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“In many cases at least, the species will prove to consist of a 
population showing adaptive clines running in various 
directions: the continuous gradation will be broken up by 
various forms of isolation, which, by impeding interbreeding 
and the free flow of genes, will accentuate the mean adaptive 
differences between adjacent groups, as well as in some cases 
introducing non-adaptive differences.” 
 

Julian Huxley, 1938 
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Summary 

On a geological time scale the conditions on earth are very variable and biological 

patterns (for example the distributions of species) are very dynamic. Understanding large 

scale patterns of variation observed today thus requires a deep understanding of the 

historical factors that drove their evolution. 

In this thesis, we reevaluated the evolution and maintenance of a continental color 

cline observed in the European barn owl (Tyto alba) using population genetic tools. The 

colour cline spans from south-est Europe where most individual have pure white underparts 

to north and east Europe where most individuals have rufous-brown underparts. Our results 

globally showed that the old scenario, stipulating that the color cline evolved by secondary 

contact of two color morphs (white and rufous) that evolved in allopatry during the last ice 

age has to be revised. 

We collected samples of about 700 barn owls from the Western Palearctic to 

establish the first population genetic data set for this species. Individuals were genotyped at 

22 microsatellites markers, at one mitochondrial gene, and at a candidate color gene. The 

color of each individuals was assessed and their sex determined by molecular methods. 

We first showed that the genetic variation in Western Europe is very limited 

compared to the heritable color variation. We found no evidences of different glacial 

lineages, and showed that selection must be involved in the maintenance of the color cline 

(chapter 1). Using computer simulations, we demonstrated that the post-glacial colonization 

of Europe occurred from the Iberian Peninsula and that the color cline could not have 

evolved by neutral demographic processes during this colonization (chapter 2). Finally we 

reevaluated the whole history of the establishment of the Western Palearctic variation of 

the barn owl (chapter 3): This study showed that all Western European barn owls descend 
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from white barn owls phenotypes from the Middle East that colonized the Iberian Peninsula 

via North-Africa. Following the end of the last ice age (20’000 years ago), these white barn 

owls colonized Western Europe and under selection a novel rufous phenotype evolved 

(during or after the colonization). An important part of the color variation could be explained 

by a single mutation in the melanocortin-1-receptor (MC1R) gene that appeared during or 

after the colonization. The colonization of Europe reached until Greece, where the rufous 

birds encountered white ones (which reached Greece from the Middle East over the 

Bosporus) in a secondary contact zone. Our analyses show that white and rufous barn owls 

in Greece interbreed only to a limited extent. This suggests that barn owls are at the verge of 

becoming two species in Greece and demonstrates that European barn owls represent an 

incipient ring species around the Mediterranean. 

The revisited history of the establishment of the European barn owl color cline makes 

this model system remarkable for several aspects. It is a very clear example of strong local 

adaptation that can be achieved despite high gene flow (strong color and MC1R 

differentiation despite almost no neutral genetic differentiation). It also offers a wonderful 

model system to study the interactions between colonization processes and selection 

processes which have, for now, been remarkably understudied despite their potentially 

ubiquitous importance. Finally it represents a very interesting case in the speciation 

continuum and appeals for further studying the amount of gene flow that occurs between 

the color morphs in Greece. 
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Résumé 

Sur l’échelle des temps géologiques, les conditions sur terre sont très variables et les 

patrons biologiques (telle que la distribution des espèces) sont très dynamiques. Si l’on veut 

comprendre des patrons que l’on peut observer à large échelle aujourd’hui, il est nécessaire 

de d’abord comprendre les facteurs historiques qui ont gouverné leur établissement. 

Dans cette thèse, nous allons réévaluer, grâce à des outils modernes de génétique 

des populations, l’évolution et la maintenance d’un cline de couleur continental observé 

chez l’effraie des clochers européenne (Tyto alba). Globalement, nos résultats montrent que 

le scenario accepté jusqu’à maintenant, qui stipule que le cline de couleur a évolué à partir 

du contact secondaire de deux morphes de couleur (blanches et rousses) ayant évolué en 

allopatrie durant les dernières glaciations, est à revoir. 

Afin de constituer le premier jeu de données de génétique des populations pour 

cette espèce, nous avons récolté des échantillons d’environ 700 effraies de l’ouest 

Paléarctique. Nous avons génotypé tous les individus à 22 loci microsatellites, sur un gène 

mitochondrial et sur un autre gène participant au déterminisme de la couleur. Nous avons 

aussi mesuré la couleur de tous les individus et déterminé leur sexe génétiquement. 

Nous avons tout d’abord pu montrer que la variation génétique neutre est 

négligeable en comparaison avec la variation héritable de couleur, qu’il n’existe qu’une seule 

lignée européenne et que de la sélection doit être impliquée dans le maintien du cline de 

couleur (chapitre 1). Grâce à des simulations informatiques, nous avons démontré que 

l’ensemble de l’Europe de l’ouest a été recolonisé depuis la Péninsule Ibérique après les 

dernières glaciations et que le cline de couleur ne peut pas avoir évolué par des processus 

neutre durant cette colonisation (chapitre 2). Finalement, nous avons réévalué l’ensemble 

de l’histoire postglaciaire de l’espèce dans l’ouest Paléarctique (chapitre 3): l’ensemble des 
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effraies du Paléarctique descendent d’effraie claire du Moyen-Orient qui ont colonisé la 

péninsule ibérique en passant par l’Afrique du nord. Après la fin de la dernière glaciation (il y 

a 20'000 ans), ces effraies claires ont colonisé l’Europe de l’ouest et ont évolués par 

sélection le phénotype roux (durant ou après la colonisation). Une part importante de la 

variation de couleur peut être expliquée par une mutation sur le gène MC1R qui est apparue 

durant ou juste après la colonisation. Cette vague de colonisation s’est poursuivie jusqu’en 

Grèce où ces effraies rousses ont rencontré dans une zone de contact secondaire des 

effraies claires (qui sont remontées en Grèce depuis le Moyen-Orient via le Bosphore). Nos 

analyses montrent que le flux de gènes  entre effraies blanches et rousses est limité en 

Grèce, ce qui suggère qu’elles sont en passe de former deux espèces et ce qui montre que 

les effraies constituent un exemple naissant de spéciation en anneaux autour de la 

Méditerranée. 

L’histoire revisitée des effraies des clochers de l’ouest Paléarctique en fait un 

système modèle remarquable pour plusieurs aspects. C’est un exemple très claire de forte 

adaptation locale maintenue malgré un fort flux de gènes (différenciation forte de couleur et 

sur le gène MC1R malgré presque aucune structure neutre). Il offre également un très bon 

système pour étudier l’interaction entre colonisation et sélection, un thème ayant été 

remarquablement peu étudié malgré son importance. Et il offre finalement un cas très 

intéressant dans le « continuum de spéciation » et il serait très intéressant d’étudier plus en 

détail l’importance du flux de gènes entre les morphes de couleur en Grèce. 
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General introduction 

The starting point of my work on the barn owl (Tyto alba) was to revisit with modern 

tools the old known pattern of colour variation of this species in Europe (Roulin 2003; Voous 

1950). The European barn owl presents a colour gradient from south-west Europe where 

most individuals have pure white underparts to northeast Europe where most individuals 

present rufous-brown underparts. The main aim was to test whether the gradient, or cline, 

in colour was the result of the adaptation of the barn owl to an environmental gradient or 

could result from other processes. I used molecular genetic tools to infer ecological 

characteristics of the species and thus was able to study the colour variation in a well 

described ecological and historical context. 

I will first explain a few important concepts for the understanding of the major aims 

of this thesis: local adaptation, which is the adaptation of different populations to different 

ecological conditions; second, the history of the concept of cline, which is simply a technical 

term that denotes a gradient of any character; and third the history of the last glaciation 

which have shaped the genetic variation of many species in Europe. I will then present in 

more detail the European barn owl as a model species and finally give an outlook of the 

present thesis. 

 

Local adaptation: is selection strong enough to generate local differences 

between populations? 

