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Abstract. Because of the slow accumulation and long resi-

dence time of carbon in biomass and soils, the present state

and future dynamics of temperate forests are influenced by

management that took place centuries to millennia ago. Hu-

mans have exploited the forests of Europe for fuel, construc-

tion materials and fodder for the entire Holocene. In recent

centuries, economic and demographic trends led to increases

in both forest area and management intensity across much

of Europe. In order to quantify the effects of these changes

in forests and to provide a baseline for studies on future

land-cover–climate interactions and biogeochemical cycling,

we created a temporally and spatially resolved reconstruc-

tion of European forest management from 1600 to 2010.

For the period 1600–1828, we took a supply–demand ap-

proach, in which supply was estimated on the basis of his-

torical annual wood increment and land cover reconstruc-

tions. We made demand estimates by multiplying popula-

tion with consumption factors for construction materials,

household fuelwood, industrial food processing and brew-

ing, metallurgy, and salt production. For the period 1829–

2010, we used a supply-driven backcasting method based on

national and regional statistics of forest age structure from

the second half of the 20th century. Our reconstruction re-

produces the most important changes in forest management

between 1600 and 2010: (1) an increase of 593 000 km2

in conifers at the expense of deciduous forest (decreasing

by 538 000 km2); (2) a 612 000 km2 decrease in unmanaged

forest; (3) a 152 000 km2 decrease in coppice management;

(4) a 818 000 km2 increase in high-stand management; and

(5) the rise and fall of litter raking, which at its peak in 1853

resulted in the removal of 50 Tg dry litter per year.

1 Introduction

European forest use for fuel, timber and food dates back to

pre-Roman times (Perlin, 2005). Diverse forest uses have

been documented for western Europe (UK, Belgium, Den-

mark, Netherlands, Germany, Switzerland), southern Europe

(Spain, Italy, Greece), eastern Europe (Hungary) and north-

ern Europe (Sweden, Finland) (Kirby et al., 1998; Emanuels-

son, 2009). Common uses fell into two broad categories: tim-

ber removal (harvesting, thinning and coppicing) and non-

timber removal (branches, leaves and undergrowth removed

for livestock usage through litter raking, pollarding and graz-

ing). One of the most visible legacies of centuries-long inten-

sive forest use is a shift in species distribution across central

Europe, where forest managers replaced a substantial share

of the deciduous vegetation by coniferous tree species (Ku-

usela, 1994). This anecdotal evidence in combination with
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references to increasing restrictions on common forest use

(Farrell et al., 2000) supports the hypothesis that European

forests have been intensively used for centuries, with for-

est cover reaching lows around the year 1850, followed by

a turnaround in forest area (Mather, 1992; Meyfroidt and

Lambin, 2011).

In the last decades forest management has been reported

to have important impacts on the carbon balance (Schla-

madinger and Marland, 1996), resulting in its inclusion in

the Kyoto Protocol as a tool to mitigate climate change and

to buy time while CO2 emissions from land cover change and

fossil fuel burning could be reduced. More recently, evidence

is accumulating that forest management (defined as forest re-

maining forest but undergoing tree or other biomass removal,

clear-cuts, fire suppression and/or species change) may also

have substantial effects on the atmospheric CO2 concentra-

tion (Hudiburg et al., 2011, 2013; Keith et al., 2014) in ad-

dition to affecting the surface climate through changes in

albedo, evapotranspiration and surface roughness (Jackson

et al., 2005, 2008; Randerson et al., 2006; Rotenberg and

Yakir, 2010; Luyssaert et al., 2014; Otto et al., 2014). Hence,

to fully understand the impact of the large-scale application

of forest management, taking into consideration only the car-

bon balance is not sufficient. Models need to be developed to

examine the effects of forest management on the surface cli-

mate (e.g., Naudts et al., 2014). Simulation experiments with

these models, driven by historical management reconstruc-

tions, can help to better appreciate the impact and legacy of

historical forest management on today’s climate. Future pro-

jection experiments, driven by realistic forest management

scenarios, are a first step to quantify the potential impact of

forest-related policies.

About a decade ago the land cover change community

faced similar issues and made substantial progress through

reconstructing land cover changes. At present these recon-

structions are mainly derived from combining reconstructed

population densities with agricultural models, guided or con-

strained by historical research, archaeological findings and

pollen records (e.g., Fyfe et al., 2014). Although individual

reconstructions differ considerably (Kaplan et al., 2012), it

has been recognized that land cover changes (including de-

forestation for the purpose of agricultural expansion) have

contributed almost 20 ppm to today’s elevated atmospheric

CO2 concentrations and that this contribution is not just lim-

ited to the last decades but goes back at least 1000 (Pongratz

et al., 2009b) and possibly even 6000 years (Olofsson and

Hickler, 2008). Understanding past impacts of land cover

changes on today’s carbon balance and surface and atmo-

spheric climate has helped to better appreciate the impact of

humans on their environment (Pongratz et al., 2009a; Pitman

et al., 2009; Kaplan et al., 2010) and to develop numerical

models that can simulate the impact of future changes in land

cover (Pitman et al., 2011).

Similar to the historical land cover studies, several groups

have studied the impact of forest management on the contem-

porary (1950–2010) forest carbon sink over Europe (Seidl

et al., 2011; Bellassen et al., 2011b; Zaehle et al., 2006).

These groups reduced forest management to “age class man-

agement”, which consists of regular thinning followed by

a clear-cut. In this way, the model can be driven by an age

class reconstruction rather than a management reconstruc-

tion. Several methods have been proposed and used for age

class reconstructions of European forests (Bellassen et al.,

2011b; Seidl et al., 2011; Vilén et al., 2012). As a result, for-

est age reconstruction exists for the period 1950 to 2010 over

Europe. A first attempt to create a forest management map

for the year 2000 for Europe was completed by Hengeveld

et al. (2012). However, while this map originally started off

as an effort to indicate the current management strategies

across Europe, it ended as a map which depicts optimal man-

agement strategies based purely on the rational knowledge

of forest managers. Although this effort could be a valuable

starting point for developing future forest management sce-

narios, it is of limited interest for historical reconstructions.

In this manuscript, we reconstructed historical forest man-

agement for four contrasting but widely used management

strategies (see Sect. 2.4.1) with the purpose of spinning

up soil carbon and biomass pools for the year 1600 for

European-wide simulations. Management reconstructions

from 1600 to 2010 are needed to drive transient model ex-

periments simulating the impact of forest management on

the carbon budget as well as the surface and atmospheric

climate. In this paper, we present the data sources and al-

gorithms that were used to construct the forest management

maps in as much detail as possible. The application of these

maps in model experiments will be the subject of future stud-

ies.

2 Material and methods

2.1 General approach

Annual spatially explicit wood demand and supply was es-

timated for the period from 1600 to 1829, based on vari-

ous sources (Table 1). Wood supply was based on estimates

of historical annual wood increment and land cover recon-

structions (see Sect. 2.3). Demand accounted for the fuel-

wood needed in households, wood used in food processing,

charcoal used in metal smelting and salt production, and tim-

ber for construction (see Sect. 2.2). The estimate was based

on reconstructed individual needs and population estimates.

Coppice management was assumed to satisfy the fuelwood

demand, whereas charcoal and construction wood were as-

sumed to come from deforestation and high-stand manage-

ment. Comparing estimated demand and supply resulted in

spatially explicit reconstructions of the share of forests under

coppice and high-stand management and forest left unman-

aged (see Sect. 2.4.1). For the reconstruction between 1829

and 2010, a supply-driven backcasting method was used. The
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Table 1. Summary of various data sources used to reconstruct forest management between 1600 and 2010. The years listed are the years

of the data set which were used in this work, not necessarily all the years available. The following abbreviations were used: GDP for gross

domestic product, pers for person, live for head of livestock, S for southern, C for central and N for northern.

Component Data Comments

General

Historical population maps 1600–2000 Klein Goldewijk et al. (2011); HYDE (2014)

Historical GDP data 1600–2000 Bolt and van Zanden (2013); Maddison (2014)

Wood density 400 kgm−3 Engineering Toolbox (2014)

Carbon content 50 % Lamlom and Savidge (2003)

Charcoal calorific value 30 MJkg−1 Engineering Toolbox (2014)

Wood calorific value 15 MJkg−1 Engineering Toolbox (2014)

Preindustrial wood to charcoal mass

loss ration

4 Menemencioglu (2013); Kammen and Lew (2005)

Fuelwood – cooking

Energy demand 8 GJpers−1 yr−1 ASTRA and Reddy (1982)

Upscaled by population. People used charcoal for cooking instead of wood

because of transport and air quality, although charcoal is less efficient. En-

ergy demand is taken to be similar all over Europe despite differences in diet

and climate. It was assumed that only wood was used as an energy source.

Fuelwood – heating

Temperature threshold 15.5 ◦C Spinoni et al. (2015)

Heating degree days S Europe 1000 dayK Spinoni et al. (2015)

Heating degree days N Europe 4000 dayK Spinoni et al. (2015)

Personal space 30 m3 pers−1 Assumed

Heating efficiency 10 % Assumed

Upscaled by population. The energy released while cooking was used for

heating. It was assumed people would use 50 % charcoal and 50 % wood

heating because of transport and air quality, although charcoal is less effi-

cient.

Salt production

Wood demand for brine of 250 kgm−3 1 kgkg−1 Radkau (2012)

Wood demand for brine of 50 kgm−3 10 kgkg−1 Radkau (2012)

Production Table 2 Bergier (1989)

Upscaled by production. Steady production of the mines through time.

Brine was transported no more than 25 km through pipeworks. It was as-

sumed that only wood was used as an energy source.

Beer and distillates

Consumption 300 lpers−1 yr−1 Unger (2004)

Wood demand 4.8 kgkg−1 Unger (2004)

Upscaled by population. It was assumed that only wood was used as an

energy source.

Ceramics and brick

Consumption 45 kgpers−1 yr−1 Sinopoli (1999); Petrie (2012)

Wood demand 2 kgkg−1 Kishore et al. (2004)

Upscaled by population. It was assumed that only wood was used as an

energy source.

Metal works

Iron consumption 1.50 kgpers−1 yr−1 Sim and Ridge (2002); Wilson (2007); Craddock (2008)

Lead consumption 1.45 kgpers−1 yr−1 Wilson (2007)

Copper consumption 0.27 kgpers−1 yr−1 Wilson (2007)

Silver consumption 0.004 kgpers−1 yr−1 Wilson (2007)

Gold consumption 0.0002 kgpers−1 yr−1 Wilson (2007)

Tin consumption 0.022 kgpers−1 yr−1 Estimate

Zinc consumption 0.07 kgpers−1 yr−1 Estimate

Wood demand 81 kgkg−1 Sauder and Williams (2002)

Adapted from production estimates from the Roman Empire. Tin and zinc

consumption is scaled to copper based on typical bronze and brass alloys.

Upscaled by population. Iron and lead included military as well as domes-

tic uses. These estimate includes both metal melting and working. Wood

estimates are prior to charcoal conversion. Charcoal is only mandatory for

iron smelting. However, the assumption was made that the preferred fuel for

kilns and furnaces was charcoal because charcoal burns at higher tempera-

tures and because of the ease of transport to production sites.
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Table 1. Continued.

Component Data Comments

Glass production

Total wood demand for glass Similar to metal works Warde (2006)

Upscaled by metal production. Wood estimates are prior to charcoal

conversion and it was assumed only charcoal was used.

Timber

Construction spending

Spain

18.0× 10−5 m3 pers−1 GK−1 Bolt and van Zanden (2013); Iriarte-Goñi and Ayuda (2008)

Construction spending

England

7.2× 10−5 m3 pers−1 GK−1 Bolt and van Zanden (2013); Clark (2004)

Upscaled by gross domestic product. The share of different building

materials was assumed constant and a relationship between construction

and gross domestic product was assumed.

Shipbuilding

Share in wood demand 1 % Warde (2006)

Not accounted for

Litter raking

Livestock density

N Europe

0.6 livepers−1 Krausmann et al. (2013)

Livestock density

C Europe

0.5 livepers−1 Krausmann et al. (2013)

Livestock density

S Europe

0.3 livepers−1 Krausmann et al. (2013)

Litter demand 200–480 kg live−1 yr−1 Bürgi (1999)

Correction factor

1600–1850

LD(y)= 0.75exp(−(y− 1850)2/3000)+ 0.25 Tuned to Bürgi (1999)

Correction factor

1851–2010

LD(y)= 1.0exp(−(y− 1850)2/1000) Tuned to Bürgi (1999)

Upscaled by population. The correction factor was fitted such that agri-

cultural litter use peaked in 1850 and was abandoned completely by

1950. Northern Europe was defined as the land mass above 55◦ N, cen-

tral Europe was located between 45 and 55◦ N and southern Europe the

land below 45◦ N. Forage collection was not considered.

Land cover changes

Historical land use maps 1600–2000 Kaplan et al. (2012)

Land cover map 2010 Poulter et al. (2015)

Tree species map 2010 Brus et al. (2012)

Natural vegetation 1600 Bohn et al. (2000)

No upscaling required

Annual wood increment

Annual wood increment 3.8 m3 ha−1 Country level productivity from Table S3 in Ciais et al. (2008b)

Reduction factor 2 (–) Erb et al. (2013)

Upscaled by land cover maps. Contemporary estimates of annual wood

increment are restricted to stem wood increment.

GEN-MAPS (1600–1828)

Annual productivity of cop-

pice

Country level productivity +10 % Assumed based on Bursehel and Huss (2003)

Annual productivity of high

stand

Country level productivity −10 % Assumed based on Bursehel and Huss (2003)

No upscaling required. Coppicing was used to meet the fuelwood de-

mand (i.e., cooking and heating), while high-stand management was

used for all other wood uses.

GEN-MAPS (1829–1949)

Age class reconstruction 1950–2010 Vilén et al. (2012)

Rotation high stand 50–180 years Table 4

Rotation coppice 35 years Bursehel and Huss (2003); Kuusela (1994)

Relaxation for transitions 20 years Assumed

No upscaling required. Missing pixels in the age class reconstruction

were linearly interpolated assuming age class structure between neigh-

boring pixels is similar. It was assumed that 50 % of forests between 1

and 40 years old in 1950 were under coppice management throughout

their life. The backcasting algorithm formalized the following assump-

tions: (1) permanent transition to high-stand management; (2) revival

of coppice management during World Wars and interbellum; and (3)

unmanaged forest being taken into production.

Biogeosciences, 12, 4291–4316, 2015 www.biogeosciences.net/12/4291/2015/
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Table 1. Continued.

Component Data Comments

GEN-MAPS (1950–2010)

Coppice fraction (1990) 10–50 % Kuusela (1994)

Coppice fraction Fenno-

Scandinavia (1990)

1 % Assumed based on Emanuelsson (2009)

No upscaling required. All pixels were assumed to contain the same percentage

of coppiced forest area as the country value. The 1990 coppiced areas were held

constant until 2010.

ORC-MAPS (1600–2010)

General maps 1600–1828 This study, see Sect. 2.4.3

General maps 1829–1949 This study, see Sect. 2.4.4

General maps 1950–2010 This study, see Sect. 2.4.5

Land cover reconstruction 1600–2010 This study, see Sect. 2.3.1

Management threshold 15 % Assumed

Unmanaged threshold 100 % in 1910 Assumed

15 % by 1950 Assumed based on Schnitzler (2014); Levers et al. (2014)

No upscaling required. The demand for wood products from coppice manage-

ment was satisfied before the other wood demands. Dominant PFTs were man-

aged first.

method used a 1950 to 2010 age reconstruction as its starting

point. The general idea of such an approach is straightfor-

ward: a high stand 90 years old at the end of 1950 must have

been cut and replanted at the end of 1860, before which it

was either a high stand or a coppice. If, based on the demand

and supply approach, it was decided that the stand was al-

ready under high-stand management in 1859 and the rotation

length of the species is 120 years, then the stand was assumed

to be 120 years old in 1859.

