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Abstract

Background: Physical therapy interventions for ambulatory youth with cerebral palsy (CP) often focus on activity-
based strategies to promote functional mobility and participation in physical activity. The use of activity monitors
validated for this population could help to design effective personalized interventions by providing reliable
outcome measures. The objective of this study was to devise a single-sensor based algorithm for locomotion and
cadence detection, robust to atypical gait patterns of children with CP in the real-life like monitoring conditions.

Methods: Study included 15 children with CP, classified according to Gross Motor Function Classification System
(GMFCS) between levels I and III, and 11 age-matched typically developing (TD). Six IMU devices were fixed on
participant’s trunk (chest and low back/L5), thighs, and shanks. IMUs on trunk were independently used for development
of algorithm, whereas the ensemble of devices on lower limbs were used as reference system. Data was collected
according to a semi-structured protocol, and included typical daily-life activities performed indoor and outdoor.
The algorithm was based on detection of peaks associated to heel-strike events, identified from the norm of trunk
acceleration signals, and included several processing stages such as peak enhancement and selection of the steps-related
peaks using heuristic decision rules. Cadence was estimated using time- and frequency–domain approaches. Performance
metrics were sensitivity, specificity, precision, error, intra-class correlation coefficient, and Bland-Altman analysis.

Results: According to GMFCS, CP children were classified as GMFCS I (n = 7), GMFCS II (n = 3) and GMFCS III (n = 5). Mean
values of sensitivity, specificity and precision for locomotion detection ranged between 0.93–0.98, 0.92–0.97 and 0.86–0.98
for TD, CP-GMFCS I and CP-GMFCS II-III groups, respectively.
Mean values of absolute error for cadence estimation (steps/min) were similar for both methods, and ranged between 0.
51–0.88, 1.18–1.33 and 1.94–2.3 for TD, CP-GMFCS I and CP-GMFCS II-III groups, respectively. The standard deviation was
higher in CP-GMFCS II-III group, the lower performances being explained by the high variability of atypical gait patterns.

Conclusions: The algorithm demonstrated good performance when applied to a wide range of gait patterns, from
normal to the pathological gait of highly affected children with CP using walking aids.
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Introduction
Cerebral palsy (CP), caused by damage to the motor control
networks of the immature brain, is the major cause of
long-term physical disability in children [1]. Although the
initial brain injury remains static, many affected children
have progressive movement and posture impairments due
to progressive musculoskeletal pathology (muscle weakness,
spasticity, and bone deformity). Treatment options include
physiotherapy, orthoses, pharmacological interventions,
orthopedic and neurosurgical interventions [2]. Physical
therapy interventions for the ambulatory youth with CP
often focus on activity-based strategies to promote func-
tional mobility in daily-life contexts and participation in
physical activity [3]. An important component of functional
mobility in ambulatory subjects is locomotion activity in
the context of everyday life. The use of activity monitors
specifically validated for this population could help to de-
sign effective personalized interventions by providing reli-
able outcome measures. Step counting using body worn
accelerometer device(s) is one of the most common
methods used to derive mobility-related metrics, such as
the total number of steps per day, and duration and
cadence of locomotion periods. However, the robust esti-
mation of these parameters in real-life conditions is
challenging, given the influence of environment (e.g. surface
type/slope/stairs, indoor vs outdoor etc.) and the variability
in movement disorders, as for instance in children with CP.
A previous study [4] has demonstrated acceptable validity

