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Abstract

The objective of this paper is to extend the results on Pseudo Maximum Like-

lihood (PML) theory derived in Gourieroux, Monfort, and Trognon (GMT)

(1984) to a situation where the first four conditional moments are specified.

Such an extension is relevant in light of pervasive evidence that conditional dis-

tributions are non-Gaussian in many economic situations. The key statistical

tool here is the quartic exponential family, which allows us to generalize the

PML2 and QGPML1 methods proposed in GMT(1984) to PML4 and QGPML2

methods, respectively. An asymptotic theory is developed which shows, in par-

ticular, that the QGPML2 method reaches the semi-parametric bound. The key

numerical tool that we use is the Gauss-Freud integration scheme which solves

a computational problem that has previously been raised in several econometric

fields. Simulation exercises show the feasibility and robustness of the methods.
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1. Introduction

It is well known that the Maximum Likelihood estimator may not only be

inefficient but also inconsistent under misspecification. Specifically, this oc-

curs when the parametric model providing the likelihood function does not

contain the true distribution. The study of the relations between Maximum

Likelihood Theory and misspecification has now a long history. Hood and

Koopmans (1953) demonstrated that the conditionally Gaussian ML estimator

is consistent and asymptotically Gaussian, even if the true distribution is not

conditionally Gaussian, as soon as the first two conditional moments are well

specified. They coined the label “quasi ML estimator” for this kind of esti-

mator. White (1982) showed that, under misspecification, the ML estimator

is in fact a CAN (consistent asymptotically normal) estimator of the pseudo-

true value (as defined for instance in Sawa (1978)). Gourieroux, Monfort, and

Trognon (1984) characterized the parametric families leading to CAN estima-

tors of the parameters appearing in the first two conditional moments, even if

the true distribution does not belong to this parametric family. These families

are the linear exponential families (when only the first conditional moment is

specified) and the quadratic exponential families (when the first two conditional

moments are specified). The estimators thus obtained were called PML1 and

PML2 estimators, respectively. Bollerslev and Wooldrige (1992) generalized the

properties of the quasi generalized estimator, i.e. the Gaussian PML estimator,

to the dynamic case.

The PML theories described above only consider the robustness of the estima-

tor of the parameters appearing in the first two conditional moments. More re-

cently, however, many econometric fields are paying greater attention to higher

order conditional moments. This is particularly the case, in Financial Econo-

metrics and in Health Econometrics. Very often, the approach used to account

for higher moments is the ML method based on a choice of a parametric family,

which allows for asymmetry and fat tails. A few such examples, occurring in

finance are: Generalized Hyperbolic distribution [Eberlein and Keller (1995);

Barndorff-Nielsen (1997)], the noncentral Student t distribution [Harvey and

Siddique (1999)], and the Skewed-t distribution [Hansen (1994); Jondeau and
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Rockinger (2003)]. In Health Econometrics, some examples are: The Gener-

alized Gamma distribution proposed by Stacy (1962) and Stacy and Mihram

(1965), [Manning, Basu, and Mullahy (2005)], and the Pearson Type IV dis-

tribution, which may be considered a skewed-t distribution [Holly and Pentsak

(2004)]. More generally, examples can be found in various fields, including

physics, astronomy, image processing, and in the biomedical sciences [see Gen-

ton (2004) and Arellano-Valle and Genton (2005)].

Current ML approaches have two types of drawbacks. First, some families

may not be flexible enough to span the whole set of possible skewness (s) and

kurtosis (k), namely the domain k ≥ s2+1. Second, as mentioned above, the risk

of misspecification may lead to inconsistent estimators. If we are interested in

the first four conditional moments, a natural method is the Generalized Method

of Moments (GMM). There is now a large body of studies, however, suggesting

that GMM estimators can have poor finite sample properties [see e.g. Tauchen

(1986), Andersen and Sorenson (1996), Altonji and Segal (1996), Ziliak (1997),

Doran and Schmidt (2006)]. These difficulties led Kitamura and Stutzer (1997),

relatively early on, to propose an alternative estimation procedure based on the

Kullback-Leibler Information Criterion.

The objective of this paper is to propose another alternative to GMM. It is an

extension of the PML method developed by Gourieroux, Monfort, and Trognon

(1984), henceforth referred to as GMT. This work extends GMT to a situation

where the first four moments (centered or not) are known functions depend-

ing on unknown parameters. Specifically, we show that the PML estimator is

consistent for any specification of the first four conditional moments, any true

conditional distribution of the endogenous variable, and any marginal distribu-

tion of the exogenous variables, if and only if the PML is based on a quartic

exponential family. We shall refer to this extension as PML4. We also propose

an extension of the Quasi-Generalized Pseudo Maximum Likelihood (QGPML)

estimator proposed by GMT (1984) based on the quartic exponential family.

We show that this estimator, which we refer to as QGPML2, reaches the semi-

parametric bound. Beyond the robustness and nice asymptotic properties of

the estimates resulting from the quartic exponential families, two additional

features should be noted. First, the quartic exponential family spans the whole

domain of the pairs (s, k), except for a set of measure zero. This is not nec-

essarily the case for other parametric families of distributions such as those

mentioned earlier. Second, we show how the parameters of the quartic expo-

nential family may be obtained from a given set of moments. Thereby, we solve
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a numerical problem which had been already encountered, both in the econo-

metric literature [Zellner and Highfield (1988), Ormoneit and White (1999)] and

other fields [Agmon et al. (1979) or Mead and Papanicolaou (1984)], where the

exponential family arises as an Entropy Maximizing density and which were

considered as difficult. The key issue, from the computational point of view, is

the use of the Gauss-Freud quadrature scheme which seems very promising for

computing the numerical integrations needed in this framework.

The rest of this paper is organized as follows. Preliminary results are given

in Section 2, where some properties of exponential families are briefly reviewed

and the notion of a quartic exponential family is defined. This section also

contains a brief presentation of the properties of M-Estimators. These prelim-

inary results are then used to derive important properties of the exponential

quartic family in Section 3. The PML4 method is defined in Section 4, and

the asymptotic properties of the PML4 estimators are derived. In Section 5,

we perform a similar analysis as in Section 4 but for the QGPML2 method. In

Section 6, we discuss the numerical issues and describe numerical algorithms

for implementing of the PML4 and QGPML2 methods. Several Monte-Carlo

exercises demonstrating the usefulness of the methods proposed in our paper

are presented in Section 7. This section contains a discussion on computational

issues linked with the quartic exponential distribution, and it also presents four

Monte-Carlo experiments, each of which numerically demonstrates a different

property of PML4 or QGPML2. Conclusions are presented in Section 8. Fi-

nally, to not interrupt our discussion of the essential ideas of this paper, some

proofs and other technical details are presented in the Appendix.

2. Preliminaries

2.1. Exponential Families.

Let us consider a measure space (Y ,A, ν) where A is a σ−field and ν a

σ−finite measure. An exponential family is a family of probability distributions

on (Y ,A) which are equivalent to ν and with pdfs of the form:

`(y, λ) = exp [λ′T (y)− ψ(λ)] , λ ∈ Λ ⊂ Rp,

where T (y) is a p−dimensional vector defined on Y , and ψ(λ) is a normalizing

constant, equal to the Log-Laplace transform of νT , equivalent to the image of

ν by T .
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Such families have many well-known properties. Some of them will be useful

in the rest of the paper, and they are summarized below [the proofs can be found

for instance in Barndorff-Nielsen (1978), Monfort (1982), or Brown (1986)].

(1) Λ can be taken as the convex set where the Laplace transform of νT is

defined.

(2) For any λ ∈ Λ̊, interior of Λ, all the moments of the statistic T exist,

and in particular, we have:

Eλ(T ) =
∂

∂λ
ψ(λ), Vλ(T ) =

∂2

∂λ∂λ′
ψ(λ),

which implies:

∂Eλ(T )

∂λ′
=

∂2

∂λ∂λ′
ψ(λ) = Vλ(T ).

(3) The Fisher information matrix IF (λ) is equal to Vλ(T ) = ∂2ψ(λ)/∂λ∂λ′.

(4) The model is identifiable if, and only if, IF (λ) is invertible for any λ ∈ Λ.

(5) If the model is identifiable, then the mapping λ→ Eλ(T ) is injective.

2.2. Quartic Exponential Family.

We consider the particular case where Y = R, A = BR (the Borelian σ−field

of R), ν is the Lebesgue measure on R, and T (y) = (y, y2, y3, y4)′.

In other words, we consider the pdfs on R defined by:

`(y, λ) = exp

[
4∑
i=1

λiy
i − ψ(λ)

]
, with λ = (λ1, λ2, λ3, λ4)′. (2.1)

We will also use the notation:

`(y, λ) = exp

[
λ0 +

4∑
i=1

λiy
i

]
, with λ0 = −ψ(λ). (2.2)

This type of density has been extensively used in the entropy literature, e.g.

Golan et al. (1996), since it is obtained by maximizing, with respect to f,

the entropy −
∫

R f(y) log f(y) dy, under a set of data moment-consistency con-

straints
∫

R y
if(y) dy = mj, for j = 1, · · · , 4, where the mj are given, as well as

a normalization constraint
∫

R f (y) dy = 1.

The set Λ where `(y, λ) is defined is easily obtained. If λ4 < 0, `(y, λ) is

always integrable. If λ4 > 0, `(y, λ) is never integrable. Finally, if λ4 = 0,

`(y, λ) is integrable if λ3 = 0 and λ2 < 0. In other words, Λ is defined by:

Λ = R× R× R× R−∗ + R× R−∗ × {0} × {0},

where R−∗ is the set of strictly negative numbers.

This family will be called the quartic exponential family and denoted by

{Q(λ), λ ∈ Λ}. The case λ4 = λ3 = 0, λ2 < 0 corresponds to the Gaussian
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family. Therefore, since on this set, T (y) is integrable, the quartic family is

not steep [see Brown (1986), p. 72]. Consequently, we cannot use the standard

results developed by Barndorff-Nielsen (1978) about the range of the mapping

λ→ Eλ[T (y)] for steep families. For more details, see Barndorff-Nielsen (1978),

Brown (1986), Letac (1992), and Appendix A.

One should note that the variance-covariance matrix of T (Y ) = (Y, Y 2, Y 3, Y 4)′

is invertible everywhere, since otherwise there would exist a linear relation be-

tween Y, Y 2, Y 3, Y 4, i.e. the support of the distribution of Y would be made

of at most four points, which is impossible since this distribution is absolutely

continuous with respect to the Lebesgue measure. Therefore, using the general

properties 3) and 4) we see that the model is identifiable. Moreover, using 5) we

conclude that the mapping λ→ [mi(λ), i = 1, . . . , 4], where mi(λ) = Eλ(Y
i), is

injective.