Variations at the intraspecific level have intrigued biologists for a long time and 

constituted the raw material of many discussions and theories. The first two chapters of the 
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“origin of the species”, the book that made the foundation of all the modern biology, is 

actually about the variation in domestic and wild organisms respectively (Darwin 1859). If 

Darwin discussed mostly the intraspecific variation within a single population, the 

description of intraspecific variation in a geographical context has also a long history. For 

example, the Bergmann’s rule describes the frequent observation that many animals present 

bigger body sizes at high latitudes than closer to the equator and is a classic ecogeographic 

rule (see discussion on Bergmann’s rule in Lomolino et al. 2006). 

Many of these variations described by naturalists are generally assumed to be 

adaptive and it is only in the last few decades that the “local adaptation” concept has been 

build up to rigorously analyse and test those cases (Kawecki & Ebert 2004). Evidences for 

local adaptation in space can be found in many different contexts, including host-pathogen 

interactions (Greischar & Koskella 2007; Kaltz & Shykoff 1998; Sotka 2005), selection linked 

to climate and temperature (McKay et al. 2001; Savolainen et al. 2007), altitude (Byars et al. 

2007; Keller et al. 2013; Samietz et al. 2005; Storz & Dubach 2004), water salinity (Gomez-

Mestre & Tejedo 2003; McCairns & Bernatchez 2008), interspecific competition (Abjornsson 

et al. 2004; Grondahl & Ehlers 2008), and camouflage (Hoekstra et al. 2005). Examples will 

probably continue to accumulate in the literature and time has probably come for a review 

or a book about the subject (but see Schluter 2000 for a first attempt that would deserve 

deeper treatment). 

The local adaptation concept has also become very important in the last two decades 

in the speciation literature with the growing importance of the so-called “ecological 

speciation” (Nosil 2012). The link between adaptation and speciation was neglected for a 

long time and it is only since the beginning of the 80’s that this issue has started to be 

studied in depth (Coyne & Orr 2004). This discussion goes along with a vivid debate on the 
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relative importance of selection and drift in the process of speciation (Coyne & Orr 2004). 

The dominant view about the necessity of the reduction of gene flow between population of 

an incipient species by some form of allopatry advocated for example by Ernst Mayr (1963) 

has been reevaluated during the last few decades. Nowadays, a more balanced view on 

speciation has started to emerge (Feder et al. 2013; Fitzpatrick et al. 2009; Mallet et al. 

2009). 

A more integrated view of the process of speciation is thus needed with a 

comprehensive view on history, demography and ecology. We will see in this thesis, why I 

think that the European barn owl provides an appropriate model system to study the 

interplay between historical factors, local adaptation and ultimately speciation. 

 

Cline: the evolution of a technical term for “gradient” 

The term “cline” was originally coined by Julian Huxley in 1938 to describe a 

“gradation in measurable characters” (Huxley 1938). Huxley first proposed it as “an auxiliary 

taxonomic principle” by insisting on the fact that species do not always consist of 

homogenous units but sometimes also present gradient of variation at the intraspecific level. 

The early population geneticists quickly realised that a cline might result from an equilibrium 

between selection and gene flow and that quantitative estimates of the two forces could 

well be derived from clinal patterns of variation (early attempt include Fisher 1950; Haldane 

1948). One next important milestone was passed with the seminal works of John Endler 

(Endler 1977; Endler 1973). He developed complementary studies using theoretical 

developments, computer simulations and experimental cline with Drosophila to investigate 

the evolution and maintenance of clines. Endler first emphasised that clines might result 
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from very different processes that do not necessarily require selection: isolation by distance, 

secondary contact of previously allopatric populations, secondary contact between two 

locally adapted populations at an ecotone or adaptation to a continuous environmental 

gradient. Disentangling those origins of clines is still a major challenge in the description of 

any clinal pattern, including the one observed in the barn owl. John Endler was also a 

precursor of many modern questions regarding speciation by proposing that differentiation 

and ultimately parapatric speciation along cline driven by local adaptation despite the 

presence of gene flow might be an important process in evolution (Endler 1977). 

Many of these early interests in clines are still fruitful area of research today and 

have evolved with the tremendous technical development of modern biology. One good 

example is the development of the early theoretical treatment of cline to infer populations’ 

genetic parameters like selection. This was particularly fruitful in the context of hybrid zones 

(Barton & Gale 1990; Barton & Hewitt 1985). Those methods are still widely used and 

developments of tools is still important (eg. Derryberry et al. 2013; Gay et al. 2008). These 

approaches permit to estimate population genetics parameters and infer evolutionary 

processes in secondary contact zones (eg. Gay et al. 2009) or in ecotones between locally 

adapted populations (eg. Mullen & Hoekstra 2008). Some of the early findings still have 

important and sometimes underestimated consequences like for example the criticism of 

Bierne et al. (2011) on the study of the genetic basis of local adaptation. Modern 

development of these technics to use the recently available genomics dataset will probably 

be a major research venue for the identification of the genetic basis of speciation (e.g. 

Gompert & Buerkle 2011). 

The study of clines is also fruitful in different contexts than in secondary contact 

settings. The study of clines, with models of parapatric speciation along them, has for 
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example an importance in the context of the “speciation with gene flow” debate which is 

one of the important question regarding speciation today (Doebeli & Dieckmann 2003; 

Lande 1982; Leimar et al. 2008). Clines at continental scales are interesting for many aspects 

including the current human-induced global changes, for example the evolution driven by 

adaptation to a changing climate (eg. Millien et al. 2006; Umina et al. 2005) or the evolution 

of large scale variation following the invasion of a new range (eg. Huey et al. 2000; Kooyers 

& Olsen 2012; Montague et al. 2008) and even simply local adaptation (Demont et al. 2008; 

Gockel et al. 2001; Hangartner et al. 2012; Long & Singh 1995; Palo et al. 2003; Savolainen et 

al. 2007; Volis et al. 2005). 

One last example of modern questions regarding clines might eventually be the 

revisiting of the establishment of clines by “neutral demographic processes”, especially 

range expansion. The genetic consequences of range expansion are still poorly investigated, 

but it has been clear for almost a decade that such expansion can generate cline that are 

very similar to cline generated by selection and that the origin of cline might be more 

difficult to establish having those process in mind (Excoffier et al. 2009). 

Despite being an “old topic” in population genetics, the study of cline still have many 

very useful implications and some questions need definitely still to be answered. 

 

Glaciations: a major determinant of current genetic variation at temperate 

latitudes 

The climatic conditions on earth have always been changing. If we look back in the 

past, we would see that the last two million years of earth history (Pleistocene and 

Holocene) have been characterized by strong fluctuations in the climatic conditions between 
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cold and warmer periods. We are currently in one of those warmer period (independently 

from global warming), but 20’000 thousands years ago the Alps were under several 

thousands meters of ice. During this last glacial maximum (called Würm in Europe and 

Wisconsinian in America), most of western Europe was characterized by a tundra habitat 

(Flint 1971). It is evident that such dramatic changes have a huge influence on the 

biogeography of many species (for a very general review at the world scale see Lomolino et 

al. 2006). 

Phylogeography is the science of studying genetic lineages in space. This domain was 

founded in the 80s with the apparition of modern molecular genetic tools (PCR, sequencing, 

etc.). One of its major successes is the possibility to reconstruct recent history of many 

taxons by the resolution given by molecular tools. The last glaciation being only a few 

thousand years back in the past, phylogeography provides a wonderful tool to study the 

history of many species in the last 20’000 years. One of the major successes of 

phylogeography was the reconstruction and a better understanding of the fate of many 

organisms during the last ice age (Avise 2000).. 

From many phylogeographic studies on very different organisms inhabiting 

temperate Europe today, some common patterns emerge. For obvious climatic reasons, 

many species had to migrate south to track suitable conditions. Many species, that are 

nowadays spread all over Western Europe, had to retract their rang to the southern 

peninsula of the continent (Iberia, Italy and/or Balkans). After the maximum of the last ice 

age (around 20’000 years ago, see Clark et al. 2009 for a recent reevalution of the timing of 

the last glacial maximum), many of those taxa colonized back northern Europe. If the species 

would have retreated in more than one of the peninsula, we can generally trace back their 
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glacial origin and find the secondary contact zone where the population coming from the 

several refugia meet back (Hewitt 1996, 1999, 2000; Taberlet et al. 1998). 

Given that our model species, the European barn owl is very sensitive to climate 

(Altwegg et al. 2006; Marti & Wagner 1985; Massemin & Handrich 1997), it makes little 

doubt that during the last glacial maximum this species retreated in some form of refugia in 

the south of Europe or even in north Africa (see also below). 