of accelerometry (thigh-attached activPAL™ system) in
young people with CP classified in level I (i.e., less affected)
according to Gross Motor Function Classification System
(GMFCS) [5]. However, further studies including subjects
with CP-GMFCS levels I to III have indicated decreased
step detection performances for the most affected subjects
[6] [7]. The validity of other body worn activity monitors
(Activity Monitoring Pad, consisting of a combination of in-
ertial sensors, attached to the right lower leg above the
ankle, and Minimod systems, consisting in a 3D accelerom-
eter worn on the lower back) was evaluated by Kuo et al.
[8] on an extended sample including typically developing
(TD) children and children with CP-GMFCS levels I-III.
These systems were able to accurately measure the number
of steps and the time spent walking for the less complex
hemiplegic gait patterns. Recently, a more sophisticated
system (Pediatric SmartShoe), including FSR sensors
located on an insole and a 3D accelerometer mounted on
the heel of the shoe, was validated on a sample of children
with CP classified CP-GMFCS I-II [9]. This system showed
good accuracy for activity classification (sitting, standing,
walking) and estimation of various gait parameters.
The common feature of the abovementioned studies is

that validation data was collected using a structured proto-
col in laboratory settings. There is evidence and consensus
in the literature suggesting that structured or standardized

laboratory-based protocol lacks ecological validity, because
activities are not performed in a natural way and order, and
thus cannot be used alone to validate spontaneous activity
in real-life [10]. Systems/algorithms validated only in
laboratory settings may have lower accuracy when applied
on data collected in real-life or collected according to
protocols that mimic real-life settings [11–13].
The objective of this study was therefore to develop and

validate a single-sensor based algorithm for detection of
duration and cadence of locomotion periods, robust to the
various pathological gait patterns in CP, in a real-life like
environment, and placement of the sensor on the lower
back (L5) or chest. A simple configuration, based on a sen-
sor fixed on the upper-body, could be a preferable solution
for large clinical studies, designed to assess daily-life phys-
ical functioning over long periods of time.

Methodology
Data collection
Participants
The study included fifteen children/adolescents with CP
and eleven age- and sex-matched TD controls. Participants
of the CP group were recruited from the patients followed
at the pediatric orthopedics unit of Geneva University Hos-
pitals (HUG). Inclusion criteria were: aged between 8 and
20 years, diagnosis of CP, ability to walk in the community
with or without mechanical walking aids, and with a
GMFCS level between I and III. For the control group, TD
children were recruited among collaborators’ or patients’
acquaintances. The exclusion criteria for both groups were
those that precluded adequate participation in the measure-
ment sessions (mental age < 8 years, attention deficit and
other significant behavioral issues, severe visual disorder).
All participants and their parents/guardians provided
written consent, and the protocol was approved by the
hospital’s institutional ethical committee (CCER-15-176).

Measurement protocol
Each participant was equipped with six synchronized IMU
devices (Physilog4®, Gait Up, CH, https://gaitup.com/
wp-content/uploads/Brochure_Datasheet_Physilog_RA_V2.
6.pdf) fixed on the chest (sternum), lower back (L5), tights
and shanks using a hypoallergenic adhesive film (Opsite
Flexigrid, Smith&Nephew Medical, Hull, UK). Physilog4® is
a standalone device (dimensions: 50mm× 37mm× 9.2
mm, weight: 19 g) including 3D accelerometer, 3D gyro-
scope, 3D magnetometer and barometer with adjustable
ranges, battery, a memory unit, and microcontroller. The
sampling frequency was set at 100Hz. IMU devices on the
chest and L5 were independently used for development
and validation of algorithms (locomotion detection and ca-
dence estimation), whereas the devices on the lower limbs
were used as reference system. The IMUs on lower limbs
were aligned to the mediolateral axis to measure rotations
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(angular velocity) in the sagittal plane. The magnetometer
was disabled.
The measurements took place at Laboratory of Kinesi-

ology Willy Taillard, Geneva University Hospitals and
Switzerland. Once equipped with the IMU devices, each
participant performed a sequence of activities inside the
hospital and outdoor in a park close to the hospital. The
entire measurement session, which was expected to take
approximately two hours, included walking indoor at
various speeds, running, sitting down and standing up,
changing floors using up/down stairs, walking outdoor on
different surfaces (e.g. grass, gravel) and slopes, and
spending time in the play park area. These activities were
suggested to the participant in a way that flexibility was
given on how and how long to be performed. This
semi-structured data collection protocol was recommended
whereby the participant performs a series of activities in a
lifelike scenario at their comfortable speed, with or without
walking aids and in the manner they are used to in daily life
situations. This type of data collection is recommended for
algorithm development before validation in real-life condi-
tions [10].
Reference/ground truth data: During the monitoring

