to respond to certain financial scenarios and distributions. The research question is:

How do the life expectancy of the members, the return from capital market investments and the technical

interest rate influence the choice of the conversion rate?

The model that has been developed by Lee and Carter (1992) has quickly become a popular tool for

modeling the mortality of individuals and longevity in particular. As it takes the historic development

of the death rates into account, it provides a method to forecast the future survival probabilities (Lee

and Miller, 2001). Over the years, the original model has been applied in various cases and has been

extended for different purposes (Lee, 1998, 2000; Renshaw and Haberman, 2006). For the population

in Switzerland, research has been conducted looking at the main causes of death as well as comparing

mortality forecasts from academia to the ones used by practitioners (Arnold-Gaille and Sherris, 2013).

The ever-increasing lifetime of individuals is posing challenges for insurance institutions in general and

pension funds in particular (Albrecher et al., 2016; Macdonald et al., 1998). As the members are living

longer and longer, they receive more annuity payments over their lifetime. This consequently impacts the

transfers between active and retired fund members (Eling, 2013; Avanzi and Purcal, 2014). Capital mar-

ket returns have further been decreasing considerably over the past years. Along with this, an increased

volatility poses difficulties for pension funds to achieve stable return streams (Devolder, 2011; Bikker

et al., 2012; Gerber and Weber, 2007; Hainaut and Devolder, 2007). It has been studied in the litera-

ture how financial institutions can respond to these new circumstances (Berdin and Gründl, 2015; Yao

et al., 2014). For pensions funds, there has additionally been extensive research on how pension systems

could be reformed on a general scale (Blake, 2000; Poterba et al., 2007; Bodie et al., 1988) as well as for

specific countries (Börsch-Supan and Wilke, 2004; Chang, 1999; Mao et al., 2008).

For the second pillar pension fund system in Switzerland, there have been efforts in recent years to

reform the system, albeit with differing degrees of success (Swisscanto, 2018; Bütler, 2009). As Swiss

retirees seek to increase their savings and pension payments, there has been a trend to go from early

retirement to working in old age (Dorn and Sousa-Poza, 2003, 2005; Hanel and Riphahn, 2012). Addi-

tionally, individuals who enter into retirement mostly favor annuities over lump-sum payments (Bütler
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and Teppa, 2007; Avanzi, 2010). Considering the financial state of the funds, it has further been analyzed

how to measure and assess the solvency situation of a fund and how additional contributions as well as

surplus distributions affect its stability (Braun et al., 2011; Müller and Wagner, 2017).

In our work, we focus on the retirement phase of a pension fund in Switzerland. To this end, we take

particular interest in the pension amount that is regularly paid out to a cohort of members. In the Swiss

system, this amount is calculated as a percentage of the savings at retirement, called the conversion rate.

The right choice of this parameter is the main focus of our work. We study how the conversion rate

depends on the lifetime of the insured, the investment returns and the technical interest rate. Using

closed-form expressions, we are able to show that the choice is independent of the volume of the savings

at retirement. With respect to the mortality of the clients, we study the historical development of

the curtate expected lifetime at retirement. Using a Lee-Carter model, we forecast mortality, survival

probabilities and the life expectancy for future decades in order to quantify how the conversion rate

would need to be adjusted due to longevity. Looking at the historic investment returns of pension funds,

we analyze the historic annual returns of a common Swiss pension fund index. The values indicate that

there is a strong dispersion in the capital market returns achieved in the past years. The technical interest

rate represents the discounting factor that is used to calculate the technical reserves of a pension fund.

It is therefore important to set the technical interest in a reasonable and appropriate way, as changes can

lead to strong fluctuations in the required reserves. We consequently compute the conversion rate for

a wide range of investment returns. In addition, we consider predefined return scenarios and a random

return that follows a specific distribution. This way, we aim to assess how the conversion rate needs to

be adjusted in response to return developments.

The remainder of the paper is structured as follows. Section two presents the model framework and the

derivation of the analytic expression for the conversion rate. The third Section involves the introduction

of the Lee-Carter model. Based on the survival probabilities, we develop a mortality multiplication model

in order to compute target values for the curtate expected lifetime. In addition, we present the historic

performance of capital investments using the example of a Swiss pension fund index. In Section four, we

present the results of our computations. Conducting a sensitivity analysis, we quantify and compare the

impact of the investment returns and the lifetime of the members on the conversion rate. In addition,

random returns as well as return scenarios are considered. The final Section concludes.

5.2 Model Framework

Our modeling is interested in putting the various parameters used in defined contribution (DC) pension

funds for calculating the pensions of a cohort of insureds into relation using a sustainable method.

In a typical DC pension fund the actives have collected a savings amount valued A0 at the moment

of retirement. This value lays the basis for the calculation of the yearly pension benefit. Over the

retirement phase, while a pension payment is deducted periodically, the assets remaining in the fund

earn investment returns. The pension is calculated as a share of the initially available capital amount,

taking into account future returns, mortality assumptions and a discounting factor for the liabilities.

First, considering the available pension assets at retirement, we link the pension payments to the death

probabilities, the investment returns and the technical interest rate. Thereby, we derive a closed-form

solution for the conversion rate.
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5.2.1 Available Pension Assets during Retirement

We consider the retirement phase of a DC pension fund where the retirement pension is calculated from

the value of the savings at retirement. Therein, we assume a cohort of homogeneous members entering

into retirement at age x (typically 65 years for men and 64 years for women in Switzerland) with a

cumulated savings account balance of A0 (at time t = 0 all members bring in the same amount). The

annual pension that the individual receives, is calculated by multiplying the savings A0 with the so-called

conversion rate cr (see BVG, Art. 14). In Switzerland, this rate is regulated for the mandatory part of

second pillar savings and amounts to cr = 6.8% in 2018. The sum of the annuities paid out to the pool

of members, consequently equals A0 · cr, i.e. it is constant and calculated as a percentage of the account

value at retirement. In our model, we assume that the pension is paid out at the beginning of every

period, to the share of members that is still alive. For the beginning of the first year of retirement, it

thus holds that

A0+ = A0 −A0 · cr. (5.1)

The probability that an individual of age x is still alive after t periods is denoted by tpx. We have 0px = 1

and tpx < 1 for t > 0. The amount that is available for investment at the beginning of each year becomes

A(t−1)+ = At−1 −A0 · cr · t−1px, t = 1, 2, . . . , (5.2)

where At, t = 0, 1, 2, . . . is the asset value at the end of year t.