 

The European barn owl (Tyto alba): a well-known species 

The European barn owl is a medium sized nocturnal raptor. It was considered as one 

of the six cosmopolitan bird species for a long time (e.g. Newton 2003), but recent works 

seems to indicate that the barn owls from America and Oceania might be different species 

(König & Weick 2008; Nijman & Aliabadian 2013). With its wide distribution and its 

antropophilic habits, the barn owl (in a broad sense) has been very intensively studied for a 

long time. A search for the keyword:  “barn owl” on Web of Knowledge® brings for example 

approximately 5923 results (on 16.06.2014). If most of this literature stems actually from 

zoological, ecological or behavioural publications, the species is also a model organism for a 

good corpus of literature in neurosciences (860 of 5923 aforementioned references are in 

the area “Neurosciences Neurology”). The barn owl is also the subject of many books: a 

search for “barn owl” on the natural history book shop (www.nhbs.com) on the 16.06.2014 

lead to 29 results among which 11 monographs on the species, 9 technical reports mainly 

from the British Isles and a few more books. 

http://www.nhbs.com/
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But not from a population genetics point of view 

Given the huge amount of literature published and work that has been done on the 

species, it is surprising that almost no population genetics work have been done before the 

start of the present thesis (with the exeption of Matics et al. 2005). The work of Mátics and 

his co-author was very preliminary with only two populations, in Hungary and Switzerland. 

Using RAPD markers, they found that Barn owl genetic diversity is higher in Switzerland than 

in Hungary. And that male present stronger genetic structure than females and that the 

genetic structure between Hungary and Switzerland is substantial (φST = 0.21). These results 

were compatible with the classical understanding of the evolution of the European colour 

cline that is presented below. 

 

The classical view on the evolution of the west European colour cline 

A first important contribution in the description of the Barn owl European colour 

cline was published in 1950 by Karel H. Voous (Voous 1950). From 412 museum skins, Voous 

described the geographic variation in Barn owl colour in a sampling spanning a transect from 

western north-Africa to north eastern Germany. He then interpreted the observed colour 

cline as resulting from a secondary contact between two colour morphs that would have 

evolved in allopatry. He hypothesised the two parent populations to originate from the 

Mediterranean region for the white barn owls (Tyto alba alba) and Crimea or Bulgaria for 

the dark breasted barn owls (T. a. guttata). 

A new dataset permitting to refine the description of the European barn owl colour 

variation was compiled by Alexandre Roulin and published in 2003 (Roulin 2003). The 

number of individuals sampled was much bigger than the sampling by Voous (1340 
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individuals), but the geographic extant was similar. There was no reason to doubt the 

secondary contact hypothesised by Voous from this data set and his interpretations were 

retaken. 

In the only published European population genetics contribution (Matics et al. 2005), 

Mátics interpreted the higher genetic diversity found in Switzerland in comparison to the 

one of Hungary as compatible with the secondary contact hypothesis. The centre of this 

secondary contact (Switzerland) could be hypothesis to be more genetically diverse than a 

region situated further from the hypothesis secondary contact zone (Hungary) and this is 

what they found in that article. 

The classical view of the evolution of the barn owl European colour cline is thus that 

the colour morphs evolved in allopatry in the Western Mediterranean region and 

Crimea/Bulgaria for the white and dark morphs respectively. The colour cline would then 

have evolved by secondary contact after the ice age. This view first described by Voous 

(Voous 1950) has never been challenged, even with larger sampling (Roulin 2003) or genetic 

data (Matics et al. 2005). 

Beside those publications studying and comparing colour variation between 

populations, some important work has been done on the colour variation within population, 

especially in a well-studied Swiss population. Several cross-fostering experiments have 

shown that the colour variation has a strong genetic basis, at least in Switzerland (Roulin & 

Dijkstra 2003; Roulin et al. 1998). Roulin and Dijkstra (2003) estimated the heritability of the 

colour variation at h2=0.81. Mating patterns were also investigated and it was shown that 

the assortment was random in respect to coloration in Switzerland (Roulin 1999), in France 

(Baudvin 1986) and in Hungary (Matics et al. 2002). 
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The starting point of the present thesis was thus to reappraise the evolution and 

maintenance of the strongly genetically determined European barn owl colour cline with 

modern molecular ecological tools. 

 

Aim of the different chapters 

In the first chapter of this thesis, we will compare the structure of the colour 

variation to the neutral genetic structure measured with microsatellite markers for the west 

European cline (Iberian Peninsula to north of the Balkans). We will use the pattern of 

isolation by distance on the matrix of pairwise     of the microsatellites markers and the 

matrix of pairwise     of colour to test if the colour variation evolved by a local adaptation 

process. 

In the second chapter, we will test several plausible post-glacial demographic 

scenarios that might explain the main observed population genetics pattern. Using a 

spatially explicit Approximate Bayesian Computation framework (ABC), we will build up a 

demographic model that could well model the genetic variation observed today. This model 

will then be used to test if neutral genetic simulations might reproduce a pattern such as the 

one observed for colour and neutral genetic variation of the first chapter. 

In the last chapter, the whole western Palearctic distribution has been sampled and 

we will use this dataset to decipher further the post-glacial history of the European barn 

owls. Along with the microsatellites markers, we will add a mitochondrial gene for a 

subsample of the individuals. We will also show data for a candidate gene that seems to 

explain a good part of the colour variation in Europe. We will show results indicating that the 
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Western Palearctic barn owls present pattern of a ring species around the Mediterranean 

basin. 

In all the three chapters, we will see that the classical view on the Evolution of the 

colour variation in two glacial refugia is probably erroneous and that we have to change our 

perspective on the evolution of the barn owl colour cline. This paradigm shift has strong 

consequences on how the west European colour cline evolved and opens very interesting 

questions on the dynamics of adaptation and speciation that we will discuss in the general 

discussion of the present thesis. 
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Abstract 

Ecological parameters vary in space, and the resulting heterogeneity of selective 

forces can drive adaptive population divergence. Clinal variation represents a classical model 

to study the interplay of gene flow and selection in the dynamics of this local adaptation 

process. Although geographic variation in phenotypic traits in discrete populations could be 

remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent 

selection. Clinal variation in genetically determined traits is generally attributed to 

adaptation of different genotypes to local conditions along an environmental gradient, 

although it can as well arise from neutral processes. Here, we investigated whether selection 

accounts for the strong clinal variation observed in a highly heritable pheomelanin-based 

color trait in the European barn owl by comparing spatial differentiation of color and of 

neutral genes among populations. Barn owl’s coloration varies continuously from white in 

southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at 

neutral genetic markers suggests that substantial gene flow occurs among populations. The 

persistence of pronounced color differentiation despite this strong gene flow is consistent 

with the hypothesis that selection is the primary force maintaining color variation among 

European populations. Therefore, the color cline is most likely the result of local adaptation. 
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Introduction 

The relative role of adaptive versus neutral processes in generating and maintaining 

genetic and phenotypic variation among as well as within species is still under debate (e.g. 

Nei 2005; Lynch 2007). Whereas the neutral forces of mutation, drift, and migration result in 

stochastic allele frequency changes over time and space, natural selection is a directed 

process eliminating deleterious alleles from populations and carrying advantageous alleles 

to fixation. If directional selection is the prevailing force of evolution, a paradox emerges: 

although in the long run natural populations should lose variation at both the phenotypic 

and functional genetic levels, they usually exhibit high genetic diversity and often extensive 

phenotypic variation. In homogeneous environments mutation and balancing selection may 

account for the maintenance of diversity (e.g. Star et al. 2007). However, environments are 

rarely constant, neither at the spatial nor the temporal scale, and over the evolutionary 

timescale populations are expected to adapt to the prevailing environmental conditions, 

that is, to be locally adapted. This selection linked to spatiotemporal environmental 

heterogeneity may be a major force promoting and maintaining phenotypic and genetic 

diversity both within and among populations (Felsenstein 1976; Hedrick et al. 1976; Hedrick 

1986). Although a potential role of adaptation to temporally fluctuating selection in the 

maintenance of phenotypic variation has been rarely acknowledge (but see Grant & Grant 

2002), local adaptation to spatially varying selection has been widely studied. Among the 

best-documented sources of local adaptation figure host–pathogen interactions (for reviews 

see Kaltz & Shykoff 1998; Sotka 2005; Greischar & Koskella 2007). Other examples of local 

adaptation include selective pressures induced by climate and temperature (McKay et al. 