Denoting by s(λ) and k(λ) the skewness and kurtosis [s(λ) = Eλ[Y −E(Y )]3/

[Vλ(Y )]3/2, k(λ) = Eλ[Y − E(Y )]4/[Vλ(Y )]2], respectively, it is also clear that

the mapping:

λ→ [m1(λ),m2(λ), s(λ), k(λ)],

is injective. The same is true for the mapping

λ→ [m(λ), σ2(λ), s(λ), k(λ)],

where m(λ) = m1(λ), and σ2(λ) = m2(λ)−m2
1(λ).

It is important to check whether the previous mapping is also surjective,

which is to say that it can reach any admissible value of (m1,m2, s, k). It is

well known that the set D of admissible values of (m,σ2, s, k) is defined by:

m ∈ R, σ2 ≥ 0, s ∈ R, k ≥ s2 + 1.

The latter inequality is obtained, for instance, by noting that the variance-

covariance matrix of (Y, Y 2) where E(Y ) = 0, V (Y ) = 1, is given by(
1 s

s k − 1

)
,

and therefore that k − 1 − s2 ≥ 0. Moreover, the boundary k = s2 + 1 is

reached if Y and Y 2 are linked linearly, that is, if the support is made of at

most two points. Therefore, this boundary clearly cannot be reached by the

quartic family, and the boundary point σ2 = 0 cannot be reached either (for

the same reason). Therefore, the natural question is now the following: is the
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range D of the mapping λ→ [m(λ), σ2(λ), s(λ), k(λ)] defined by:{
m ∈ R, σ2 > 0, s ∈ R, k > s2 + 1

}
?

The answer is no, but it can be shown [see Junk (2000)] that the range is almost

equal to this set, in the sense that all the admissible values of (m,σ2, s, k) can

be reached except for those corresponding to the set of measure zero, defined

by s = 0, k > 3. In particular, we can approach all the points of the half line

s = 0, k > 3, in the plane (s, k), as closely as we wish.

2.3. M-estimators and Quasi-Generalized M-estimators.

Let us consider an endogenous variable Yi and a vector of exogenous variables

Xi. For simplicity, we assume that (Yi, Xi) for i = 1, · · · , n are i.i.d. Standard

extensions can be found in Gallant (1987), Holly (1993), or White (1994). To

each possible conditional distribution of the Yi’s given the Xi’s, we associate a

parameter θ ∈ Θ ⊂ RK . In particular, the value of the parameter corresponding

to the true conditional distribution of the Yi’s given the Xi’s is called the true

value of the parameter, and it is denoted by θ0. The true distribution of the

sequence (Yi, Xi, i ∈ N) is denoted by P0. Throughout this paper, we adopt

the notation corresponding to a conditional static model, but the results could

be extended to a stationary conditional dynamic model by replacing Yi by Yt

and Xi by (Yt−1, . . . , Y1, Xt, . . . , X1).

An M-estimator of θ0 is an estimator θ̂n obtained by maximizing, with respect

to θ, an objective function of the form:

n∑
i=1

ϕ(Yi, Xi, θ). (2.3)

Under standard regularity conditions [see e.g. Chamberlain (1987), Newey

(1990), White (1994), Gourieroux and Monfort (1995a)], it can be shown that

θ̂n is a consistent estimator of θ0, for any θ0, if the limit function ϕ∞(θ, P0) =

P0 lim
[

1
n

∑n
i=1 ϕ(Yi, Xi, θ)

]
has a unique maximum at θ = θ0. Moreover, the

limit function can be written:

ϕ∞(θ, P0) = EXE0ϕ(Y,X, θ), (2.4)

where E0 is the conditional expectation operator associated to the true condi-

tional distribution of Yi, given that Xi = x (independent of i) and EX is the

expectation with respect to the distribution PX , of any Xi.

Let us now consider two subvectors θ∗ and θ∗∗ of θ. These subvectors are not

necessarily disjoint, and in particular, we can have θ∗ = θ∗∗ = θ.
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We assume that θ∗0, the true value of θ∗, can be consistently estimated by θ̂∗n

defined by:

θ̂∗n = Argmax
θ∗

n∑
i=1

ϕ
[
Yi, Xi, θ

∗, a
(
Xi, θ̂

∗∗
n

)]
, (2.5)

where a is some function, and θ̂∗∗n is a consistent estimator of θ∗∗0 , the true value

of θ∗∗. In other words, θ∗0 gives the unique maximum in θ∗ of:

P0 lim

[
1

n

n∑
i=1

ϕ
[
Yi, Xi, θ

∗, a
(
Xi, θ̂

∗∗
n

)]]
(2.6)

= EXE0ϕ [Y,X, θ∗, a (X, θ∗∗0 )] . (2.7)

Such an estimator is called a Quasi-Generalized M-estimator of θ∗0 (QGM esti-

mator). The corresponding unfeasible M-estimator θ̂∗0n is defined by:

θ̂∗0n = Argmax
θ∗

n∑
i=1

ϕ [Yi, Xi, θ
∗, a (Xi, θ

∗∗
0 )] , (2.8)

and is also consistent.

As far as the asymptotic behavior of the M and QGM estimators is concerned,

we have the following properties.

The asymptotic distribution of
√
n(θ̂n − θ0) is N [0, J−1(θ0)I(θ0)J−1(θ0)]

where

J(θ0) = −EXE0

[
∂2ϕ(Y,X, θ0)

∂θ∂θ′

]
, (2.9)

I(θ0) = EXE0

[
∂ϕ(Y,X, θ0)

∂θ

∂ϕ(Y,X, θ0)

∂θ′

]
. (2.10)

A nice property of the QGM-estimator θ̂∗n of θ∗0 is the following. If

E0

[
∂2ϕ(Y,X, θ∗0, a (X, θ∗∗0 ) )

∂θ∗∂a′
| X
]

= 0, (2.11)

then
√
n(θ̂∗n−θ∗0) has the same asymptotic distribution as

√
n(θ̂∗0n−θ∗0). Namely,

N
[
0, J̃−1(θ0)Ĩ(θ0)J̃−1(θ0)

]
, where J̃(θ0) and Ĩ(θ0) are obtained from (2.9) and

(2.10), once θ has been replaced by θ∗ and ϕ(Y,X, θ) by ϕ(Y,X, θ∗, a (X, θ∗∗0 )).

3. Properties of the Exponential Quartic Family

Let us denote by

`(y, λ) = exp(λ0 + λ1y + λ2y
2 + λ3y

3 + λ4y
4),

the pdf of the exponential family, and where λ = (λ1, λ2, λ3, λ4)′.
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We know that the range Λ of λ is: Λ = R3×R−∗+ R×R−∗×{0}× {0}, and

let us denote by D the set of the values of (m1, σ
2, s, k) which can be reached

by this family. We have seen in Subsection 2.2 that:

D =
{
m1 ∈ R, σ2 > 0, s ∈ R, k > s2 + 1

}
− {s = 0, k > 3} .

Let us denote by M the corresponding range of m = (m1,m2,m3,m4)′, where

mi = E(Y i).

We know from Subsection 2.2 that the mapping m(λ) from Λ to M is bijec-

tive, and we denote by λ(m) the inverse function and λ0(m) = −ψ [λ(m)].

Proposition 1. We have:

∂λ0(m)

∂m
+
∂λ′(m)

∂m
m = 0. (3.1)

Proof. We have:

Log ` [y, λ(m)] = λ0(m) +
4∑
j=1

λj(m)yj,

∂ Log ` [y, λ(m)]

∂m
=
∂λ0(m)

∂m
+

4∑
j=1

∂λj(m)

∂m
yj.

The result follows by taking the expectation and using the fact that the score

vector is of zero mean. �

Corollary 1. We have:

∂2λ0(m)

∂m∂m′
+

4∑
j=1

∂2λj(m)

∂m∂m′
mj +

∂λ′(m)

∂m
= 0. (3.2)

Proof. The proof is straightforward by differentiating the identity (3.1) of Propo-

sition 1 once more. �

Let us denote by Σ the variance-covariance matrix of T (Y ) = (Y, Y 2, Y 3,Y 4)′

which is positive definite (since the support of Y is not reduced to point masses).

Proposition 2. We have ∂m/∂λ′ = Σ, and therefore, ∂λ/∂m′ = Σ−1.

Proof. This is a direct consequence of the general property 2) of Subsection 2.1.

�

Proposition 3. For any pair m,m0 ∈M , we have:

λ0(m) + λ′(m)m0 ≤ λ0(m0) + λ′(m0)m0,

and the equality holds if and only if m = m0.
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Proof. From Kullback’s inequality, we know that:

Em0 {Log ` [y, λ(m)]} ≤ Em0 {Log ` [y, λ(m0)]} ,

or

Em0 [λ0(m) + λ′(m)T (Y )] ≤ Em0 [λ0(m0) + λ′(m0)T (Y )] ,

and the result follows. �

4. PML 4 Method

4.1. Definition.

We adopt a semi-parametric approach based on the specifying of the condi-

tional moments up to fourth order. This is obviously equivalent to specifying

(m1,m2,m3,m4) or (m1, σ
2, s, k). Moreover, to satisfy the inequality k > s2+1,

it could be convenient to specify (m1, σ
2, s, k∗), where k∗ = k − s2 − 1, which

could be called the over-kurtosis, since (s, k∗) is only constrained to belong to

R+ × R+. We consider the latter parametrization, but the results could be

adapted to other parametrizations in a straightforward manner.

We therefore specify the following functions: m(xi, θ1), σ2(xi, θ2), s(xi, θ3),

and k∗(xi, θ4). Note that θ1, θ2, θ3, and θ4 may have some components in

common, and we denote by θ the union of θ1, θ2, θ3, and θ4 without repetition

(in particular, we could have θ1 = θ2 = θ3 = θ4 = θ). We denote by Θ the

range of θ.

For a given xi and θ, we can compute the coefficients λ0, λ1, λ2, λ3, λ4 of the

quartic exponential distribution having the same mean, variance, skewness and

kurtosis. As mentioned in Section 2, this can always be done unless the skewness

is zero and the kurtosis larger than 3, but even then these values can be closely

approached. Let us denote these coefficients by λj(xi, θ), j = 0, . . . , 4.

Definition 1. The fourth order Pseudo Maximum Likelihood estimator of θ0,

called PML4 and denoted by θ̂n is defined by:

θ̂n = Argmax
θ∈Θ

n∑
i=1

4∑
j=0

λj(xi, θ)y
j
i .

Condition 1. We assume that the semiparametric model is identifiable, i.e.

that:

(1) if m1(xi, θ1) = m1(xi, θ̄1), σ2(xi, θ2) = σ2(xi, θ̄2), s(xi, θ3) = s(xi, θ̄3),

k∗(xi, θ4) = k∗(xi, θ̄4) (PX almost surely), then we have θ = θ̄.