period a research assistant followed the participant to rec-
ord the timing of each activity using a custom designed
application on a tablet (Samsung galaxy tab. E). At the
end of monitoring a log file was generated which was sub-
sequently downloaded on the computer and processed to
generate a vector of symbols corresponding to duration
and timing of activities performed (synchronized and
resampled to correspond to IMU data). This data was
used as reference (ground truth) for the type of activity
(locomotion/walking/running vs. non-locomotion) and
the context of locomotion (level, up/down stairs). The ref-
erence values for the number of steps and cadence of de-
tected walking periods were obtained from the pitch
angular velocity signal of both shanks and using a vali-
dated gait analysis algorithm [14–16]. Based on this algo-
rithm, the maxima in the pitch shank angular velocity
signal (i.e., rotation in sagittal plane), was considered as
the instant corresponding to mid-swing. In the case of ab-
normal gait (e.g. most affected children and/or those using
walking aids) the shank angular velocity signals were dis-
torted, therefore in order to highlight the maxima we ap-
plied supplementary filtering (DWT, coiff5, approximation
level 5) before mid-swing detection using the method de-
scribed in [15]. The mid-swing events merged from the
right and left leg were associated with the actual steps.

Trunk sensor algorithms
Step/locomotion detection
Step detection algorithms are generally based on detec-
tion of peaks associated to heel-strike events, identified
from trunk acceleration signals (chest or lower back) in

the vertical direction [17, 18], anteroposterior direction
[19, 20], or from the 3D acceleration norm [21]. In this
study, in order to be insensitive to sensor placement and
orientation, the algorithm was devised using the 3D
acceleration norm (accN), defined as:

accN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

acc2V þ acc2AP þ acc2ML

q

ð1Þ

where accV, accAP and accML are the components of accel-
eration in vertical, anteroposterior (AP) and mediolateral
(ML) directions, respectively.
A prior observation showed that in TD children the

acceleration signals were similar step-by-step, and the
steps appeared clearly identifiable by determining the
local extrema (minima/maxima). Conversely, these
signals showed considerable difference in morphology
and amplitude among subjects with gait impairment and
individual-specific compensatory movement strategies
like in children with CP. The difference of acceleration
signals between chest and L5 was quantified using the
attenuation coefficient, defined as [22]:

AC ¼ 1−
RMSa;chest
RMSa;L5

� �

� 100 %ð Þ ð2Þ

where RMSa,chest and RMSa,L5 are the root mean square
of acceleration signal computed for the chest and L5
sensor, respectively.
In order to cope with the variability of the gait patterns

and to reliably detect the locomotion steps when the sensor
is located either on chest or L5, the algorithm included sev-
eral processing stages as depicted in Fig. 1 and described
below.
Peak enhancement: This first stage aimed to obtain a

signal that contains steps-related information consistent
among various gait patterns. The raw acceleration norm,
accN, was first resampled at 40Hz to correspond to a
lower frequency adapted for long-term monitoring setups
[23]. Subsequently, the signal was detrended and low-pass
filtered (FIR filter, n = 120 coefficients, Fc ≈3.2 Hz) to give
accN-LPF. The cutoff frequency Fc was chosen to allow
detection of step cadence up to ≈ 195 steps/min (very fast
running) while smoothing the signal by removing the high
frequency noise. To precisely obtain zero-phase distortion,
the filter was applied to the acceleration data twice, i.e.,
after filtering in the forward direction, the filtered
sequence was reversed and run back through the filter
(e.g. with filtfilt in Matlab). To further improve the
signal-to-noise ratio and enhance steps-related peaks in
the presence of artefact in impaired/atypical gait, we
applied a smoothing and differentiation process using the
continuous wavelet transform (cwt, scale 10, gauss2
wavelet in Matlab), [18, 24, 25], followed by a supplemen-
tary mild smoothing using a linear Savitzky-Golay filter
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(zero degree polynomial, smoothing frame length of 3
samples) to obtain the signal accN-LPF-CWT.
Peak selection, step detection, and identification of

