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A new polychelidan lobster 
preserved with its eggs in a 165 Ma 
nodule
Clément Jauvion1,2*, Denis Audo3,4, Sylvain Bernard2, Jean Vannier5, Allison C. Daley6 & 
Sylvain Charbonnier1

Crustacean eggs are rare in the fossil record. Here we report the exquisite preservation of a fossil 
polychelidan embedded within an unbroken nodule from the Middle Jurassic La Voulte-sur-Rhône 
Lagerstätte (France) and found with hundreds of eggs attached to the pleon. This specimen belongs to 
a new species, Palaeopolycheles nantosueltae sp. nov. and offers unique clues to discuss the evolution 
of brooding behaviour in polychelidan lobsters. In contrast to their development, which now relies on a 
long-lived planktic larval stage that probably did not exist in the early evolutionary steps of the group, 
the brood size of polychelidan lobsters seems to have remained unchanged and comparatively small 
since the Jurassic. This finding is at odds with reproductive strategies in other lobster groups, in which a 
long-lived planktic larval stage is associated with a large brood size.

Pleocyemata (including crabs, lobsters, crayfishes, caridean shrimps, polychelidan lobsters and others) is a group 
of decapod crustaceans characterised by a specific reproductive strategy, in which females brood their eggs on 
their abdominal appendages, instead of releasing them directly into the ocean.

The development of modern polychelidan lobsters (Polychelida), a group of deep-sea dwelling Pleocyemata1–4 
involves a long-lived, giant, balloon-like larval stage, the eryoneicus, which feeds within the plankton. In contrast 
to other Pleocyemata with a long-lived larval stage5, polychelidan lobsters have a low number (hundreds) of small 
eggs (Figs. 1 and 2). Although polychelidan lobsters have a long fossil record dating back to at least the Triassic6, 
we lack key information on the evolution of their reproductive modes. There is no evidence of eryoneicus larvae 
in the fossil record probably until at least the Late Cretaceous7. In contrast, there are multiple reports of immature 
adult-looking specimens from the Jurassic3,8,9 (Fig. S1), suggesting that the development of polychelidan lobsters 
did not rely on a long-lived planktic stage in Jurassic waters.

Although a few fossils of arthropods with preserved egg clutches have been described10–17, no fossil of a 
decapod crustacean with its eggs preserved has been reported so far, despite the discovery of several tens of 
well-preserved fossil specimens18. As a result, the number and size of eggs of Jurassic polychelidan lobsters was 
unknown, making it difficult to evaluate if the emergence of the eryoneicus larvae was accompanied by a change 
in fecundity.

Here, we report the discovery of a unique specimen of polychelidan exquisitely preserved with its eggs within 
an unbroken nodule from the Middle Jurassic La Voulte-sur-Rhône Lagerstätte, France (Fig. 3).

Results
X-Ray microtomography allowed the discovery and detailed reconstruction of anatomical features without dam-
aging the sample. This is the sole representative of a new species. The investigated specimen displays a low num-
ber (n = 459) of relatively small-sized eggs under its pleon (abdomen), attached to the pleopods (swimming 
legs; Figs. 3 and S2). In addition to its eggs preserved in biological position, this specimen also displays a sper-
matheca, a specific organ used for sperm storage (Fig. 4D) present in modern Decapoda. All the mouthparts, 
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the hepatopancreas (digestive gland), and the digestive tube (e.g. cardiac and pyloric stomachs; Fig. 3) are also 
preserved.

The position of eggs (under the pleon, carried by pleopods 1–5), their number (n = 459) and the size range 
(0.7–0.9 mm) are remarkably similar to those of modern polychelidan lobsters (Figs. 4 and S1). These clues sug-
gest that Jurassic and extant polychelidan lobsters had a comparable reproduction mode and a relatively small 
brood size compared with other Pleocyemata. For comparative purposes, a new database of egg sizes in modern 
polychelidan lobsters was generated (Table S2).