Note that Condition 1 is equivalent to

(2) λj(xi, θ) = λj(xi, θ̄), j = 0, . . . , 4 (PX almost surely) implies θ = θ̄.
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4.2. Asymptotic Properties.

Proposition 4. Under standard regularity conditions, if the semi-parametric

model is identifiable, the PML4 estimator θ̂n is consistent.

Proof. From the properties of the M estimators mentioned in Subsection 2.3,

we have to prove that the limit function (2.4) ϕ∞(θ, P0) = EXE0ϕ(Y,X, θ) has

a unique maximum at θ0. Here we have:

ϕ∞(θ, P0) = EXE0

[
4∑
j=0

λj(X, θ)Y
j

]
,

= EX

[
λ0(X, θ) +

4∑
j=1

λj(X, θ)mj0

]
.

Using Proposition 3, we know that

ϕ∞(θ, P0) ≤ϕ∞(θ0, P0),

and that ϕ∞(θ, P0) =ϕ∞(θ0, P0) if and only if λj(X, θ) = λj(X, θ0), j = 0, . . . , 4,

PX almost surely in X, and, therefore, using the identification assumption, if

and only if θ = θ0. The result follows. �

Proposition 5. Under standard regularity conditions, if the semi-parametric

model is identifiable,
√
n
(
θ̂n − θ0

)
is asymptotically distributed as

N
[
0, J−1 (θ0) I (θ0) J−1 (θ0)

]
,

where

J(θ0) = EX

[
∂m′(X, θ0)

∂θ
Σ−1(X, θ0)

∂m(X, θ0)

∂θ′

]
,

I(θ0) = EX

[
∂m′(X, θ0)

∂θ
Σ−1(X, θ0)Ω(X)Σ−1(X, θ0)

∂m(X, θ0)

∂θ′

]
,

and where Σ(X, θ0) is the conditional variance-covariance matrix of T (Y ) =

(Y, Y 2, Y 3, Y 4)′ given X in the quartic conditional distribution associated with

λj(X, θ0), j = 0, . . . , 4. Meanwhile, Ω(X) is the true conditional variance-

covariance matrix of T given X.

Proof. See Appendix B. �

In the formulas giving J(θ0) and I(θ0) we have the Jacobian matrices ∂m(X,

θ0)/ ∂θ′. If the parametrization used is not m = (m1,m2,m3,m4)′ but instead

µ = (m1, σ
2, s, k∗)′, we must compute ∂m(X, θ0)/∂θ′ as a function of µ =

[m1(X, θ1), σ2(X, θ2), s(X, θ3), and k∗(X, θ4)]′, and we get:

∂m(X, θ0)

∂θ′
=
∂m

∂µ′
∂µ(X, θ0)

∂θ′
.

Therefore:
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Corollary 2. We have,

J(θ0) = EX

[
∂µ′(X, θ0)

∂θ

∂m′

∂µ
Σ−1(X, θ0)

∂m

∂µ′
∂µ(X, θ0)

∂θ′

]
, (4.1)

I(θ0) = EX

[
∂µ′(X, θ0)

∂θ

∂m′

∂µ
Σ−1(X, θ0)Ω(X)

× Σ−1(X, θ0)
∂m

∂µ′
∂µ(X, θ0)

∂θ′

]
. (4.2)

Given this, Propositions 4 and 5 show that the PML4 method based on

the quartic exponential family provides consistent and asymptotically normal

estimators of certain parameters which specify the conditional moments of order

one to four. It is also important to note that the unique family with these

properties is the generalized quartic family

exp

[
λ0(m) +

4∑
i=1

λi(m)yi + a(y)

]
,

where m = (m1,m2,m3,m4).

Proposition 6. Let f(m) be a family of pdfs on R indexed by their moments

m = (m1,m2,m3,m4)′. If the PML method based on the maximization of

n∑
i=1

Log f [yi,m1(xi, θ1),m2(xi, θ2),m3(xi, θ3),m4(xi, θ4)]

is consistent for any specification of the conditional moments, any true con-

ditional distribution satisfying the moment specification for some value θ0 of

θ = (θ1, . . . , θ4)′, and any distribution PX of X, then we have:

f(y,m) = exp

[
λ0(m) +

4∑
i=1

λi(m)yi + a(y)

]
.

Proof. Under the assumptions of Proposition 6, we must have, in particular,

the consistency property in a model without exogenous variables. Furthermore,

this model must possess the parametrization θi = E(Y i), i = 1, . . . , 4, where

θ = (θ1, θ2, θ3, θ4)′ belongs to the interior of the domain defined by:

∣∣∣∣∣ 1 θ1

θ1 θ2

∣∣∣∣∣ ≥ 0;

∣∣∣∣∣∣∣
1 θ1 θ2

θ1 θ2 θ3

θ2 θ3 θ4

∣∣∣∣∣∣∣ ≥ 0.

In other words, if for all θi (i = 1, . . . , 4) we have E(Y i− θi) = 0, then we must

have:

E

[
∂ Log f(Y, θ)

∂θ

]
= 0.
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Using a version of the Farkas Lemma [see Lemma 8.1 in Gourieroux-Monfort

(1995a), p. 252], we conclude that:

∂ Log f(y, θ)

∂θ
=

4∑
i=1

λi(θ)(y
i − θi).

Integrating the latter equation gives the result. �

Note that the generalized quartic family can be seen as a quartic family with

respect to the modified measure dν∗(y) = exp(a(y))dν(y), ν being the Lebesgue

measure on R.

5. QGPML2 Method

5.1. Alternative Parametrization.

We have seen that the quartic exponential family can be equivalently parame-

trized by λ = (λ1, λ2, λ3, λ4)′, bym = (m1,m2,m3,m4)′, or by µ = (m1, σ
2, s, k∗)′.

There is a fourth parametrization that will be of great interest, namely (m1,

m2, λ3, λ4)′ or equivalently ν = (m1, σ
2, λ3, λ4)′. First, we have to show that

this is indeed a genuine parametrization.

Proposition 7. There is a one-to-one relationship between (λ1, λ2, λ3, λ4) and

(m1,m2, λ3, λ4).

Proof. We have to prove that for any (λ3, λ4) the relationship

(λ1, λ2)→ [m1(λ1, λ2, λ3, λ4),m2(λ1, λ2, λ3, λ4)]

is one-to-one. We have seen that the Jacobian matrix ∂m/∂λ′ = Σ is symmetric

and positive definite ∀m, so the same is true for the upper (2×2) block-diagonal

submatrix. Moreover, for any given (λ3, λ4) fixed, the section of Λ is convex,

and therefore, using Theorem 6 in Gale-Nikaido (1965), we obtain the required

result. �

The previous result means that, starting from the quartic family Q(Λ), we

can reparametrize it asQ(m1, σ
2, λ3, λ4), and therefore, fixing (λ3, λ4) at any ad-

missible value (λ0
3, λ

0
4), we get a quadratic exponential family Q(m1, σ

2, λ0
3, λ

0
4)

in the sense of GMT (1984). We denote by λ∗1(m1, σ
2, λ3, λ4), λ∗2(m1, σ

2, λ3, λ4)

and λ∗0(m1, σ
2, λ3, λ4) the functions giving λ1, λ2, λ0 in terms of m1, σ

2, λ3, λ4.

5.2. Efficient Semiparametric Estimator of Conditional Means and

Variances.

Let us consider a parametric specification of the conditional mean and vari-

ance: m1(Xi, θ1) and σ2(Xi, θ2), where θ, made of a (non redundant) union of

θ1 and θ2 belongs to Θ ⊂ RK . We know that the semiparametric efficiency

bound for the asymptotic variance-covariance matrix of
√
n(θ̃n − θ0), where θ̃n



13

is a consistent estimator of θ0, is given by [see e.g. Gourieroux-Monfort (1995b),

Chapter 23]:

B =

{
EX

[
E0

(
∂r′(Y,X, θ0)

∂θ

)
V −1

0 (r(Y,X, θ0))E0

(
∂r(Y,X, θ0)

∂θ′

)]}−1

,

(5.1)

where,

r(Y,X, θ) =

[
Y −m1(X, θ1)

Y 2 −m2
1(X, θ1)− σ2(X, θ2)

]
.

Therefore, we have:

E0

(
∂r(Y,X, θ0)

∂θ′

)
=

[
−∂m1(X,θ1)

∂θ1
0

−2∂m1(X,θ1)
∂θ1

m1(X, θ1) −∂σ2(X,θ2)
∂θ2

]

= −

[
1 0

2m1(X, θ1) 1

][
∂m1(X,θ1)

∂θ1
0

0 ∂σ2(X,θ2)
∂θ2

]
,

and

V0 (r(Y,X, θ0)) = V0

[
Y

Y 2
| X

]
= Ω1(X, θ0), say,

and

B(θ0) =

{
EX

[(
∂m1(X,θ1)

∂θ1
2∂m1(X,θ1)

∂θ1
m1(X, θ1)

0 ∂σ2(X,θ2)
∂θ2

)
Ω−1

1 (X, θ0)

×

 ∂m1(X,θ1)
∂θ1

0

2∂m1(X,θ1)
∂θ′1

m1(X, θ1) ∂σ2(X,θ2)
∂θ2


−1

. (5.2)

5.3. QGPML2 Method.

We assume that the conditional mean and variance are specified as m1(Xi, θ1)

and σ2(Xi, θ2), and the conditional skewness and over-kurtosis are specified as

s(Xi, θ3) and k∗(Xi, θ4).

We can first estimate (θ1, θ2) by the PML2 method based on the Gaussian

family, i.e. by solving the problem:

(θ̃1n, θ̃2n) = Argmin
θ1,θ2

n∑
i=1

Log σ2(Xi, θ2) +
[Yi −m1(Xi, θ1)]2

σ2(Xi, θ2)
. (5.3)

Next, we compute

ûi =
Yi −m1(Xi, θ̃1n)

σ(Xi, θ̃2n)
,
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and obtain consistent estimators of θ̃3n and θ̃4n of θ3 and θ4 from the nonlinear

regressions of û3
i on s(Xi, θ3) and û4

i − s(Xi, θ̃3n)2 − 1 on k∗(Xi, θ4). Explicitly,

this corresponds to obtaining the pair (θ̃3n, θ̃4n), verifying:

θ̃3n = argmin
θ3

N∑
i=1

(û3
i − s(Xi, θ3))2,

θ̃4n = argmin
θ4

N∑
i=1

(û4
i − s(Xi, θ̃3n)2 − 1− k∗(Xi, θ4))2.