locomotion periods: From the processed acceleration sig-
nal accN-LPF-CWT, all the peaks with the amplitude lo-
cated above a fixed threshold THa = 0.1 (g) were selected
as potential heel-strike events, characterized by their oc-
currence time tpi, i = 1,N. A sensitivity analysis was con-
ducted to choose the optimal value of THa. The next
processing stage included detection of the actual steps
and identification of the start/end of locomotion periods,
as indicated in the flowchart in Fig. 1. The algorithm
starts with initialization of several variables, such as the
counter of locomotion periods (LocPer), the counter of
steps belonging to the locomotion period (StepCountLoc-
Per), a flag signaling the start/end of locomotion period

(LocFlag), and a threshold used for comparison of
duration between successive peaks (THd.). Then, the
duration between successive selected peaks, Δti = tpi + 1-
tpi, i = 1,N-1, is compared with THd and if Δti < THd, the
step counter is incremented. At the beginning of each
locomotion period the threshold is initialized with a
fixed value of THd = 3.5 (s), and then it is updated at
each iteration with the average value of duration of previ-
ous steps belonging to the current locomotion period,
THd = 1.5 + average(Dstep) (s). The underlying idea is to
adapt the threshold to the cadence/rhythm of the current
locomotion period and thus improve the robustness of step
detection algorithm in real world conditions and in various
populations. The threshold values allow the detection of
slow locomotion (minimal cadence around 35 steps/min),
and avoid the interruption of faster locomotion periods

Fig. 1 Flowchart of processing stages
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when there are occasional undetected steps-related peaks
between two consecutive selected peaks (e.g., during turn-
ing, gait asymmetry).
After detection of all locomotion periods only those

containing at least four consecutive steps were retained
as true locomotion and were used for further assess-
ment. Each of these locomotion periods was character-
ized by the number of steps Nsteps and its duration Dloc

period (in minutes).

Cadence of locomotion periods
Two methods, using temporal and frequency-domain
approaches, have been implemented to estimate the ca-
dence of detected locomotion periods. The objective was
to comparatively evaluate their performance, advantages
and limitations.
In the temporal domain, cadence was calculated based

on Nsteps and Dloc period as:
CadT (steps/min) = Nsteps/Dloc period

The estimation in frequency domain was based on the
methodology developed for a wrist-worn accelerometer, de-
scribed in [26]. As illustrated in Fig. 1, the main processing
steps included low-pass filtering (Fc = 10Hz) and segmen-
tation of accN (down-sampled to 20Hz) into 6 s windows
(with 5 s overlap to obtain an estimate of cadence each sec-
ond), spectral analysis using FFT (Hann window, N = 256),
interpolation of FFT coefficients to increase frequency reso-
lution, followed by cadence likelihood estimate using an
adapted comb filter. The values of cadence estimated every
second were averaged over the duration of the respective
locomotion period to obtain CadF.

Validation and statistical analysis
Similar to trunk algorithm, sequences of at least four
consecutive steps (mid-swing events merged from left
and right shank) were considered as locomotion periods,
and were used as reference for duration (Dref ) and
cadence of locomotion periods (Cadref ).
The performance of the algorithm for detection of dur-

ation of locomotion periods was assessed in terms of sensi-
tivity, specificity and precision. The value of these metrics
can vary from 0 to 1, higher values indicating better
performance. For cadence, the performance was assessed
using absolute and relative error, intra-class correlation
coefficient, ICC (A,1) [27], and Bland-Altman analysis. The
significance level was set to p < 0.05.