The above approaches for 1600 to 1828 and 1829 to 2010

resulted in 0.5◦×0.5◦ resolution maps containing the amount

of forest area (in m2) required to be managed as high stands

and coppice to satisfy estimated wood demand (from 1600

to 1828) and age class reconstructions (1829–2010). Usage

with ORCHIDEE-CAN (ORganizing Carbon and Hydrol-

ogy In Dynamic Ecosystems Environment, CANopy version)

(Naudts et al., 2014), the land surface model of our choice,

requires that the previously assigned management types and

surface areas are assigned to specific tree species or species

groups. The final product is thus a map which describes the

forest area, the area of each species and the management

strategy used for that species for each pixel. All variables

may change from one year to the next.

Finding comprehensive data to parametrize and validate

these historical activities is not currently possible. Hence,

a variety of proxy information was used. These proxies, their

usage and underlying assumptions are discussed in more de-

tail below. We deliberately separated the carbon removal ac-

tivities into various forms of wood harvesting and litter rak-

ing, which is expected to allow easier incorporation of future

advances into the proposed procedure. As such, the result-

ing maps should be considered as a starting point rather than

a final data product.

2.2 Reconstructing wood and litter demand for

1600–1828

Historical wood demand primarily comes from the following

sectors: fuelwood, industrial charcoal production (e.g., iron

smelting, salt and glass production) and timber (e.g., ship-

building and construction). Although each of these sectors is

treated in a different way in this manuscript, most estimates

rely on historical population maps available in the HYDE 3.1

database (Klein Goldewijk et al., 2011). These maps are only

available for certain years, e.g., 1600, 1700, 1710, 1720. In-

stead of using the map for 1600 to cover the whole range of

1601 to 1699, we used linear interpolation to fill in the miss-

ing years. The same is true for the decadal data, i.e., 1701–

1709, 1711–1719, etc., up until 2005, which is the latest year

in the database.

2.2.1 Fuelwood demand (1600–1828)

For the period before electricity became available, house-

hold energy requirements can be divided into two categories:

cooking and heating. The energy required for cooking de-

pends on the local diet because different foodstuffs and food

quality require different cooking times. The amount of wood

required for cooking in preindustrial Europe ranged from 533

to 1067 kg per person per year. The lower number comes

from using wood itself as the fuel, while the higher number

comes from converting wood to charcoal first. Despite the

lower efficiency, charcoal is often preferred as a fuel, in par-

ticular in urban areas, due to lower transport costs and lower

production of particulate matter. To simplify matters these

general estimates were assumed valid across Europe.

The required energy for heating depends on temperature,

housing insulation, the number of people in the household,
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furnace efficiency and other heat sources. As a first approx-

imation we accounted for heat as a by-product of cook-

ing, and the additional heating requirement was calculated

solely based on temperature, more specifically on heating de-

gree days. Heating degree days quantify the total energy that

is needed to keep the minimum indoor temperature above

a threshold. It is calculated by multiplying the number of

days by the number of degrees that the mean temperature is

below a temperature threshold, generally set at 15.5 ◦C in Eu-

rope (Spinoni et al., 2015). Heating degree days range from

around 1000 to 4000 from the Mediterranean to Scandinavia,

respectively. The heat released from cooking was estimated

to already heat 50 to 400 m3 of air per year up to this thresh-

old in Scandinavia and the Mediterranean, respectively. An

additional 30 m3 of air were assumed to have been heated to

compensate for the fact that heat from cooking in summer did

not contribute to the heat requirements during winter. This re-

quired an additional 24 to 97 kg of wood per person per year

from the Mediterranean to Scandinavia, assuming a heating

efficiency of 10 %. Wood demand for heating was calculated

as the product of air volume, air density, heat capacity of

air, heating degree days and heating efficiency divided by the

wood caloric values (Table 1).

The above numbers for cooking and heating were com-

bined to give four fuelwood estimates, using different com-

binations of (1) fuelwood demand calculated based on 100 %

charcoal usage or 100 % wood usage and (2) European heat-

ing demand based on Scandinavian or Mediterranean per

capita heating wood demand. Given the inherent uncertainty

in these numbers, a simple mean was calculated between all

four scenarios to give the final fuelwood demand maps.

2.2.2 Industrial wood and charcoal demand

(1600–1828)

Between 1600 and 1828, wood and charcoal were used in the

industrial production of salt, beer, metal and glass. Certain

of these uses require a higher temperature than what can be

achieved using wood directly, e.g., iron smelting, although

other large-scale uses, e.g., brewing, could have made use

of either wood or charcoal. For simplicity, we assumed that

salt, beer and distillates were produced with wood as the fuel

source, while ceramics, glass and metal works used charcoal

as a fuel source.

By 1600 much of the salt production from brine springs

had stopped in favor of sea salt production and rock salt

mines (Bergier, 1989), which consume much less wood than

the evaporation of brine. We incorporated only production

from sites which are known to have operated after 1600 (Ta-

ble 2). For these sites, the period of operation, the average

annual production over different periods and the salt con-

tent of the brine are known. The amount of wood required

depended on the production volume and the salt content of

the brine (Bergier, 1989). For brine with a concentration of

250 kgm−3, 400 kg of wood produced 400 kg of salt, while

10 times as much wood was needed for the same amount of

salt at a brine concentration of 50 kgm−3 (Radkau, 2012).

We used a linear function to interpolate between these con-

centrations. Given that the spatial resolution of our maps is

on the order of 50 km and that pipeworks rarely extended

more than 40 km (Bergier, 1989; Mantel, 1990), all of the

wood demand from salt production was placed in the pixel

where the brine spring was located.

In northern and eastern Europe, where grape cultivation

was difficult or impossible, beer was consumed daily by all

social classes. Alcoholic beverages were an important source

of the much needed caloric intake (Sournia, 1990) and a pop-

ular medicine (Aymard, 1979). We assumed an average an-

nual consumption of 300 l of beer and distillates per person

per year, which required 4.8 kg of wood per liter of bever-

age (Unger, 2004). Drinks and food were prepared, served,

consumed, processed, stored and transported in ceramics; in

order to produce 45 kg ceramics per person per year, 360 kg

wood per person per year were required (Petrie, 2012; Si-

nopoli, 1999). Spatial population estimates (Klein Goldewijk

et al., 2011) were scaled by these per capita demands to pro-

vide spatially explicit wood demand maps for 1600–1828.

Historical annual per capita usage of metals has been re-

ported to be 1.5 kg for iron and lead and to range between

0.2 and 0.0002 kg for copper, silver, gold, tin and zinc (Ta-

ble 1). Total wood requirements for metal works were calcu-

lated assuming that 81 kg of wood, prior to charcoal conver-

sion, was needed to smelt 1 kg of metal and by making use

of the HYDE population estimates (Klein Goldewijk et al.,

2011). The glass industry also consumed charcoal, mainly

for potash production and less for the melting process it-

self (Mantel, 1990). As there were many local production

sites and production could be easily moved to regions with

accessible wood resources (Perlin, 2005), the historical pro-

duction has been poorly documented. During the Napoleonic

era (Warde, 2006), however, wood demand for glass and iron

production has been estimated at up to 3 Mm3 for each pro-

cess in central Europe. In the absence of other data, we as-

sumed the wood demand for glass and iron to remain the

same between 1600 and 1828.

2.2.3 Timber production (1600–1828)

The use of wood as a building material varied both spatially

and temporally, and it was often substituted by loam, stone,

straw and brick. By restricting our estimate to between the

years 1600 and 1828, the use of concrete in homes or other

structures can mostly be ignored, since its use was largely

abandoned after Roman times until after 1850 (Sutherland

et al., 2001). We assumed that building construction better

relates to gross domestic product (GDP) than to population,

as more productive societies were able to build larger houses

and buildings. Furthermore, it was assumed that the share

of other building materials remained constant between 1600

and 1828 in Europe, which ignores the possibility that, dur-
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Table 2. Summary of European salt mine characteristics important for wood consumption during 1600–1900. The final two columns are

estimates based on information found in Bergier (1989).

Mine Location Brine Years of Production

(gL−1) production (tonsperyear)

Halle an der Saale 51.48◦ N, 11.97◦ E 250 1600–1699 6000

1700–1799 3500

Lüneburg 53.25◦ N, 10.42◦ E 250 1600–1649 20 000

1650–1699 15 000

1700–1749 10 000

1750–1799 5000

Hallein (Salzburg) 47.68◦ N, 13.10◦ E 50 1600–1649 20 000

1650–1699 15 000

1700–1749 10 000

1750–1799 5000

Hallstatt (Bad Ischl) 47.72◦ N, 13.63◦ E 250 1600–1649 50 000

1650–1699 40 000

1700–1799 10 000

Saulnois (Lorraine, France) 49.12◦ N, 6.18◦ E 150 1600–1699 8000

1700–1799 25 000

1800–1899 10 000

ing that period, affluence may have shifted building prefer-

ences from wood to stone.

Spatially explicit estimates for gross domestic product per

capita in Europe for the time period from 1600 to 1828 were

created using the gross domestic product per capita for years

and countries for which it has been previously estimated

(Bolt and van Zanden, 2013), expressed in the hypothetical

international currency Geary–Khamis dollars (GK$). When

needed, missing values were supplied through spatial or tem-

poral interpolation. Next, estimates of wood used for con-

struction in Spain and England in 1660 and 1700 (Table 1)

were combined with spatially interpolated gross domestic

product estimates to calculate a construction wood usage of

18×10−5 and 7.2×10−5 m3 person−1 GK$−1 for Spain and

England, respectively. For simplicity, the result was rounded

to 10−5 m3 person−1 GK$−1 and used for all of Europe. Sub-

sequently, this value was scaled to the spatially explicit gross

domestic product estimate between 1600 and 1828.

Timber shortage was early on reported as a critical issue,

especially for naval shipyards (Perlin, 2005). However, this

shortage was due to very specific requirements, e.g., long

sailing masts or specially shaped oak wood for the body, and

not because of a general lack of timber (Appuhn, 2000; Rad-

kau, 2012). Shipbuilding demand was estimated to be around

1 % of the total wood demand by the end of the 1700s, with

a lower demand in earlier periods (Warde, 2006). Despite its

political, military and economic importance, we neglected

the impact of shipbuilding activities on the historical wood

demand in Europe due to its comparatively minor signifi-

cance regarding total wood consumption.

2.2.4 Litter demand (1600–1828)

Towards the end of the Middle Ages, farmers began to keep

their cattle inside during winter, which led to a demand in for-

est litter to absorb animal waste (Mantel, 1990). Initially for-

est litter was used as it was easily available, cheap and, con-

trary to straw, had no other uses such as construction (Bind-

ing et al., 1986). In spring, the waste-soaked litter would

then be spread on the fields as a form of fertilizer. From

1750 throughout the 1800s, litter demand increased signifi-

cantly (Selter, 1995; Schenk, 1996) in the course of the agrar-

ian modernization, which promoted indoor feeding of cattle

year round (Mantel, 1990). The expanding railroad network,

however, made straw more easily available for areas without

grain production, and forest litter collection was abandoned

towards the end of the 1800s and the beginning of the 1900s.

From this, it was assumed that litter raking started at a modest

level during the first years of our simulations (1600), peaked

in the mid-1800s and faded out afterwards.

European maps of litter demand were based on histori-

cal livestock estimates (Krausmann et al., 2013), taken to be

equal to 0.6, 0.5 and 0.3 headof livestockperson−1 for north-

ern, central and southern Europe, respectively. For this appli-

cation, the dividing parallels between northern, central and

southern Europe were taken to be 55 and 45◦ N latitude.

It has been reported that 200 to 480 kg of dry litter were

collected per livestock unit per year (Bürgi, 1999). We fur-

ther assumed that 480 kg litter per livestock unit per year

corresponded to the peak demand for the study period (see

Sect. 2.4.1).

First, litter maps were generated from the livestock density

maps using peak demand for all years from 1600 to 1828 and
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1829 to 2010. Next, these initial litter maps were multiplied

by a correction factor (Table 1) to account for the temporal

evolution in litter demand. The correction factor was tuned

to give the desired behavior, based on historical information

from Switzerland (Bürgi, 1999).

2.3 Reconstructing wood supply

Wood supply was calculated from annual forest area and

wood increment estimates. Wood increment was assumed

to differ for coppice and high-stand management and thus

partly depends on the wood demand.

2.3.1 Forest area and species composition (1600–2010)

Historical forest area was reconstructed by making use of

three different data sources: (1) the tree species maps of Brus

et al. (2012); (2) the land cover map of Poulter et al. (2015)

(hereafter abbreviated as P&M), and (3) the historical land

use maps of Kaplan et al. (2012, 2009) (hereafter abbrevi-

ated as K&K). Maps (1) and (2) were combined by taking

the fractions of bare soil, grasses and crops in Europe from

P&M. The forests inside Europe from the P&M map were

replaced by the more detailed species composition fractions

in the Brus et al. (2012) map, scaling the sum of the Brus

et al. (2012) fractions to be equal to the total forested frac-

tions present in the P&M map in Europe. Details about the

correspondence of the forest species in Brus et al. (2012) and

the plant functional types (PFTs) used in the ORCHIDEE

land surface model can be found in Naudts et al. (2014).

The European tree species map (Brus et al., 2012) is only

available for the year 2000, whereas the P&M map is avail-

able for 2000, 2005 and 2010. As we are interested in histori-

cal forest management back to 1600, this combined species–

land-cover map had to be extended through historical land

use maps. Although the same procedure could be done with

any historical land use maps (such as those of Pongratz et al.,

2009b), we have chosen to use the K&K maps because they

were developed over Europe and they have a strong anthro-

pogenic signal compared to many alternative land use recon-

structions.

Our reconstruction contained 28 PFTs, whereas the his-

torical maps of K&K, which were used to reconstruct the

historical forest area, only contain three classes, i.e., crop,

pasture and forest. The procedure used to convert the three

land cover classes into the 28 classes was based on that of

de Noblet-Ducoudré et al. (2010). In brief, for a given year

x, per pixel, the crop fractions in the P&M maps were scaled

to match the total crop fraction from the K&K map for year

x; the ratio of C3 to C4 crops on the historical K&K map

was kept identical throughout the period, as the K&K maps

do not distinguish between C3 and C4 vegetation. If there

were no crops on a pixel in P&M but there were crops in the

same pixel on the historical K&K map, the C3 / C4 ratio of

the neighboring pixels on the P&M map was used to deter-

mine the C3 / C4 ratio in our reconstruction. Throughout this

study, neighboring pixels were defined as pixels touching ei-

ther an edge or a vertex of the current pixel, i.e., there are

eight possible neighbors.

Next, the amount of grassland on the pixel was computed

using the pasture fraction on the K&K map and following

a procedure similar to the crop fraction above. The K&K

maps have a pasture fraction, while the contemporary P&M

map only has C3 and C4 grass fractions; C3 and C4 refer

to the photosynthetic pathway in the grass and give no indi-

cation of management. The extent of unmanaged grassland

is therefore not known. If the pasture fraction on the K&K

map was lower than what was present on the P&M map, the

reconstruction took the P&M grassland fraction, under the

assumption that managed and non-managed grasslands can

coexist on the same pixel and that present-day non-managed

grasslands fraction is at its historical low. If the K&K pas-

ture fraction was greater than the grassland fraction present

on the P&M map, our reconstruction made use of the K&K

fraction, and the difference in surface area was made up by

leaving crops untouched and reducing the forest fraction. The

C3 / C4 ratio was treated in the same way as for crops, i.e.,

it was kept constant for each pixel throughout the period. If

the fractions of crop or pasture usage were greater than the

total vegetative fraction present on P&M, we did not increase

the vegetative fraction. Instead, all forests were replaced. In

essence, we assumed that the non-vegetative fraction of the

pixel has not changed in the past 400 years. Furthermore, all

sub-grid-level water was classified as bare soil.