2001; Savolainen et al. 2007), altitude (Storz & Dubach 2004; Samietz et al. 2005; Byars et al. 

2007), water salinity (Gomez-Mestre & Tejedo 2003; McCairns and Bernatchez 2008), 
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interspecies competition and predation (Abjornsson et al. 2004; Grondahl & Ehlers 2008), or 

soil color-related camouflage against predators (Hoekstra et al. 2005). 

Local adaptation may however not be fully achieved, as exchange of individuals 

adapted to alternative environments may move populations away from the locally optimal 

phenotype (Postma & van Noordwijk 2005; Räsänen & Hendry 2008). In addition, local 

adaptation restricts gene flow if the selection gradient between the alternative 

environments is steep enough to reduce immigrants’ probability to reproduce (Nosil et al. 

2005). This implies that gene flow can impede local adaptation, whereas inversely local 

adaptation can lead to reproductive isolation and ultimately speciation (Nosil 2008; Räsänen 

& Hendry 2008). 

Studying the interplay of selection and gene flow thus represents a central issue to 

the understanding of the evolution of local adaptation and phenotypic diversity (Bridle & 

Vines 2007). Clines in continuous populations are of particular interest in this context. 

Although in discrete populations differentiation in fitness-relevant phenotypic traits may 

reflect historical selection, the persistence of clinal variation requires recurrent spatially 

heterogeneous selection along environmental gradients to counterbalance the 

homogenizing effect of gene flow (Haldane 1948; Slatkin 1973). Many important 

environmental variables vary continually in space, and may lead to strong clinal variation in 

fitness-related traits (Huey et al. 2000). However, clines can also be an outcome of neutral 

evolution, being generated by genetic drift in populations connected through spatially 

limited gene flow (isolation-by-distance) (Endler 1977), by admixture of previously isolated 

populations (secondary contact) (Slatkin 1973; Barton & Hewitt 1985), or by spatial 

population expansions (Klopfstein et al. 2006; Excoffier & Ray 2008). Such clines arising as a 

result of colonization history have been demonstrated recently for phenotypic traits in two 
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plant species (Keller et al. 2009, see also Vasemägi 2006 for a discussion on clines in gene 

frequencies in Drosophila). Thus, before invoking selection to explain clinal phenotypic 

variation, the null hypothesis of neutral evolution should be tested (Gould & Johnston 1972; 

Storz 2002). 

One striking example of clinal phenotypic variation is found in the barn owl (Tyto 

alba) (Roulin et al. 2009). Across all major areas of its almost worldwide distribution, this 

species displays geographic variation in predominantly genetically determined pheomelanic 

coloration (Roulin et al. 1998; Roulin & Dijkstra 2003). The color cline is most pronounced on 

the European continent, where coloration of the body underside continuously varies from 

white in the southwest to reddish-brown in the northeast (Roulin 2003). Although less work 

has been carried out on pheomelanic compared to eumelanic color variation in this species, 

observations suggest that the degree of pheomelanism could be of functional importance. In 

Central Europe, it is related to diet, breeding rate, and growth rate (Roulin 2004; Roulin and 

Altwegg 2007; Roulin et al. 2008). However, neutral models of cline evolution have not been 

tested so far. 

The comparison of the levels of population differentiation at putatively selected traits 

to differentiation at neutral genetic markers allows disentangling adaptive from neutral 

phenotypic differentiation (for reviews see Merilä & Crnokrak 2001; McKay & Latta 2002; 

Leinonen et al. 2008; Pujol et al. 2008; Whitlock 2008). If traits evolve neutrally, the 

proportion of their variation among populations should on average be identical to the 

proportion of among-population variation in allele frequencies at neutral loci.     

represents a metric of population differentiation at a quantitative trait, and under neutrality 

thus should equal    , its analog of genetic differentiation at neutral genetic markers. When 

    for a given trait exceeds    , this indicates that phenotypic differentiation has been 
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driven by selection for different phenotypes in different populations on the trait under study 

or on genetically correlated traits (Wright 1951; Spitze 1993). To test whether clinal color 

variation in the barn owl is maintained by selection on the European continent, we 

compared the differentiation of coloration and neutral genetic variation among 18 

populations. 

 

Methods and Materials 

Sampling and color measurements 

To measure barn owl coloration across Europe, breast feathers from a total of 373 

birds were sampled by collaborators working in survey programs in 18 populations (Fig. 1). 

 

 

Figure 1. Map showing the population sampling locations. The biggest city in an 80 km radius around the actual 

sampling area is indicated. 

 

Sampling was conducted during the breeding season 2007, except for two 

populations in The Netherlands and Hungary (2004–2005). To minimize the probability that 
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individuals were immigrants from other populations, only nestlings were considered and 

only one of them was randomly chosen per brood to reduce the probability that individuals 

are closely related (Table 1, adults were added in two populations with small sample size). 

The sampling area covered a maximum distance of 2395 km between Évora, Portugal, and 

Budapest, Hungary (Fig. 1, Table 1). The minimal and mean distances between two 

populations were 31 km and 864 km (SD: 531 km), respectively. 

 

Table 1. Population samplings’ characteristics 

 

Population Country 
Dist. from 

Évora (km) 

N 
Ho He Comments 

F M 

Évora P 0 7 14 0.68 0.68 - 

Bilbao E 638 6 5 0.63 0.67 6 juveniles, 5 adults 

La Rochelle F 986 9 3 0.63 0.64 8 juveniles, 5 adults 

Nantes F 1092 10 13 0.65 0.65 - 

Le Havre F 1404 8 7 0.65 0.66 - 

Geneva CH 1444 10 17 0.62 0.65 - 

Troyes F 1500 19 9 0.67 0.65 - 

Stuttgart D 1777 7 13 0.70 0.64 - 

Heidelberg D 1801 9 8 0.71 0.68 - 

Groningen NL 1943 15 14 0.64 0.63 - 

Magdeburg D 2106 15 15 0.59 0.64 - 

Leipzig D 2126 6 13 0.64 0.65 - 

Berlin D 2198 13 14 0.70 0.66 - 

Kiel D 2219 10 10 0.70 0.64 - 

Ribe DK 2253 10 7 0.62 0.65 - 

Brno CZ 2281 9 11 0.68 0.68 - 

Rostock D 2342 14 7 0.64 0.67 - 

Budapest H 2395 9 7 0.71 0.68 - 
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Pheomelanin-based plumage color of each individual bird was measured from one to 

five breast feathers (mean: 4.03, SD: 1.10), depending on the number of feathers available. 

To measure color, reflectance spectra from four points per breast feather were captured 

with a S2000 spectrophotometer (Ocean Optics, Dunedin, FL) and a dual deuterium and 

halogen 2000 light source (Mikropackan, Mikropack, Ostfildern, Germany). For each 

reflectance spectrum, the brown chroma was calculated following Montgomerie (2006). The 

brown chroma represents the contribution of the red part of the spectrum (600–700 nm) to 

the complete visible spectrum (300–700 nm). For each individual, the brown chroma was 

averaged (1) per feather (average among point measurements) and (2) per individual 

(average among feathers). The repeatability of assessing coloration was very high (97.6% of 

among-individual variance) as shown by the repeated measurement of coloration of 14 

individuals twice one year apart. 

 

Molecular analyses 

Genomic DNA from all 373 individuals was extracted from the basal 1 mm of breast 

feather quills. Extractions were performed either on a BioSprint 96 extraction robot using 

the BioSprint 96 DNAblood kit or using the DNeasy blood and tissue kit, following the 

manufacturer’s protocols (Qiagen, Hilden, Germany). 