Results
Table 1 contains demographic and clinical data of study
participants. There was no significant difference for age
and gender between TD and CP groups. According to
the GMFCS scale, children with CP were classified as
GMFCS I (n = 7), GMFCS II (n = 3) and GMFCS III
(n = 5). Those who were classified as GMFCS III used

walking aids (rollators, crutches). Characteristics of the
gait pattern and clinical profile of children with CP are
also included in Table 1.
To evaluate how severity of CP and the atypical gait

pattern affect the performance of algorithm, children
with GMFCS II and GMFCS III were pooled together
and the performance metrics were presented compara-
tively for three groups i.e., TD, CP-GMFCS I, and
CP-GMFCS II-III.
Figure 2 shows illustrative examples of acceleration sig-

nals recorded on chest and L5 during a few gait cycles, in
three children with CP with atypical gait (Fig. 2b-d) com-
pared to a TD child with normal gait (Fig. 2a). In addition
to inter-subject variability, it can be observed that the
patterns of acceleration signals differ also between chest
and L5 locations, especially for highly affected children.
The attenuation coefficient, AC, calculated for the proc-
essed acceleration signal (accN-LPF-CWT) showed a sig-
nificant increase and a large variability for the group
CP-GMFCS II-III, as compared to TD and CP-GMFCS I
groups (Fig. 3).
Despite of these distorted signals our algorithm

showed step detection performances similar for chest
and L5 sensor, in agreement with the reference values
obtained from the algorithm based on shank angular
velocity signals.

Locomotion periods
Mean and standard deviation (SD) of the performance
metrics for locomotion detection using the IMU sensor
fixed on chest or L5 are presented for each group in Table
2. For TD and CP-GMFCS I groups the performance met-
rics (sensitivity, specificity and precision) were relatively
similar between chest and L5 sensor, with values ranging
from 0.92 to 0.98. The minimal values were observed in
CP-GMFCS II-III group where the chest sensor showed
lower performance in term of precision, as compared to
L5 (0.86 for chest compared to 0.93 for L5).

Cadence
Effect of duration of locomotion period: The time domain
approach provides a measurement of cadence based on
the number of steps, whereas the frequency domain ap-
proach provides an estimate of cadence based on spec-
tral analysis of acceleration signal segmented in windows
of 6 s duration. When the duration of locomotion period
is short and/or the gait pattern is unsteady (high vari-
ability), the error can be important. Figure 4 illustrates
the variation of the relative error of CadT and CadF as a
function of duration of locomotion periods. It can be
observed that the error is higher for short periods,
especially for frequency domain approach, due to lack of
steady samples necessary to extract the spectral contents
(Fig. 4c, d). Interestingly, an abrupt decrease of the error
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occurs for locomotion periods of approximately 20 s, and
then becomes stable, a trend which is consistent for both,
temporal and frequency domain, as well as sensor loca-
tion. Given the difference between the two approaches for
very short periods and guidelines from studies reported in
literature, indicating that gait impairments/limitations ap-
pear more evident when looking at longer locomotion

periods (i.e., purposeful walking) [28], the error analysis
was conducted comparatively between the two approaches
for locomotion periods lasting at least 20 s.
Cadence errors for walking periods lasting minimum

20 s: Tables 3 and 4 contain the errors for estimation of
CadT and CadF respectively, for both sensor locations.
The errors were low (mean absolute error less than 1.3

Table 1 Characteristics of study participants

TD (n = 11) CP-GMFCS I-III (n = 15)

Gender
Number of girls in the group (%)

5 (45) 8 (55)

Age in years Mean(SD) 13.5(2.9) 12.8(3.1)

Gait pattern normal GMFCS I: close to normal (n = 3), drop foot (n = 3), stiff knee (n = 1)
GMFCS II-III: crouch gait (n = 4), equinus and recurvatum knees/stiff
knees (n = 3), jump knee(n = 1)