During the year, the savings are invested on the capital market by the fund. The investment return in

period t is denoted by rt. With Rt = 1 + rt, it consequently follows for the savings account at the end

of the year that

At = A(t−1)+ · (1 + rt) = (At−1 −A0 · cr · t−1px) ·Rt, t = 1, 2, . . . (5.3)

Consequently, the remaining value At of the savings account can be obtained from the previous one, At−1

by subtracting the annuity cr ·A0 and crediting the investment return rt. The annuity payment is thereby

weighted with the survival probability t−1px since it is only paid out to the surviving individuals. From

the above formulas, the available assets at times t = 1, 2, . . . can be explicitly written out as follows

A1 = (A0 −A0 · cr) ·R1,

A2 = (A1 −A0 · cr · 1px) ·R2,

A3 = (A2 −A0 · cr · 2px) ·R3,

...

At = (At−1 −A0 · cr · t−1px) ·Rt. (5.4)

...

The formula for At in Equation (5.4) can be rewritten in a non-recursive way. By plugging At−1

into At, At−2 into At−1, and so on, we find

At = A0 ·Rt ·





t−1
∏

k=1

Rk − cr ·

t−1
∑

k=0

t−k−1px

k
∏

j=1

Rt−j



 , t = 1, 2, . . . . (5.5)
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5.2.2 Derivation of the Conversion Rate

Naturally, an appropriate choice of the conversion rate cr is crucial to the functioning of the fund. If it

is set too high, the savings of the pensioners might not suffice on average in order to make the annuity

payments over the entire lifetime. A way to balance this would be to invest in assets with higher returns.

This, in turn, would be connected to taking more risks and come with a typically higher volatility in

the outcome. Choosing the conversion rate too low is not favorable to the members either. If there are

savings left at the end of the lifetime, it implies that higher payments and consequently a higher living

standard would have been possible. Our goal is therefore to discuss the conversion rate cr depending on

three main “ingredients”:

1. the life expectancy through mortality tables,

2. the capital market returns,

3. and the technical interest rate for discounting the liabilities.

For the adequate value of cr, the sum of the discounted contributions to the asset account should equal

the sum of the discounted payments to the pensioners. The sum of the pension payments discounted to

time zero amounts to
∑

t≥0

A0 · cr · tpx · νt = A0 · cr ·
∑

t≥0

tpx · νt, (5.6)

with ν denoting the discounting factor which is defined as ν = 1
1+z

. In this, z denotes the technical

interest rate (SKPE, 2015).

The contributions to the account consist of the savings A0 at the time of retirement and the investment

earnings during the following years. For the present value PV of the contributions Ct to the account at

time t during the retirement phase, it holds that

PV (C0) = A0,

PV (C1) = (A0 −A0 · cr · 0px) · r1 · ν
1 = A0 · r1 · ν · (1 − cr · 0px) ,

PV (C2) = (A1 −A0 · cr · 1px) · r2 · ν
2 = A0 · r2 · ν

2 · (R1 − cr · 0px ·R1 − cr · 1px) ,

...

PV (Ct) = A0 · rt · ν
t ·





t−1
∏

k=1

Rk − cr ·
t−1
∑

k=0

t−k−1px

k
∏

j=1

Rt−j



 . (5.7)

...

It follows that the sum of the contributions discounted to time zero amounts to

∑

t≥0

PV (Ct) = A0 ·



1 +
∑

t≥1

rt · ν
t ·





t−1
∏

k=1

Rk − cr ·
t−1
∑

k=0

t−k−1px

k
∏

j=1

Rt−j







 . (5.8)

Setting the sum of the discounted contributions from Equation (5.8) equal to the sum of the discounted
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pension payments expressed in Equation (5.6) and solving for cr, we get

cr =

1 +
∑

t≥1

rt · ν
t ·

t−1
∏

k=1

Rk

∑

t≥0

tpx · νt +
∑

t≥1

rt · ν
t ·

t−1
∑

k=0

t−k−1px ·

k
∏

j=1

Rt−j

. (5.9)

It is thus possible to derive a closed-form expression for the contribution rate cr in our framework,

provided that the survival probabilities and the returns are known and the technical interest rate is

given. Additionally, we observe that the value of cr is independent of the savings at retirement A0.

In actuarial practice, it is assumed that individuals can only reach a certain maximum age (very high,

representing the limit of available statistics), denoted ω. Consequently, one cannot survive past that age.

Taking this into account, Equation 5.9 simplifies to

cr =

1 +

ω−x
∑

t=1

rt · ν
t ·

t−1
∏

k=1

Rk

ω−x
∑

t=0

tpx · νt +
ω−x
∑

t=1

rt · ν
t ·

t−1
∑

k=0

t−k−1px ·
k
∏

j=1

Rt−j

. (5.10)

5.3 Model Calibration

Having introduced the research setup, we provide the model calibration for the various parameters in

this Section. We numerically study the problem on the basis of the population of Switzerland and by

using historic investment returns of an index followed by many Swiss pension funds. This encompasses

modeling the mortality of the cohort of the insured with the help of the Lee-Carter model. We present

and discuss the historic data that we use for modeling and forecasting. In addition to this, we introduce

a mortality multiplication model, with the help of which we vary the mortality in order to calibrate

target values for the life expectancy. This value and its variation are often in the center of the political

discussion. Aside from the mortality of the members, our model depends on the returns from investing

the capital savings on the markets. We present historic return data in the Swiss pension sector and

discuss the implications that variations have in our calculations.

5.3.1 Force of Mortality and Survival Probability

In our model, we assume that individuals are exposed to mortality. In the following, we introduce some

notations following Bowers et al. (1989). If we denote the lifetime of an individual by X, a continuous

random variable, then the probability that a newborn child is still alive at age x is given by

S0(x) = P[X > x]. (5.11)

The function S0(x) is called the survival function. It follows that the cumulative distribution function

of X is defined as F0(x) = P[X ≤ x]. For an individual that is already x years old, the probability of

still being alive at age x + t is defined as

tpx ≡ Sx(t) = P[X > x + t|X > x] =
S0(x + t)

S0(x)
. (5.12)
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Conversely, the probability for an individual of age x to die within t years is

tqx ≡ 1 − tpx = P[X ≤ x + t|X > x]. (5.13)

In order to measure the probability of death in the near future, the force of mortality is used. For an

individual at age x, it is defined as

µ(x) = lim
∆→0

P[x < X ≤ x + ∆|X > x]