Systematic palaeontology.  Eucrustacea Kingsley, 1894
Decapoda Latreille, 1802
Pleocyemata Burkenroad, 1963
Polychelida Scholtz & Richter, 1995
Palaeopolycheles Knebel, 1907
Type species. – Eryon longipes Fraas, 1855, by monotypy (Late Jurassic, Kimmeridgian, Germany).
Palaeopolycheles nantosueltae sp. nov.
Type material. – Holotype by monotypy (MNHN.F.A58254) from the La Voulte-sur-Rhône Lagerstätte, 

France (Middle Jurassic, Callovian19). Only known specimen of this species.
Etymology. – The specific epithet is referring to Nantosuelta, a Celtic goddess associated with fertility, alluding 

to the ovigerous state of the holotype.
Palaeopolycheles nantosueltae is ascribed to Polychelida based on the presence of chelate pereiopods 2–4, 

a concave frontal margin, and a dorsoventrally flattened body (Fig. S3). More precisely, it can be ascribed to 
Palaeopolycheles by its long anterolateral angle forming a spine orientated forward, ocular incision opening lat-
erally, small cervical and hepatic incisions, short posterolateral angle, pleonite 5 on which the posterior trans-
verse groove intersects the median line, very rounded scaphocerite, and narrow third maxilliped ischium20. 
Palaeopolycheles nantosueltae differs from the only other known species, Palaeopolycheles longipes (Fraas, 1855), 
by its shorter antennular peduncle reaching less than half the length of the scaphocerite (almost as long as the 
scaphocerite in P. longipes) and less curved cervical groove (more curved in P. longipes). These differences, added 
to the stratigraphic gap (Callovian-Kimmeridgian) separating both species, lead us to consider P. nantosueltae as 
a distinct species, albeit closely allied to P. longipes.

General discussion.  In extant lobsters, a long larval stage generally goes together with large brood (i.e., large 
number of smaller eggs per clutch), while species that hatch directly as adult-looking individuals generally pro-
duce a small number of relatively large eggs (Fig. 1). For instance, spiny and slipper lobsters (Achelata) produce in 
the range of tens of thousands to almost two million small eggs per clutch and live quite a long time as long-legged 
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Figure 1.  Comparative brood and development strategies in some extant lobsters (Decapoda). (A) Achelata 
Scholtz & Richer, 1995, eggs, phyllosoma (by C. Jauvion after Haeckel 1899), adult (by D. Audo); (B) Astacidea 
Latreille, 1802, eggs, third zoea (by C. Jauvion after Herrick 1911), adult (by D. Audo); (C) Polychelida Scholtz & 
Richer, 1995, eggs, eryoneicus (by C. Jauvion after Bouvier 1917), adult (by C. Jauvion after Hickson 1893).
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planktic larvae (phyllosoma; Table S1). In contrast, marine clawed lobsters and freshwater crayfishes (Astacidea) 
produce fewer (only a few hundred per clutch) but bigger eggs and display a shorter, more direct development5. 
Palaeontology and phylogenetics suggest that the ancestral state in decapod crustaceans is a relatively long and 
direct development pattern, without dramatic changes at each ontogenetic stage8,9,21.

Since the development of polychelidan lobsters incorporated a long-lived, giant planktic larval stage at 
the end of the Mesozoic7, it is surprising that their brood and egg sizes do not seem to have changed much in 
165 Ma. Physiological or environmental constraints may have been at play. There is no data on the relationship 
between reproductive strategy and environmental conditions in extant polychelidan lobsters; however, the rela-
tionship between habitat and brood size has been reported in slipper lobsters. Species of slipper lobsters with a 
pelagic phyllosoma stage produce relatively small clutches of big eggs associated with a short-lived phyllosoma 
stage, while species with a pelagic phyllosoma stage produce very large clutches of small eggs associated with a 
longer-lived phyllosoma stage22. These specific behaviours are directly related to the larval survival rates in both 
environments, which is higher in coastal settings22, due to a lower dispersion and higher food availability in this 
environment compared to the open ocean.