Clinical profile GMFCS I: hemiplegia (n = 4), diplegia (n = 3)
GMFCS II-III: diplegia (n = 4), trilegia (n = 2), tetraplegia (n = 1), hereditary
spastic paraplegia (n = 1)

Fig. 2 Acceleration signals recorded on chest and L5 for children with various gait patterns: a) TD child with normal gait, b) child with CP-GMFCS
III, true equinus and recurvatum knees; c) child with CP-GMFCS III, apparent equinus (right side)/crouch (left side) with stiff knees; d) child with
CP-GMFCS III, crouch gait. For each subject, the top panel illustrates the raw acceleration along the three axes, i.e., vertical (accV), anteroposterior
(accAP) and mediolateral (accML). The middle panel shows the raw acceleration norm (accN, magenta color), after detrending and LPF (accN-LPF,
black color), and after continuous wavelet transform (accN-LPF-CWT, red color); steps are identified as the maxima corresponding to heel-strike
events (black squares). The bottom panel shows the pitch angular velocity signals recorded on shanks; the reference steps (ground truth) were
identified as the maxima corresponding to the mid swing temporal events (blue circles)

Paraschiv-Ionescu et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:24 Page 6 of 11



steps/min) and appeared quite similar for TD and
CP-GMFCS I groups, when comparing chest and L5 lo-
cations, for time and frequency approaches. For
CP-GMFCS II-III group the mean error was slightly
higher (mean absolute error approx. 2 steps/min), but
the standard deviation was high (up to approx. 9 steps/
min), as a result of inhomogeneous results in this group
due to the atypical and heterogeneous gait patterns.
Bland-Altman analysis (Fig. 5 a-d) revealed a small sys-

tematic error (bias) ranging from 0 to 1 step/min, across
sensor locations, cadence estimation approaches, and
groups of subjects. The wider limits of agreement (95% CI,
or ± 1.96SD) was observed for CP-GMFCS II-III group,
with values of approximately ±6 steps/min for the chest
sensor and close to ±5 steps/min for L5 sensor. The nar-
rowed limits for all groups were obtained for L5 sensor
using the time-domain approach (Fig. 5b). The ICC(A,1)
values were superior to 0.9.
The scatterplots in Fig. 6 show the relationship between

the relative error of CadF and CadT. It was observed a
linear association for both sensors, although there were a
few more outliers for the chest sensor (e.g. error close to
zero for CadF and variable over a wide range for CadT,
Fig. 6a), compared to L5 sensor (Fig. 6b).

Discussion
Optimal sensor configuration for physical activity assess-
ment in daily-life environments by reducing the number
to a single adequate location is fundamental for clinical
evaluation and subject adherence, particularly in individ-
uals with physical impairments. The single IMU-based
algorithm for step/locomotion detection and cadence es-
timation developed in this study demonstrated a good
performance when applied to a wide range of gait pat-
terns, from normal to the pathological gait of highly
affected children with CP using walking aids.
The proposed algorithm is based on the norm of acceler-

ation signal which has the advantage of being less sensitive
to the orientation of the sensor with regard to the body
segment. Actually, most of the trunk-based step detection
algorithms use the acceleration signal in vertical or AP di-
rections. Although the pattern of these signals contains
more reliable information for step detection (as compared
to ML direction), the algorithms using these signals neces-
sitate the correction of sensor orientation using pre-defined
functional calibration procedures [18, 20], an approach
difficult to apply for real life monitoring, particularly in
patients with movement disorders like children with CP.
The inclusion of acceleration in ML direction for computa-
tion of the acceleration norm challenged the performances
of the algorithm, because ML direction contained stride-re-
lated information (similar peaks in acceleration signal at
every two steps instead of at each step) and artefacts arising
from compensatory movement strategies.
Performances were relatively similar for chest and L5

sensor, despite the significant difference in acceleration
signals, especially for CP-GMFCS II-III group (Figs. 2,
3). The significant reduction of the acceleration from L5
to chest (positive attenuation coefficient) in CP-GMFCS
II-III group as compared to TD children confirms the
results of previous studies [22]. Although the current
version of the algorithm shows good performance, this
could be potentially improved using more sophisticated
approaches such as personalization by automatic setting
of algorithm parameters. For example, it was observed
that the peak enhancement stage significantly affects the
step detection accuracy. The signal processing steps de-
scribed in Fig. 1 were the optimal solution for the whole
dataset; however it was observed that a more aggressive
smoothing (e.g., cwt, scale 11, 12) of acceleration data
recorded in patients with CP-GMFCS II-III improved