To estimate neutral genetic differentiation among barn owl populations, individuals 

were genotyped at seven polymorphic microsatellite loci (Ta-206, Ta-210, Ta-216, Ta-218, 

Ta-220, Ta- 306, and Ta-414, Burri et al. 2008). Polymerase chain reactions (PCR) were 

performed in two PCR multiplexes (Table S1). Multiplex PCR reactions were run in a final 

volume of 8 μL, containing 2.5 μL of Multiplex PCR Kit buffer (Qiagen), 12 ng of DNA, and the 
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multiplex primer mixes with forward primers fluorescently labeled. PCR conditions included 

an initial denaturation step at 95◦C for 15 min, 34 cycles of denaturation at 94◦C for 30 sec, 

primer annealing at 57◦C for 1 min 30 sec, and primer extension at 72◦C for 1 min. A final 

step at 60◦C for 30 min was used to complete primer extension. Fragment analysis was run 

on an ABI 3100 automated sequencer using a Gene ScanTM 500 ROXTM size standard and 

allele lengths were assigned using GENEMAPPER 4.0 software (Applied Biosystems, Foster 

City, CA). 

To account for sex in color analyses, molecular sex determination for all individuals 

was performed using the method described in Py et al. (2006). This method allows 

distinguishing sexes based on a length dimorphism between sex chromosomes in a segment 

of the SPINDLIN gene. In total, 187 males and 186 females were used in the analyses; details 

per populations are reported in Table 1. 

 

Analyses of population structure 

Data from all seven microsatellite markers were used to estimate the levels of 

differentiation among all populations. After verifying that populations were in Hardy–

Weinberg equilibrium (FSTAT 2.9.4, updated from Goudet 1995) and checking for the 

presence of null-alleles (MICRO-CHECKER 2.2.3, Van Oosterhout et al. 2004), we computed 

     (Weir and Cockerham 1984), to estimate neutral genetic differentiation between 

populations. Confidence intervals were estimated by running 1000 bootstrap iterations over 

loci. In addition, we estimated the differentiation statistic      between populations (Jost 

2008) and Slatkin’s     (Slatkin 1995). In contrast to    ,      partitions total genetic 

variance into statistically independent within- and between-population components and 
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thereby guards against deflated differentiation measures that can arise in measures such as 

    if within- exceeds between-population genetic diversity (Jost 2008).     (Slatkin 1995) 

accounts for microsatellite mutation pattern and is better suited than     when mutation is 

important relative to migration (Slatkin 1995; Balloux and Goudet 2002). To test for a 

geographic structure of isolation-by-distance, we plotted neutral genetic differentiation (   , 

    , and    ) against the geographic distance between populations. Significance of the 

regression was tested by a nonparametric, permutation-based, Mantel test, running 1000 

bootstrap iterations. Pairwise     were estimated in Arlequin 3.1 (Excoffier et al. 2005). All 

other analyses were conducted in FSTAT 2.9.4 or the R package HIERFSTAT (Goudet 2005). 

To test if plumage color differed significantly between populations and sexes, we 

conducted a two-way analysis of variance (ANOVA). An analysis of covariance (ANCOVA) was 

then used to test for clinal variation in mean coloration, entering the populations’ distance 

to the southernmost population (Évora, Portugal), sex, and their interaction as independent 

variables. 

 

Comparing coloration and neutral genetic differentiation 

Testing whether a phenotypic cline evolved by neutral processes or by selection 

requires that phenotypic variation is compared to the neutral patterns of evolution driven by 

population history and demography. Although migration and genetic drift have an equal 

effect all over the genome, selection affects only regions harboring the quantitative trait loci 

(QTL) underlying the phenotypic trait it acts on. Thus if selection causes divergent evolution 

of phenotypes among populations, either because selection is exerted on coloration itself or 

on genetically correlated traits, phenotypic differentiation is expected to exceed neutral 
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differentiation, especially if populations remain interconnected by gene flow such as in cline 

models. Contrasting the geographic structures of     and    , that is, contrasting the 

respective correlations of     and     with geographic distance between pairs of 

populations constitutes a more robust test of geographically gradually varying selection than 

comparing overall value of     and    . Indeed the latter comparison does not depend on 

the absolute magnitudes of phenotypic and genetic differentiation. With this approach, 

selection is inferred from a significant difference between the slopes of the respective 

regressions: if geographically disruptive selection is stronger than the homogenizing effect of 

gene flow, phenotypes will diverge more markedly among populations with increasing 

distance than populations differ at neutral genetic markers. 

    calculation requires experimental estimates of additive genetic variances (in 

common gardens for example), but for many species such estimates are impossible to obtain 

for logistical reasons. So in practice, many authors calculated    with assumptions on the 

determinism of the trait under study and tested the sensitivity of the results to those 

assumptions (see e.g., Saether et al. 2007 and references therein). To make the strict 

distinction between those surrogates of     and “true”    , Saether et al. (2007) proposed 

to call them     (for phenotypic or pseudo-   ). Melanic color, such as the pheomelanic 

trait we analyzed here, is often not dependent on nutritional intake, but on mostly 

genetically determined melanin deposition (Mundy 2006). Although in the barn owl most of 

the variation in coloration is genetically determined at least in Switzerland, such as shown by 

cross-fostering experiments (   = 0.81 ± 0.09, Roulin et al. 1998; Roulin & Dijkstra 2003), we 

did not experimentally estimate additive genetic variance for barn owl color in this study. 

We therefore are strict by referring differentiation in plumage coloration to     rather than 

   . 
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    is a function of the within- (  
 ) and between-population phenotypic variances 

(  
 ), heritability (  ), and the proportion of the between-population phenotypic variation 

due to additive genetic effects (g, and 1 − g corresponds to the environmental effect). 

Pairwise    -values for color were calculated as follows (Wright 1951; Spitze 1993): 

 

    
   

 

   
       

 , 

 

Within- and between-population phenotypic variances were assessed by extracting 

mean squares (MS) from a two-way ANOVA on color, with factors including population and 

sex. Within-population MS are an unbiased estimate of the within-population variance (  
 ). 

Between-population variance (  
 ) can be estimated as 
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where     and     are the within- and between-population MS.    is a weighted 

average of sample size for each comparison and following Sokal and Rohlf (1995, p. 179–

217) is calculated as 
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where a is the number of populations to be compared and    the number of 

individuals in the     population. For further details about the procedure we refer to Storz 

(2002). 

To estimate the effect of geographic distance on color differentiation between 

populations, we plotted pairwise     against pairwise geographic distances between 

populations. As for neutral genetic differentiation, significance of the regression was tested 

using the nonparametric, permutation-based Mantel test. Finally, to investigate whether 

selection was involved in the evolution of the color cline, we tested whether population 

history alone explained the spatial structure of phenotypic differentiation, or whether the 

latter persisted if phylogeographic effects inferred from neutral genetic variation were 

accounted for. Tests of this kind usually involved partial Mantel tests among     as a 

response matrix and     and geographic distances as first and second explanatory matrices, 

respectively (Storz 2002; Saether et al. 2007). However,     and     are supposed to be 

identical under the null hypothesis of absence of selection on color or genetically correlated 

traits. Thus, a simple way to test this hypothesis is to contrast the matrix of pairwise 

differences between     and    ,        , with the matrix of geographic distances. Under 

our null hypothesis, the two matrices should be uncorrelated, and a positive correlation 

would indicate a strong signal that selection is acting on the color polymorphism or 

correlated traits. 

Heritability    and the between population additive genetic component g are often 

different from 1. Following Roulin and Dijkstra (2003), heritability was set to 0.81 and, as an 

assumption, g to 1 in the first place (Fig. 2, bottom left). However, we tested the robustness 

of our results with respect to different hypotheses on the proportion g of phenotypic 

variance. The above analyses thus were repeated by varying g between values of 1 (all 
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phenotypic variance due to additive genetic effects) and 0.01 (1% phenotypic variance due 

to additive genetic effects), which is a broader interval than generally tested in comparable 

studies (Storz 2002, g = 0.15–1; Saether et al. 2007, g = 0.05–1). In this sensitivity analysis, 

we fixed    to 1 given that Roulin and Dijkstra (2003) found very high heritability in a Swiss 

barn owl population, and that overestimation of    leads to a deflation of    , which is a 

conservative bias for the question addressed here. 

 

Results 

Neutral genetic population structure 

The neutral genetic structure of barn owl populations across Europe was very low but 

significant, with an overall     of 0.011 (99% confidence interval 0.007–0.016). Despite the 

weak population structure, a slight but significant pattern of isolation by- distance was 

found, indicated by the positive correlation between pairwise     and geographic distances 

between populations (Mantel test:    =0.175; P=0.001) (Fig. 2, top left). Similar 

differentiation and isolation-by-distance was found for      (Fig. 2, top right) and     (data 

not shown), except that sampling variance was high for the latter. Therefore, only     was 

used in the following analyses, as it is statistically directly comparable to    . Furthermore, 

Balloux and Goudet (2002) showed that     is better suited than     when population 

structure is low and when microsatellites violate the stepwise mutation model such as is the 

case for some of the markers used in the present study. 