The establishment of the long-lived planktic larva (eryoneicus), probably during the Cretaceous7 or after, 
likely offered the possibility to polychelidan lobsters to survive in the deep sea, while shallow water taxa went 
extinct1, possibly owing to the evolution of true crabs that likely competed for similar resources and habitats23,24. 
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Figure 2.  Modern ovigerous polychelidan lobsters; (A,B) Stereomastis auriculata (Bate, 1878), 
MNHN-IU-2016-9911; (A) dorsal view; (B) ventral view, 553 distinguishable eggs in this photograph; (C,D) 
Polycheles enthrix (Bate, 1878), MNHN-IU-2018-4209: (C) dorsal view; (D) ventral view, 389 distinguishable 
eggs in this photograph. Scale bars: 20 mm. Photographs: L. Cazes.
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At the same time, the limited resources of this harsh environment may have been constraining brood size in poly-
chelidan lobsters. Eryoneicus larvae develop higher in the water column than the deep sea, alleviating competi-
tion with their parents for food resources on the seafloor25. This giant larval stage thus likely increased the fitness 
of polychelidan lobsters and allowed their wide geographical dispersal25, despite a comparatively small brood size.
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Figure 3.  Palaeopolycheles nantosueltae, MNHN.F.A58254; (A) unbroken nodule showing arms of brittle stars; 
(B–F) 3D model; (B) nodule with the specimen and associated brittle stars visible; (C) dorsal view; (D) ventral 
view; (E) left lateral view; (F) left lateral view, with the shield removed. a1, antennula; a2, antenna; cs, cardiac 
stomach; eg, eggs; en, uropodal endopod; ex, uropodal exopod; hp, hepatopancreas; o, eye; P1-5, pereiopods 
1–5 (thoracopods 4–8); pl, pleon; pl1-5, pleopods 1–5; ps, pyloric stomach; sc, scaphocerite; sh, shield; t, telson. 
Scale bars: 10 mm. Photograph: P. Massicard.
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Material and Methods
Specimens.  The fossil specimen is embedded within an unbroken nodule (MNHN.F.A58254, Fig. 3A,B) 
from the La Voulte-sur-Rhône Lagerstätte, Callovian, France, and is housed in the palaeontology collection of 
the Muséum national d’Histoire naturelle (acronym: MNHN.F). The La Voulte-sur-Rhône Lagerstätte is world 
renowned for the diversity and quality of its fauna, especially arthropods19,26. Fossiliferous concretions with 
exceptional preservation come from marls outcropping at the Ravin des Mines locality, which are topped by 15 m 
of iron carbonate deposits19.

Comparisons were made with extant specimens housed in the zoological collections of the Muséum national 
d’Histoire naturelle (acronym: MNHN-IU) and to fossil specimens of Palaeopolycheles longipes (Fraas, 1855; 
Fig. S4) housed in the Staatliches Museum für Naturkunde, Stuttgart (acronym: SMNS). The new database of egg 
size in modern polychelidan lobsters was generated for comparison from the MNHN collections. 10 egg diame-
ters were measured per specimen (photograph) using ImageJ. Statistical difference between each extant specimen 
and MNHN.F.A58254 were tested using a Wilcoxon-Mann-Whitney test.

Microtomography.  For microtomography, we used the same method as described in Jauvion et al.2. The 
unbroken nodule was imaged with a v│tome│× 240 L tomograph (GE Sensing & Inspection Technologies 
Phoenix ×│ray) equipped with a microfocus 240 kV/320 W tube delivering a current/voltage of 220 mA/120 kV. 
Microtomography was performed at the AST-RX technical platform of the MNHN, Paris. Data were processed 
to obtain a series of virtual slices with a voxel size (cubic voxel) of 31.4 mm. Virtual slices were saved as a series 
of image files in 16 bits greyscale indicating differences in absorption of X-ray within the nodule (darker for low 
absorption, brighter for high absorption). 1900 virtual slices with a resolution of 1340 × 1198 pixels were thus 
obtained. Outlines of the fossilized structure were segmented using Mimics 20.0 (Materialise) for 3D reconstruc-
tion. MeshLab was used for 3D rendering.
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Figure 4.  Modern eggs and spermatheca from polychelidans (A,B) and comparison with Jurassic 
Palaeopolycheles nantosueltae (C,D); (A) modern polychelidan eggs, Stereomastis galil Ahyong & Brown, 2002, 
MNHN-IU-2016.991; (B) modern spermatheca, Polycheles coccifer Galil, 2000, MNHN-IU-2018–4214; (C) 
close-up of preserved eggs; (D) close-up of preserved spermatheca; (E) Egg size and shield length of modern 
Polychelida and of Palaeopolycheles nantosueltae. 10 eggs were measured per specimen, error bars represent 
standard deviation. The egg size is not statistically different from that of MNHN-IU-2008-10470 (Stereomastis 
helleri; Wilcoxon-Mann-Whitney test, U = 38, p = 0.38396, N = 10). Scale bars: 5 mm in A and C; 2 mm in B 
and D. Photographs: L. Cazes.
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Data availability
X-Ray microtomogaphy data (virtual slices) are available here27: https://doi.org/10.5281/zenodo.3624687.
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