Fig. 3 Attenuation coefficient illustrating a reduction of the
acceleration from L5 to chest, especially for children with CP-
GMFCS levels II and III

Table 2 Performance metrics for detection of locomotion periods as Mean(SD) for each group

Sensitivity Specificity Precision

Chest L5 Chest L5 Chest L5

TD 0.93 (0.01) 0.93 (0.01) 0.97 (0.01) 0.90 (0.01) 0.93 (0.02) 0.94 (0.02)

CP-GMFCS I 0.92 (0.01) 0.94 (0.01) 0.96 (0.01) 0.97 (0.01) 0.92 (0.03) 0.92 (0.03)

CP-GMFCS II-III 0.90 (0.06) 0.90 (0.08) 0.95 (0.02) 0.98 (0.01) 0.86 (0.07) 0.93 (0.03)
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algorithm accuracy for some of them. One possible solu-
tion for future developments could be a subject-specific
adaptive filtering, based on ad-hoc characterization of
signal features. The robust implementation and valid-
ation of this approach would however necessitate a large
amount of data including a wide array of atypical gait
patterns.
Time and frequency based domain approaches were pro-

posed for cadence estimation. Each of these methods has
specific advantages and limitations. As compared to the fre-
quency based domain, the measurement in time domain is
more accurate for short locomotion periods since it is based
on peak detection; moreover, the identification of steps in
time domain may allow detection of the temporal gait pa-
rameters [18, 20] and consequently a more detailed gait
analysis. On the other hand, the measurement in frequency
domain is more robust to outliers in acceleration signal and
can provides an estimation of instantaneous cadence (e.g.
every second) - a parameter useful to assess gait variability
[26]. Although, on average, the performances were similar
for the two approaches (Tables 3, 4, Fig. 6), the

frequency-domain method appeared to slightly outperform
the time-domain method for the chest sensor (the few cases
where the error for CadF is close to zero, while the error
for CadT, varies over a wide range).
Similar to previous studies [26, 29, 30], our results

showed that the error for cadence detection decreases
for longer locomotion periods. The increased error for
shorter periods can be explained by undetected steps at
the beginning and end of locomotion period, curved
locomotion paths, slow walking or insufficient steady
samples for spectral analysis when using frequency do-
main approach. However, in real-life conditions the brief
periods usually correspond to short distance locomotion
(e.g. less than 20 m) in constrained environments (e.g.,
stepping in home or indoor environment), therefore the
interpretation of their cadence as the locomotion/func-
tional ability of the subject is not straightforward [28].

Strengths and limitations
The strengths of this study included the development
and validation of the algorithm on an array of gait

Fig. 4 Variation of the relative error as a function of duration of locomotion periods: a), b) cadence measured in time domain from sensor on
chest and L5, respectively; c), d) cadence estimated in time domain from sensor on chest and L5, respectively. The abrupt decrease of the error
for locomotion periods longer than approximately 20 s, and the steadiness after, indicate that the longer periods, who are likely to correspond to
purposeful locomotion, are more reliable for the assessment of the gait pattern in every-day life conditions

Table 3 Performance metrics for cadence measured in time
domain (CadT), as Mean(SD) for each group

Absolute Error (steps/min) Relative Error (%)

Chest L5 Chest L5

TD 0.5 (1.9) 0.5 (1.9) 0.4 (2.0) 0.5 (2.0)