∆
(5.14)

For the time period ∆ converging to zero, µ(x) describes the probability of instant death, i.e. the force

of mortality which can be written with the help of the survival function as

µ(x) = −
1

S0(x)
· lim
∆→0

P[X ≥ x + ∆] − P[X > x]

∆
= −

1

S0(x)
·
d

dx
S0(x) = −

d

dx
log (S0(x)) . (5.15)

We are thus able to link the survival probability tpx introduced in Equation 5.12 to the force of mortal-

ity µ(x). Using Equations (5.12) and (5.15) and solving for tpx, we get

−µ(y)dy = d log (S0(y))

⇔ −

∫ x+t

x

µ(y)dy = log

(

S0(x + t)

S0(x)

)

⇔ −

∫ x+t

x

µ(y)dy = log (tpx)

⇔ tpx = exp

[

−

∫ x+t

x

µ(y)dy

]

. (5.16)

Thus, if the force of mortality µ(x) is known, we are able to simulate the survival probabilities tpx.

5.3.2 Lee-Carter Mortality Modeling

For simulating the mortality rates, we use the model of Lee and Carter (see Lee and Carter, 1992). In

the Lee-Carter-model, historic death rates are used to calibrate the model and to estimate the future

mortality. Utilizing a discrete time series model, we assume that in the future the mortality will change

in the same way that it did in the past. Past longevity developments imply that the life expectancy

increases over time. Thus, the force of mortality is not only estimated in dependence of the age x,

but also as a function of the time t. The fitted force of mortality at time t for individuals of age x is

consequently denoted by µ(x, t) and defined as

lnµ(x, t) = αx + βxκt + ǫx,t. (5.17)

In the model, the constants αx and βx represent age-specific constants. The parameter αx represents

the average shape of the age profile. The constant βx is an age-specific factor which indicates how the

death rates deviate from the age profile in response to changes of the parameter κt. The time-dependent

factor κt in turn, represents an index of the level of mortality. Finally, ǫx,t stands for the error term

containing age-specific effects that cannot be modeled by the other factors. When using the Lee-Carter

model, we conduct two steps. In the first one, we fit the factors from Equation (5.17) on the historic

data. In the second step, we use the fitted model to forecast future mortality rates. This way, we obtain

future death rates for every age group.

We use historic death rates from the Swiss population where data for the years 1970 to 2014 is available
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from the Human Mortality Database (see http://www.mortality.org/). On this basis, we fit our model

and compute the mortality rates for times after 1985, the year in which the current pension fund system

was introduced. For years between 1985 and 2014, we utilize the entire historical information that is

available up to the respective year to fit the model parameters. Once exceeding this point, we are limited

to using the entire dataset for predicting the future mortality.

Figure 5.1 presents the fitted values for the model parameters αx, βx and κt. More specifically, Fig-
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Figure 5.1: Plots of the coefficients αx, βx and κt of the Lee-Carter model.

ure 5.1(a) displays the age-specific constants αx and βx for ages from x = 0 up to ω = 101 years. The

time-dependent parameter κt is displayed in Figure 5.1(b). For the years from 1985 up to 2014, the fitted

values are shown, whereas from 2015 to 2040 the simulated results are given (the dashed line informs

about this frontier). Together with the forecasted values, the 60% confidence interval is depicted in gray

in order to visualize the volatility of the projections.

The plots of the force of mortality µ(65, t) and the survival probabilities 1p65 at retirement for the

years t = 1985 to 2040 are given in the graphs of Figure 5.2. In them, the historical values are used
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(b) Survival probabilities 1p65 from 1985 to 2040.

Figure 5.2: Plots of the mortality rate µ(65, t) and the survival probability 1p65.

again up to the year 2014 and the forecasts from the Lee-Carter model for the years thereafter. As

a consequence, the course of the graphs is more unsteady before 2014 and smoother for the simulated

values. We separately plot the values for men, women and the overall population. Expectedly, the

mortality rate for men at the age of 65 years is the highest, amounting to almost 2.5% in 1985. For

women, the values are less than half of that, amounting to about 1% in 1985. The values of the

overall population is around 1.5%. Unsurprisingly, we observe a strong decrease in the mortality rates
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over the years. The three graphs have a downward slope and reach values between 0.5% and 1% for

the year 2040. Additionally, the distances between the curves narrow. Our results indicate that the

differences in mortality between men and women decrease over time.

We observe a similar pattern when looking at the survival probabilities in Figure 5.2(b). For 1p65, the

male population has the lowest values, starting with a value of 97.63% for the year 1985. For the same

year, women have a survival probability of 98.89%, while for the whole population, the value amounts

to 98.31%. Subsequently, the values improve and the curves increase. As before, the historic values show

some fluctuation, which causes some dispersion in the plots up to the year 2014. For that specific year,

the three curves are closer to each other, with the male population reaching a value of 1p65 = 98.88%,

which is only 0.56% lower than the one for women. This trend continues further with a monotonous

increase up to the year 2040. For this last year of the simulation, the values are the closest, differing

from each other by less than 0.3%. The aggregated survival probabilities tp65 for years t = 0, . . . , 37 are

presented in Figure 5.3, where we plot the values for the years 1985, 2014 and 2040. Comparing the
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Figure 5.3: Survival probability tp65 from age 65 up to the maximum age of ω = 101 years for the
years 1985, 2014 and 2040.

different curves, we see the effect that longevity trends have on the survival probability. The probability

to survive ten years after retirement, 10p65, equals about 83% in 1985. For 2014 and 2040, this value

is 7.5% and 11.5% higher, respectively. If we look at the probability to still be alive after 20 years, the

survival probability equals about 70% for 2014. This is almost 18% higher than it is for an individual

in 1984 and 11.2% lower than for someone in 2040. This can also be seen in the plot, where the distance

between the three curves widens. Once individuals approach the maximum age, the distance between the

three curves decreases again. For 30p65, i.e. the probability to still be alive 30 years after age 65, the value

for the year 2014 amounts to 24.1%. This is only 9.8% higher than the value for the year 1985. For the

year 2040, the distance has slightly increased. For individuals that are 65 in that year, the probability

is 12.8% higher than the one in 2014. Going towards the maximum age, all the graphs converge to

zero. Overall, we can see that longevity leads to increased survival probabilities for all ages, predicting

individuals to live longer.