Over the course of the past several hundred years, the

species composition of European forests has changed as

much as the extent of the forests. The largest difference is the

large-scale planting of coniferous species, resulting in mod-

ern forests, which are significantly more conifer-rich than

historical forests (Kuusela, 1994). While forests in Europe

have been heavily managed for centuries, and while human

activities had certainly changed the species composition on

certain scales already before 1600 (e.g., through the intro-

duction of chestnut Castanea sativa Mill.), it is likely that

the composition of growth forms (e.g., coniferous vs. non-

coniferous forests) in 1600 closely resembled that of natural

vegetation on scales of tens of kilometers, which is what we

are interested in here. Therefore, we have scaled the conifer

fraction of the forests on our pixels in 1600 to be equal to that

found in the natural vegetation map of Bohn et al. (2000).

The question remains how to make the transition from the

conifer fraction in 1600 towards the conifer fraction found

in our reconstruction for the year 2010. For this purpose, the

European countries were divided into “early” and “late” con-

version countries. Early countries, i.e., Germany, the Nether-

lands, Belgium and Switzerland, began experimenting with

large-scale conifer plantations sooner than the rest of Europe

(Mantel, 1990; Bürgi and Schuler, 2003). In these countries,

the conifer fraction is kept constant from 1600 to 1800, then

linearly increased to the 2010 conifer fraction. For the rest of
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Europe, the same linear transformation starts in 1850. This

represents one possible transformation method, simulating

a slow establishment of conifer plantations.

2.3.2 Wood production (1600–1829)

The contemporary mean annual wood increment for 16 Eu-

ropean countries calculated from forest inventory data ranges

from 0.6 m3 ha−1 in Greece to 9.5 m3 ha−1 in Germany, with

a value of 3.8 m3 ha−1 for the combined productivity of all

countries listed (Table S3 in Ciais et al., 2008b). The same

study demonstrates that annual forest productivity increased

from 250 to 350 Tg between 1970 and 1990, without a sig-

nificant increase in the forested area. For Austria, the an-

nual wood increment was reported to double between 1830

and 2010, with most of the change happening in the past

few decades (Erb et al., 2013). This suggests that European

forests are more productive now than historically (Spiecker,

1999; Pretzsch et al., 2014), probably in part due to improved

management, nitrogen deposition and carbon dioxide fertil-

ization. Therefore, using current productivity numbers to es-

timate the historical wood supply would be incorrect.

We used the increment estimates of Ciais et al. (2008b) for

each of the countries listed, filling in countries for which no

estimates were available by taking an average of the neigh-

boring pixels. To correct for the increase in productivity, we

differentiated between countries in western Europe, where

nitrogen deposition is the greatest, i.e, UK, France, Germany,

Switzerland, Netherlands, Ireland, Denmark, Belgium and

Austria, and the rest of Europe. Annual increments for for-

est in western Europe were scaled down by a factor of 2

prior to 1920, in accordance with what is reported by Erb

et al. (2013). After 1920 we linearly increase the produc-

tivity of every country to its current value by 1990. This

gives estimates for forest productivity in Germany, France

and England around 1700–1800 which are within the 2.8 to

3.8 m3 ha−1 of timber independently reported for the same

time period (Warde, 2006). Despite the simplifications un-

derlying this approach, central European countries have the

highest productivity throughout the reconstruction, which we

believe correctly reflects an earlier implementation of more

advanced silvicultural practices in central Europe.

The annual wood increment gives a maximum annual

wood supply for sustainable harvests. To simplify the cal-

culations it was assumed that the annual increment was har-

vested annually. Hence, this approach does not require ex-

plicitly accounting for clear-cuts and other management in-

terventions.

Wood production maps from 1600 to 1828 were made by

using the historical forest maps above (see Sect. 2.3.1) and

the productivity estimates. For each year between 1600 and

1828 (the final year of the wood demand maps), the total for-

est area in a grid cell was estimated. This area is compared

to the forest area for the same grid cell in the following year.

If the forest area in the current year is greater than the forest

area in the subsequent year, this difference is multiplied by

the annual wood increment for that pixel and the resulting

wood amount stored as “land cover change”. If the current

forest area is less than the subsequent year’s forest area, the

newly planted area will be taken into account only in the fol-

lowing year. In any case, the rest of the forest area for the

current year is multiplied by the increment and stored under

“harvest”. For the final year of the calculation (1828), land

cover change is still available, as the historical PFT maps

have been created up until the present day, and therefore the

map from 1829 exists and can be used even if the demand

map is not calculated for 1829.

2.4 Reconstructing forest management

2.4.1 Defining forest management strategies

Although forest management has developed a wide range of

locally appropriate and species-specific strategies, the nature

of this study requires a limited number of contrasting strate-

gies that are expected to be relevant at the spatial resolution

(e.g., 50km×50 km) of global and regional modeling studies.

To this end four management strategies were distinguished

based on their expected impact on the biogeochemical and

biophysical processes:

1. FM1: no human intervention. Expected to result in

tall, vertically and horizontally complex canopies with

a closed nutrient cycle.

2. FM2: high stands with thinning and harvesting based on

stem diameter and stand density. Expected to result in

tall, homogeneous canopies with open nutrient cycles.

3. FM3: coppicing with harvesting of aboveground

biomass, based on stem diameter. Expected to result in

medium-high, homogeneous canopies with open nutri-

ent cycles. Note that at present it is not possible to sim-

ulate coppicing-with-standards in ORCHIDEE-CAN.

4. FM4: short-rotation coppicing with harvesting of all

aboveground biomass based on age, using rotations of

less than 6 years. Expected to result in short, homoge-

neous canopies with intensive nutrient exports and pos-

sibly requiring fertilization to maintain productivity.

We have chosen not to divide our management strategies

into biogeographic regions since we considered that, regard-

less of region and species composition, the net biogeochem-

ical result from the different management types is to transfer

woody biomass (and carbon) from the forest into an agri-

cultural PFT or to remove it completely from the ecosys-

tem (as harvest). The net biophysical result will be driven by

changes in canopy structure and vegetation height. We be-

lieve that the first-order effect of forest management can be

quantified without accounting for management differences

between biogeographic regions. The lack of available data
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Table 3. Summary of independent information, i.e., information not used to create our estimates, for European wood demand from around

1600 to 1900.

Summary Source Reconstructed

Fuelwood

2–2.5 kgpers−1 day−1 in northwest and central Europe from 1500 to

1830

Warde (2006) 0.9 kgpers−1 day−1

1.4 kgpers−1 day−1 in Madrid in 1680 Warde (2006) 0.9 kgpers−1 day−1

4.7 m3 pers−1 yr−1 in Sweden in 1800 Warde (2006) 0.8 m3 pers−1 yr−1

1–2.3 m3 pers−1 yr−1 in Italy before 1861 Warde (2006) 0.7 m3 pers−1 yr−1

Energy demand was 9 GJpers−1 yr−1. Fuelwood pressure on forests in

Switzerland declined by the end of the 1800s since coal was used sig-

nificantly from 1850 onwards.

Mather and Fairbairn (2000) 5 GJpers−1 yr−1

In Paris, per capita fuelwood consumption amounted to

1.8 m3 pers−1 yr−1 in 1815. Fuelwood consumption started falling in

1830s in France due to the rise of coal.

Mather et al. (1999) 0.9 m3 pers−1 yr−1

From 1800, the wood demand was 4 m3 pers−1 yr−1 for urban popula-

tions in Finland. Wood demand started to decline around 1840.

Myllyntaus and Mattila (2002) 0.4 m3 pers−1 yr−1

From 1800, the wood demand was 9.5 m3 pers−1 yr−1 for rural popula-

tions in Finland. Wood demand started to decline around 1840.

Myllyntaus and Mattila (2002) 0.9 m3 pers−1 yr−1

In 1700, 2.3 Tgyr−1 of firewood was produced in England. Wood had

mostly been replaced by coal after 1810 in England.

Clark (2004) 1.9 Tgyr−1

In 1700, firewood production required 1.83× 106 acres (740 000 ha) of

coppiced land.

Clark (2004) 1.2× 106 ha

Timber

53 % of total wood consumption as sawn timber in Europe in 1920,

varying from 15 to 96 % of the total wood production based on the

country

Zon and Sparhawk (1923) N.A.

In Austria the total wood production consisted of 66 % fuelwood in

1877

Weigl (2002) N.A.

In Austria the total wood production consisted of 34 % construction

wood in 1877

Weigl (2002) N.A.

Charcoal production

30.6× 106 feet3 (0.866 Mm3) for iron production in England in 1700 Clark (2004) 3.8 Mm3

Iron production in England in 1700 required 330 000 acres (133 000 ha)

of woodland

Clark (2004) 950 000 ha

Total wood demand

In 1800, each Finn consumed 20 m3 pers−1 yr−1 Myllyntaus and Mattila (2002) 5 m3 pers−1 yr−1

for parametrization and validation discourages introducing

too much detail at this time.

2.4.2 Two sets of forest management maps

Using the demand and supply estimate, a first set of gen-

eral maps (GEN-MAP) was made, which was, however, in-

dependent of the historical land cover maps (see Sect. 2.3.1).

These maps list the forest area under each management type

required to meet the wood demand (see Sect. 2.2; from 1600

to 1828) and match the reconstructed age class structure (see

Sects. 2.4.4 and 2.4.5; from 1829 to 2010) for each pixel. In

the GEN-MAPS, we report only the land areas of high-stand

management and coppicing required. Short-rotation coppice

are not included in these maps, as short-rotation coppices

were not significantly used historically. Unmanaged forest is

not included in the maps since that fraction is estimated as

a residual of the total amount of forest area on a given pixel,

and land cover data are not used in this step. If the total for-

est area required in GEN-MAP is greater than the forest area

found in a given pixel on a historical land cover map, the user

will have to decide how to prioritize and manage this conflict.

Rather than simply assigning forest areas to the differ-

ent management types as is the case for the GEN-MAPS,

we went one step further and assigned forest area and tree

species to the different management types. The resulting
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Table 4. Rotation length by tree species and country collected from Kuusela (1994). If an explicit year is not given, the year 1990 (the date

of the latest data set used) is assumed. Region names are listed in bold font and are defined in Kuusela (1994), from which the quotations are

also taken.

Region/Country Species Years Rotation lengths (years)

Northern Pine 1990 80–120a,c

Spruce 1990 70–90a,c

Pine 1990 110–180b,c

Spruce 1990 90–140b,c

Finland – – –

Norway – – –

Sweden – – –

Central – – –

Denmark Pine 1990 50–150

Germany West Conifers 1920s–1930s 80

Fir 1920s–1930s 90

Spruce and fir 1980s 80–100c

Pine and larch 1980s 100–120c

Oak 1980s 140–180

Beech 1980s 120–140

Germany East – 1990 “the rotations are somewhat shorter [than those in the

rest of the region]”

Poland – 1990 “the rotations are somewhat shorter [than those in the

rest of the region]”

Czechoslovakia – 1990 “the rotations are somewhat shorter [than those in the

rest of the region]”

Atlantic Pine 1990 50–60

Other conifers 1990 50

Oak and/or beech 1990 120–150

Ireland – – –

United Kingdom Broadleaf 1990 120

Sub-Atlantic – – –

Netherlands – 1990 “rotation ages are relatively short compared with those

in Central Europe”

Belgium – – –

Luxembourg Conifers 1990 80

Broadleaf 1990 130

France Broadleaf 1990 140

Spruce and fir 1990 “long rotation”

Alpic – – –

Austria – 1990 “relatively long”

Switzerland Conifers 1990 80–250

Broadleafs 1990 80–180

Pannonic – – –

Hungary Pine 1990 60–70

Other conifers 1990 60–70

Oak 1990 90–110, 70–100d

Beech 1990 100–120

Poplar 1990 15–30, 15–40d

False acacia 1990 15–30, 30–35 (up to 75)d

Coppice or coppice with standards 1990 30–75

Romania Conifers 1990 100–110, 100–140d

Broadleafs 1990 100–120, 100–140d
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Table 4. Continued.

Region/Country Species Years Rotation lengths [years]

Mediterranean west Maritime pine 1990 50

Other pines 1990 60–100

Cork and/or oaks 1990 150–200

Eucalyptus 1990 8–15

Poplars 1990 8–20

Coppice 1990 8–20

Portugal – – –

Spain – – –

Mediterranean Middle – 1990 “regimes used in the coniferous forest. . .resemble those

applied in Central European regions although rotation

ages are shorter”

Italy – 1990 “Part of the stands are grown to high rotation ages”

Yugoslavia – – –

Albania – – –

Mediterranean east – – –

Bulgaria – – –

Greece – – –

a Southern part of the region. b Northern part of the region. c Actual rotation ages are often 10–20 years longer than prescribed. d Differing values

given at different places in the text.

maps (ORC-MAP) can be directly read into the ORCHIDEE-

CAN model. These maps take into account the historical land

cover maps as well as a few model-specific constraints (see

Sect. 2.4.6), resulting in maps which list, for every pixel,

the amount of forest required under coppice, high-stand and

short-rotation coppice management to meet demand and age

class information. The ORC-MAPS, as opposed to the GEN-

MAPs, do contain fractions of unmanaged forest, although

there is no short-rotation coppice area.

2.4.3 GEN-MAP (1600–1828)

The general maps before 1828 simply represent how much

forest is required to satisfy the wood demand. Initially, only

high-stand management and coppicing were considered. The

reason for this is that our pre-1829 maps are based entirely

on wood demand. The approach assumes that coppicing is

done to meet fuelwood demand (see Sect. 2.2.1), while in-

dustrial wood demand (see Sect. 2.2.2) was met using high

stands. A simplified approach to calculating historical forest

productivity is used here, as outlined in Sect. 2.3.2. In order

to distinguish between high-stand and coppice systems, the

productivity for a pixel estimated as explained in Sect. 2.3.2

was decreased by 10 % for high-stand forests and increased

by 10 % for coppice. This differential productivity reflects

the fact that the historical productivity estimates are averages

over all forest ages, while the productivity of coppice systems

will be higher because they do not have to grow a completely

new root system after harvest (Bursehel and Huss, 2003).

These productivity estimates were then used to calculate

the area of managed forests that needs to exist on this pixel to

meet the wood demand. All fuelwood for cooking and heat-

ing was assumed to come from coppicing, whereas all other

wood was assumed to come from high-stand forests. For ex-

ample, if 120 m3 of fuelwood is required in a pixel where

coppice produces 3.0 m3 ha−1, 40 ha of forest is coppiced for

this year. Note that in the GEN-MAP approach the required

surface area under management may be greater than the total

area of the pixel if the demand is very high.

2.4.4 GEN-MAP (1829–1949)

The period after 1829 was characterized by the onset of so-

called scientific forest management (Farrell et al., 2000), re-

sulting in the abandonment of coppicing, pollarding and lit-

ter raking in favor of a production-oriented forestry, which

is still practiced today, i.e., high-stand management. After

1829, our forest management reconstruction therefore gradu-

ally replaced coppicing by high-stand management such that

it reproduces the reconstructed modern European age class

structure (Vilén et al., 2012). Although non-timber forest

usage (e.g., litter raking) persists at present on local scales

(Kirby et al., 1998), it is no longer considered significant for

large-scale modeling applications over Europe.