Then, noting θ̃n = (θ̃1n, θ̃2n, θ̃3n, θ̃4n)′, we define:

m̃1i = m1(xi, θ̃1n); σ̃2
i = σ2(xi, θ̃2n);

s̃i = s(xi, θ̃3n); k̃∗i = k∗(xi, θ̃4n);

λ̃ji = λj(m̃1i, σ̃
2
i , s̃i, k̃

∗
i ), j = 3, 4.

Definition 2. The Quasi Generalized PML2 (QGPML2) estimator (θ̂1n, θ̂2n)

of (θ01, θ02) is defined by maximizing with respect to (θ1, θ2) :

L(2)
n (θ1, θ2) =

n∑
i=1

{λ∗0
[
m1(xi, θ1), σ2(xi, θ2), λ̃3i, λ̃4i

]
+ λ∗1

[
m1(xi, θ1), σ2(xi, θ2), λ̃3i, λ̃4i

]
yi

+ λ∗2

[
m1(xi, θ1), σ2(xi, θ2), λ̃3i, λ̃4i

]
y2
i }

Note that, using the parametrization (m1, σ
2, λ3, λ4) the quartic family of pdf

can be written:

f(yi|m1, σ
2, λ3, λ4) = exp

[
λ∗0
(
m1, σ

2, λ3, λ4

)
+ λ∗1

(
m1, σ

2, λ3, λ4

)
yi

+λ∗2
(
m1, σ

2, λ3, λ4

)
y2
i + λ3y

3
i + λ4y

4
i

]
,

and, therefore, the objective function of Definition 2 is equivalent to:

n∑
i=1

Log f(yi | m1(xi, θ1), σ2(xi, θ2), λ3(xi, θ̃n), λ4(xi, θ̃n)),

since the terms λ3(xi, θ̃n)y3
i +λ4(xi, θ̃n)y4

i do not depend on (θ1, θ2). The method

is called QGPML2 because only yi and y2
i are involved, and it is clearly an

example of a Quasi-Generalized M-estimator.

Moreover, we obtain the following important property:
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Proposition 8. The QGPML2 estimator (θ̂1n, θ̂2n) is asymptotically equivalent

to the unfeasible estimator based on the maximization of

L
(2)
n0 (θ1, θ2) =

n∑
i=1

{λ∗0
[
m1(xi, θ1), σ2(xi, θ2), λ3(xi, θ0), λ4(xi, θ0)

]
+ λ∗1

[
m1(xi, θ1), σ2(xi, θ2), λ3(xi, θ0), λ4(xi, θ0)

]
yi

+ λ∗2
[
m1(xi, θ1), σ2(xi, θ2), λ3(xi, θ0), λ4(xi, θ0)

]
y2
i }.

Proof. According to the result given in Equation (2.11), we have to check that:

E0


∂2

∂

(
m1

σ2

)
∂

(
λ3

λ4

)′ (λ∗0 + λ∗1Yi + λ∗2Y
2
i

)
| X

 = 0.

Differentiating Log f(yi | xi;m1, σ
2, λ3, λ4) with respect to m1 and σ2 and then

taking the expectation we get:

∂λ∗0

∂

(
m1

σ2

) +
∂λ∗1

∂

(
m1

σ2

)m1 +
∂λ∗2

∂

(
m1

σ2

)m2 = 0,

for any (m1, σ
2, λ3, λ4). Therefore, differentiating further with respect to λ3

and λ4, we still get zero. �

Proposition 9. The QGPML2 estimator (θ̂1n, θ̂2n) reaches the semiparametric

bound.

Proof. See Appendix C. �

From consistent estimators of the asymptotic variance-covariance matrix

B(θ0), we can deduce Wald and score tests, as well as asymptotic confidence

regions.

We also note that, from the proof of Proposition 9, we know that the matrices

Ĩ and J̃ are equal, and therefore we can also use Likelihood-ratio type tests

[see Gourieroux and Monfort 1995b, chapter 18]. More precisely, denoting

by θ̂0
1n and θ̂0

2n the constrained QGMPL2 estimators obtained by maximizing

L
(2)
n (θ1, θ2) under the null, we can use the test statistic:

ξRn = 2
[
L(2)
n (θ̂1n, θ̂2n)− L(2)

n (θ̂0
1n, θ̂

0
2n)
]
. (5.4)

If the null is g(θ1, θ2) = 0 where g is an r−dimensional vector, then, under the

null, ξRn is asymptotically distributed as a χ2(r). If (θ′1, θ
′
2)′ is a p−dimensional

vector and the null is of the form θ1 = h1(γ) and θ2 = h2(γ), where γ is a

q−dimensional vector, then under the null, ξRn is asymptotically distributed as

a χ2(p− q).
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6. Numerical Implementation

The implementation of the PML4 and QGPML2 methods necessitates the

numerical algorithms that will be described in this section. To this end, let us

first introduce the useful notion of a canonical quartic family.

6.1. Canonical Quartic Family.

Let us consider the quartic family Q(λ) with pdfs:

exp

(
4∑
i=0

λiy
i

)
,

with λ0 = −Log
∫

exp
(∑4

i=1 λiy
i
)
dy, and λ4 ≤ 0.

If λ4 = 0, we have λ3 = 0 and λ2 < 0, and we get the normal family. If

λ4 < 0 and if we consider a linear transformation, Y = a+ bZ, b > 0, then the

distribution of Z has a pdf equal to:

exp
[
Log b+ λ0 + λ1(a+ bz) + λ2(a+ bz)2 + λ3(a+ bz)3 + λ4(a+ bz)4

]
.

In particular, the coefficients of z4 and z3 are respectively λ4b
4 and λ3b

3+4λ4ab
3.

Therefore, choosing b = (−λ4)−1/4 and a = −λ3/(4λ4), we obtain a pdf of the

form:

exp
[
α0 (α, β) + αz + βz2 − z4

]
, (6.1)

which will be called a canonical form and denoted by Q∗(α, β). Note that, since

the skewness and the kurtosis are invariant under linear mapping, the range of

the pair (s, k) reached by the canonical forms is the same as that for the entire

Q(λ) family. Namely, it is the universal set k ≥ s2 + 1, except {s = 0, k > 3}.
Furthermore

α0(α, β) = Log b+ λ0 + λ1a+ λ2a
2 + λ3a

3 + λ4a
4,

α = (λ1 + 2λ2a+ 3λ3a
2 + 4λ4a

3)b,

β = (λ2 + 3λ3a+ 6λ4a
2)b2.

Also, for given values of α0(α, β), α, β and λ3, λ4, one may obtain λ0, λ1, and

λ2 using:

λ2 = β/b2 − 3aλ3 − 6λ4a
2, (6.2)

λ1 = α/b− 2λ2a− 3λ3a
2 − 4λ4a

3, (6.3)

λ0 = α0(α, β)− Log b− (λ1a+ λ2a
2 + λ3a

3 + λ4a
4). (6.4)
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6.2. Implementation of the PML4 Method.

To compute the values of λ0, λ1, λ2, λ3, λ4 corresponding to a given m =

(m1,m2,m3,m4)′, we can proceed as follows.

(1) Compute s(m), k(m).1

(2) Find a pair of (α, β) corresponding to s(m), k(m).

(3) Compute the mean m∗1 (α, β) and the variance σ2∗ (α, β) corresponding

to the canonical pdf Q∗(α, β).

(4) The linear transform Y = a + bZ, b > 0, gives m1 = a + bm∗1 (α, β),

and σ = b σ∗ (α, β), where σ2 = m2 −m2
1. That is, b = σ/σ∗(α, β) and

a = m1 − bm∗1 (α, β).

(5) Compute λ4 = −(b)−4, λ3 = −4λ4a, and use equations (6.2), (6.3), and

(6.4) to get λ0, λ1, λ2.

6.3. Computation of the Functions α(s, k), β(s, k) Using the Gauss-

Freud Method.

In subsection 6.2 we have seen that the key step of the computation is step

(2). For a given pair (s, k), we must find (α, β) such that the pdf (6.1) has a

skewness equal to s and a kurtosis equal to k.

Using the notation:

q(z;α, β) = exp(αz + βz2 − z4),

we have to compute the integrals:

Ij(α, β) =

∫ ∞
−∞

zj q(z;α, β) dz, j = 0, · · · , 4. (6.5)

Once these integrals are known, we easily get the moments:

mj(α, β) = Ij(α, β)/I0(α, β), j = 1, · · · , 4,

Therefore s(α, β), k(α, β). Finally, we have to minimize in (α, β) the distance:

[s− s(α, β)]2 + [k − k(α, β)]2, (6.6)

It is well known that the computation of the parameters for such a problem

may be difficult. The basic reason for this is that the function q(z;α, β) may

have two maxima for very different values of z, and it may take very small

values in a large area between these two values of z. Furthermore, one of the

1 Skewness and kurtosis are given, respectively, by

s(m) =
m3 − 3m2m1 + 2m3

1

(m2 −m2
1)3/2

, k(m) =
m4 − 4m3m1 + 6m2m

2
1 − 3m4

1

(m2 −m2
1)2

.
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maxima may be far out in the tails and yet contribute a relatively important

probability mass. This implies that integration methods of the Newton type,

based on an equidistant grid, are inadequate. More precisely, approximations

of the form:

Îj(α, β) = δ

N∑
i=0

zji exp(αzi + βz2
i − z4

i ),

with zi − zi−1 = δ and i = 1, · · · , N , or even improvements thereof, such as

Simpson’s scheme, may necessitate very large values for N,−z0, and zN to

achieve acceptable precision. Typically, we would have to take values like N =

20′000, and −z0 = zN = 80, which makes the optimization of (6.6) very difficult.

In addition, “smarter” integration techniques, based on the Gauss-Lagrange

scheme, may be problematic since such a scheme requires first a transform

of R into (−1, 1), by the logistic map. This transform essentially varies in a

neighborhood of the origin, and it tends to lose information contained in the

tails. As a consequence, such schemes even when performed with a large number

of abscissas, tend to be inaccurate even for relatively low values of kurtosis.

For this reason, we adopte the Gauss-Freud method [see Freud (1986) for the

seminal work and Levin and Lubinsky (2000) for a recent research-monograph],

which is designed to accurately approximate integrals of the kind:∫ ∞
−∞

f(z) exp(−z4) dz.

This method leads to approximations of the form:

I∗j (α, β) =
N∑
i=0

zji exp(αzi + βz2
i )wi, (6.7)

where the abscissa zi and the weights wi are very precisely adapted to the

shape of the function to be integrated. Further details on how the zi and

the wi may be computed may be found in Gautschi (2004, Part 1).2 Thus,

the proposed algorithm has two advantages over the other numerical methods:

it uses results on numerical integration specifically related to the integration

problem and, moreover, the calculation of parameters involves computing only

2 Essentially, the weights wj and abscissa xj can be obtained as eigenvectors and eigen-
values of a Jacobi matrix (see Golub and Welch 1969). This matrix, in turn, requires
a sequence of parameters for which a stable estimation algorithm has been proposed by
Noschese and Pasquini (1999) for the exp(−z4) weight function. Prof. Milovanović imple-
mented this algorithm and made the resulting parameters available to the public via the
website of Prof. Gautschi. On this website, one may find the file: coefffreud4.txt under
www.cs.purdue.edu/archives/2001/wxg/tables. To obtain the xj and wj , we use his
routine Gauss.m to be found under: www.cs.purdue.edu/archives/2002/wxg/codes.
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two parameters, resulting in a significant gain in time. We performed all of the

numerical integrations using N = 100.