Figure 5.4 shows the curtate expected lifetime e65 at retirement as well as the rounded values of e65 to

integers. The curtate expected lifetime at age x, ex, is defined here as

ex =
ω−x
∑

t=1

tpx, (5.18)
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For the years up to 2040, the values for the male, the female and the overall population are given. We use
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(b) Rounded values of e65.

Figure 5.4: Curtate expected lifetime e65 at the age of 65 years.

the historic values up to the year 2014 and apply the forecast from the Lee-Carter model starting 2015.

The life expectancy is the highest for women and the lowest for men. The value for the overall population

lies between the two. While at the age of 65 years, the male population has an curtate expected lifetime

of only 15.3 years in 1985, female individuals are expected to live about 5.5 years longer at that point.

In the following years, this gap becomes smaller. In 2005, the female population has a value of 22.7

for e65, whereas the male reaches 18.7. The increase for the entire population is on a similar scale,

achieving a value of 21 for that year. Past that point, we observe that the three graphs grow almost

Period ⌊e65⌋

1985 – 1991 19

1992 – 1999 20

2000 – 2005 21

2006 – 2013 22

2014 – 2023 23

2024 – 2032 24

2033 – 2040 25

Table 5.1: Development of ⌊e65⌋ for the entire population over time.

linearly and with similar slopes, thus keeping the same distance between each other. This is especially

true for the values after 2014 that have been estimated with the Lee-Cater model. Consequently, the

curtate expected lifetime at age 65 for the entire population in 2040 reaches almost 25 years, which

corresponds to individuals turning 90 years old on average, an increase of two years over 2014 and an

increase of six years over 1985, the inception year of the second pillar system. The values for the male

and female population vary about 1.5 years from this, amounting to 23.1 for men and 26.2 for women.

Additionally, we display the rounded values of e65 in Figure 5.4(b) and report the development of ⌊e65⌋

for the entire population in Table 5.1, since they are of importance for our simulation. Thereby, the

notation ⌊ex⌋ = max {k ∈ Z |k ≤ ex } denotes the largest integer smaller or equal to ex. Naturally, the

main findings are as for the absolute values. Due to the rounding, the graphs exhibits jumps between

which the curve remains constant, leading to a stairstep course. As the expected lifetime of men grows

stronger over time, upward steps occur more often, every 6–7 years on average. On the contrary, the

life expectancy of women is high and increases at a slower rate. For the considered period, we observe
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an additional year of lifetime about every 10 years. As before, the overall population is located between

these extremes, experiencing a gain of one year of lifetime every 7–8 years. Looking at the rounded

values of the curtate expected lifetime in Table 5.1, we see that the growth slows down over time. In

fact, while ⌊e65⌋ equals 21 over the course of 6 years, it remains at 22 for 8 years and at 23 for 10 years.

5.3.3 Modeling Variations in Longevity

In a second step, we depart the historical mortality data and focus on the curtate expected lifetime ex.

To this end, we take the entire historic mortality data that is available to us, i.e. from the year 1970

until 2014. Based on this, we compute the mortalities tqx, the survival probabilities tpx and the curtate

expected lifetime ex =
∑ω−x

t=1 tpx =
∑ω−x

t=1 (1 − tqx) for the year 2015 with the help of the Lee-Carter

model. As it is our goal to analyze the effects of longevity on the technical parameters of a pension

scheme, we look at ex as a parameter independently from its development over time. For various values

of ex, we aim to be able to make calculations using the underlying mortality structure (age/time-wise).

By amending the mortality rates tqx, different values for ex can be obtained. Consequently, we choose to

use a multiplication model for the mortality (see, e.g., Alonso-Garćıa and Sherris, 2018). In this, we take

the simulated mortality rates for the year 2015 as a starting point. In order to achieve certain target

values for the lifetime, we introduce a multiplication factor c (mortality loading). By multiplying the

mortalities with this factor, we vary the lifetime and reach desired target values. For achieving this, we

numerically solve the equation

ex
!
=

ω−x
∑

t=1

(1 − c · tqx) . (5.19)

Consequently, given a target value of ex, we obtain a value for c. In order to reach higher values for the

lifetime, c needs to be smaller than one. Conversely, shortening the life expectancy corresponds to c > 1.

The resulting values for the multiplication factor are displayed in Figure 5.5 and Table 5.2. In them,
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Figure 5.5: Mortality multiplication factors c for the entire population.

the values of c are given for a curtate expected lifetime between e65 = 20 and 24. We perform this on

the entire population level as well as for male and female individuals. Serving as a reference for the

initial values of e65, a horizontal dashed line is given at a level of c = 1 in the graph. The curve for the

female population is located on top of the others, while the one for the male population is at the bottom.

This follows from women having a higher expected lifetime than men (cf. Figure 5.4, higher loading c

needed for given target). We observe that the graphs do not follow a linear course and have a parabolic

shape instead. Additionally, the distance between the graphs is bigger for smaller values of e65 and
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shrinks when looking at larger target values. The expected lifetime of women amounts to 23.6 for a value

of c = 1 (cf. Figure 5.4(a) and Section 5.3.2) and conversely reaches e65 = 22 for a multiplication factor

that equals 1.26 (cf. Table 5.2). Consequently, c needs to be larger than one for shorter life expectancies,

going up to a value of 1.70 for e65 = 20, meaning that the average mortality for women needs to be

almost doubled. For men, this trend is reversed. As for c = 1, the lifetime only amounts to 20.3 and 22

e65 All Male Female

20 1.33 1.04 1.70

21 1.16 0.91 1.47

22 1.01 0.79 1.26

23 0.88 0.69 1.09

24 0.76 0.60 0.94

Table 5.2: Mortality multiplication factors c for selected target lifetimes e65.

for a value of c = 0.79, the multiplication factor needs to be below one for most values of e65 that are

illustrated in the graph. This subsequently leads to a multiplication factor of 0.60 for a curtate expected

lifetime of 24 years, meaning that the mortalities need to almost be halved in order to achieve such a

long lifetime for men. The overall population is located in between these two extremes. For c = 1, the

curtate lifetime equals 22.05. Lowering the target value for e65 to 20 results in a multiplication factor

of 1.33. At the other end of the scale, we reach 24 years when multiplying the mortalities by 0.76. This

uneven change in the multiplication factor corresponds to the shape of the curve being non-linear.

5.3.4 Asset Allocation and Financial Returns

One of the central tasks of pension funds lies in investing the assets of their members on the capital

markets (see BVV2, Art. 11). This way, returns on the savings are earned, adding to the available

capital. For the pension system in Switzerland, there is no explicit minimum interest rate during the

retirement phase. However, information on the expected returns and the technical interest rate are

important for the life-long guaranteed pension payments.