Age class reconstructions are available in 5-year inter-

vals from 1950 until 2010 and include the following age

classes: 1–20, 21–40, 41–60, 61–80, 81–100, 101–120 and

> 120 years (Vilén et al., 2012). To our knowledge, this age

reconstruction is the only European age reconstruction that

has been validated (Vilén et al., 2012), and the year 1950

was therefore used as the target age structure for our man-

agement reconstruction. The age class reconstruction does
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not cover all European countries. The most notable missing

countries in terms of surface area are Belarus and Ukraine.

We therefore used an iterative filling procedure under the

assumption that the age class structure of neighboring pix-

els is likely to be correlated. For this, any European pixels

which were not found on the age class map but were touch-

ing pixels that were on the age class map were given a target

distribution equal to the average of neighboring pixels. This

procedure was repeated until all pixels were given a value.

After the iterations had finished, a few pixels, mostly small

islands, remained untouched. For these pixels we used the

value of the nearest neighboring pixel. In addition, the areas

for each age class were interpolated between the years of the

reconstruction to give maps for every year between 1950 and

2010. Note that the European age class reconstruction (Vilén

et al., 2012) contains no direct information on the applied

forest management.

We applied a so-called backcasting age reconstruction

(Bellassen et al., 2011a) that is mainly based on an as-

sumed rotation length (Table 4; Kuusela, 1994). The back-

casting method was employed to give the desired amount

of high-stand management for every pixel between 1829

and 1950. This implies that 1829 is the first year in which

the reconstruction method switches from “demand-driven”

to “backcasting”. The backcasting algorithm formalized the

following assumptions: (1) between 1829 and 1949 there

was a strong trend towards high-stand management to bet-

ter match the changing wood market (2) a stand converted

to high-stand management remained under high-stand man-

agement with the sole exception being a revival of coppice

management during the World Wars and interbellum; and (3)

unmanaged forest were converted to production systems be-

cause forest protection was negligible.

Despite its straightforward implementation, the backcast-

ing algorithm needs to deal with several specific cases. For

the 1829 map, we checked the fraction of forests under

high-stand management in 1828 which was estimated by the

demand-based approach (see Sect. 2.4.3). If the surface area

of forests under high-stand management in 1829 is greater

than the area we would expect based on A121 in 1950, the

FM distribution for 1828 was also used for 1829 on the pixel

(Fig. 1a). If the fraction of high-stand forest in 1828 is less

than expected based on A121, forests under coppice in 1828

were converted into high-stand management in 1829 until

a forest area of at least A121 was obtained in 1829 (Fig. 1b).

If we had no coppice in 1828, the amount of high-stand

forests was increased while keeping the coppice fraction at

zero (Fig. 1c) so that the total amount of managed forest re-

quired in the pixel increases. This procedure was repeated

for all age classes, and to obtain smoother maps, it was as-

sumed that one twentieth of the forest in, for example, age

class A101 was planted every year between 1830 and 1849.

Coppicing is known to have been important (Emanuels-

son, 2009; Bursehel and Huss, 2003) and it still exists in sig-

nificant quantities especially in southern Europe and France
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Figure 1. Conceptual presentation of the common forest manage-

ment transitions at the pixel level and how these transitions were

dealt with in the reconstruction. (a) In 1828 the demand–supply ap-

proach resulted in more high stands than expected from the back-

casting method. (b) The surface area of high-stand forest in 1828 is

less than expected based on backcasting. (c) No coppice manage-

ment in 1828 based on demand–supply, but there is coppicing in

1829 based on backcasting. Dark grey shows coppice management;

light grey shows high-stand management.

(Kuusela, 1994); however, it is uncertain how much coppice

forest existed historically. Since coppiced forests were sel-

dom on rotations longer than 35 years (Bursehel and Huss,

2003; Kuusela, 1994), we assumed that the fraction of cop-

pice forests on a pixel is smaller than the amount of forests

in the 1–20 and 21–40 year age classes. We further assumed

that 50 % of forests between 1 and 40 years old in 1950 were

under coppice management throughout their life, thus, in our

example, dating back to 1910 when the 40-year-old forest

was planted (Fig. 1a–c).

The following two cases provided an upper bound on the

area of high-stand forest or a lower bound on the area of

coppice in a pixel between 1828 and 1949. The algorithm

checked and accounted for these cases only after the proce-

dure described in the previous paragraphs was performed. (1)

The area of high-stand forest in 1828 may have been larger

than required by the age class maps for 1950. In this case,

we created a linear transition between the areas in 1828 and

1950. This represented a situation of early modern forestry,

with the conversion of coppice to high stands occurring ear-

lier than what can be observed in the age class data (Fig. 1a).

(2) There is a possibility that the amount of coppice in 1828

was less than what was required in 1950. In this case, the

amount of coppice was held constant until 1910. Between
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Figure 2. Conceptual presentation of the common forest manage-

ment transitions at the pixel level and how these transitions were

dealt with in the reconstruction. (a) The amount of coppice area in

1850 was higher than what was required in 1950. (b) The amount

of coppice area in 1850 was lower than what was required in 1950.

Dark grey shows coppice management; light grey shows high stand

management.

1910 and 1950, the amount of coppice was increased linearly

to the required amount in 1950 (Fig. 1c). Increasing coppice

accounted for increased forest usage during the First (1914–

1918) and Second (1939–1945) World War.

Furthermore, the amount of coppice area between 1829

and 1950 could face one of two situations. Either the amount

of coppice forest in 1828 was greater than what was required

in 1950, or it is less. In the former case, we convert cop-

pice area to high stands as required to reproduce the age

reconstruction. For example, assume that in 1850 there are

10 000 ha of coppice and no high stands, and in 1950 there

are 1000 ha of coppice and 4000 ha of 81–100-year-old for-

est and no other age classes populated (Fig. 2a). From 1850–

1869, the amount of coppice forest needs to be reduced by

200 ha per year to match the amount of high-stand forest by

1950 (the total 4000 ha is converted evenly over the 1850–

1869 time period). In addition, 1000 ha of high stand is in-

troduced between 1910–1950, as our method takes 50 % of

the youngest two age classes in 1950 as coppices, implying

that the other 50 % are managed as high stands. This method

will not bring new forest under management until there are

no further coppice forests to convert, which does not happen

in this case (Fig. 2b). As the GEN-MAPS are not constrained

by actual forest area on the pixel, these “new forests” are not

taken from any other management type.

Following the algorithm outlined above we created gen-

eral management maps from 1829 to 1949 which include the

forest area needed per pixel to match the wood demand in

1828 and reconstructions of Vilén et al. (2012) in 1950, ig-

noring any historical maps detailing forest area. This means

that values of forest area given during this time period may

be substantially larger than the total area of the pixel.

2.4.5 GEN-MAP (1950–2010)

The percentage of coppiced forest in many European coun-

tries, including in Belgium, Luxembourg, France, Hungary,

Italy, the former Yugoslavia, Albania, Bulgaria, Spain, Por-

tugal and Greece, varied from 10 to 50 % in 1990 (Kuusela,

1994). The area under coppice was linearly decreased from

the 1950 value to its 1990 value reported in Kuusela (1994).

Missing data were assigned coppiced areas based on nearest

neighboring pixels. For Finland, Sweden and Norway, a tar-

get fraction of 0.01 was set as these regions do not have an

extensive history of coppicing (Emanuelsson, 2009). All pix-

els were assumed to contain the same percentage of coppiced

forest area as the country value in 1990, and the 1990 cop-

piced areas were held constant until 2010. The maps from

1950 to 2010 have the same total forest area as Vilén et al.

(2012).

2.4.6 ORC-MAPS (1600–2010)

The GEN-MAPS described above are 0.5◦ resolution maps

containing the forest area (in m2) required to be managed

under high-stand and coppice management to satisfy the es-

timated wood demand from 1600 to 1828 and the age re-

construction maps of Vilén et al. (2012) from 1829 to 2010.

For usage by the ORCHIDEE-CAN model, however, the as-

signed management types need to be (1) allocated to a spe-

cific tree species or species groups and (2) combined with

historical land cover maps to take into account the total for-

est area within a pixel.

An ORCHIDEE-CAN-specific map lists a single for-

est management strategy for each PFT on a pixel. The

ORCHIDEE-CAN model targeted in this study consists of

28 PFTs, including bare soil, 3 grassland types, 3 agricul-

tural types and 21 forest types. Some of these forest PFTs

are parametrized to represent individual tree species, while

others are more general metaclasses (Naudts et al., 2014).

The first step is to decide which PFTs are allowed to be man-

aged in which style? Obviously none of the non-forest PFTs

can be managed as forests. Additionally, conifers cannot be

coppiced due to phylogenetic constraints (with the exception

of Taxus baccata L.). This leaves 12 deciduous PFTs which

can be left unmanaged or be managed as a high stand or

a coppice. The nine coniferous PFTs can only be managed

as a high stand or left unmanaged.

For each year between 1600 and 2010, our land cover re-

construction (see Sect. 2.3.1) and the GEN-MAPS map (see

Sects. 2.4.3, 2.4.4 and 2.4.5) were consulted. For each pixel,

the forest PFTs were sorted by size from largest to small-
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est, in terms of surface area. Priority was given to coppice

management because under our assumptions, coppice pro-

vided wood for primary needs such as cooking and heating.

Hence, deciduous PFTs, starting from the dominant species,

were put under coppice management if the demand required

that more than 15 % of the pixel was put under coppice man-

agement. If so, PFTs were managed as coppice until the to-

tal coppice forest area in GEN-MAP was exceeded or there

were no more deciduous PFTs. At that point, whether solely

conifers or both conifers and deciduous PFTs were available

depended on the pixel. Starting from the largest stand, these

were put under high-stand management only if the demand

required that more than 15 % of the pixel was put under high-

stand management. If so, PFTs were managed as high stand

until the total high-stand area in GEN-MAP was exceeded

or there were no more forest PFTs. The 15 % threshold was

introduced to avoid artifacts from the fact that one PFT is as-

signed a single management strategy. For example, a pixel

dominated by few PFTs, say 90 % of PFT1 and 10 % of

PFT2, and with a low fuelwood requirement, say 5 %, would

nevertheless be under coppice management to 90 % because

the algorithm dictates starting with the dominant PFT. The

15 % threshold protected against this artifact. Any remaining

forests were left unmanaged.

Furthermore, a cap was set on the maximal share of un-

managed forest within a pixel during the 20th century. The

cap starts at 100 % in 1910 (i.e., a whole pixel can be left

unmanaged) and reduces to 15 % by 1950.

3 Results and discussion

3.1 Land cover reconstruction

As a base layer for our management reconstructions, we used

the reconstruction of land cover change by Kaplan et al.

(2012). Preindustrial agricultural land use in Europe is sub-

stantially higher than in other common reconstructions (Pon-

gratz et al., 2008; Klein Goldewijk et al., 2011). Following

Kaplan et al. (2012), our reconstruction mirrors their central

assumption that European countries experienced forest tran-

sitions during the mid 1800s (Mather, 1992; Mather et al.,

1999; Mather and Fairbairn, 2000; Meyfroidt and Lambin,

2011). In Europe, forest area reached its all-time low around

1850, after which encroachment and afforestation made the

forest area increase again to surpass the forest area of 1600

only in the late 1900s (Fig. 3). In this study, forest area was

further detailed by filling in tree species fractions and their

spatial and temporal dynamics. The 539 000 km2 increase in

conifer area outnumbers the decrease in deciduous forest by

55 000 km2. While conifers made up 29 % of the forest area

in 1600, their present-day share has increased to over 56 %.

Since 1600, the net increase in conifer forests is thus the sin-

gle most important net land dynamic and exceeds the net

change in agricultural land by a factor of 10 (Fig. 3).

Figure 3. Land surface area in 106 km2 covered by forest (blue),

grassland (orange), cropland (brown) and bare soil (grey) between

1600 and 2010. The forest area is further separated into coniferous

(dark blue) and deciduous (light blue) forest.

It is well documented that Europe’s present-day species

distribution does not reflect its natural vegetation (Kuusela,

1994; Kenk and Guehne, 2001). It has been estimated

that between 1500 and 2000, about 1300 different vascular

plants species were introduced into Germany alone (Scherer-

Lorenzen et al., 2000). Most of these neophytes were intro-

duced for agricultural uses, but at least 11 tree species were

introduced into forestry (Schulze et al., 2015). In addition

to introducing new species, humans are thought to have af-

fected the distribution and share of tree species by favoring

one species over another. Beech (Fagus sylvatica L.), for ex-

ample, is thought to be responsible for the decrease of fir

(Abies alba Mill.) (Tinner and Lotter, 2006). For the period

under study, planting conifer species outside their natural

growing area (e.g., Pinus sylvestris L. and Picea abies H.

Karst.), the introduction of new species (e.g., Pseudotsuga

menziesii Franco and Picea sitchensis Carriére) (Schulze

et al., 2015), the conversion of mixed boreal forest into ho-

mogeneous conifer forests (Gao et al., 2015) and the onset of

a production-oriented forestry all contributed to a dramatic

change in European species distribution. Recent efforts in

converting conifer forest back to mixed or deciduous for-

est (Kenk and Guehne, 2001; Zerbe, 2002) were not taken

into account and, therefore, not reflected in our reconstruc-

tion (Fig. 3). Although such efforts have received substantial

attention in forestry literature, their large-scale spatial extent

remains to be quantified (Kenk and Guehne, 2001).

In this study, the reconstruction of changes in species dis-

tribution is based on anecdotal evidence as found in historical

archives (Mantel, 1990) and forced to match present-day ob-

servations (Brus et al., 2012). Although our reconstruction

uses national estimates for trends in conifer coverage, the

neighborhood function that was used to decide which conifer
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species was planted during conversion indirectly takes cli-

matic preferences of tree species into account. By design,

however, our reconstruction cannot be expected to reproduce

small-scale patterns such as the preferential use of spruce at

elevated cool sites. This limitation is partly compensated for

by the rather coarse resolution (i.e., 0.5◦×0.5◦) of the recon-

struction.

3.2 Demand and supply (1600–1828)

The 410-year time span of our reconstruction by far exceeds

the 100- to 150-year life expectancy of a European forest.

Living archives for forest management are thus absent for

most of our reconstruction period. Given that forest manage-

ment aims at satisfying diverse resource demands, we believe

that in the absence of these archives, forest management can

be reconstructed by making use of wood demand and sup-

ply estimates. Between 1600 and 1828, our estimates indi-

cate that more than half of the wood demand came from the

industrial production of ceramics, glass, beer, distillates and

metal works (Fig. 4). The remaining demand was mainly for

construction and fuelwood, with wood for salt production be-

ing negligible. These estimates assume unlimited access to

forest resources. However, as early as 1717, the estimated

demand exceeds the estimated supply in our reconstruction.

Given that Sylva, or a Discourse of Forest-Trees and the

Propagation of Timber in His Majesty’s Dominions by the

English writer John Evelyn (1664) and Colbert’s ordinance

from 1669, known as l’aménagement forestier, were likely

inspired by locally decreasing forest resources, a European-

wide crossover 5 decades later seems reasonable. If our esti-

mates reflect history, the crossover may have reshaped soci-

ety by triggering a search for alternative energy sources and

by playing a role in the colonial wars in search of wood re-

sources to close the demand–supply gap (Perlin, 2005); two

events the consequences of which still affect today’s society.