 



  Chapter 1 : Clinal color variation in barn owl 

41 

 

 

Figure 2. Graphs showing the neutral genetic and color differentiation between populations. Shown are the 
linear regressions of differentiation against geographic distance between pairs of populations. Top panels: 
neutral genetic differentiation in terms of FST (left) and DEST (right). Bottom left panel: color (PST; h

2
= 0.81, g = 1) 

and neutral genetic differentiation (FST). Bottom right panel: sensitivity of PST against the variation of the 
proportion of the between-population phenotypic variance due to additive genetic effects (g). PSTs are 
indicated by a solid line for three values of g. Points are not drawn for clarity. Phenotypic differentiation 
increases significantly more with distance than neutral genetic differentiation, even when only 1% of the 
phenotypic variance observed between populations is due to additive genetic effects (g = 0.01). 

 

Geographic structure of coloration 

Our study confirmed previously reported patterns of barn owl color variation 

quantified by museum skin measurements (Roulin 2003; Roulin et al. 2009). Mean plumage 

color per population, measured in terms of brown chroma, varied between 0.253 and 0.325 

and marked differences of mean coloration were found both among populations and among 

sexes (two-way ANOVA, population: F = 19.331, P < 0.001, sex: F = 14.078, P = 0.002). A 

strong clinal pattern of color variation was found when plotting the mean color per 

population by sex against distance from Évora, Portugal (Fig. 3). An analysis of covariance 

revealed significant effects of distance from Évora and sex, but no differences in geographic 
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variation between sexes (ANCOVA, distance from Évora: t = 9.687, P < 0.001; sex: t = −2.607, 

P = 0.014; interaction distance from Évora∗sex: P = 0.99). Accordingly, the geographic 

structure of plumage color was very high, with an overall     of 0.353 (with    = 0.81, 

following Roulin and Dijkstra 2003 and g = 1). 

 

 

Figure 3. Change of mean coloration across Europe. Shown is the linear regression of mean coloration by sex 
per population against the distance of each population to the south-westernmost population (Évora, Portugal). 
Male’s values are depicted by open circles and a dashed line, and female’s values by filled circles and a solid 
line. 

 

Comparing coloration and neutral genetic differentiation 

The overall differentiation between populations was more than 30-fold larger for 

color (    = 0.353) than for microsatellites (    = 0.011). The linear regression of pairwise 

PSTs against pairwise geographic distances between populations revealed a very strong and 

highly significant pattern of isolation-by-distance on color differentiation (   = 0.551; P = 

0.001) (Fig. 2, bottom left). More importantly, the positive correlation between pairwise 
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        differences and pairwise geographic distances demonstrates that the isolation-by-

distance observed on color differentiation holds when eliminating the baseline level of 

differentiation resulting from historical and demographic factors (Mantel test    = 0.528; P = 

0.001). To test whether these results were robust against changing assumptions on    and g, 

we tested the robustness of our results to those assumptions in a sensitivity analysis (Fig. 2, 

bottom right). As aforementioned, a heritability of one is the most conservative assumption 

to demonstrate that     exceeds    . By testing values of g between 1 and 0.01, we showed 

that even when only 1% of the variance between populations is due to additive genetic 

effect, there is still a significantly stronger isolation-by-distance on color than on the neutral 

genetic markers (  = 0.043; P = 0.013). This analysis thus showed that our conclusion on the 

involvement of selection in color differences among population is extremely robust to any 

realistic assumptions on the determinism of the trait. 

 

Discussion 

Based on the comparison of the geographic differentiation of coloration to the 

neutral genetic population differentiation throughout Europe, we show that the barn owl’s 

clinal pheomelanic coloration is not the result of genetic drift, but the most likely result of 

local adaptation. In accordance with observations from many other birds species (Crochet 

2000 and references therein), the neutral genetic structure among European barn owl 

populations is low (overall     = 0.011). The weak but significant pattern of isolation-by-

distance suggests that regular effective migration leads to extensive and spatially weakly 

restricted admixture of neutral genetic variation among populations. This conclusion is 

supported by barn owl ring recovery data (Cramp 1985; Paradis et al. 1998; Marti 1999). A 
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recent analysis (following Paradis et al. 1998) of data provided by the Swiss Ornithological 

Institute (Sempach, Switzerland) revealed a mean dispersal distance of 65 km (median 23 

km) with a standard deviation of 121 km (n = 321) and dispersal movements as far as several 

hundreds of kilometres. Although in theory more detailed insights into the genetic 

population structure and quantitative measures of gene flow could be obtained from genetic 

data using clustering approaches or coalescent-based methods, we refrained from 

performing these analyses, as neither of them is expected to provide satisfying inference of 

population structure or migration rates with data from almost continuous populations with 

weak differentiation (    = 0.011) and isolation-by-distance as observed in our data (Falush 

et al. 2007; Faubet et al. 2007). 

Given the high rates of gene flow uncovered by genetic analyses, coloration is 

expected to be homogenized among European barn owl populations if such coloration 

evolved by purely neutral processes. However, color differentiation remains strong after 

accounting for neutral genetic population differentiation, suggesting that strong recurrent 

selection on coloration or genetically correlated traits is involved in the maintenance of the 

clinal coloration polymorphism. This conclusion remains consistent even when coloration is 

assumed to be completely heritable (   = 1) and to its largest extent dependent on variation 

in environment between populations (g = 1%, i.e., 99% of the variation between population 

is due to environmental effects). Experimental evidence from Swiss barn owls shows very 

limited environmental dependence of melanin-based coloration (Roulin and Dijkstra 2003). 

The parameter space used in our sensitivity analysis is thus far beyond realistic estimates of 

the environmental component (1 – g) and conservative for heritability (  ). Pujol et al. 

(2008) recently criticized the use of in situ phenotypic measures from natural populations to 

infer selection (the     approach). The conducted sensitivity analyses permit to settle this 
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problem, and the congruence of the results obtained by     and      confirms the weak 

population structure indicated by genetic data not being an artifact of high within-

population genetic diversity. 

As demonstrated, our data rule out that the color cline established as a result of 

spatially restricted gene flow. However, patterns closely resembling the ones expected from 

selection acting along an environmental gradient can be generated by the neutral process of 

surfing that has found little attention in the study of phenotypic clines so far (Klopfstein et 

al. 2006; Excoffier and Ray 2008). Alleles responsible for whitish or reddish-brown 

colorations could have gradually increased in frequency by genetic drift acting at the front of 

a past spatial population expansion out of either end of today’s cline. Although surfing might 

be a frequent phenomenon leading to phenotypic clines, especially when starting from 

standing genetic variation (Excoffier and Ray 2008), several findings argue against this 

neutral scenario in the case of the barn owl color cline. (1) Experimental evidence suggests 

that coloration indeed is of functional relevance (Roulin 2004; Roulin and Altwegg 2007; 

Roulin et al. 2008). (2) Long-range dispersal as observed in the barn owl renders surfing 

unlikely compared to species that disperse over short distances in a stepping-stone-like 

manner. (3) Apart from clinal variation on the European continent, color clines in the barn 

owl independently evolved in North and South America and in Africa (Roulin et al. 2009). As 

surfing is a stochastic process affecting random regions in the genome, it appears unlikely 

that coloration would have been involved in surfing events four times independently. (4) 

Last and most importantly, surfing would be most likely if the colonization of Europe after 

the last glaciation occurred out of a single refugium. However, as already suggested by 

Voous (1950) half a century ago and confirmed by preliminary mitochondrial data obtained 

in our laboratory (S. Antoniazza, R. Burri, L. Fumagalli, J. Goudet, and A. Roulin, unpubl. 
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data), Europe seems to have been colonized from at least two regions. Even though 

postglacial colonization might have brought into secondary contact two distinct color 

morphs that evolved in allopatry, and the color cline in first place could have established 

neutrally by admixture, the maintenance of the cline despite extensive gene flow requires 

the recurrent action of selection. 