In our work, we consider a commonly used pension fund index in the Swiss market. This way, we assess

the returns that have historically been achieved by pension funds. We consider the annual returns of

the Pictet BVG 40 index. It is composed of a mixture of 50% bonds, 40% stocks, 5% real estate and 5%

hedge funds. For all asset classes, a mixture of investments from Switzerland as well as other countries

is used.1 For the historic values, Figure 5.6 depicts the annual returns from 1994 to 2014, i.e. over 21

years, while Table 5.3 presents the corresponding numerical values. We observe a high volatility in the

returns. While a maximum return of 16.77% is achieved in 2009, the largest loss took place the year

before, amounting to –18.58%. The investment returns of pension funds are closely connected to the

developments in the financial markets. Going more into detail, it can be seen that for the majority of

the years, the returns have been positive.

The average annual return amounts to 5.75% and the standard deviation to 9.4%. For the five-year

moving average a similar pattern can be observed (cf. Figure 5.6). While none of the returns are

negative, there is still a strong fluctuation with the maximum and minimum values amounting to 13.42%

and 0.47%, respectively. We conclude that pension funds face a strong volatility challenge when investing

the savings of their members on the financial market. As a result, the contribution of investment earnings

to the savings of the insured is subject to strong uncertainty. Although the long investment horizon

1See https://www.am.pictet/en/switzerland/articles/lpp-indices for further information.
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Figure 5.6: Historic annual returns rt of the Pictet BVG 40 pension fund index together with the five-year
moving average.

Year Return rt Year Return rt Year Return rt

1994 –5.61 2001 –4.37 2008 –18.58

1995 11.62 2002 –8.39 2009 16.77

1996 15.09 2003 11.79 2010 4.13

1997 17.91 2004 6.09 2011 –0.98

1998 6.61 2005 15.04 2012 9.71

1999 15.88 2006 6.57 2013 8.10

2000 1.94 2007 1.03 2014 10.39

Table 5.3: Annual Pictet BVG 40 returns rt (in %).

smoothens the overall return, single years may affect the reporting, the funding ratio and the decision

taking significantly.

5.4 Numerical Results

In this Section, we turn our attention to the results obtained from our pension fund model. First, we

present the numerical implementation. Having presented our model, we then discuss the results of our

simulation. In this, we analyze and quantify to what extent the investment return, the lifetime and the

technical interest rate influence the conversion rate. We extend our framework by looking at capital

market scenarios and random investment returns. In doing so, we assess how variations in the returns

influence the savings account value and thus the conversion rate that pension funds may propose.

5.4.1 Model Implementation

An outline of our model is shown in Figure 5.7. For given values of the survival probabilities, investment

return and discounting factor, we calculate the adequate conversion rate with the help of Equation (5.10).

In order to compute the conversion rate cr corresponding to the mortality, return and discounting

assumptions, we require information about the survival probabilities tpx and the investment returns rt.

Thereby, the survival probabilities stem from the Lee-Carter model as laid out in Section 5.3.2, while the

investment returns are takent from a range of values (cf. historical returns in Figure 5.6 and Table 5.3).

89



Optimal Calibration of Annuities in Pension Funds under Consideration of Financial and Biometric Risks

Input parameters

Survival

Probabilities

tpx

Investment

Returns

rt

Discounting

Factor

ν

Output

Conversion rate cr

Figure 5.7: Synopsis of the input and output of the model.

As shown in Section 5.2, the value for cr is independent of the savings at retirement A0. We therefore

normalize its value to A0 = 1 for our simulations.

5.4.2 Results with Constant Return

Having discussed our model and the optimization process that it involves, we now turn to our results. A

contour plot of the computed value of the conversion rate cr is presented in Figure 5.8. It displays cr in
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Figure 5.8: Conversion rate cr (in %) for the entire population for the years 1985 to 2040.

dependence of the capital market return rt and the curtate expected lifetime e65 per calendar year. While

we vary the returns between –2% and 5% and assume them to be constant over the entire retirement

period, the years range from 1985 up to 2040. As the interest rate of ten-year Swiss government bonds

is close to zero for 2014, we choose a technical interest rate of z = 0 and consequently the discounting

factor is ν = 1. Additionally, the conversion rates that are required by the legislator are shown as dotted

lines, i.e. 7.2% up to 2004 and 6.8% from 2014, with a transition in the years between. We also display a

horizontal dashed gray line for the year 2014, in order to emphasize the change between historical data

and simulated values for the mortality rates. Selected results are provided in Table 5.4, where the values

for the year 2014 are highlighted. For the conversion rate, we observe that the resulting value ranges

between 8.31% and 2.90%. The change in the results takes place in a relatively linear way, and the isolines

for the conversion rates have equal distances between each other. Overall, we can see that the impact
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Return rt ≡ r

Year –2% –1% 0% 1% 2% 3% 4% 5%

1990 4.03 4.55 5.11 5.70 6.31 6.94 7.59 8.25

2000 3.68 4.20 4.74 5.32 5.92 6.54 7.18 7.84

2010 3.40 3.90 4.43 5.00 5.59 6.21 6.84 7.50

2014 3.32 3.81 4.34 4.90 5.49 6.11 6.75 7.40

2020 3.22 3.71 4.23 4.79 5.38 5.99 6.63 7.28

2030 3.04 3.52 4.04 4.59 5.17 5.78 6.42 7.07

2040 2.90 3.37 3.88 4.43 5.00 5.61 6.24 6.89

Table 5.4: Conversion rates cr (in %) depending on the return and the year.

of the return is bigger than the one of the expected lifetime. For an increase of 1% of the conversion

rate, the capital market return needs to improve by less than 2% (cf. Table 5.4, Figure 5.10(a)). In

comparison to that, the same change in cr corresponds to the mortality improvements from almost 30

years. The improvement in the mortality of members still has a strong impact, however. We can see this

when looking at the dotted line for the values that have been in force over the years. While in 1990, a

return of about 3% sufficed in order to achieve a conversion rate that exceeded the value proposed by

the legislator today, this has changed. With the growth in expected lifetime, the same return would only

suffice to provide a conversion rate of about 6.11% in 2014. This trend continues further downwards and

reaches a value for cr that would be at 5.61% in 2040. In order to meet the conversion rate of 6.8% that

is required by the legislator today, an asset return of more than 4% would be required. In the currently

prevailing low-interest rate environment, this is becoming more and more challenging for pension funds.