The demand–supply gap suggests unresolved issues with

our estimates on the demand side, the supply side, or both the

demand and supply sides. On the European scale our histori-

cal supply and demand estimates are of the same magnitude

as present-day wood production and consumption, which

provides empirical evidence that our historical estimates are

at least feasible. Furthermore, independent estimates for fu-

elwood demand indicate that our estimates are on the low end

(Table 3). A cross-check of the charcoal demand based on our

methodology against a single independent estimate indicates

a fivefold overestimate by our method for England in 1700

(Table 3). The mismatch in surface area was further ampli-

fied because we used a productivity of 4 m3 ha−1, whereas

the independent estimate used 6.5 m3 ha−1. The latter seems

closer to present forest production than to historical produc-

tion expected in 1700. For Finland, however, total wood de-

mand obtained with our methodology appears to be on the

low side (Table 3). Validation against independent estimates

thus suggest that our demand estimate has a realistic order of

Figure 4. Total estimated wood demand (stacked surfaces) and

wood supply (dashed line) in TgC between 1600 and 1829. The

wood demand distinguishes between fuelwood for households

(grey), fuelwood for salt production (not visible), fuelwood for in-

dustrial processes (blue) and timber used for construction (brown).

Expansion factors and assumptions of this reconstruction are de-

tailed in Table 1.

magnitude and leans towards the low end of available esti-

mates.

Similar to our approach for construction wood, the de-

mand for glass and iron could have been scaled to gross do-

mestic product. Given the negligible share of the wood de-

mand for glass production, its scaling method is likely not

relevant for our reconstruction. Such a scaling method could,

however, more easily account for the decreasing marginal

consumption of wood with increasing gross domestic prod-

uct per capita. Such an approach would increase realism by

partly decoupling wood demand from population growth, but

it requires more data to establish the relationship between

gross domestic product per capita and the use of glass, metal

and construction wood.

As both the total forested area and the production per unit

of land area increased between 1600 and 2010, the estimate

for historical wood supply should be lower than the present-

day supply. The increase in the area of forest land since

1600 is well established and is reflected in numerous histor-

ical documents as well as regional maps dating back to the

late 1700s. One of the most compelling examples of such

maps is represented by the Ferraris maps, which archived

land cover of the Austrian Netherlands (now largely Bel-

gium) in great detail (Ferraris, 1777). When combined with

more recent topographic surveys, a clear and objective pic-

ture emerges of the land cover changes. Similar maps exist

across Europe, e.g., Atlas de Trudaine (France, 1740–1780),

Atlas of Napoleonic Cartography in Italy (1795–1815) and

the Gyllenhielms atlas (Småland, Sweden, 1633–1655). It is

this type of information that forms the scientific basis of land
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cover reconstructions, including that of Kaplan et al. (2012),

which was used in this study.

It is well established that productivity has increased over

the past 6 decades, and this increase has been attributed to (1)

the use of more productive, often exotic, species (for exam-

ple Pseudotsuga menziesii Franco and Picea sitchensis Car-

riére), (2) elevated atmospheric nitrogen deposition (Jarvis

and Linder, 2000; Magnani et al., 2007; Spiecker, 1999),

(3) CO2 fertilization (Norby et al., 2005, 2010) and climate

change (McMahon et al., 2010; Fang et al., 2014), (4) an al-

most complete abandonment of practices such as forest graz-

ing (Hobbs, 1996; Brathen et al., 2007) and litter raking (Dz-

wonko and Gawron, 2002; Bürgi and Gimmi, 2007; Gimmi

et al., 2012), and (5) a more scientific approach to forest man-

agement (Farrell et al., 2000). Combining historical archives

with bookkeeping methods suggests that productivity has in-

creased by 100 % since 1830 (Erb et al., 2013). Resampling

Fagus sylvatica L. and Picea abies H. Karst. showed in-

creased tree growth of 32 to 77 % and increased stand vol-

ume growth of 10 to 30 % since 1870 (Pretzsch et al., 2014).

An analysis covering the period 1970 to 1990 documents a

general increase in productivity all over Europe by 25 % in

20 years′ time (Ciais et al., 2008b). The 100 % increase in

productivity applied in this study should thus be considered

a high rather than a low estimate. Consequently, our estimate

of historical wood supply should be considered low rather

than high.

If site-level productivity by 1600 was only reduced by

30 % and thus agreed with relatively short-term observa-

tions (Pretzsch et al., 2014; Ciais et al., 2008b), the demand

would not have exceeded the supply until after 1815. Ap-

plying present-day definitions to forest and harvest for our

reconstruction could also have contributed to an underes-

timation of the wood supply. When pressure on forest re-

sources was high, it cannot indeed be excluded that branches,

twigs and litter were collected and burned. Although it is

labor intensive, stumps may have been uprooted and used

for charcoal production (Perlin, 2005), which could increase

the supply by 15 to 25 % in the boreal and temperate zone

and even 25 to 50 % for Mediterranean species (Fernández-

Martínez et al., 2014). Furthermore, the strict separation be-

tween forest and agricultural lands emerged only at the on-

set of scientific forestry and modern nation states (Mather,

1992; Meyfroidt and Lambin, 2011). The aforementioned

early maps confirm that hedges, tree rows and solitary trees

between and within fields and grazing lands were abundant in

agricultural landscapes, in particular in the extensive heath-

lands used for rough grazing. A tree cover of 15 % across

agricultural lands, suggesting common use of agroforestry,

would delay the crossover by 15 years. Finally, importing

25 Tg of wood C, which is a quarter of today’s import (Ciais

et al., 2008a), would have delayed the crossover by 40 years.

It seems unlikely, however, that fewer people with a much

smaller logistical capacity than today could have imported

such a volume even from Europe’s forest-rich colonies.

Our reconstruction of wood demand uses a relationship

between population density, economic development and con-

sumption. However, wars and collapses of political systems

may have decoupled population growth from wood demand

for years to decades. Our reconstructions, for example, show

no drop in demand during the Thirty Years’ War (1618–

1648), as is expected based on building dates of roughly

200 000 wooden structures across Europe (U. Büntgen, per-

sonal communication, 2014). During wars and crises, forest

resources may even have regenerated from earlier (over)use

(Mather et al., 1999). Regions with resource scarcity may

have imported commodities such as glass and iron rather than

importing the wood to produce these products themselves.

Furthermore, we may have overestimated the share of char-

coal, which, in turn, would lead to a substantial overestima-

tion of the wood demand. A unit of energy released by char-

coal required twice as much wood in its production compared

to burning wood directly (see Table 1). Recycling may have

been more common than thought, e.g., decommissioned con-

struction wood may have been used as fuelwood. Recycling

all construction wood as fuelwood would reduce the wood

demand by 25 % and delay the crossover by 60 years.

During the centuries under study, industrial procedures

evolved, e.g., slag from Roman iron works was reused thus

requiring less energy for smelting (Perlin, 2005), and a pro-

cedure was discovered to use coked coal rather than char-

coal for the extraction of iron (Perlin, 2005), and as a con-

sequence wood as a construction material was replaced by

iron (Perlin, 2005). It is not clear whether these increases in

efficiency resulted in higher production at the same amount

of wood consumption or effectively reduced the wood de-

mand. Present-day studies show that in a market economy,

effective substitution is only likely under resource scarcity

(York, 2012). Finally, alternative energy sources such as so-

lar and wind energy (for example, for pumping water into

evaporation pans for salt production; Perlin, 2005), the burn-

ing of peat, manure and agricultural residuals (Perlin, 2005;

de Zeeuw, 1978), and the initially local rise in the use of coal

(Pound, 1979) may all have contributed to a lower wood de-

mand than estimated in this study. We interpret these data

as a clue that the replacement of wood as an everyday fuel

source in the home likely began to occur in the early 1800s

(cf. Mather and Fairbairn, 2000).

Although the crossover of demand and supply suggests

that more work is needed and that most likely both estimates

need to be better constrained, the key question for this study

is whether these estimates are expected to substantially affect

our forest management reconstructions. The assumption that

wood did not travel outside the 50km× 50 km pixels is the

key to answering this question. This appears to be a fair as-

sumption, in particular for salt production, where channels to

guide the brine rarely exceeded 40 km (Bergier, 1989; Man-

tel, 1990). Transport of fuelwood was limited, especially in

areas with no convenient river transportation (Warde, 2006).

However, other evidence does indicate that long-range tim-
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ber transport was common. Transport of fir in Roman times,

for example, covered hundreds of kilometers (Küster, 1994).

Following the assumption of limited wood transport, the

management maps are largely affected when wood supply

exceeds wood demand at the pixel level because, in this case,

a fraction of the forest will remain unmanaged. If however,

wood demand exceeds its supply, as is common from our

reconstruction, all forest in the pixel will be managed, but

the mismatch between demand and supply is not propagated

into neighboring pixels or to subsequent time steps. Given

the priority rules that were set to allocate the fractions to dif-

ferent management practices, an unsatisfied demand is likely

to result in a higher share of coppice management compared

to high-stand management. Despite the mismatch between

wood supply and demand, our management maps will cor-

rectly reflect that forests were under pressure but may re-

sult in a biased allocation of the management strategies to-

wards coppice management. In 1600, our reconstruction sug-

gests that at the pixel level, the percentage of unaccounted-

for demand across Europe is around 40 % and increases to

around 65 % by 1820. This reflects the increased forest pres-

sure due to increasing population and provides support for an

increased incentive to transition to alternative fuel sources.

3.3 Litter demand

Finding comprehensive data to parameterize and validate his-

torical litter-based activities is not currently possible. To our

knowledge, there exist two quantitative studies on traditional

non-timber forest uses (Gimmi et al., 2012, 2008). The quan-

titative studies were localized in Swiss valleys and showed

that the model results were sensitive to data such as litter

demand for livestock and straw production rate, data which

are impossible to find for all of Europe for different times

between 1600 and 2010. Present-day soil carbon stocks that

experienced historical litter raking were estimated to be 2 %

lower than they would have been in the absence of litter rak-

ing (Gimmi et al., 2012). The effects of litter raking on the

nutrient balance of soils is expected to be more important

than its effect on the carbon balance (Gimmi et al., 2012).

When litter raking is accounted for in ORCHIDEE-CAN

simulations, the litter maps give an estimate of the amount of

litter to be removed from each grid cell at the end of every

year. If a grid cell does not have enough litter to cover the

demand, we remove all, but we do not attempt to take any

litter from surrounding grid cells. Litter raking was used for

wintering livestock, with the manure collected and spread on

the fields in the spring. Hence, ORCHIDEE-CAN adds the

carbon contained in the raked litter to the litter pools of any

agricultural PFTs on the grid square. Owing to the tight link

between forest use and agriculture in this epoch, the main

result of litter raking is thus clear: carbon which would en-

ter the forest soil if the litter were not raked was diverted to

litter pools outside the forest. At its peak, litter raking was es-

timated to collect 50 Tg of dry litter and thus to redistribute

25 Tg of carbon and 0.5 Tg of nitrogen (or 5 % of present-

day nitrogen fertilization in Europe; Schulze et al., 2010) to

croplands.

3.4 Forest management reconstruction

3.4.1 Trends in forest management

Our forest management reconstruction shows a clear and

continuous decrease in unmanaged forest between 1600 and

1950 (Fig. 5). A spatial representation shows that between

1600 and 2010, unmanaged forest was mainly lost in Scan-

dinavia and eastern Europe (Fig. 6a, b). Although few will

argue against the reconstructed decline, a share of 30 % of

unmanaged forests in 1600 cannot be confirmed (or rejected)

on the European scale. The gain in unmanaged forest since

1950, which is scattered over Europe, reflects a modest but

increasing effort in forest conservation and the recent trend

towards abandoning management by an increasingly urban

population. Our reconstruction suggests that 17 % of the for-

est is unmanaged. At present the share of untouched forest

or forest with minimal human intervention is, however, es-

timated to be just below 5 % (Schnitzler, 2014). However,

that does not include a notable fraction of public and pri-

vate forest, which is only lightly managed and with har-

vest rates well below the annual increment (Levers et al.,

2014). Overestimation of unmanaged forests may also be

partly caused by classification issues. The ORC-MAPS were

prepared to be used with ORCHIDEE-CAN and based on

a remote-sensing product. Given that ORCHIDEE-CAN cur-

rently does not distinguish between forest and shrubland,

dense shrubland was classified as forest and sparse shrub-

land as grasslands. After 1950, our forest management re-

lies on forest inventory data, which, by their nature, exclude

shrubland. Our reconstruction algorithm thus classified dense

shrubland as unmanaged forest. Although classifying shrub-

land as forest results in overestimating basal area and vege-

tation height over much of the Mediterranean region (Naudts

et al., 2014), the consequences of considering shrubland as

unmanaged ecosystems are expected to be minor.

The abrupt decreases in 1829 and 1950 in unmanaged

forests in Figure 5 are due to Finnish and by extension Scan-

dinavian forestry. In 1950, Finland had a lot of forests that,

according to the inventory data, were more than 121 years

old. Given that these forests were in the inventory data and

thus under commercial use in 1950, our algorithm has put

all these forests under management in 1829. In 1829, the

backcasting algorithm thus required much more managed

forests than the demand–supply algorithm that was used

prior to 1829. Furthermore, the algorithm caps the unman-

aged forests in the 20th century (see Sect. 2.4.6). Recall that

the cap starts at 100 % in 1910 (i.e., a whole pixel can be

left unmanaged) and reduces to 15 % by 1950. The cap was

found to be redundant until 1932 but became substantial after

1942. By then, the maximum amount of unmanaged forest
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Figure 5. Total area (1012 km2) of unmanaged (grey), high-stand

(light blue) and coppice (dark blue) forests between 1600 and 2010.

The full lines show the best available estimates, whereas the dashed

lines show the sensitivity of the management reconstruction to the

“minimal importance” threshold (see Sect. 2.4.6).

on a pixel was capped at 30 %, which is the case for many

pixels. Hence, the algorithm placed a lot of previously un-

managed forests under management between 1940 and 1950.

Although the origin of the abrupt decrease in unmanaged

forests in 1950 is an artifact of the algorithm, it happens to

relate to a decade in which a lot of unmanaged forest were

harvested to support post-war reconstruction efforts (Statis-

tics Finland, 2007).

Coppice management groups diverse forest management

strategies that leave the root system intact but may differ in

rotation length, tree species and wood use depending on re-

gion and climate. Although the wood from coppice stands

was often used as fuelwood in households, its use is also

documented for construction, agriculture, viticulture and tan-

nin production (Emanuelsson, 2009). Part of its popularity

was due to its ecological stability, flexibility in management

and common rights. Throughout history, coppicing has been

the basis for silvo-pastoral systems with temporary cropping,

husbandry, hunting, gathering and beehives (Emanuelsson,

2009). Between 1600 and 1828, population growth drove the

reconstructed wood demand, resulting in an increasing share

in coppice management albeit accompanied by an overall de-

crease in forest area (Fig. 5). After 1828, an increasing sub-

stitution of fuelwood with coal and of construction wood

with metals made coppice lose its importance (Fig. 6e, f).

Coppice stands were converted or neglected. At present, in-

dependent estimates suggest that 15 % of the European forest

is currently under coppice management. Outside the coppice

strongholds in southeast Europe (Fig. 6f), high-stand forests

in Europe often show relics of the typical features of cop-

pice management. Although there is little doubt that coppice

management has substantially decreased since 1600, the re-

Figure 6. Distribution of management strategies over Europe. (a)

Unmanaged forests in 1600 and (b) in 2010. (c) High-stand forests

in 1600 and (d) in 2010. (e) Coppice management in 1600 and

(f) in 2010. The color bar shows the fraction of the forest managed

by a given strategy. Pixels along the coastlines often contain few

forests, frequently resulting in the entire pixel being under a single

management strategy.

constructed share of 36 % of coppice in 1600 cannot be con-

firmed (or rejected) on the European scale.

During the World Wars and the interbellum, our recon-

structions suggest a revival of coppice management (Fig. 5).