6.4. Implementation of the QGPML2 Method.

The numerical problem is the following: given any admissible value of (m1, σ
2,

λ3, λ4), compute λ∗i (m1, σ
2, λ3, λ4), for i = 0, 1, 2.

According to this approach, it is necessary to allow for densities of any given

mean and variance. However, the numerical integration scheme uses the kernel

exp(−z4), a symmetric kernel that weights those observations in a neighborhood

of 0. We expect that this may create numerical difficulties for random variables

whose mean is distant from 0. For this reason, we consider a computation

strategy of the λ∗i where, in a preliminary step, observations are studentized.3

Thus, instead of considering the pdf,

exp
[
λ∗0 + λ∗1y + λ∗2y

2 + λ3y
3 + λ4y

4
]
,

it is useful to characterize the associated density, which has a mean of zero

and a variance of 1. This density is related to the previous one by the linear

transformation Y = m1 + σZ, where Z represents a random variable with

mean 0 and variance 1. The corresponding density, which will be called the

Studentized exponential quartic, is written as:

exp
[
δ0 + δ1z + δ2z

2 + δ3z
3 + δ4z

4
]
.

We have the relations δ4 = σ4λ4 < 0 and δ3 = σ3λ3 + 4m1

σ
δ4. Since, in the

QGPML2 approach, m1, σ
2, λ3, λ4 are given, the parameters δ3, δ4 are also

given. Once δ0, δ1, δ2 corresponding to a zero mean and unit variance have

been obtained using the method described below, one may revert to the initial

parameters using:

λ∗0 =
[
σ4δ0 −m1σ

3δ1 +m2
1σ

2δ2 −m3
1σδ3 +m4

1δ4

]
/σ4 − Log(σ),

λ∗1 =
[
σ3δ1 − 2m1σ

2δ2 + 3m2
1σδ3 − 4m3

1δ4

]
/σ4,

λ∗2 =
[
σ2δ2 − 3m1σδ3 + 6m2

1δ4

]
/σ4.

Using the notation,

q(z; δ1, δ2) = exp
[
δ1z + δ2z

2 + δ3z
3 + δ4z

4
]
,

3 This studentization is not required for PML4 where the mean m∗
1 (and variances (σ∗)2)

turn out to be close to 0 (1).



20

we have to compute the integrals:

Ij(δ1, δ2) =

∫ ∞
−∞

zj q(z; δ1, δ2) dz, j = 0, · · · , 2. (6.8)

Using the change of variable u = (−δ4)1/4z, these integrals become:

Ij(δ1, δ2) =

∫ +∞

u=−∞

(
(−δ4)−1/4u

)j
exp

[
δ0 + δ1(−δ4)−1/4u+ δ2

(
(−δ4)−1/4u

)2
+

δ3

(
(−δ4)−1/4u

)3 − u4
]

(−δ4)−1/4du j = 0, · · · , 2. (6.9)

Now, the kernel exp(−u4) appears again, and we may use the Gauss-Freud

method outlined in Section 6.3. Once these integrals are efficiently evaluated,

we may compute the moments:

mj(δ1, δ2) = Ij(δ1, δ2)/I0(δ1, δ2), j = 1, 2.

The parameters δ1 and δ2 are obtained by minimizing the distance:

[m1(δ1, δ2)]2 + [σ2(δ1, δ2)− 1]2, (6.10)

where σ2(δ1, δ2) = m2(δ1, δ2)−m2
1(δ1, δ2). Eventually, δ0 = −Log I0(δ1, δ2).

7. Numerical Examples

In this section, after discussing the computation of the parameters of the

quartic exponential for given moments of order 1 to 4, we will discuss several

Monte-Carlo exercises demonstrating the usefulness of the methods at hand.

The examples we want to discuss are 1) a comparison between various estima-

tion techniques for small samples, 2) a study of the performance of PML4 in

the case of misspecification, and 3) an illustration of QGPML2.

7.1. Computation of the Quartic Exponential.

As discussed in Section 6, feasibility of the PML4 estimation hinges on the

ability to efficiently compute the parameters λ0, · · · , λ4 of the quartic ex-

ponential for given m1,m2,m3,m4. Ormoneit and White (1999) attribute to

Agmon et al. (1981) the first attempts to compute the “correct” λ∗. Agmon et

al. (1981) considered the maximization of entropy under moment constraints,

that is the so-called primal problem. They computed the integrations using the

Gauss-Lagrange scheme after mapping the domain of integration (−∞,∞) into

(−1, 1). Zellner and Highfield (1988) propose computation of the λ∗ by seeking

the zeros of the first order conditions that result from the entropy maximiza-

tion (i.e. the dual approach). Maasoumi (1983) reported difficulties with this

method that Ormoneit and White (1999) corroborate. Ormoneit and White
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(1999) also map the domain (−∞,∞) into (−1, 1), and they use the Gauss-

Lagrange scheme. Moreover, they feed intelligent starting values into their

optimization and stabilize the computation of the exponential to avoid numer-

ical overflow. Last but not least, to our knowledge, they are the first ones in

the literature to have acknowledged numerical difficulties in the λ parameter

computation along the segment s = 0, k > 3. Indeed, we know that no density

exists for this segment, based on theoretical grounds as discussed earlier.

Our method hinges instead on obtaining the parameters α and β of the

canonical form for given skewness and kurtosis. In this section, we wish to

discuss the precision of these computations.4 In order to evaluate the algorithm

which gives the parameters α and β of the canonical form, we considered a grid

covering the range of values of kurtosis from 1.5 to 20. For each value of kurtosis,

k, we considered a grid for skewness ranging from 0.1 to
√
k − 1−0.1. For each

point of this grid, say s, k, we computed α and β as described in Section 6.3

and recomputed the associated skewness and kurtosis, say s̃, k̃.5 In Figure 1,

circles represent the points of the skewness-kurtosis grid for which we evaluated

the parameters and, + symbols represent those points for which the distance

D = (s− s̃)2 + (k − k̃)2 > 10−5.

This figure demonstrates several interesting phenomena 1) Even though,

based on theoretical grounds, no density can exist on the segment (s = 0, k ≥ 3),

it is still possible to obtain a density for parameters close to the excluded seg-

ment. 2) Even for very large values of kurtosis (limited in the figure to 20),

we obtain a large range of values of skewness for which a highly accurate den-

sity may be obtained. We also constructed a similar graph where kurtosis was

allowed to took values up to 150. We find that, even for a kurtosis of 150,

the range of skewness, where D < 10−5, ranges from 2.5 to 12.1, still a very

respectable domain.

Many of the difficulties encountered in earlier attempts at such calculations

disappear in our approach. The linear transform Y = a+ bZ allows us to write

the exponential quartic in terms of exp(−z4). Then, by replacing exp(−z4) by

well-behaved discrete weights (this leads to formula (6.7)), we integrate directly

over the range (−∞,∞), thus obviating the use of the logistic map. Next, we

4 All of the programming was performed in the MATLAB environment. We implemented
the code on both Mac OS X and Windows Vista machines. All of the simulations were
performed on a PC with an Intel quadricore processor running four MATLAB clones in
parallel. To increase the speed of the computations, we transcribed the central part of the
programs into the C language and called it via a MEX interface.

5 We perform the required minimization using the Nelder-Meade approach.
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only optimize over two parameters, rather than four. We also feed optimized

starting values for α and β into the optimizer. These starting values are the

α and β corresponding to those points in the domain represented in Figure 1

that are closest to some given values of skewness and kurtosis. The skewness

and kurtosis, and their associated α and β, are stored once and for all in some

file that is read into memory as the program is initialized.

To further understand some of the difficulties encountered in earlier studies,

we obtained the parameters λj, for j = 0, · · · , 4 for extremely skewed cases,

and evaluated the resulting densities at points far out in the tail (say z = 50 for

a centered and reduced density) and still found a small, yet significant prob-

ability mass. The logistic map, which transforms (−∞,∞) into (−1, 1) used

in the earlier work, may therefore have ‘fudged’ the behavior of the density

for relatively large values of skewness and kurtosis. We also note that earlier

work required many integration points (each evaluation costs time) whereas

using abscissas and weights that are made specifically for the exp(−z4) weight-

ing function reduces the number of points for which the integrand needs to be

evaluated.6

As the numerical exercises that follow will demonstrate, the time necessary

to compute the required α and β parameters is of an order that is suitable for

applying the exponential quartic in many econometric problems. The compu-

tation of one set of α and β requires about 0.015 seconds, allowing for about

66 density constructions per second. It is clear that the method proposed here

is not confined to econometrics and may prove useful in other fields as well.

Similarly to the protocol described above, in the context of the parameter

estimations related to QGPML2, we verified the precision of the computation of

δi, for i = 0, · · · , 2 for given δ3, δ4, yielding a density with mean 0 and variance

1.

7.2. A First Experiment.

The objective of this first experiment was to demonstrate that the PML4

estimation may provide estimates which are superior to either the PML2 or the

GMM estimators in an unconditional setting. We first discuss the choice of a

data generating process, and then we focus on the estimation techniques. A

priori, many distributions could be used for this experiment (Student-t, distri-

butions in the Pearson family, Gamma, etc.) Preliminary work made it clear

6 We presently do not incorporate a selection rule on the number of abscissas, N , which
may further decrease the speed of the computation of the α and β.
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that a distribution should be chosen from which draws could be obtained in a

very rapid manner. For this reason we settled on the family of skewed Laplace

distributions, denoted sLD. These distributions have been used to price op-

tions in the context of extreme return realizations, for example, by Gourier-

oux and Monfort (2006). This family of distributions has three parameters,

b0 > 0, b1 > 0, and c, and its pdf is defined by:

f(z; b0, b1, c) =

{
b0b1
b0+b1

exp [b0(z − c)] , if z ≤ c,
b0b1
b0+b1

exp [−b1(z − c)] , if z > c.
(7.1)

The mean, variance, skewness and kurtosis of this density are given by:

m1(c, b0, b1) = E[Y ] = c+
1

b1

− 1

b0

, (7.2)

σ2(c, b0, b1) = V ar[Y ] =
1

b2
0

+
1

b2
1

, (7.3)

s(c, b0, b1) =
2

σ3

[
1

b3
1

− 1

b3
0

]
, (7.4)

k(c, b0, b1) =
9

σ4

[
1

b4
1

+
1

b4
0

]
+

6

σ4b2
0b

2
1

. (7.5)

Since this density may be viewed as describing a mixture of exponentials, we

use the inverse c.d.f. technique to simulate random draws from it.