Going forward to the simulation of future years, an average annual return of about 5% would be necessary

in 2040 for achieving the conversion rate proposed by the legislator today. Conversely, if we look at a

capital market return rt of zero, the conversion rate in 2018 would be about 4.27%. For future years,

the results indicate a decrease of the value connected to rt = 0 down to 3.88%.

Departing from the previous setting, we now want to look at the curtate expected lifetime e65 in direct

connection to the conversion rate cr, i.e. without considering the development of e65 over time. To this

end, Figure 5.9 and Table 5.5 show the conversion rate in dependence of the capital market return rt

and the curtate expected lifetime at retirement e65. In this, the values of e65 are derived using the

mortality multiplication factor c that we introduced in Section 5.3.1. Based on the mortality rates for

the year 2014, we derive the multiplication factors that are needed in order to achieve selected target

values for e65 (cf. Figure 5.5). Consequently, we are able to calculate the conversion rate in dependence

of the expected lifetime for a discounting factor of ν = 1. As in Figure 5.8, we plot a dotted line for a

conversion rate of 6.8%, and a dashed gray line at e65 = 22.05, the curtate lifetime in 2014. In addition

to the results for z = 0%, Table 5.6 presents the optimal conversion rates for a risk-free interest rate

of z = 2%.

We see that the impact of changes in the capital market return remains the same as in Figure 5.8:

In order to achieve an increase of cr by 1%, the pension fund needs to increase the return rt by less

than 2%, e.g. cr goes from 4.35% to 5.50% as rt grows from 0% to 2% for e65 = 22 (cf. Table 5.5).

Such variations in the return occur regularly on short-term but do also appear on average returns when

comparing returns over five to ten years. For the lifetime, we are now able to directly connect changes

in cr to ones in e65. According to the graph, an increase of the lifetime by more than four years causes
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Figure 5.9: Conversion rate cr (in %) for the entire population for the curtate expected lifetime e65
ranging from 20 to 24 years.

Capital market return rt ≡ r

e65 –2% -1% 0% 1% 2% 3% 4% 5%

20 3.71 4.22 4.76 5.33 5.93 6.54 7.18 7.83

21 3.51 4.01 4.55 5.11 5.70 6.32 6.96 7.61

22 3.32 3.82 4.35 4.91 5.50 6.12 6.76 7.41

23 3.16 3.65 4.17 4.73 5.32 5.93 6.57 7.23

24 3.00 3.49 4.01 4.56 5.15 5.77 6.41 7.06

Table 5.5: Conversion rates cr (in %) depending on the return and the curtate expected lifetime for a
risk-free interest rate of z = 0%.

a decrease of cr by 1%. As we were able to see that on average, e65 increases by one unit every 7–8

years (cf. Section 5.3.1), it takes more than 30 years in order to achieve such an increase in lifetime.

Therefore, we can say that while longevity does have a considerable impact on the conversion rate, it is

a lot smaller than the one that originates from the capital market returns.

Looking at the outcome when using a risk-free interest rate of z = 2%, the results for the conversion

rate are higher. As all future payments are discounted with a higher interest rate, the corresponding

conversion rate can be increased. On average, this change is about 1% for a change in z of 2%. It

depends of course on the other factors (return and life expectancy) as well.

Taking a more detailed look at the results, Figure 5.10 displays the optimal conversion rate in dependence,

both, of the return and the curtate expected lifetime. Figure 5.10(a) presents cr depending on the

return rt. We plot the lines for the curtate expected lifetime e65 ranging from 20 to 24 years for a

range of rt from –2% up to 5% and ν = 1 as before. The graph can be understood as a plot along

the horizontal in Figure 5.9 at the chosen values of e65. Looking at the curvature of the graphs, we

can see that the conversion rate grows almost linearly with the return. The growth goes from a value

of cr = 3.32% for rt = –2% and a lifetime of 22 years up to almost 7.5% for a return of 5% and the

same life expectancy. Looking at the lines for the different values of e65, it can be observed that they

are parallel and have only small differences between each other. Examining the results more closely,

we can see that the growth of e65 from 20 to 21 years leads to a decrease of the conversion rate of
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Capital market return rt ≡ r

e65 –2% –1% 0% 1% 2% 3% 4% 5%

20 4.92 5.41 5.93 6.46 7.02 7.59 8.18 8.78

21 4.71 5.19 5.70 6.24 6.79 7.36 7.95 8.55

22 4.51 5.00 5.50 6.03 6.58 7.16 7.74 8.35

23 4.34 4.82 5.32 5.85 6.40 6.97 7.55 8.16

24 4.18 4.65 5.15 5.68 6.22 6.79 7.38 7.98

Table 5.6: Conversion rates cr (in %) depending on the return and the curtate expected lifetime for a
risk-free interest rate of z = 2%.

about 0.2%. This difference subsequently decreases for larger values of the curtate expected lifetime. For

the graphs of e65 = 23 and 24, it only averages 0.17%. Summing up the distances, there is a difference

of about 0.76% between the lines for e65 = 20 and e65 = 24. Consequently, four years of growth in the

lifetime come along with an increase of 1% for the conversion rate, as we saw earlier in Figure 5.9.
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Figure 5.10: Conversion rate cr (in %) in dependence of the return rt and the curtate expected life-
time e65, respectively.

The impact of the curtate expected lifetime e65 on the conversion rate is studied more closely in Fig-

ure 5.10(b), where we plot cr in dependence of e65. The results are shown for capital market returns

of rt = 1% up to 5% and ν = 1. In a similar fashion to the previous plot, the graph displays the values

of cr along the vertical from Figure 5.9 for the chosen returns. We observe an almost linear decrease

of the conversion rate. The reason for this is the improvement of the mortality that takes place. It

causes a trend of individuals living longer due to an increased survival probability tp65. Consequently,

the mean volume of pension payments increases at higher ages. Due to this, the conversion rate needs

to be decreased. For an expected lifetime of 20 years, the conversion rate amounts to cr = 6.54% for a

return of 3%. Staying with the same return rt, the value of cr decreases to 5.76% when the insured is

assumed to live another 24 years after being retired. As the graphs for the different returns are parallel

to each other, this trend holds true independently of the return rt. Additionally, we can see that the

distance between the graphs is almost constant, meaning that the conversion rate changes nearly linearly

with the return. While for an increase of rt from 1% to 2% the conversion rate improves by 0.59% on

average, growing from 4% to 5% leads to an average increase of 0.66%. Overall, we can again see that

the impact of the capital market return on the conversion rate is stronger than the one of the expected
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lifetime. For an expected lifetime of 22 years, for example, a decrease of rt from 5% to 1% causes cr

to decrease by about 2.5%. This is in line with Figure 5.9, where we mentioned that an increase of the

return by less than two percent corresponds to a one percent improvement of the conversion rate.