Whether this reflects reality is uncertain, but during the wars,

rotations were considerably shortened to meet the increased

demand. For example, in the New Forest, UK, all conifers

of 20 to 35 years were cut between 1940 and 1946 (Forestry

Comission, 2013). Although the reconstruction suggests that

coppice management in 2010 is at its lowest in over 400 years

(Fig. 5), it has been rediscovered because of its contribu-

tion to biodiversity (Lüpke et al., 2011) and as a source of

renewable bioenergy (Lemus and Lal, 2005). In the latter

case, fewer species and shorter rotations are used compared

to traditional coppice management, leading to the term short-

rotation coppice (SRC). At present short-rotation coppice is

limited to about 500 km2 (Mantau et al., 2010) and was there-
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fore not considered substantial enough to be taken into ac-

count in our reconstruction.

In the late 1700s it was realized that when used in a con-

trolled manner, forest could produce wood without being

destroyed. This changing attitude towards natural resource

management was reflected by the establishment of German,

Austrian and French forestry schools (Farrell et al., 2000)

and is considered to be the start of the so-called scientific

forest management which is based on the idea that the pro-

ductivity of forests is stable over time. The focus on produc-

tivity resulted in the widespread use of conifers at sites that

were previously only occupied by deciduous tree species.

Since the late 1700s a variety of management strategies

that differ in objectives in the and intensity and frequency

of the interventions has emerged (Pretzsch, 2009). This va-

riety is grouped as high-stand management in our recon-

struction. Following centuries of forest destruction this then-

new approach to land management may have contributed to

a steady increase in forest area over Europe (Fig. 5), along

with broader economic, technological, cultural and political

changes (Meyfroidt and Lambin, 2011).

Our management reconstruction also allocates forest to

high-stand management prior to the birth of scientific forest

management. Given the specific objective of our reconstruc-

tion, i.e., studying large-scale effects of forest management,

it was considered acceptable to classify both scientific for-

est management in the late 1700s and unplanned forest use

prior to the late 1700s as high-stand management. In both

approaches, some wood is removed prior to the final harvest,

and tall vegetation is maintained. Although the outcome of

scientific high-stand management is expected to be sustained

production, the outcome of unplanned management could be

sustained production, degradation or even forest destruction.

Given the success of scientific high-stand management in

sustaining wood production and providing other ecosystem

services, its increasing use and dominance between 1600 and

2010 (Fig. 5) are to be expected.

3.4.2 Quality of the reconstructions

Although 80 % of the data and expansion factors used in

this reconstruction (see Table 1) are justified by previous re-

search, its spatial and temporal representativeness remains

unknown as the data are most often based on local case stud-

ies. Estimates of several components are based on sparse

data, and for these components, it was not possible to sepa-

rate the data into parameterization and validation sets. Where

sufficient data were available (Table 3), the reconstruction

was compared against validation data. Although our recon-

struction performs reasonably well across space and time, the

quality and representativeness of the validation data are un-

known. Given the lack of quality-checked data for validating

our reconstructions, we aimed for the highest transparency

by listing all assumptions made to reconstruct forest man-

agement (Table 1). Wood removal activities were deliberately

separated by various forms of wood harvesting and litter rak-

ing, which is expected to allow easier incorporation of future

advances. The resulting maps should thus be considered as

a starting point for future developments on the topic rather

than a final data product.

The uncertainty of the forest management reconstruction

must be considerable given that it relies heavily on popula-

tion and land cover reconstructions, which are also uncertain

(Klein Goldewijk and Verburg, 2013; Kaplan et al., 2012).

When creating the ORC-MAPs it was assumed that within

a pixel, a single tree species was managed with a single strat-

egy. Large artifacts from this assumption were avoided by

only putting a tree species under a specific management strat-

egy if the demand required that more than 15 % of the pixel

was put under that specific management (see Sect. 2.4.6).

Many of the previous assumptions are believed to be of mi-

nor importance compared to this 15 % threshold. Therefore,

the effect of the 15 % threshold was tested by recreating the

ORC-MAP for a threshold of 5 and 25 %. The trends in for-

est management between 1600 and 2010 were found to be

insensitive to the specific threshold used (Fig. 5). Although

different settings for this threshold could result in a 5 to 25 %

increase or decrease in the surface area for a given manage-

ment strategy, these changes are not random and tend to favor

one management strategy over another. Hence, using differ-

ent threshold values rarely changed the dominance of a cer-

tain strategy within a given time period.

In this study, demand and supply maps were used to re-

construct forest management between 1600 and 1828, and

a supply-based backcasting method was applied to recon-

struct forest management between 1829 and 2010. This im-

plies that except for the year 1829, the management recon-

struction for a single year was based on a single approach.

Continuing the reconstruction of demand and supply maps

would enable us to constrain the management reconstruc-

tion between 1829 and 2010 by an independent data set.

It remains to be tested whether this would really result in

more reliable management maps. An extended and improved

estimate of the supply should depend on the reconstructed

forest management because different management strategies

will supply different amounts and dimensions of wood. Also,

a demand map for 1829–2010 would have to deal with a very

dynamic period in terms of energy consumption and wood

use. In the end, the uncertainty of the 1829 to 2010 demand

reconstruction may be so large that it would only marginally

constrain the backcasting method. By contrast, the backcast-

ing method relies on a more restricted data set with fewer

assumptions.

3.4.3 Ways forward

Future efforts to reconstruct forest management could move

this field forward by considering the following things:

1. Our reconstruction builds on land cover reconstructions

(Kaplan et al., 2012, 2009) but does not interact with
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this land cover reconstruction. Simultaneous consider-

ation of both wood demand and the food demand that

currently drives these land use reconstructions during

their creation would increase the internal consistency of

the land use and thus the forest management reconstruc-

tions.

2. An interdisciplinary team with access to physical land

science, historical archives in local languages, archaeo-

logical archives and expertise in economic history could

better constrain the physical, sociological and economic

aspects that underlie the forest management reconstruc-

tion. A broader expertise would not only further inter-

nal consistency of the reconstruction but is likely to in-

crease the number of data sources that could be used for

parametrization and validation.

3. It is well known that forest management strategies other

than coppicing and high-stand management were used

historically in Europe (Kuusela, 1994). Hence, using re-

gional information could help to refine and expand the

management strategies currently distinguished. Such

a regional approach would likely result in the addi-

tion of continuous cover management (central Europe)

(Pommerening and Murphy, 2004), coppice with stan-

dards (central, southern Europe and the UK) (Coppini

and Hermanin, 2007; Rotherham, 2007; Emanuelsson,

2009) and swidden (northern Europe) (Wallenius et al.,

2007; Emanuelsson, 2009).

4. The historical species distribution is one of the few com-

ponents of the reconstructions which could be improved

based on comprehensive evidence by making use of

pollen, charcoal and genetic records. Recent efforts in

bringing together pollen records from across Europe

(Trondman et al., 2014) and studies on genetic lineages

(Petit et al., 2002, 2008) are expected to refine and better

constrain the spatial and temporal resolution of future

reconstructions of species distribution. Charcoal dating

and analyses (Robin et al., 2013) could add further de-

tail on species occurrence.

5. The limited sensitivity tests we conducted suggested

that better knowledge of the supply side will be essential

as will a better understanding of wood trade and both

of production techniques and the demand of energy-

intensive products such as metals.

3.5 Data and map availability

ORCHIDEE-CAN is a version of the land surface model OR-

CHIDEE that was developed and parametrized to simulate

the biogeochemical and biophysical effects of forest man-

agement (Naudts et al., 2014). Applications making use of

the full potential of ORCHIDEE-CAN require a spatially

and temporally explicit description of forest management as

boundary condition and, hence, the need for a reconstruction

of forest management as presented in this study. Contrary

to the forest management reconstruction, the demand and

supply maps are intermediate products and not essential for

driving ORCHIDEE-CAN. Wood supply, for example, is at

present calculated by ORCHIDEE-CAN. In the future, mod-

eled wood supply, rather than our supply map, could thus be

used to derive the most likely management strategy. Never-

theless, we decided to make all maps available to other re-

search groups. The demand, supply and management maps

as well as the coded algorithms (scripts in the R language)

can be requested from one of the authors. Every use of (part)

of these maps and their underlying data other than the orig-

inal products (Table 1) should cite this paper. It is strongly

advised to contact the authors to verify the correct use and

interpretation of the maps.

4 Conclusions

By making use of land use reconstructions, present-day veg-

etation maps, tree species maps, expansion factors and for-

est age reconstructions, we created general (GEN-MAP) and

model-specific (ORC-MAP) historical forest management

maps. Where the GEN-MAPS can serve as a starting point

for other modeling groups to create their own maps, the

ORC-MAPS were created to be used with the ORCHIDEE-

CAN land surface model. The ORC-MAPS assign a manage-

ment strategy (unmanaged, high-stand management or cop-

pice management) to each forest PFT in Europe. Our re-

construction reproduces the most important changes in for-

est management between 1600 and 2010: (1) an increase

of 593 000 km2 in conifers at the expense of deciduous for-

est (decreasing by 538 000 km2); (2) a 612 000 km2 decrease

in unmanaged forest; (3) a 152 000 km2 decrease in coppice

management; (4) a 818 000 km2 increase in high-stand man-

agement, and (5) the rise and fall of litter raking, which at its

peak in 1853 removed 50 Tg dry litter per year.

Author contributions. M. J. McGrath and S. Luyssaert wrote the

manuscript. M. J. McGrath wrote all scripts and created the

maps. J. Kaplan, U. Gimmi, M. Bürgi, M.-J. Schelhaas, K. Erb,

P. Meyfroidt and D. McInerney provided the majority of the ex-

pansion factors for estimating wood demand and wood supply.

M. J. McGrath, S. Luyssaert, J. Ryder, Y. Chen, K. Naudts, J. Otto

and A. Valade developed ORCHIDEE-CAN such that it can make

use of the forest management and litter maps. All authors con-

tributed to discussing the approach and its caveats.

Acknowledgement. M. J. McGrath, J. Ryder, Y. Chen, K. Naudts,

J. Otto and S. Luyssaert were funded through ERC starting grant

242564 (DOFOCO) and A. Valade was funded through ADEME

(BiCaFF). The study benefited from early discussion with Gert-Jan

Nabuurs and Geerten Hengeveld and additional funding through

ECV CCI Landcover and an STSM (COST, TERRABITES

www.biogeosciences.net/12/4291/2015/ Biogeosciences, 12, 4291–4316, 2015



4312 M. J. McGrath et al.: Forest management reconstruction

ES805) offered to M. J. McGrath. S. Luyssaert, A. Valade, K. Erb

and P. Meyfroidt benefited from the ISSI International Team on

“Integrating Earth Observation data and the description of land

management practices into global carbon cycle models”.

Edited by: E. Veldkamp

References

Appuhn, K.: Inventing nature: forests, forestry, and state power in

Renaissance Venice, J. Mod. Hist., 72, 861–889, 2000.

ASTRA and Reddy, A.: Rural energy consumption patterns – a field

study, Biomass, 2, 255–280, 1982.

Aymard, M.: Food and Drink in History, Johns Hopkins University

Press, Baltimore, 1979.

Bellassen, V., le Maire, G., Guin, O., Dhôte, J., Ciais, P.,

and Viovy, N.: Modelling forest management within a

global vegetation model – Part 2: Model validation from

a tree to a continental scale, Ecol. Model., 222, 57–75,

doi:10.1016/j.ecolmodel.2010.08.038, 2011a.

Bellassen, V., Viovy, N., Luyssaert, S., Maire, G., Schelhaas, M.-J.,

and Ciais, P.: Reconstruction and attribution of the carbon sink

of European forests between 1950 and 2000, Glob. Change Biol.,

17, 3274–3292, 2011b.

Bergier, J.-F.: Die Geschichte vom Salz, Campus-Verlag, Frankfurt,

1989.

Binding, G., Hinz, H., Sosson, J.-P., Bedal, K., Polla, E., Smith, J.,

Hellenkemper, H., and Ewert, C.: Lexikon des Mittelalters, Band

3, s.v. ’Dach’, Artemis and Winkler, München/Zürich, 1986.

Bohn, U., Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, T.,

Schlüter, H., and Weber, H.: Karte der natürlichen Vegetation

Europas, Maßstab 1 : 2 500 000 (map of the natural vegetation of

Europe, scale 1 : 2 500 000), Bundesamt für Naturschutz, Bonn,

2000.

Bolt, J. and van Zanden, J. L.: The first update of the Maddi-

son project; re-estimating growth before 1820, Maddison-Project

Working Paper WP-4, University of Groningen, Groningen, the

Netherlands, 5 January 2013.

Brathen, K. A., Ims, R. A., Yoccoz, N. G., Fauchald, P., Teraa, T.,

and Hausner, V. H.: Induced shift in ecosystem productivity? Ex-

tensive scale effects of abundant large herbivores, Ecosystems,

10, 773–789, doi:10.1007/s10021-007-9058-3, 2007.

Brus, D. J., Hengeveld, G. M., Walvoort, D. J. J., Goedhart, P. W.,

Heidema, A. H., Nabuurs, G. J., and Gunia, K.: Statistical map-

ping of tree species over Europe, Eur. J. Forest Res., 131, 145–

157, 2012.

Bürgi, M.: A case study of forest change in the Swiss lowlands,

Landscape Ecol., 14, 567–576, 1999.

Bürgi, M. and Gimmi, U.: Three objectives of historical ecology:

the case of litter collecting in Central European forests, Land-

scape Ecol., 22, 77–87, doi:10.1007/s10980-007-9128-0, 2007.

Bürgi, M. and Schuler, A.: Driving forces of forest management –

an analysis of regeneration practices in the forests of the Swiss

Central Plateau during the 19th and 20th century, Forest Ecol.

Manag., 176, 173–183, 2003.

Bursehel, P. and Huss, J.: Grundriss des Waldbaus, Ein Leitfaden

für Studium und Praxis, Ulmer, Stuttgart, Hohenheim, 3rd Edn.,

2003.

Ciais, P., Borges, A. V., Abril, G., Meybeck, M., Folberth, G.,

Hauglustaine, D., and Janssens, I. A.: The impact of lateral car-

bon fluxes on the European carbon balance, Biogeosciences, 5,

1259–1271, doi:10.5194/bg-5-1259-2008, 2008a.

Ciais, P., Schelhaas, M. J., Zaehle, S., Piao, S. L., Cescatti, A.,

Liski, J., Luyssaert, S., Le-Maire, G., Schulze, E.-D., Bouri-

aud, O., Freibauer, A., Valentini, R., and Nabuurs, G.-J.: Car-

bon accumulation in European forests, Nat. Geosci., 1, 425–429,

2008b.

Clark, G.: The price history of English agriculture, 1209–1914, Re-

search in Economic History, 22, 41–123, 2004.

Coppini, M. and Hermanin, L.: Restoration of selective beech cop-

pices: A case study in the Apennines (Italy), Forest Ecol. Manag.,

249, 18–27, 2007.

Craddock, P.: Mining and metallurgy, in: The Oxford Handbook of

Engineering and Technology in the Classical World, edited by:

Oleson, J., Oxford University Press, Oxford, 93–120, 2008.

de Noblet-Ducoudré, N., Feddema, J., van den Hurk, B., Hurtt, G.,

van Vuuren, D., and Chini, L. P.: Incorporating historical and

future land-use maps at the global scale for climate studies, Tech.

Rep., 2010.

de Zeeuw, J. W.: Peat and the Dutch golden age, The historical

meaning of energy attainability, AAG Bijdragen, 21, 3–31, 1978.

Dzwonko, Z. and Gawron, S.: Effect of litter removal on species

richness and acidification of a mixed oak-pine woodland, Biol.

Conserv., 106, 389–398, 2002.

Emanuelsson, U.: The Rural Landscapes of Europe, Formas, Stock-

holm, 2009.

Engineering Toolbox: The Engineering Toolbox, http://www.

engineeringtoolbox.com/, last access: 01 May 2014.

Erb, K.-H., Kastner, T., Luyssaert, S., Houghton, R. A., Kuem-

merle, T., Olofsson, P., and Haberl, H.: Bias in the attribution of

forest carbon sinks, Nature Climate Change, 3, 854–856, 2013.