 

Spatially heterogeneous selection and cline evolution 

The most eminent question for the evolution of phenotypic diversity in species with 

continuous repartition across whole continents is how selection can restrict homogenization 

of phenotypic traits in the presence of high rates of gene flow (Nosil 2008; Räsänen and 

Hendry 2008). In barn owls, several lines of evidence suggest that both indirect selection and 

direct selection are involved in the maintenance of the color polymorphism. Reddish-brown 

individuals invest more into parental care (Roulin et al. 2001; Roulin 2006) and they grow 

faster in body mass than white ones when rearing conditions are relaxed (Roulin et al. 2008). 

The linkage of color to life-history components in this case seems to result from physical 

linkage or pleiotropy of the respective genes (see also Roulin 2006; Ducrest et al. 2008), 

whereas the correlation of the color polymorphism with diet (Roulin 2004) may establish by 

direct selection on color as a consequence of different foraging success upon alternative 

prey. Altogether, this indicates that barn owl color phenotypes occupy different ecological 

niches (Roulin 2004; Roulin and Altwegg 2007; Roulin et al. 2008), suggesting that divergent 

selection among niches maintains the color cline observed at the continental scale. 

Depending on the niche distribution across the continent, different scenarios may 

explain the evolution of the color cline. In the simplest model, selection might be exerted by 
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an environmental gradient creating locally homogeneous niches. In each region individuals 

of nonadapted phenotype are counter-selected, but strong recurrent immigration maintains 

phenotypic variation. Close inspection of the patterns of color variation in barn owls reveals 

that even though mean coloration tightly fits a linear geographic cline, color variation within 

populations is usually extensive. It seems thus more likely that habitat is also heterogeneous 

at the local scale, with most niches present all over the continent, but at gradually changing 

frequencies. Immigrants of any phenotype may thus settle and reproduce almost 

throughout the continent. The maintenance of the color cline in such heterogeneous 

landscapes involves different processes: (1) ecological selection prevents invasion of niches 

by nonadapted phenotypes, and (2) niche frequency and competition for niches determine 

the local frequencies of phenotypes, and thereby the local mean coloration. The strong 

phenotypic differentiation at the continental scale would be the result of local ecological 

selection acting in conjunction with a cline in niche frequency and selective pressure. 

Populations may then even almost freely exchange neutral genetic diversity, because 

selection intensity on progeny of subsequent generations will rapidly decrease with 

increasing level of back-crossing when mating is most likely with locally adapted individuals. 

Additional sampling effort, spatially explicit simulations of selection and population-level 

radio-telemetry observations in conjunction with the use of high-resolution environmental 

maps will help elucidate the spatial scale at which the selection pressures involved in barn 

owl color evolution are acting. 
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Local adaptation at large spatial scales 

The present study represents a striking illustration of the levels of phenotypic 

differentiation that can be achieved in nature despite substantial gene flow. Although the 

patterns observed in the barn owl might seem particular, we believe that they are far from 

being restricted to this species. Rather, we expect them to be ubiquitous in nature, 

especially in species with large distributions and high dispersal propensity. However, so far 

only a handful of studies combined measures of phenotypic and neutral genetic variation in 

natural populations displaying phenotypic clines at continental scales (examples include 

Long & Singh 1995; Merilä 1997; Gockel et al. 2001; Storz 2002; Palo et al. 2003; Ingvarsson 

et al. 2006; Savolainen et al. 2007; Demont et al. 2008). Compared to the linear gradients 

and large geographic distances in these cases (>1000 km), other studies that identified 

phenotypic clines rather reported sharp transition zones of limited width relative to the 

species’ distribution, with phenotypes changing quickly across hybrid zones (reviewed in 

Barton and Hewitt 1985) or ecotones (e.g., Mullen & Hoekstra 2008). We put forward that 

the extent and pronounced linearity of the phenotypic clines and phenotypic isolation-by-

distance despite almost absent neutral genetic population differentiation observed in the 

former studies and in the barn owl are likely a matter of spatial scale. At large spatial scales, 

the environment varies in numerous ecological dimensions that constitute likely selective 

agents, and local adaptation at these scales may seem inevitable. Working at such scale 

permits to minimize the influence of local variation in environmental conditions relative to 

their variation over the entire study area. As moreover many important ecological 

parameters are expected to vary linearly across continents, clear-cut patterns of isolation-

by-distance on phenotypic traits may easily emerge at large spatial scales, because distance 

is a good proxy for environmental variation. The confirmation of the action of selection 
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acting at large spatial scales may thus be straight forward. However, the identification of the 

selective agents such as climatic and ecological variables, in turn, is tremendously flawed 

with problems of spatial autocorrelation. Finally, a combination of approaches integrating 

various spatial scales and methods such as landscape genetics will be essential to get track of 

the detailed selective agents involved in the process of local adaptation. 

 

Conclusion 

We believe that the barn owl is a well-suited model for the study of the interplay of 

gene flow and selection, which in turn is of central importance to an increased 

understanding of the processes of local adaptation and speciation. This species represents 

one of only six worldwide distributed bird species, and there may be only few more 

vertebrate species with comparable autochthonous areas. This implies that the species 

encounters various environmental conditions, and we expect local adaptation to be 

common. Might the species show a special propensity for adaptation that explains its global 

success? The identification of selection, such as conducted here for color, provides only the 

first essential step toward the understanding of how local adaptation evolves. The world-

wide distribution provides exceptional opportunities to confirm hypotheses derived from 

single populations and compare patterns and processes of phenotypic and genomic 

evolution among allopatric populations. In-depth studies of phenotype frequencies within 

populations and detailed description of the color cline in conjunction with the establishment 

of the species’ phylogeography will provide important information on the evolutionary 

history of the color cline in Europe and the spatial scale at which selection is acting. Finally, 

tracking down color evolution to the molecular level will allow us to study whether in 
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allopatric populations the same underlying genes and processes are involved in barn owl 

color evolution. 
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Supplementary material 
 
Table S1. Primer concentrations for multiplex PCR reactions. 

 

 Locus 
Primer concentration 

[mM]  

Multiplex 1 Ta206 0.220  

Ta210 0.052  

Ta216 0.067  

Ta306 0.082  

Multiplex 2 Ta-218 0.089  

Ta-220 0.055  

Ta-414 0.136  
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Abstract 

Gradients of variation – or clines – have always intrigued biologists. Classically, they 

have been interpreted as the outcomes of antagonistic interactions between selection and 

gene flow. Alternatively, clines may also establish neutrally with isolation-by-distance or 

secondary contact between previously isolated populations. The relative importance of 

natural selection and these two neutral processes in the establishment of clinal variation can 

be tested by comparing genetic differentiation at neutral genetic markers and at the studied 

trait. A third neutral process, surfing of a newly arisen mutation during the colonisation of a 

new habitat, is more difficult to test. Here, we designed a spatially-explicit ABC simulation 

framework to evaluate whether the strong cline in the genetically-based reddish coloration 

observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or 

whether selection has to be invoked to explain this colour cline, for which we have 

previously ruled out the actions of isolation-by-distance or secondary contact. Using ABC 

simulations and genetic data on 390 individuals from 20 locations genotyped at 22 

microsatellites loci, we first determined how barn owls colonized Europe after the last 

glaciation. Using these results in new simulations on the evolution of the colour phenotype, 

and assuming various genetic architectures for the colour trait, we demonstrate that the 

observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage 

of spatially explicit ABC, which proved to be a powerful method to disentangle the 

respective roles of selection and drift in range expansions, we conclude that the formation 

of the colour cline observed in the barn owl must be due to natural selection. 
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Introduction 

Determining the relative roles of natural selection and neutral processes as driving 

agents of evolutionary change has long been the focus of discussions in the field of 

evolutionary biology (Kimura 1983; Nei 2005; Wagner 2008). A process of particular interest 

in this context is one observed in many species presently occupying temperate areas: range 

expansions. Most (if not all) species currently inhabiting Europe and North America have 

undergone postglacial recolonisation events, increasing their ranges and population sizes 

(Hewitt 2000), and nowadays, some extant species and populations facing the on-going 

climatic changes and human alterations to the environment may also respond by increasing 

their range (Parmesan & Yohe 2003). Range expansions are a key factor for the discussion 

above because they often take place over an environmental gradient, which potentially 

provides natural selection with the opportunity to generate locally-adapted variants (Hewitt 

1996). When these variants are distributed gradually across the environment, a cline is 

formed (Endler 1977). Clines along the path of range expansions, however, can also be 

formed without natural selection. The series of founder events, which are inherent to the 

colonisation of new areas (Currat & Excoffier 2005), may lead to the formation of allele 

frequency clines simply through the neutral process of allele surfing (Edmonds et al. 2004; 

Klopfstein et al. 2006). Even though other neutral processes could also lead to the formation 

of clines in range expansions [e.g. demic diffusion (Cavalli-Sforza et al. 1993), kin-structured 

migration events (Fix 1997)], allele surfing is arguably the most likely to take place in the 

case of the barn owl. In this process, neutral alleles may “surf” the wave of range expansion, 

increase their frequency along the way eventually forming a genetic cline. Allele surfing can 

happen with standing genetic variants (Klopfstein et al. 2006) or, as it was first described, 

new mutations. If the underlying genetics has any effect on phenotype, a purely neutral cline 
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may become very similar to what one would expect to be a selection-derived cline (Currat et 

al. 2006). 