Up to now, we assumed the technical interest rate z to be equal to zero. In the following, we relax

this assumption in order to study the impact that the technical interest rate has on the conversion

rate. In Figure 5.11 we display the conversion rate for the technical interest rate z ranging from 0%

up to 2.5%. This performance is carried out for selected capital market returns and a curtate expected
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Figure 5.11: Conversion rate cr (in %) in dependence of the technical interest rate z for selected returns rt
and a curtate expected lifetime of e65 = 22 years.

lifetime of e65 = 22. The conversion rate grows linearly for an increase of the risk-free interest rate. The

reason for this is that for an increase of z, the value of the pension payments at time zero decreases.

Consequently, a higher conversion rate can be chosen. The graphs for different returns rt are equidistant

and almost parallel to each other. For higher values of z, the distances between the graphs decrease.

Comparing with the previous Figures, we can see that the conversion rates for z = 0% are equal to the

ones in Figure 5.10(b) for e65 = 22. For a return of rt = 1%, the conversion rate equals about 4.91%

for a technical interest rate of zero. As z grows, the conversion rates increases as well, reaching 5.46%

for z = 1% and 6.03% for z = 2%. For the highest depicted value of z of 2.5%, the conversion rate

reaches 6.33%. We can therefore conclude that for an increase of z by 1%, the conversion rate increases

by about 0.56%. For higher returns, this effect shrinks. For a return of rt = 3%, the conversion rate

equals 6.62% when the risk-free interest rate equals 1% and 7.16% when it is equal to 2%, resulting in a

difference of 0.54%. For a capital market return of 5%, this difference decreases further down to 0.49%.

We can therefore conclude that a decrease of the technical interest rate leads to a strong decrease of the

conversion rate and that the impact of z decreases for higher asset returns. This conclusion is critical

for pension funds and the level of annuities in periods where capital market returns are low.

5.4.3 Scenarios for the Asset Returns

Until now, we have assumed the capital market return rt to be constant over time. In the following,

we relax this assumption and use scenarios for the development of rt. This way, we try to assess what

impact certain developments on the capital market have on the pension fund and the optimality of the

conversion rate. Overall, we consider four different market scenarios. For them, it is assumed that the

market return rt follows a specific path over the first 30 periods after retirement. Past that point, we

assume the return to be equal to 3% for the remainder of the lifetime of the member. The paths are
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chosen in a way, such that the return over the whole 30 years equals 3% on average for every scenario.

The courses of the scenario returns are given in Figure 5.12. For the first scenario, that is displayed in
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Figure 5.12: Plot of the scenario returns rt.

Figure 5.12(a), we assume a return that is constant and equal to 3% over the whole time. It consequently

serves as a reference case for the remaining scenarios. For the second scenario (cf. Figure 5.12(b)), we

assume a prolonged time of low market returns. Consequently, rt remains at 2% for 16 periods and then

recovers with a linear growth until it reaches 6% in period 27. From there, it then decreases linearly

down to 3% until the last period. The third scenario assumes a phase of low returns at the beginning of

the retirement phase that is then followed by an equally long phase of high returns (cf. Figure 5.12(c)).

We assume the low returns to be equal to 1% over the course of eleven periods and the high ones to

amount to 5% over the same time. This pattern is mirrored in scenario four (cf. Figure 5.12(d)). This

way, we try to study what impact an early phase of low returns, that is followed by high ones, has, and

vice-versa.

Looking at the results, Figure 5.13 shows the conversion rates for the four scenarios for the curtate

expected lifetime e65 ranging from 20 to 24 years. We see that the course of the different graphs

resembles the one seen in Figure 5.10(b). For an increase in the expected lifetime, the conversion rate

decreases almost linearly. As scenario one serves as a reference case, its course is equal to the one in

Figure 5.10(b) for rt = 3%. Comparing the different graphs, we see that the results for the second and

third scenario are close to each other, with the second scenario being 0.13% higher on average than

the third one. Additionally, the conversion rates for the two scenarios are smaller than the ones of the

reference case. Comparing them with the results in Figure 5.10(b), we see that their conversion rates
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Figure 5.13: Conversion rate cr (in %) in dependence of the curtate expected lifetime e65 for the scenar-
ios 1 – 4.

equal the ones for a constant return of about 2.2% for scenario two and 2% for scenario three. These

lowered values for cr are caused by the low returns at the beginning of the retirement. Consequently,

the earnings that can be accumulated with the help of the capital market returns are smaller. We can

therefore conclude that in our model higher returns have a strong impact on the resulting conversion

rate at the beginning of the retirement. For scenario four, the periods of high and low returns from the

third scenario are switched. Consequently, the investment return rt equals 5% over eleven periods at

the beginning of the retirement (when available assets are still high) and drops down to 1% towards the

second half of the time frame. This change results in a conversion rate that is distinctly higher than in

the previous scenario. As the savings on the account of the member are a lot higher for earlier years,

there are more earnings to be made from higher returns. Compared to that, the impact of lower returns

in later periods remains rather small. As a large portion of the savings has already been paid out to the

individual, the gains that can be made with the remaining part remain comparatively small. This way,

the fourth scenario achieves a conversion rate that is on average about 0.62% higher than that of the

reference case. Reaching a value of cr = 6.74% for e65 = 22, it achieves a conversion rate that equals

the one of a constant return of almost 4%. Overall, the results for the different scenarios are distributed

over a wide range, with a difference of up to 1.23% between the scenarios. We conclude that the capital

market return has a strong impact on the conversion rate, even more so for varying returns over various

scenarios.