CP-GMFCS I 1.3 (1.4) 1.1 (1.3) 1.0 (1.0) 1.1 (1.0)

CP-GMFCS II-III 2.2 (7.4) 2.0 (6.8) 1.0 (1.0) 1.0 (7.0)

Table 4 Performance metrics for cadence estimated in
frequency domain (CadF), as Mean(SD) for each group

Absolute Error (steps/min) Relative Error (%)

Chest L5 Chest L5

TD 0.8 (3.5) 0.8 (3.4) 0.7 (2.0) 1.0 (5.0)

CP-GMFCS I 1.3 (1.4) 1.2 (1.4) 1.0 (1.0) 1.0 (1.0)

CP-GMFCS II-III 2.3 (8.7) 1.9 (7.2) 2.0 (9.0) 1.0 (6.0)

Paraschiv-Ionescu et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:24 Page 8 of 11



patterns, using data collected in a real-life like monitor-
ing setting using and IMU device located either on chest
or L5. This is an important aspect given the heterogen-
eity of disease severity and gait abnormality in various
clinical populations, including individuals with CP.
However, a number of limitations must also be acknowl-

edged. Although the overall sample size and data collected
were adequate to ensure the statistical power of the
performance metrics, it was insufficient to allow robust
assessment for the subgroups of participants, especially for

CP-GMFCS II-III. Within this group, the performances for
both, locomotion and cadence detection were lower and
highly variable between participants. Given the clinical im-
portance of this group, for both medical assessment and
intervention, further work would be necessary to improve
the algorithm and examine the robustness on a larger
sample of youths with severe CP. One of the main issue
with this population when data is collected using real-life
like protocols, is the availability of the ground truth for step
number (cadence). For highly affected individuals using

Fig. 5 Bland-Altman plot for cadence: a), b) measurement in temporal domain using chest and L5 sensor, respectively; c), d) estimation in
frequency domain using the sensor on chest and L5, respectively

Fig. 6 Relationship of the relative error for time and frequency domain methods: a) sensor on chest; b) sensor on L5
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walking aids, step detection is difficult even with IMU de-
vices on lower limbs. It is clear that inaccuracy in the refer-
ence data negatively affects the validation procedure.
Therefore, further work is also necessary to improve the
performances of gait/step detection algorithms using IMU
devices on lower limbs [16]. This is particularly important
since lower-limb IMUs is the most appropriate reference
system for next validation phases, based on long-term
recorded data in the actual everyday life context of the
individuals [10].
It is worth mentioning that the signal processing for

peak enhancement (Figs. 1, 2) allows detection of the most
prominent steps-related peaks, associated to specific
temporal events, i.e., heel-strike for trunk acceleration and
mid-swing for shank pitch angular velocity. This smooth-
ing procedure may lead to loss of information related to
additional temporal parameters, therefore may appear less
appropriate for detection of step duration.
Finally, the error for cadence estimation using both, time

and frequency-domain methods, was low and stable, for
locomotion episodes lasting for minimum 20 s duration.
Although studies conducted on different clinical popula-
tions indicated that in order to assess gait/functional ability
it is more appropriate to consider the long locomotion pe-
riods because are supposed to correspond to purposeful
and more physically demanding tasks [28], these periods
may represent only a low percent of locomotion in every-
day life context [31], especially in individuals with severe
gait impairments. The proposed algorithm might therefore
be improved to decrease the error for the short locomotion
periods.

Conclusion
In this study we developed and validated a single-sensor
based algorithm for locomotion and cadence detection that
showed good performances for various gait patterns. Valid-
ation of the algorithms on heterogeneous populations is
particularly important for subsequent cross-sectional and/
or interventional studies when outcome measures are
derived from locomotion features. Indeed the target goal of
many intervention programs is defined according to
normative values obtained from age−/gender-matched
healthy subjects. Therefore, a reliable comparison of the
outcome measures between subjects/groups requires moni-
toring and analysis in similar conditions using a unique
robust algorithm.
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