In this first experiment, we focus on the situation where c = 0. Indeed,

without an additional assumption on one of the parameters of the sLD, we

would not be able, in the following, to obtain parameter estimates based on the

PML2 principle.

We simulated 10,000 samples, each of a length of either T = 25, 50 or 100

i.i.d. observations. The estimation techniques used were ML, PML2, PML4 and

GMM. Let us describe the way in which we implemented these estimations.

For ML, we maximized for each sample, the log-likelihood obtained from

(7.1):

LML =
T∑
i=1

Log f(zi; b0, b1).

For PML2, we considered the objective function:

LPML2 = −T Log σ(b0, b1)− 1

2

T∑
i=1

(
zi −m1(b0, b1)

σ(b0, b1)

)2

.

For PML4, we formed the objective function:

LPML4 =
T∑
i=1

λ0 + λ1yi + λ2y
2
i + λ3y

3
i + λ4y

4
i ,



24

where the parameters λ0, · · · , λ4 were computed as described in section 6.2 for

(m1(b0, b1), σ(b0, b1)2, s(b0, b1), k(b0, b1)).

For GMM, we defined, (see Hansen (1982)), the 4× 1 vector,

Xi(b0, b1) =


zi −m1(b0, b1)

z2
i −m2

1(b0, b1)− σ2(b0, b1)(
zi−m1(b0,b1)
σ(b0,b1)

)3

− s(b0, b1)(
zi−m1(b0,b1)
σ(b0,b1)

)4

− k(b0, b1)

 ,

and considered the distance:

J = gT (b0, b1)′S−1gT (b0, b1), where gT (b0, b1) =
1

T

T∑
i=1

Xi(b0, b1).

The GMM estimates were obtained as those parameters minimizing the distance

J. The matrix S that appears in the distance was obtained by using, as a

first step, the identity matrix, and as a second step, the asymptotic variance-

covariance matrix. Thus, the GMM estimates are asymptotically optimal.

We performed the simulation using (b0, b1) = (2.41, 1.30).7 This point corre-

sponds to the moments (m1,m2, s, k) = (1.30, 0.35, 1.15, 6.91).

Table 1 displays several statistics for 10,000 simulations and for various sam-

ple sizes. However, the main result that this Table conveys is that, for all sample

sizes considered, the MSE of the ML estimation dominates, as expected, over

all other methods. However, we find that the PML4 technique yields estimates

with an MSE up to less than half of the one for PML2. Concerning GMM, the

parameters often hit the boundaries that we imposed during the estimation.

The MSE of the parameters obtained by this method is the largest. This sug-

gests that for situations where the econometrician has no prior information on

the skewed distribution to use for the estimation, the PML4 technique may be

a most useful one.

7.3. A Second Experiment.

In this experiment, we illustrate the robustness of the PML4 method with

respect to the shape of the distribution as compared to that of the ML method.

In order to be fair with the ML, we consider a situation in which the family

of pdfs used to build the likelihood is allowed to reach the true moments up

to fourth order, although it does not contain the true pdf. More precisely, the

misspecified likelihood will be based on the family of skewed Laplace distribu-

tions (sLD), and the true pdf will be that of a mixture of two normals whose

7 We also used other points, but the results are very similar to the ones reported here.
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moments, up to the fourth order, are reachable by the sLD family. The skewed

Laplace density family defined in (7.2) is conveniently reparametrized by the

mean, µ, the standard error, σ, and a parameter, θ ∈ [0, π/2], such that the

standardized variable (z − µ)/σ follows the zero-mean, unit-variance skewed

Laplace density corresponding to b0 = 1/ sin θ, b1 = 1/ cos θ, c = sin θ − cos θ.

The pairs (s, k) that are reachable by the skewed Laplace density family are

given by (7.4) and (7.5), where b0, b1 are replaced respectively by 1/ sin θ and

1/ cos θ, respectively, and σ is replaced by 1. Thus, the misspecified likelihood

function is,

T∏
i=1

1

σ
f

(
zi − µ
σ

;
1

sin θ
,

1

cos θ
, sin θ − cos θ

)
, (7.6)

where f is given in (7.1).

The PML4 objective function is obtained by specifying the mean, variance,

skewness, and kurtosis as µ, σ2, 2(cos3 θ−sin3 θ)/(σ3), and 9(cos4 θ+sin4 θ)/(σ4)+

6 cos2 θ sin2 θ/(σ4), respectively.

The data generating processes are mixtures of two normals such that µ =

0, σ2 = 1, with the skewness and kurtosis being obtained from the previous

formulae with θ = 10 (in degrees), namely s = 1.90 and k = 8.65. The family

of two normals can reach any set of mean, variance, skewness, kurtosis, and

this, moreover, can be reached in a non-unique way. Here, we choose two

data generating processes.8 First, we consider the unique mixture satisfying

µ = 0, σ2 = 1, s = 1.90, and k = 8.65 with the same variance in the two normal

components. We find the mixture,

0.0451N (3.483, 0.654) + (1− 0.0451)N (−0.164, 0.654),

where 0.654 is the standard deviation. Second, we choose the mixture maxi-

mizing the entropy under the four constraints on the moments and find

0.102N (2.036, 1.426) + (1− 0.102)N (−0.232, 0.597).

For these two DGPs, we use 10,000 simulations of T = 100 observations. For

each simulation, we compute the misspecified ML estimates and the PML4

estimates of µ, σ, θ, where the true values are (0,1,10).

Table 2 displays the results from this simulation. Inspection of this Table

reveals, for both DGPs, qualitatively similar results for the estimates of the

parameters and the MSE. We find rather good estimates of both the mean and

8 More details on the construction of these processes are available upon request. The
formulae on how to obtain these mixtures may be found in Titterington et al. (1985).
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the variance. The MSE of σ̂ tends to be better for the PML4 estimation than

for the ML one.9 The deterioration of the estimate of the parameter θ, which

commands higher moments is, however, dramatic if one uses a misspecified

model. For instance, focusing on the ML estimation, whereas the MSE of µ̂ is

0.0004, it becomes 327.49 for θ̂. Inspecting of the average estimate of θ̂ and its 5-

and 95-percentiles reveals that the estimate is nearly three times the estimate of

its true value. The 10% confidence intervals do not even contain the true value.

On the other hand, if one considers the PML4 estimations, the deterioration of

the MSE of θ̂ is much less with an MSE=30.08. Also, the confidence intervals

now contain the true value.

As this experiment suggests, in the case of skewed and kurtic data, great care

needs to be exercised if one uses ML estimation with a risk of misspecification.

The PML4 method appears to be much more robust.

7.4. A Third Experiment.

In the previous examples, we demonstrated the usefulness of the PML4 tech-

nique in an unconditional setting. In this section, we illustrate the usefulness of

the PML4 technique in a conditional setting where the numerical complexity is

much greater. There are situations where the modeling of the variation in higher

moments may be of importance per se. For instance, Hansen (1994) considered

a model in the spirit of Garch with time varying skewness and kurtosis.

A generic model that captures variation in the higher moments is given by:

yi = µ+ σεi,

where εi ∼ D(0, 1, s(xi), k
∗(xi)),

s(xi) = 0.5 + axi, (7.7)

k∗(xi) = 2 + bxi, b > 0,

xi ∼ U [1/2, 3/2], i.i.d.

In the second line, D stands for some distribution where skewness and over-

kurtosis depends on some exogenous variable, xi. The next two lines specify

how skewness and over-kurtosis are parametrized. We recall that the kurtosis,

k, is related to the over-kurtosis, k∗, by k = 1 + s2 + k∗. For the simulations,

we take the lower moments to be µ = 0 and σ = 1. Furthermore, we take

a = 1 and b = 2. As long as the condition b > 0 is imposed in the numerical

computation, the model will be well defined. The intercepts 0.5 and 2 in the

9 This result is not due to statistical variation as we could verify by running the simulation
several times.
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specification of s(xi) and k∗(xi) guarantee that the distribution will be skewed

(here s > 1) and fat-tailed (here k > 4).

The D distribution that we choose is the mixture of two normal distributions

with identical variances as discussed in the previous subsection. In the Monte-

Carlo exercise, we simulate 1,500 samples, each with T = 100 observations.

The estimations require between about 60 and 340 sec, with an average time

of about 130 sec.

Table 3 contains the statistics associated with the various estimations. As

this Table demonstrates, even though the numerical complexity behind the

PML4 computation is significant, this method may be actually implemented

even in a Monte Carlo framework with many replications (here 1,500). With

the feasibility of the method already demonstrated, we may now turn to the

interpretation of the statistics. We first note that the parameters tend to be

estimated rather well if one uses the average of the estimates. We find that

the parameter estimates are skewed and kurtic, and we note that the MSE of

the parameter estimates increases with the order of the moment that a given

parameter describes. The MSE of the mean µ is 0.04. The MSE of the param-

eter b that describes the kurtosis of the distribution takes a much higher value

of 4.490. We observe that parameters describing higher moments have higher

associated MSE.

We conclude this section by noticing that our method may obviously be used

in real applications, for models which may have more parameters, since it then

has to be estimated only once.

7.5. A Fourth Experiment: QGPML2.

To validate the QGPML2 approach, we consider as DGP the observation

(yi, xi) generated by:

yi = axi + exp(bxi)εi,

ui ∼ U(0, 1), i.i.d.

xi = (1 + 29ui)/10,

θi = (1 + 29ui)
π

180
,

εi ∼ sLD

(
1

sin θi
,

1

cos θi
, sin θi − cos θi

)
.

(7.8)

The first line specifies the mean and the variance of the model as depending on

some exogenous variable xi. The second line defines the ui as uniform draws.

From this basic source of exogenous randomness, we construct xi as uniform
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random numbers U(1/10, 3). The fourth line specifies θi as an angle that varies

between 1 and 30 degrees. The ratio π/180 converts this angle into radians. The

last equation specifies that εi is distributed according to the skewed Laplace

distribution with mean 0, variance 1, and known skewness and kurtosis. A

similar parametrization was chosen in Subsection 7.3. We select as parameters

a = 1 and b = 1.

A preliminary simulation revealed that, for this parametrization, the skew-

ness (kurtosis) of the εi ranges between 0 and 2 (respectively, 6 and 9).

The QGPML2 estimation is based on the following steps:

(1) Estimate a and b via PML2. This is tantamount to obtaining a, b by

maximizing the function:

T∑
i=1

−bxi −
1

2

(
yi − axi
exp(bxi)

)2

.