5.4.4 Conversion Rate with Survival and Return Distributions

In the previous Sections, we assumed the capital market return to be deterministic. In this Section,

we want to analyze the impact of a random return rt. Going into detail, we aim to examine the effect

of the volatility of the returns. In order to do this, we set the capital market return to be normally

distributed, i.e. rt ∼ N(µ, σ). For the mean µ, we choose a value of 1% and a value of 3%, allowing

us to compare the outcomes with our previous results. For the volatility σ of the return, we select

values of 0%, 1%, 2% and 4%. This way, we are able to analyze the impact of volatilities that also

occur in practice (cf. Section 5.3.4). For a value of σ = 0% (deterministic case), the only source of

randomness consequently lies in the mortality values that are simulated by the Lee-Carter model. We

are therefore also able to examine how the mortality model leads to dispersion in the conversion rate. As

before, we assume the discounting factor to be equal to one again. The results are shown in Figure 5.14,
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where 5.14(a) displays the results for a mean return µ of 1% and 5.14(b) the ones for µ = 3%. The
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Figure 5.14: Distribution of the conversion rate cr in dependence of the return volatility σ for rt ∼ N(µ, σ)
for µ = 1% and µ = 3%.

shapes of the curves are similar for both values of µ. While for a mean return of 1% the conversion

rate is equal to 4.91% on average, it amounts to 6.12% on average for µ = 3%, which is equal to the

results for a constant return (cf. Section 5.4.2). For a volatility of zero, the distribution is very peaked

and the and the results are close to the mean value. Consequently, the density function has a very

high peak at that point, reaching a value of about 750 and the volatility of the conversion rate amounts

to 0.05%. The volatility that is introduced by the Lee-Carter model is particularly small. For a return

volatility of σ = 1%, the peak at the mean is lower. The results are distributed wider around the mean

with a volatility of 0.14%. This continues further for volatilities of 2% and 4%. For those values, the

density curves flatten further, as the results for the conversion rate spread over an even wider range.

Consequently, the cr sample volatilities are equal to 0.27% and 0.52%. We are therefore able to say that

the volatility of the capital market return has a considerable influence on the conversion rate. However,

while the dispersion in the investment returns affects the conversion rate, it takes place in a weakened

way. Still, pension funds need to take the volatility of the investment returns into account with great

care.

5.5 Conclusion

In this work, we assess the influence that financial and biometric risks have on the choice of parameters

of a pension fund. Our research question was: How do the lifetime of the members, the investment

returns and the technical interest rate influence the choice of the conversion rate? To this end, we study

the retirement phase of a typical Swiss DC pension fund. Analyzing the changes in the savings of a

retired individual, we examine the effects that the capital market return, the survival probability and

the technical interest rate have on the conversion rate. The conversion rate is of particular interest in the

Swiss pension fund system. As it is used in order to calculate the annuity that is paid out to members

every year from retirement to death, its choice has a significant influence on the stability of the entire

pension system. As an extension of our research, we study the effect of capital market scenarios and

random investment returns. As low interest rates have been prevailing on the financial markets over the

last years, it is of strong interest to study how pension funds need to respond to conditions like these.

Likewise, we look at the effects of increased returns as well as cases of more fluctuating conditions.

With respect to the survival probability, we look at the development of the historic values for the Swiss
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population. Using historic data, we fit a Lee-Carter model and forecast the development of the life

expectancy. As individuals tend to live longer, the pension funds need to take the increased volume

of annuity payments at higher ages into account that are connected to this. In our study, we find a

considerable increase in the lifetime of Swiss individuals. While members entering into retirement were

expected to live for another 19 years in 1990, this value is expected to increase up to 24 in the following 50

years. For a constant market return, this leads to a drop of the conversion rate. As expected, an increased

lifetime makes a decrease of the conversion rate necessary. Our results show that on average a decrease

of the conversion rate by one percent is caused by the expected lifetime improving by more than four

years. Since the lifetime is supposed to improve by one year about every 7 – 8 years, a decrease of one

percent point in the conversion rate equates to the mortality improvement of more than 30 years. This

needs to be taken into account, as pensions are a long-term business and require foresighted planning.

However, longevity has still a small impact on the conversion rate by comparison to the capital market

return.

For the capital market returns, we analyze the returns of a Swiss pension fund index. Looking at the

annual data from over 20 years, we are able to observe a strong volatility. From the year with the

largest gain to the one with the biggest loss, we are able to see a difference of about 35%. We therefore

calculate our model outcomes for a wide range of return values. Looking at the results, we are able to

see that an increase of the investment return leads to a higher conversion rate as more savings can be

distributed to the members. Conversely, a lower return causes the conversion rate to decrease. A change

in the investment return by less than two percent on average for a given life expectancy induces a change

by one percent in the conversion rate. The capital market return has a strong impact on the chosen

conversion rate, especially with respect to the high dispersion of the historic values.

In light of the high volatility of market returns, we extend our simulations by looking at scenarios

for the capital market return. By using predefined courses for the investment return, we analyze how

the conversion rate needs to be adjusted in response. The different scenarios involve long periods of low

investment returns as well as ones with higher values and a mixture of high and low returns. Summarizing

the outcomes, we observe that the beginning of the retirement phase is especially sensitive to different

capital market returns. As the savings of the members are still comparatively high, the monetary amounts

that can be earned with the help of good investments are rather large. Conversely, low returns lead to

small contributions to the savings account which results in a penalty with respect to the conversion rate.

For later years, these effects are still present, albeit with a smaller impact. With respect to the volatility

of the capital market investment, we analyze the effect of utilizing normally distributed returns. We find

that the volatility has a considerable influence on the range of the resulting conversion rate. However,

while there is an impact, the dispersion in the conversion rate turns out to be smaller than the one of

the return distribution. Overall, we can conclude that the conversion rate is very sensitive to changes to

the course of the capital market return during the retirement.

While our model takes a simplified view on the processes within a pension fund, it can give guidance

for decisions in practice. In particular, it allows funds to directly measure the effects of changes in the

mortality of its members, the investment returns and the technical interest rate. This makes it possible

for the pension fund to estimate e.g. the impact of a change of the used mortality table. The effect of

a modified investment strategy and a different technical interest rate can also be assessed more easily.

As funds differ from each other with respect to the structure of their members and their investment

strategies, different choices for their conversion rates would seem natural. A way for the legislator to

take this into account could be to set a range for the admissible conversion rate rather than a single value.
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Our work is relevant with respect to the pension fund system in Switzerland and other countries with

a comparable setting. Our work is limited to the pension fund system of Switzerland and its specific

characteristics. By quantifying and comparing the effects of longevity and financial returns on the

conversion rate, we contribute to the optimal calibration of annuities in connection to pension funds.

The results are consequently relevant for theory and practice alike. Possible extensions include a more

extensive model that includes the savings phase as well as a more complex parameter setting also using

existing cohorts of retirees.

99



BIBLIOGRAPHY

Bibliography
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