Fang, J., Kato, T., Guo, Z., Yang, Y., Hu, H., Shen, H., Zhao, X.,

Kishimoto-Mo, A. W., Tang, Y., and Houghton, R. A.: Evidence

for environmentally enhanced forest growth, P. Natl. Acad. Sci.

USA, 111, 9527–9532, doi:10.1073/pnas.1402333111, 2014.

Farrell, E. P., Führer, E., Dermot, R., Andersson, F., Hüttle, R., and

Piussi, P.: European forest ecosystems: building the future on the

legacy of the past, Forest Ecol. Manag., 132, 5–20, 2000.

Fernández-Martínez, M., Vicca, S., Janssens, I. A., Luyssaert, S.,

Campioli, M., Sardans, J., Estiarte, M., and Peñuelas, J.: Spa-

tial variability and controls over biomass stocks, carbon fluxes,

and resource-use efficiencies across forest ecosystems, Trees, 28,

597–611, doi:10.1007/s00468-013-0975-9, 2014.

Ferraris: Kabinetskaart der Oostenrijkse Nederlanden en het Prins-

dom Luik 1777, http://www.kbr.be/collections/cart_plan/ferraris/

ferraris_nl.html (last access: 25 November 2014), 1777.

Forestry Comission: History of the Forestry Commission, http://

www.forestry.gov.uk/forestry/CMON-4UUM6R (last access: 29

March 2015), 2013.

Fyfe, R. M., Woodbridge, J., and Roberts, N.: From forest to farm-

land: pollen-inferred land cover change across Europe using the

pseudobiomization approach, Remote Sens. Environ., 21, 1197–

1212, doi:10.1111/gcb.12776, 2014.

Gao, Y., Markkanen, T., Backman, L., Henttonen, H. M., Pietikäi-

nen, J.-P., Mäkelä, H. M., and Laaksonen, A.: Biogeophysi-

cal impacts of peatland forestation on regional climate changes

Biogeosciences, 12, 4291–4316, 2015 www.biogeosciences.net/12/4291/2015/

http://dx.doi.org/10.1016/j.ecolmodel.2010.08.038
http://dx.doi.org/10.1007/s10021-007-9058-3
http://dx.doi.org/10.1007/s10980-007-9128-0
http://dx.doi.org/10.5194/bg-5-1259-2008
http://www.engineeringtoolbox.com/
http://www.engineeringtoolbox.com/
http://dx.doi.org/10.1073/pnas.1402333111
http://dx.doi.org/10.1007/s00468-013-0975-9
http://www.kbr.be/collections/cart_plan/ferraris/ferraris_nl.html
http://www.kbr.be/collections/cart_plan/ferraris/ferraris_nl.html
http://www.forestry.gov.uk/forestry/CMON-4UUM6R
http://www.forestry.gov.uk/forestry/CMON-4UUM6R
http://dx.doi.org/10.1111/gcb.12776


M. J. McGrath et al.: Forest management reconstruction 4313

in Finland, Biogeosciences, 11, 7251–7267, doi:10.5194/bg-11-

7251-2014, 2014.

Gimmi, U., Bürgi, M., and Stuber, M.: Reconstructing anthro-

pogenic disturbance regimes in forest ecosystems: a case

study from the Swiss Rhone Valley, Ecosystems, 11, 113–124,

doi:10.1007/s10021-007-9111-2, 2008.

Gimmi, U., Poulter, B., Wolf, A., Portner, H., Weber, P., and

Bürgi, M.: Soil carbon pools in Swiss forests show legacy effects

from historic forest litter raking, Landscape Ecol., 28, 835–846,

doi:10.1007/s10980-012-9778-4, 2012.

Hengeveld, G. M., Nabuurs, G.-J., Didion, M., van den Wyngaert, I.,

Clerkx, A. P. P. M., and Schelhaas, M.-J.: A forest management

map of European forests, Ecol. Soc., 17, 53, doi:10.5751/ES-

05149-170453, 2012.

Hobbs, N.: Modification of ecosystems by ungulates, J. Wildlife

Manage., 60, 695–713, doi:10.2307/3802368, 1996.

Hudiburg, T. W., Law, B. E., Wirth, C., and Luyssaert, S.: Regional

carbon dioxide implications of forest bioenergy production, Na-

ture Climate Change, 1, 419–423, 2011.

Hudiburg, T. W., Luyssaert, S., Thornton, P. E., and Law, B. E.:

Interactive effects of environmental change and management

strategies on regional forest carbon emissions, Environ. Sci.

Technol., 47, 13132–13140, doi:10.1021/es402903u, 2013.

HYDE: Historical population database, ftp://ftp.pbl.nl/../hyde/

hyde31_final/, last access: 01 May 2014.

Iriarte-Goñi, I. and Ayuda, M. I.: Wood and industrialization: evi-

dence and hypotheses from the case of Spain, 1860–1935, Ecol.

Econ., 65, 177–186, 2008.

Jackson, R. B., Jobbágy, E. G., Avissar, R., Roy, S. B., Barrett, D. J.,

Cook, C. W., Farley, K. A., Le Maitre, D. C., McCarl, B. A., and

Murray, B. C.: Trading water for carbon with biological carbon

sequestration, Science, 310, 1944–1947, 2005.

Jackson, R. B., Randerson, J. T., Canadell, J. G., Anderson, R. G.,

Avissar, R., Baldocchi, D. D., Bonan, G. B., Caldeira, K., Dif-

fenbaugh, N. S., Field, C. B., Hungate, B. A., Jobbagy, E. G.,

Kueppers, L. M., Nosetto, M. D., and Patakiet, D. E.: Pro-

tecting climate with forests, Environ. Res. Lett., 3, 044006,

doi:10.1088/1748-9326/3/4/044006, 2008.

Jarvis, P. and Linder, S.: Constraints to growth of boreal forests,

Nature, 405, 904–905, 2000.

Kammen, D. and Lew, D.: Review of Technologies for the Produc-

tion and Use of Charcoal, Renewable and appropriate energy lab-

oratory report, Renewable and Appropriate Energy Laboratory,

U.C. Berkeley, 2005.

Kaplan, J. O., Krumhardt, K. M., and Zimmermann, N.: The pre-

historic and preindustrial deforestation of Europe, Quaternary

Sci. Rev., 28, 3016–3034, doi:10.1016/j.quascirev.2009.09.028,

2009.

Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F.,

Lemmen, C., and Goldewijk, K. K.: Holocene carbon emissions

as a result of anthropogenic land cover change, Holocene, 30 De-

cember, doi:10.1177/0959683610386983, 2010.

Kaplan, J. O., Krumhardt, K. M., and Zimmermann, N. E.: The ef-

fects of land use and climate change on the carbon cycle of Eu-

rope over the past 500 years, Glob. Change Biol., 18, 902–914,

2012.

Keith, H., Lindenmayer, D., Mackey, B., Blair, D., Carter, L.,

McBurney, L., Okada, S., and Konishi-Nagano, T.: Managing

temperate forests for carbon storage: impacts of logging ver-

sus forest protection on carbon stocks, Ecosphere, 5, 1–34,

doi:10.1890/ES14-00051.1, 2014.

Kenk, G. and Guehne, S.: Management of transformation in central

Europe, Forest Ecol. Manag., 151, 107–119, doi:10.1016/S0378-

1127(00)00701-5, 2001.

Kirby, K. J. and Watkins, C.: The Ecological History of European

Forests, CAB International, Wallingford, England, 1998.

Kishore, V., Bhandari, P., and Gupta, P.: Biomass energy technolo-

gies for rural infrastructure and village power – opportunities and

challenges in the context of global climate change concerns, En-

erg. Policy, 32, 801–810, 2004.

Klein Goldewijk, K. and Verburg, P.: Uncertainties in global-

scale reconstructions of historical land use: an illustration

using the HYDE data set, Landscape Ecol., 28, 861–877,

doi:10.1007/s10980-013-9877-x, 2013.

Klein Goldewijk, K., Beusen, A., van Drecht, G., and de Vos, M.:

The HYDE 3.1 spatially explicit database of human-induced

global land-use change over the past 12,000 years, Global Ecol.

Biogeogr., 20, 73–86, doi:10.1111/j.1466-8238.2010.00587.x,

2011.

Krausmann, F., Erb, K.-H., Gingrich, S., Haberl, H., Bondeau, A.,

Gaube, V., Lauk, C., Plutzar, C., and Searchinger, T. D.: Global

human appropriation of net primary production doubled in the

20th century, P. Natl. Acad. Sci. USA, 110, 10324–10329,

doi:10.1073/pnas.1211349110, 2013.

Küster, H.: The economic use of Abies wood as timber in central

Europe during Roman times, Veg. Hist. Archaeobot., 3, 25–32,

1994.

Kuusela, K.: Forest Resources in Europe, University of Cambridge,

Cambridge, UK, 1994.

Lamlom, S. and Savidge, R.: A reassessment of carbon content

in wood: variation within and between 41 North American

species, Biomass Bioenerg., 25, 381–388, doi:10.1016/S0961-

9534(03)00033-3, 2003.

Lemus, R. and Lal, R.: Bioenergy crops and car-

bon sequestration, Crit. Rev. Plant Sci., 24, 1–21,

doi:10.1080/07352680590910393, 2005.

Levers, C., Verkerk, P. J., Müller, D., Verburg, P. H., Butsic, V.,

Leitão, P. J., Lindner, M., and Kuemmerle, T.: Drivers of for-

est harvesting intensity patterns in Europe, Forest Ecol. Manag.,

315, 160–172, doi:10.1016/j.foreco.2013.12.030, 2014.

Lüpke, N. V., Hardtke, A., Lück, M., Hessenmöller, D., Ammer, C.,

and Schulze, E. D.: Bestandesvorrat, Baumartenvielfalt und

Strukturkleinparzellierter Privatwälder im Hainich, Forstarchiv,

82, 203–215, 2011.

Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J.,

Ceschia, E., Churkina, G., Don, A., Erb, K., Ferlicoq, M.,

Gielen, B., Gruenwald, T., Houghton, R. A., Klumpp, K.,

Knohl, A., Kolb, T., Kuemmerle, T., Laurila, T., Lohila, A., Lous-

tau, D., McGrath, M. J., Meyfroidt, P., Moors, E. J., Naudts, K.,

Novick, K., Otto, J., Pilegaard, K., Pio, C. A., Rambal, S., Reb-

mann, C., Ryder, J., Suyker, A. E., Varlagin, A., Wattenbach, M.,

and Dolman, A. J.: Land management and land-cover change

have impacts of similar magnitude on surface temperature, Na-

ture Climate Change, 4, 389–393, 2014.

Maddison: Historical GDP data, revised 2013, http://www.ggdc.net/

maddison/maddison-project/home.htm, last accessed: 01 June

2014.

www.biogeosciences.net/12/4291/2015/ Biogeosciences, 12, 4291–4316, 2015

http://dx.doi.org/10.5194/bg-11-7251-2014
http://dx.doi.org/10.5194/bg-11-7251-2014
http://dx.doi.org/10.1007/s10021-007-9111-2
http://dx.doi.org/10.1007/s10980-012-9778-4
http://dx.doi.org/10.5751/ES-05149-170453
http://dx.doi.org/10.5751/ES-05149-170453
http://dx.doi.org/10.2307/3802368
http://dx.doi.org/10.1021/es402903u
ftp://ftp.pbl.nl/../hyde/hyde31_final/
ftp://ftp.pbl.nl/../hyde/hyde31_final/
http://dx.doi.org/10.1088/1748-9326/3/4/044006
http://dx.doi.org/10.1016/j.quascirev.2009.09.028
http://dx.doi.org/10.1177/0959683610386983
http://dx.doi.org/10.1890/ES14-00051.1
http://dx.doi.org/10.1016/S0378-1127(00)00701-5
http://dx.doi.org/10.1016/S0378-1127(00)00701-5
http://dx.doi.org/10.1007/s10980-013-9877-x
http://dx.doi.org/10.1111/j.1466-8238.2010.00587.x
http://dx.doi.org/10.1073/pnas.1211349110
http://dx.doi.org/10.1016/S0961-9534(03)00033-3
http://dx.doi.org/10.1016/S0961-9534(03)00033-3
http://dx.doi.org/10.1080/07352680590910393
http://dx.doi.org/10.1016/j.foreco.2013.12.030
http://www.ggdc.net/maddison/maddison-project/home.htm
http://www.ggdc.net/maddison/maddison-project/home.htm


4314 M. J. McGrath et al.: Forest management reconstruction

Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P.,

Berninger, F., Delzon, S., Grelle, A., Hari, P., Jarvis, P. G.,

Kolari, P., Kowalski, A. S., Lankreijer, H., Law, B. E., Lin-

droth, A., Loustau, D., Manca, G., Moncrieff, J. B., Rayment, M.,

Tedeschi, V., Valentini, R., and Grace, J.: The human footprint in

the carbon cycle of temperate and boreal forests, Nature, 447,

848–850, doi:10.1038/nature05847, 2007.

Mantau, U., Saal, U., Prins, K. F., Steierer, M., Lindner, H., Verk-

erk, J., Eggers, N., Leek, J., Oldenburger, A., Asikainen, P., and

Anttila, M., U.: EUwood – Real potential for changes in growth

and use of EU forests, Final report, Hamburg/Germany, 1–160,

2010.

Mantel, K.: Wald und Forst in der Geschichte, Schaeper, Hannover,

Deutschland, 1990.

Mather, A. S.: The forest transition, Area, 24, 367–379, 1992.

Mather, A. S. and Fairbairn, J.: From floods to reforestation: the

forest transition in Switzerland, Environ. Hist., 6, 399–421, 2000.

Mather, A. S., Fairbairn, J., and Needle, C. L.: The course and

drivers of the forest transition: the case of France, J. Rural Stud.,

15, 65–90, 1999.

McMahon, S. M., Parker, G. G., and Miller, D. R.: Evidence for a

recent increase in forest growth, P. Natl. Acad. Sci. USA, 107,

3611–3615, doi:10.1073/pnas.0912376107, 2010.

Menemencioglu, K.: Traditional wood charcoal production labour

in Turkish forestry (Çankırı sample), J. Food Agric. Environ.,

11, 1136–1142, 2013.

Meyfroidt, P. and Lambin, E. F.: Global Forest Transition: Prospects

for an End to Deforestation, Annu. Rev. Env. Resour., 36, 343–

371, doi:10.1146/annurev-environ-090710-143732, 2011.

Myllyntaus, T. and Mattila, T.: Decline or increase? The standing

timber stock in Finland, 1800–1997, Ecol. Econ., 41, 271–288,

2002.

Naudts, K., Ryder, J., J. McGrath, M., Otto, J., Chen, Y., Valade,

A., Bellasen, V., Berhongaray, G., Bönisch, G., Campioli, M.,

Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean, N.,

Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, B., Pret-

zsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and

Luyssaert, S.: A vertically discretised canopy description for OR-

CHIDEE (SVN r2290) and the modifications to the energy, water

and carbon fluxes, Geosci. Model Dev. Discuss., 7, 8565–8647,

doi:10.5194/gmdd-7-8565-2014, 2014.

Norby, R. J., Delucia, E. H., Gielen, B., Calfapietra, C., Gi-

ardina, C. P., King, J. S., Ledford, J., McCarthy, H. R.,

Moore, D. J. P., Ceulemans, R., De Angelis, P., Finzi, A. C.,

Karnosky, D. F., Kubiske, M. E., Lukac, M., Pregitzer, K. S.,

Scarascia-Mugnozza, G. E., Schlesinger, W. H., and Oren, R.:

Forest response to elevated CO2 is conserved across a broad

range of productivity, P. Natl. Acad. Sci. USA, 102, 18052–

18056, doi10.1073/pnas.0509478102, 2005.

Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and

McMurtrie, R. E.: CO2 enhancement of forest productivity con-

strained by limited nitrogen availability, P. Natl. Acad. Sci. USA,

107, 19368–19373, doi:10.1073/pnas.1006463107, 2010.

Olofsson, J. and Hickler, T.: Effects of human land-use on the global

carbon cycle during the last 6,000 years, Veg. Hist. Archaeobot.,

17, 605–615, 2008.

Otto, J., Berveiller, D., Bréon, F.-M., Delpierre, N., Geppert, G.,

Granier, A., Jans, W., Knohl, A., Kuusk, A., Longdoz, B., Moors,

E., Mund, M., Pinty, B., Schelhaas, M.-J., and Luyssaert, S.:

Forest summer albedo is sensitive to species and thinning: how

should we account for this in Earth system models?, Biogeo-

sciences, 11, 2411–2427, doi:10.5194/bg-11-2411-2014, 2014.

Perlin, J.: A Forest Journey: The Story of Wood and Civilization,

The Countryman Press, Vermont, 2005.

Petit, R. J., Brewer, S., Bordács, S., Burg, K., Cheddadi, R.,

Coart, E., Cottrell, J., Csaikl, U. M., van Dam, B.,

Deans, J. D., Espinel, S., Fineschi, S., Finkeldey, R., Glaz, I.,

Goicoechea, P. G., Jensen, J. S., König, A. O., Lowe, A. J., Mad-

sen, S. F., Mátyás, G., Munro, R. C., Popescu, F., Slade, D.,

Tabbener, H., de Vries, S. G., Ziegenhagen, B., de Beaulieu, J.-

L., and Kremer, A.: Identification of refugia and post-glacial

colonisation routes of European white oaks based on chloroplast

DNA and fossil pollen evidence, Forest Ecol. Manag., 156, 49–

74, doi:10.1016/S0378-1127(01)00634-X, 2002.

Petit, R. J., Hu, F. S., and Dick, C. W.: Forests of the

past: A window to future changes, Science, 320, 1450–1452,

doi:10.1126/science.1155457, 2008.

Petrie, C.: A Companion to the Archaeology of

the Ancient Near East, Wiley-Blackwell, Oxford,

doi:10.1002/9781444360790.ch15, 2012.

Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L., Bo-

nan, G. B., Brovkin, V., Claussen, M., Delire, C., Ganzeveld, L.,

Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van

der Molen, M. K., Müller, C., Reick, C. H., Seneviratne, S. I.,

Strengers, B. J., and Voldoire, A.: Uncertainties in climate re-

sponses to past land cover change: First results from the LU-

CID intercomparison study, Geophys. Res. Lett., 36, L14814,

doi:10.1029/2009GL039076, 2009.

Pitman, A. J., Avila, F. B., Abramowitz, G., Wang, Y. P.,

Phipps, S. J., and de Noblet-Ducoudré, N.: Importance of back-

ground climate in determining impact of land-cover change on

regional climate, Nature Climate Change, 1, 472–475, 2011.

Pommerening, A. and Murphy, S. T.: A review of the history, defi-

nitions and methods of continuous cover forestry with special at-

tention to afforestation and restocking, Forestry, 77, 27–44, 2004.

Pongratz, J., Reick, C., Raddatz, T., and Claussen, M.: A re-

construction of global agricultural areas and land cover for

the last millennium, Global Biogeochem. Cy., 22, GB3018,

doi:10.1029/2007GB003153, 2008.

Pongratz, J., Raddatz, T., Reick, C. H., Ech, M., and

Claussen, M.: Radiative forcing from anthropogenic land

cover change since A.D. 800, Geophys. Res. Lett., 36, L02709,

doi:10.1029/2008GL036394, 2009a.

Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Ef-

fects of anthropogenic land cover change on the carbon cycle

of the last millennium, Global Biogeochem. Cy., 23, BG4001

doi:10.1029/2009GB003488, 2009b.

Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O.,

Betts, R., Bontemps, S., Boettcher, M., Brockmann, C., De-

fourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, C.,

Lederer, D., Ottlé, C., Peters, M., and Peylin, P.: Plant functional

type classification for Earth System Models: results from the Eu-

ropean Space Agency’s Land Cover Climate Change Initiative,

Geosci. Model Dev. Discuss., 8, 429–462, doi:10.5194/gmdd-8-

429-2015, 2015.

Pound, N.: An Historical Geography of Europe 1500–1840, Press

Syndicate of the University of Cambridge, Cambridge, UK,

1979.

Biogeosciences, 12, 4291–4316, 2015 www.biogeosciences.net/12/4291/2015/

http://dx.doi.org/10.1038/nature05847
http://dx.doi.org/10.1073/pnas.0912376107
http://dx.doi.org/10.1146/annurev-environ-090710-143732
http://dx.doi.org/10.5194/gmdd-7-8565-2014
http://dx.doi.org/10.1073/pnas.1006463107
http://dx.doi.org/10.5194/bg-11-2411-2014
http://dx.doi.org/10.1016/S0378-1127(01)00634-X
http://dx.doi.org/10.1126/science.1155457
http://dx.doi.org/10.1002/9781444360790.ch15
http://dx.doi.org/10.1029/2009GL039076
http://dx.doi.org/10.1029/2007GB003153
http://dx.doi.org/10.1029/2008GL036394
http://dx.doi.org/10.1029/2009GB003488
http://dx.doi.org/10.5194/gmdd-8-429-2015
http://dx.doi.org/10.5194/gmdd-8-429-2015


M. J. McGrath et al.: Forest management reconstruction 4315

Pretzsch, H.: Forest Dynamics, Growth and Yield, Springer, Heidel-

berg, 2009.

Pretzsch, H., Biber, P., Schütze, G., Uhl, E., and Rötzer, T.:

Forest stand growth dynamics in Central Europe have ac-

celerated since 1870, Nature Communications, 5, 1–10,

doi:10.1038/ncomms5967, 2014.

Radkau, J.: Holz – Wie ein Naturstoff Geschichte schreibt, Oekom

Verlag, München, Deutschland, 2012.

Randerson, J., Liu, H., Flanner, M., Chambers, S., and Jin, Y.: The

impact of boreal forest fire on climate warming, Science, 314,

1130–1132, doi:10.1126/science.1132075, 2006.

Robin, V.,Bork, H.-R.,Nadeau, M.-J., and Nelle, O.: Fire and for-

est history of central European low mountain forest sites based

on soil charcoal analysis: The case of the eastern Harz, The

Holocene, 24, 35–47, doi:10.1177/0959683613515727, 2013.

Rotherham, I. D.: The implications of perceptions and cultural

knowledge loss for the management of wooded landscapes: A

UK case-study, Forest Ecol. Manag., 249, 100–115, 2007.

Rotenberg, E. and Yakir, D.: Contribution of semi-arid

forests to the climate system, Science, 327, 451–454,

doi:10.1126/science.1179998, 2010.

Sauder, L. and Williams, S.: A practical treatise on the smelting and

smithing of bloomery iron, Historical Metallurgy, 36, 122–131,

2002.

Schenk, W.: Waldnutzung, Waldzustand und regionale Entwicklung

in vorindustrieller Zeit im mittleren Deutschland, Historisch-

geographische Beiträge zur Erforschung von Kulturlandschaften

in Mainfranken und Nordhessen, Erdkundliches Wissen, Vol.

117, Steiner, Stuttgart, 1996.

Scherer-Lorenzen, M., Elend, A., Nöllert, S., and Schulze, E.: In-

vasive Species in a Changing World, Island Press, Washington,

2000.

Schlamadinger, B. and Marland, G.: The role of forest and bioen-

ergy strategies in the global carbon cycle, Biomass Bioenerg., 10,

275–300, 1996.

Schnitzler, A.: Towards a new European wilderness: em-

bracing unmanaged forest growth and the decolonisa-

tion of nature, Landscape Urban Plan., 126, 74–80,

doi:10.1016/j.landurbplan.2014.02.011, 2014.

Schulze, E., Aas, G., Grimm, G., Denk, T., Gossner, M., Kühn, I.,

Scherer-Lorenzen, M., Walentowski, H., and Ewald, S. L.: Plant-

diversity, nature conservation and forest management in Ger-

many, Eur. J. Forest Res., in review, 2015.

Schulze, E. D., Ciais, P., Luyssaert, S., Schrumph, M.,

Janssens, I. A., Thiruchittampalam, B., Theloke, J., Saurat, M.,

Bringezu, S., Lelieveld, J., Lohila, A., Rebmann, C., Jung, M.,

Bastviken, D., Abril, G., Grassi, G., Leip, A., Freibauer, A.,

Kutsch, W., Don, A., Nieschulze, J., Börner, A., Gash, J. H.,

and Dolman, A. J.: The European carbon balance, Part 4, inte-

gration of carbon and other trace-gas fluxes, Glob. Change Biol.,

16, 1451–1469, doi:10.1111/j.1365-2486.2010.02215.x, 2010.

Seidl, R., Schelhaas, M.-J., and Lexer, M. J.: Unraveling the drivers

of intensifying forest disturbance regimes in Europe, Glob.

Change Biol., 17, 2842–2852, 2011.

Selter, B.: Waldnutzung und ländliche Gesellschaft – Land-

wirtschaftlicher Nährwald und neue Holzökonomie im Sauerland

des 18. und 19. Jahrhunderts, Schöningh, Paderborn, 1995.

Sim, D. and Ridge, I.: Iron for the Eagles: The Iron Industry of

Roman Britain, Tempus Publishing, UK, 2002.

Sinopoli, C.: Pottery and People: A Dynamic Interaction, University

of Utah Press, Salt Lake City, 1999.

Sournia, J.-C.: A History of Alcoholism, Basil Blackwell, Oxford,

UK, 1990.

Spiecker, H.: Overview of recent growth trends in European forests,

Water Air Soil Poll., 116, 33–46, 1999.

Spinoni, J., Vogt, J., and Barbosa, P.: European degree-day clima-

tologies and trends for the period 1951—2011, Int. J. Climatol.,

35, 25–36, doi:10.1002/joc.3959, 2015.

Statistics Finland: The growing years of Finland’s industrial pro-

duction, http://www.stat.fi/tup/suomi90/toukokuu_en.html (last

access: 01 December 2014), 2007.

Sutherland, R. J. M., Humm, D., and Chrimes, M.: Historic Con-

crete: Background to Appraisal, Thomas Telford, London, 2001.

Tinner, W. and Lotter, A.: Holocene expansion of Fagus sylvat-

ica and Abies alba in Central Europe: where are we after eight

decades of debate?, Quaternary Sci. Rev., 25, 526–549, 2006.

Trondman, A.-K., Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R.,

Nielsen, A. B., Twiddle, C., Barratt, P., Birks, H. J. B.,

Bjune, A. E., Björkman, L., Broström, A., Caseldine, C.,

David, R., Dodson, J., Dörfler, W., Fischer, E., van Geel, B.,

Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., van der

Knaap, P., Koff, T., Kuneš, P., Lagerås, P., Latałowa, M., Lechter-

beck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, L.,

Mitchell, F. J. G., Odgaard, B. V., Peglar, S. M., Persson, T.,

Poska, A., Rösch, M., Seppä, H., Veski, S., and Wick, L.: Pollen-

based quantitative reconstructions of Holocene regional vegeta-

tion cover (plant-functional types and land-cover types) in Eu-

rope suitable for climate modelling, Glob. Change Biol., 21, 676–

697, doi:10.1111/gcb.12737, 2015.

Unger, R. W.: Beer in the Middle Ages and the Renaissance, Uni-

versity of Pennsylvania Press, Philadelphia, 2004.

Vilén, T., Gunia, K., Verkerk, P. J., Seidl, R., Schelhaas, M.-J., Lind-

ner, M., and Bellassen, V.: Reconstructed forest age structure in

Europe 1950–2010, Forest Ecol. Manag., 286, 203–218, 2012.

Wallenius, T. H., Lilja, S., and Kuuluvainen, T.: Fire history and tree

species composition in managed Picea abies stands in southern

Finland: Implications for restoration, Forest Ecol. Manag., 250,

89–95, 2007.

Warde, P.: Fear of Wood Shortage and the Reality of the Woodland

in Europe, c. 1450–1850, Hist. Workshop, 62, 28–57, 2006.

Weigl, N.: Die österreichische Forstwirtschaft im 20. Jahrhundert

– Von der Holzproduktion über die Mehrzweckforstwirtschaft

zum Ökosystemmanagement, in: Geschichte der österreichis-

chen Land- und Forstwirtschaft im 20. Jahrhundert, edited by:

Bruckmüller, E., Hanisch E., Sandgruber, R., and Weigl, N., 593–

740, 2002.

Wilson, A.: The metal supply of the Roman empire, in: Supply-

ing Rome and the Empire: The proceedings of an international

seminar held at Siena-Certosa di Pontignano on May 2–4, 2004

on Rome, the provinces, production and distribution, edited by:

Papi, E., Journal of Roman Archaeology, 69, 109–125, 2007.

York, R.: Do alternative energy sources displace fossil fuels?, Na-

ture Climate Change, 2, 441–443, doi:10.1038/nclimate1451,

2012.

Zaehle, S., Sitch, S., Prentice, I. C., Liski, J., Cramer, W., Er-

hard, M., Hickler, T., and Smith, B.: The importance of age-

related decline in forest NPP for modeling regional carbon bal-

ances, Ecol. Appl., 16, 1555–1574, 2006.

www.biogeosciences.net/12/4291/2015/ Biogeosciences, 12, 4291–4316, 2015

http://dx.doi.org/10.1038/ncomms5967
http://dx.doi.org/10.1126/science.1132075
http://dx.doi.org/10.1177/0959683613515727
http://dx.doi.org/10.1126/science.1179998
http://dx.doi.org/10.1016/j.landurbplan.2014.02.011
http://dx.doi.org/10.1111/j.1365-2486.2010.02215.x
http://dx.doi.org/10.1002/joc.3959
http://www.stat.fi/tup/suomi90/toukokuu_en.html
http://dx.doi.org/10.1111/gcb.12737
http://dx.doi.org/10.1038/nclimate1451


4316 M. J. McGrath et al.: Forest management reconstruction

Zerbe, S.: Restoration of natural broad-leaved woodland in Cen-

tral Europe on sites with coniferous forest plantations, Forest

Ecol. Manag., 167, 27–42, doi:10.1016/S0378-1127(01)00686-

7, 2002.

Zon, R. and Sparhawk, W. N.: Forest Resources of the World,

McGraw-Hill, New York, 1923.

Biogeosciences, 12, 4291–4316, 2015 www.biogeosciences.net/12/4291/2015/

http://dx.doi.org/10.1016/S0378-1127(01)00686-7
http://dx.doi.org/10.1016/S0378-1127(01)00686-7

	Abstract
	Introduction
	Material and methods
	General approach
	Reconstructing wood and litter demand for 1600--1828
	Fuelwood demand (1600--1828)
	Industrial wood and charcoal demand (1600--1828)
	Timber production (1600--1828)
	Litter demand (1600--1828)

	Reconstructing wood supply
	Forest area and species composition (1600--2010)
	Wood production (1600--1829)

	Reconstructing forest management
	Defining forest management strategies
	Two sets of forest management maps
	GEN-MAP (1600--1828)
	GEN-MAP (1829--1949)
	GEN-MAP (1950--2010)
	ORC-MAPS (1600--2010)


	Results and discussion
	Land cover reconstruction
	Demand and supply (1600--1828)
	Litter demand
	Forest management reconstruction
	Trends in forest management
	Quality of the reconstructions
	Ways forward

	Data and map availability

	Conclusions
	Author contributions
	Acknowledgement
	References