(2) Compute the first step estimators λ̃j,i for j = 1, · · · , 4 by using the

information contained in s(xi) and k(xi). This computation is described

in section 5.3. Notice that only λ̃3i and λ̃4i are used in the next step.

(3) Maximize, with respect to a and b, the objective function:

T∑
i=1

λ∗0,i + λ∗1,iyi + λ∗2,iy
2
i ,

where, λ∗j,i = λ(axi, exp(bxi), λ̃3i, λ̃4i). The computation of the λ∗i,j may

be found in section 6.4. The resulting a and b estimates are the QGPML2

estimates.

Table 4 reports some statistics for the simulations. Each time we use N =

30, 000, a rather large number of simulations to ascertain that the findings are

not spurious. We consider samples of size T = 25 and T = 100.10

Inspecting the table reveals that, as expected, the dispersion of the estimates

obtained in the larger sample tends to be better. Comparing the dispersion

of the parameters between the PML2 estimates and the QGPML2 estimates

reveals an improvement when using QGPML2.11 For instance, for T = 25, the

improvement of the RMSE of the parameter intervening in the mean, a, is 2.6%.

10Here, we focus on a large number of simulations each involving a relatively small sample.
The time required for this simulation could alternatively be devoted to the estimation of
a model with either a larger sample or a more complex model structure involving several
parameters.

11We did not pursue a search for settings where the efficiency gain may be more important,
as we simply wished to demonstrate the feasibility of the method here. We leave this pursuit
for future research.
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8. Conclusion

In this paper, we generalize the PML2 and QGPML1 methods proposed in

Gourieroux, Monfort, and Trognon (1984). The main objective of these meth-

ods was to propose consistent and asymptotically normal estimators of the pa-

rameters which appear in the specification of the first two conditional moments,

based on the optimization of possibly misspecified likelihood functions.

Here, we extend this approach by considering the first four conditional mo-

ments. A key tool is the quartic exponential family. This family allows us

to introduce PML4 and QGPML2 estimators, respectively, generalizing PML2

and QGPML1. A complete asymptotic theory is proposed. In particular, it is

shown that the QGPML2 estimator reaches the semi-parametric bound based

on the first two moments.

Another key issue is the numerical computation of the exponential quartic

density parameters for given values of the first four moments. The solution

adapted in this paper, which is based on an approach proposed by G. Freud

(1986), appears to be very quick and stable, and it solves technical problems,

which had been stressed in different strands of the literature, e.g. Maasoumi

(1993), Ormoneit and White (1999).

In numerical studies, we not only demonstrate the feasibility of the proposed

estimation methods, but also show that PML4 may provide more efficient esti-

mates, in particular for small samples where GMM based estimates may have

encountered difficulties. We also consider an example where an econometrician

uses either a misspecified ML model or the PML4 model. In that case, the

PML4 model demonstrates superior results. Lastly, we show the feasibility of

the QGPML2 estimation, and in that context, we again prove gains in efficiency.

Our estimation method may prove useful in many econometric applications

that involve non-Gaussianity of some random variable. Beyond this, the pro-

posed numerical techniques may be of relevance in Bayesian analysis, inde-

pendent component analysis, and possibly physics, i.e. in situations where

non-Gaussian distributions may be of relevance.
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Appendix A. Properties of the Exponential Families

Let us consider the exponential family `(y, λ) = exp [λ′T (y)− ψ(λ)] defined

in Section 2.1. An important issue is to characterize the range of the mapping

λ → Eλ[T (y)], for λ ∈ Λ̊. Let us denote this mapping by ξ, and we denote

M = ξ(Λ̊), and C the closed convex hull of the support of νT .

We recall below a necessary and sufficient condition for which M = C̊ due to

Barndorff-Nielsen (1978). To this end, we need to recall the definition of a steep

function [or alternatively an essentially smooth convex function (Rockafellar

1970)]. Introduce the following definition. Let ϕ : Rk → (−∞,∞) be a proper

convex function and D = {x ∈ Rk : ϕ(x) < ∞}. Assume that D̊ is not empty

and ϕ is differentiable throughout D̊. Such a function will be defined to be

steep at x, where x ∈ Dr D̊, if limi→∞ | ∂ϕ∂x (xi) |=∞ whenever x1, x2, . . . , is a

sequence of points in D̊ converging to x. Furthermore, ϕ will be called steep if

it is steep at all x ∈ D r D̊.

An exponential family is called steep if its cumulant generating function, ψ,

is steep. It follows from this definition that a natural exponential family is

called steep if limi→∞ | Eλi
(T ) |= +∞ whenever λ1, λ2, . . . , is a sequence of

points in Λ̊ converging to a point λ ∈ Λ r Λ̊.

A result due to Brown (1986, p. 72) provides a convenient, necessary, and

sufficient condition for steepness. According to this result, the exponential

family is steep if and only if Eλ(‖ T ‖) =∞ for all λ ∈ ΛrΛ̊. Unfortunately, this

condition is not satisfied by the exponential quartic family since T is integrable

in the Gaussian case, corresponding to values of λ satisfying λ4 = λ3 = 0,

λ2 < 0, and which are in Λ r Λ̊.

Appendix B. Computation of J(θ0) and I(θ0)

J(θ0) = −∂
2ϕ∞(θ, P0)

∂θ∂θ′

= −EX

[
∂2λ0(X, θ0)

∂θ∂θ′
+

4∑
j=1

∂2λj(X, θ0)

∂θ∂θ′
mj0

]
,

We have (omitting the variables X and θ0):

∂λj
∂θ

=
∂m′

∂θ

∂λj
∂m

, j = 0, . . . , 4,

∂2λj
∂θ∂θ′

=
∂m′

∂θ

∂2λj
∂m∂m′

∂m

∂θ′
+

4∑
k=1

∂λj
∂mk

∂2mk

∂θ∂θ′
,
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J(θ0) = −EX

{
∂m′

∂θ

[
∂2λ0

∂m∂m′
+

4∑
j=1

∂2λj
∂m∂m′

mj0

]
∂m

∂θ′

}

−

{
4∑

k=1

[
∂λ0

∂mk

+
∂λ1

∂mk

m10 + · · ·+ ∂λ4

∂mk

m40

]
∂2mk

∂θ∂θ′

}
,

and using Proposition 1, Corollary 1, and Proposition 2:

J(θ0) = EX

[
∂m′

∂θ

∂λ′

∂m

∂m

∂θ′

]
= EX

[
∂m′

∂θ
Σ−1∂m

∂θ′

]
.

Similarly,

I(θ0) = EXE0

[
∂ϕ(Y,X, θ0)

∂θ

∂ϕ(Y,X, θ0)

∂θ′

]
= EXE0

[(
∂λ0

∂θ
+
∂λ′

∂θ
T

)(
∂λ0

∂θ′
+ T ′

∂λ

∂θ′

)]
,

where ϕ(Y,X, θ) =
∑4

j=0 λj(X, θ)Y
j, and T ′ = (Y, Y 2, Y 3, Y 4).

Using Proposition 1, we have (omitting the variables X and θ0):

I(θ0) = EXE0

[
∂λ′

∂θ
(T −m) (T −m)′

∂λ

∂θ′

]
= EX

(
∂λ′

∂θ
Ω
∂λ

∂θ′

)
= EX

(
∂m′

∂θ

∂λ′

∂m
Ω
∂λ

∂m′
∂m

∂θ′

)
= EX

(
∂m′

∂θ
Σ−1ΩΣ−1∂m

∂θ′

)
.

Appendix C. Asymptotic Behavior of the QGPML2

C.1. Preliminaries.

Let us consider the quartic family parametrized by ξ′ = (m1, σ
2, λ3, λ4). If

we fix λ3, λ4 to a given value of λ∗3, λ
∗
4, then we obtain a family, indexed by

(m1, σ
2), with log-density:

2∑
j=0

λ∗j(ξ12)yj + λ∗3y
3 + λ∗4y

4,

where ξ12 = (m1, σ
2)′ and λ∗j(ξ12) is a notation which stands for λ∗j(m1, σ

2, λ∗3, λ
∗
4).

It is the log-density of a quadratic exponential family (see GMT (1984)).



32

Differentiating with respect to ξ12, we get

2∑
j=0

∂λ∗j
∂ξ12

mj = 0, (with m0 = 1) (C.1)

and

2∑
j=0

∂2λ∗j
∂ξ12∂ξ′12

mj +
∂λ∗

′

∂ξ12

∂m12

∂ξ′12

= 0, (C.2)

with λ∗ = (λ∗1, λ
∗
2)′ and m12 = (m1,m2)′.

Moreover,

∂m12

∂ξ′12

=

(
1 0

2m1 1

)
. (C.3)

The variance-covariance matrix Σ1 of (Y, Y 2)′ in this family is found easily.

For instance, we note that the pdf with respect to the measure µ∗ defined by

dµ∗(y) = exp(λ∗3y
3 + λ∗4y

4)dy is exp [λ∗0(ξ12) + λ∗1(ξ12)y + λ∗2(ξ12)y2]. Using the

parametrization (λ∗1, λ
∗
2) and the general property of the exponential family

given in 2.1 (2):

Σ1 =
∂m12

∂λ∗′
,

which, written as a function of ξ12, leads to:

Σ1 =
∂m12

∂ξ
′
12

∂ξ12

∂λ∗′
.

We therefore have:

∂ξ12

∂λ∗′
=

(
∂m12

∂ξ
′
12

)−1

Σ1,

hence:

∂λ∗

∂ξ
′
12

= Σ−1
1

∂m12

∂ξ
′
12

. (C.4)

C.2. Computation of J̃(θ0).

In the estimation based on the unfeasible equivalent estimator of the QGPML2,

we have, noting θ12 = (θ1, θ2) :

J̃(θ0) = −EX

{
2∑
j=0

∂2λ∗j
∂θ12∂θ′12

[
m1(X, θ10), σ2(X, θ20),

λ3(X, θ0), λ4(X, θ0)]mj(X, θ0)} .
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But we have also (omitting X and the θ’s):

∂λ∗j
∂θ12

=
∂ξ′12

∂θ12

∂λ∗j
∂ξ12

,

∂2λ∗j
∂θ12∂θ′12

=
∂ξ′12

∂θ12

∂2λ∗j
∂ξ12∂ξ′12

∂ξ12

∂θ′12

+
2∑

k=1

∂λ∗j
∂ξk

∂2ξk
∂θ12∂θ′12

.

Therefore,

J̃(θ0) = −EX

[
∂ξ′12

∂θ12

2∑
j=0

∂2λ∗j
∂ξ12∂ξ′12

mj
∂ξ12

∂θ′12

]

− EX
2∑

k=1

[
2∑
j=0

∂λ∗j
∂ξk

mj

]
∂2ξk

∂θ12∂θ′12

,

or, using (C.1) and (C.2),

J̃(θ0) = EX

[
∂ξ′12

∂θ12

∂λ∗
′

∂ξ12

∂m12

∂ξ′12

∂ξ12

∂θ′12

]
,

or, using (C.4),

J̃(θ0) = EX

[
∂ξ′12

∂θ12

∂m′12

∂ξ12

Σ−1
1

∂m12

∂ξ′12

∂ξ12

∂θ′12

]
. (C.5)

C.3. Computation of Ĩ(θ0).

Letting T1 = (Y, Y 2)′, we have,

Ĩ(θ0) = EXE0

[(
∂λ∗0
∂θ12

+
∂λ∗′

∂θ12

T1

)(
∂λ∗0
∂θ′12

+ T ′1
∂λ∗

∂θ′12

)]
,

or, using (C.1),

Ĩ(θ0) = EXE0

[
∂λ∗′

∂θ12

(T1 −m12) (T1 −m12)′
∂λ∗

∂θ′12

]
= EX

[
∂λ∗′

∂θ12

Ω1
∂λ∗

∂θ′12

]
.

We also have

∂λ∗
′

∂θ12

=
∂ξ′12

∂θ12

∂λ∗′

∂ξ12

=
∂ξ′12

∂θ12

∂m′12

∂ξ12

Σ−1
1 ,

which allows us to write

Ĩ(θ0) = EX

[
∂ξ′12

∂θ12

∂m′12

∂ξ12

Σ−1
1 Ω1Σ−1

1

∂m12

∂ξ′12

∂ξ12

∂θ′12

]
.

However, since the moments of order one to four are well specified in the pseudo

family, the true conditional variance Ω1(X, θ0) of T1 is that corresponding to

the model. Namely, they correspond to Σ1(X, θ0), and we get:

Ĩ(θ0) = EX

[
∂ξ′12

∂θ12

∂m′12

∂ξ12

Ω−1
1

∂m12

∂ξ′12

∂ξ12

∂θ′12

]
,
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and hence, from (C.5):

Ĩ(θ0) = J̃(θ0).

Moreover, using (C.3),

∂m12

∂ξ′12

∂ξ12

∂θ′12

=

(
1 0

2m1 1

)(
∂m1(X,θ1)

∂θ1
0

0 ∂σ2(X,θ2)
∂θ2

)
,

and Ĩ(θ0)−1 = J̃(θ0)−1 = B(θ0), as given in (5.2).

For the sake of simplicity, we have assumed that m1(X, θ1) is only a function

of θ1 and that σ2(X, θ2) is only a function of θ2. The result, however, is easily

generalized to the case m1(X, θ12), σ2(X, θ12), with the only difference being

that ∂ξ12/∂θ
′
12 is no longer diagonal.



35

References

[1] Agmon, N., Y. Alhassid, and R.D. Levine (1979): “An Algorithm for Finding the Dis-
tribution of Maximal Entropy,” Journal of Computational Physics, 30, 250–259.

[2] Andersen, T.G., and B. Sorenson (1996): “GMM Estimation of a Stochastic Volatility
Model: A Monte Carlo Study,” Journal of Business & Economic Statistics, 14, 328–352.

[3] Altonji, J.G. and Segal, L.M. (1996): “Small-Sample Bias in GMM Estimation of Co-
variance Structures,” Journal of Business & Economic Statistics, 14(3), 353–366.

[4] Arellano-Valle, R.B., and M.G., Genton (2005): “On Fundamental Skew Distributions,”
Journal of Multivariate Analysis, 96, 93–116.

[5] Barndorff-Nielsen, O.E. (1978): Information and Exponential Families in Statistical The-
ory. Wiley, Chichester.

[6] Barndorff-Nielsen, O.E. (1997): “Normal Inverse Gaussian Distributions and Stochastic
Volatility Modeling,” Scandinavian Journal of Statistics, 24, 1–13.

[7] Brown, L.D. (1986): “Fundamentals of Statistical Exponential Families,” Institute of
Mathematical Statistics, Hayward, California.

[8] Bollerslev, T., and J.M. Wooldridge (1992): “Quasi-Maximum Likelihood Estimation
and Inference in Dynamic Models with Time Varying Covariances,” Econometric Re-
views, 11(2), 143–172.

[9] Chamberlain, G. (1987): “Asymptotic Efficiency in Estimation with Conditional Mo-
ment Restrictions,” Journal of Econometrics, 34, 305–334.

[10] Doran, H.E., and P. Schmidt (2006): “GMM Estimators with Improved Finite Sample
Properties using Principal Components of the Weighting Matrix, with an Application
to the Dynamic Panel Data Model,” Journal of Econometrics, 133(1), 387–409.

[11] Eberlein, E., and U. Keller (1995): “Hyperbolic Distributions in Finance,” Bernoulli, 1,
281–299.

[12] Freud, G., (1986): “On the Greatest Zero of an Orthogonal Polynomial, I,” Journal of
Approximation Theory, 46, 16–24.

[13] Gale D., and H. Nikaido (1965): “The Jacobian Matrix and Global Univalence of Map-
pings,” Mathematische Annalen, 159(2), 81–93.

[14] Gallant A.R. (1987): Nonlinear Statistical Models. John Wiley & Sons, New York.
[15] Gautschi, W. (2004): Orthogonal Polynomials: Computation and Approximation. Ox-

ford Science Publications, Oxford University Press.
[16] Genton M.G. (2004): “Skew-Elliptical Distributions and Their Applications: A Journey

Beyond Normality,” Edited vol., Chapman & Hall/CRC, Boca Raton, Florida.
[17] Golan, A., G. Judge, and D. Miller (1996): Maximum Entropy Econometrics: Robust

Estimation with Limited Data. Wiley, Chichester.
[18] Golub, G.H., and J.H. Welch (1969): “Calculation of Gauss Quadrature Rules,” Math-

ematics of Computations, 23(106), 221–230.
[19] Gourieroux C., A. Monfort, and A. Trognon (1984): “Pseudo Maximum Likelihood

Methods: Theory,” Econometrica, 52(1), 681–700.
[20] Gourieroux C., and A. Monfort (1995a): Statistics and Econometric Models: Volume

One. Cambridge University Press, Cambridge.
[21] Gourieroux C., and A. Monfort (1995b): Statistics and Econometric Models: Volume

Two. Cambridge University Press, Cambridge.
[22] Gourieroux C., and A. Monfort (2006): “Pricing with Splines,” Annales d’Economie et

de Statistique, 82, 4–33.
[23] Hansen, L.P. (1982): “Large Sample Properties of the Generalized Methods of Mo-

ments,” Econometrica, 50, 1029–1054.



36

[24] Hansen, B. (1994): “Autoregressive Conditional Density Estimation,” International Eco-
nomic Review, 35, 705–730.

[25] Harvey, C.R., and Siddique, A. (1999): “Autoregressive Conditional Skewness,” Journal
of Financial and Quantitative Analysis, 34(4), 465–487.

[26] Holly A. (1993): “Asymptotic Theory for Nonlinear Econometric Models: Estimation,”
in Aart J. de Zeeuw (ed.) Advanced Lectures in Quantitative Economics II, Academic
Press.

[27] Holly, A., and Y. Pentsak (2004): “Maximum Likelihood Estimation of the Conditional
Mean E(y|x) for Skewed Dependent Variables in Four-parameter Families of Distri-
bution,” Technical Report, Institute of Health Economics and Management (IEMS),
University of Lausanne, Switzerland.

[28] Hood, W., and T. Koopmans (1953): “The Estimation of Simultaneous Linear Economic
Relationships,” in Studies in Econometric Method. New Haven: Yale University Press.

[29] Jondeau, E., and M. Rockinger (2003): “Conditional Volatility, Skewness, and Kurtosis:
Existence, Persistence, and Comovements,” Journal of Economic Dynamics and Control,
27(10), 1699–1737.

[30] Junk, M. (2000): “Maximum Entropy for Reduced Moment Problems,” Mathematical
Models and Methods in Applied Sciences, 10(7), 1001–1025.

[31] Kitamura, Y., and M. Stutzer (1997): “An Information-Theoretic Alternative to Gener-
alized Method of Moments Estimation,” Econometrica, 65(4), 861–874.

[32] Levin, E., and D.S. Lubinsky (2001): Orthogonal Polynomials for Exponential Weights.
CMS Books in Mathematics, Springer-Verlag, New-York.

[33] Letac, G. (1992): “Lectures on Natural Exponential Families and their Variance Func-
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µ σ a b

True parameters 0 1 1 2

Average 0.006 1.015 1.109 2.510

Std 0.071 0.136 0.641 2.058

Median 0.000 1.011 1.057 1.794

Min -0.277 0.695 0.000 0.000

Max 0.304 1.950 4.000 7.000

Sk 0.666 0.980 1.886 1.290

σSk 0.063 0.063 0.063 0.063

Ku 5.607 6.869 9.500 3.398

σKu 0.126 0.126 0.126 0.126

MSE 0.005 0.019 0.422 4.490

Table 3: This Table presents the statistics of 1’500 PML4 estimates of µ,

σ, a and b as described in the model (7.7). Each sample contained T = 100

observations. Sk, Ku represent the skewness and kurtosis of the parameters. By

σSk and σKu we represent the standard deviation of the skewness and kurtosis

estimates.
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PML2

T = 25 T = 100

True parameters a = 1 b = 1 a = 1 b = 1

Mean 0.996 0.915 0.994 0.956

STD 0.567 0.249 0.401 0.177

min 0.001 0.001 0.001 0.331

max 4.464 2.206 2.848 1.619

RMSE 0.567 0.263 0.401 0.182

QGPML2

T = 25 T = 100

True parameters a = 1 b = 1 a = 1 b = 1

Mean 0.997 0.917 0.998 0.957

STD 0.552 0.247 0.393 0.176

min 0.001 0.001 0.001 0.330

max 3.880 2.200 2.543 1.641

∆RMSE (%) 2.606 0.937 2.193 0.728

Table 4: This Table reports the results of the QGPML2 simulation described

in model (7.8). The true parameters are a = 1, and b = 1. The RMSE is

defined as
(

1
M

∑M
j=1(θ̂(j) − θ)2

)1/2

, where θ = a or b. Here, the superscript

j = 1, · · · ,M denotes a simulation. We took M = 30′000. By ∆RMSE (%) we

denote the percentage gain in the MSE if one uses QGPML2 instead of PML2.
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Figure 1. This figure represents the skewness-kurtosis domain

for which a density exists (the domain is symmetric with respect

to the horizontal axis). The circles represent those points for

which we computed the parameters α and β. The symbol + rep-

resents those points for which the distance between the original

skewness and kurtosis and the recomputed skewness and kurtosis

(after evaluation of the α and β) is larger than 10−5.



 