Classically, clines have been studied in the context of hybrid zones, a secondary-

contact zone between species or populations that evolved in allopatry, where selection 

against hybrids prevents gene flow and generates clines of phenotypes or alleles frequencies 

(Barton & Hewitt 1985). This is well described in the hybrid-zone literature, where the terms 

“cline” and “hybrid zone” are even sometimes confounded (Barton & Hewitt 1985). The 

processes behind the formation of such clines have been investigated in some details both 

theoretically and experimentally (Barton & Gale 1990; Barton & Hewitt 1985; Gay et al. 

2008). Clines could also be the result of the mixing of populations adapted to different 

ecological conditions where the ecological transition occurs over short distances [e.g. 

latitudinal clines (James et al. 1997) or sharp environmental changes (Mullen & Hoekstra 

2008)]. These ecological clines can be analysed in a similar way to the hybrid-zone clines 

(e.g. Mullen & Hoekstra 2008). For these types of clines, the development of tools to infer 

selection has a long history and the method relies on the comparison between the clines’ 

width (w) and species’ dispersal distance (σ). In this case, selection is proportional to the 

square root of σ/w (Linnen & Hoekstra 2009; Slatkin 1973). 

Clines can also appear through two neutral processes; isolation by distance and 

secondary contact without selective disadvantage of hybrids (Novembre & Di Rienzo 2009). 

When compared with natural selection, these neutral processes can essentially be ruled out 

by comparing the genetic/phenotypic variation putatively under selection to the neutral 

genetic variation. If the trait putatively under selection presents a stronger signal of 

population differentiation [higher    , sometimes referred to as     (Antoniazza et al. 2010; 

Saether et al. 2007)] than neutral genetic markers (   ), there is probably selection involved 
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in maintaining or leading to locally-adapted forms (Leinonen et al. 2008; Spitze 1993). 

Otherwise – if      is not significantly higher than     – isolation by distance or secondary 

contact are enough to explain the observed patterns. Several studies have been performed 

to either compare differentiation at quantitative traits and neutral markers (   -   ) 

(Antoniazza et al. 2010; Demont et al. 2008; Gockel et al. 2001; Hangartner et al. 2012; Long 

& Singh 1995; Merilä 1997; Palo et al. 2003; Savolainen et al. 2007; Storz 2002), or to 

compare genetic variation at different types of loci (   -   ) (Ingvarsson et al. 2006; Kooyers 

& Olsen 2012; Saccheri et al. 2008). 

In large-scale clines (occurring over wide geographical ranges, such as a continent), 

the role of selection has only been tackled through theoretical investigations focusing on 

either gene frequencies (Bazykin 1969; Endler 1977; Fisher 1950; Haldane 1948), or 

quantitative phenotypic traits (Barton 1999; Case & Taper 2000; Kirkpatrick & Barton 1997; 

Leimar et al. 2008; Slatkin 1978). No methods have yet been developed to infer selection in 

this case. In addition, the empirical studies describing large-scale clines have consistently 

neglected the evaluation of the surfing phenomenon as their possible cause. They have 

largely assumed natural selection to be driving force leading to the observed patterns [see 

Currat et al. (2006) and Vasemägi (2006) for critical reviews, and Kujala (2012) for an 

exception]. Nevertheless, the most probable source of allele surfing – i.e. range expansions – 

is common. Most species inhabiting temperate latitudes of both hemispheres spent the last 

glacial maximum (LGM) in refugia, which were closer to the equator than their current 

distribution and then expanded their range after the last ice age (Hewitt 1999, 2000; 

Taberlet et al. 1998). 

Evaluating how likely it is for a given cline to originate by allele surfing (relative to 

natural selection) is essential to understand its biological basis and can bring key insight on 
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the more general discussion about the prevalence of selective processes in biological 

evolution. The establishment of clines by allele surfing in range expansions, however, is 

more difficult to rule out by means of    -    comparisons than the other two neutral 

processes. Surfing mutations may also occur in the loci underlying the candidate trait 

(Klopfstein et al. 2006), leading to an inflated     when compared to other random loci’s 

   . In order to deal with this situation, one possible approach is to first infer/reconstruct 

the most likely demographic history for the taxon under investigation. This can be done 

using approximate Bayesian computation [ABC (Beaumont et al. 2002; Bertorelle et al. 2010; 

Csillery et al. 2010; Sunnaker et al. 2013)], where simulations with variable scenarios and 

demographic-parameter values are used to infer which parameters are closest to the 

observed genetic data, and whether the species has undergone a range expansion (Eriksson 

et al. 2012; Estoup et al. 2004; Estoup & Clegg 2003; Itan et al. 2009; Neuenschwander et al. 

2008b; Warmuth et al. 2012). Second, using these estimated demographic parameters, a 

new round of neutral simulations is carried out, focusing this time on the phenotypic trait 

showing clinal variation. Taking advantage of many replicates, this procedure allows 

assessing the probability of the cline under investigation to have been generated by purely 

neutral processes (i.e. allele surfing in a range-expansion scenario). This idea of using a 

background demographic model to infer selection process has a long history in population 

genetics, for example in outlier loci detection approach (Beaumont & Balding 2004; Foll & 

Gaggiotti 2006), but rely in general on very simple demographic models (island models for 

example). Examples where a sound investigation and reconstruction of a demographic 

model has been carried out before inferring selection is less common. But examples can be 

found for several model species: Arabidopsis where such an approach was successfully used 

by Roux et al. (2012) to infer balancing selection, humans where Tarazona-Santos et al. 
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(2013) used a demographic model by Laval et al. (2010) to study selection on metabolic 

genes and Drosophila where Singh et al. (2013) measured adaptation rate in a X-linked 

genomic region. Finally the golden aim is to estimate both selection and demography 

together, but this goal is still difficult to reach for complex and realistic models (Li et al. 

2012), but has for example been successfully conduct by Itan et al. (2009) to reconstruct 

demographic and selection history on a lactase allele in humans. 

One striking example of clinal variation is provided by the south-west/north-east 

cline in colour of the European barn owl (Tyto alba) described by Roulin and colleagues 

(Roulin 2003; Roulin et al. 2009), and analysed along with neutral genetic markers in 

Antoniazza et al. (2010). Based on a comparison of the spatial variation of the colour with 

the neutral genetic diversity, the latter study revealed that the south-west/north-east colour 

cline is significantly steeper than population differentiation at neutral genetic markers 

measured in the same populations. Antoniazza et al. (2010) discussed the surfing hypothesis, 

but did not test it. A major characteristic of neutral genetic diversity in European barn owls is 

a decline from south-western (Iberian Peninsula) to north-eastern Europe (North-Eastern 

Germany to Serbia, Fig. S1). The likely origin of this genetic diversity decline is a series of 

bottleneck events during the post-glacial colonisation of northern Europe. Here, we 

investigate whether a post-glacial colonisation model is compatible with today’s observed 

genetic diversity of the European barn owl, and investigate how likely it is for the colour 

cline to have arisen by allele surfing (as opposed to natural selection) during colonisation. 

To reconstruct past and current demography of the European barn owl, a dataset of 

390 individuals genotyped at 22 microsatellites coming from 20 sampling locations (Fig. 1) in 

Western Europe was analysed with spatially explicit simulations within an approximate 

Bayesian computation (ABC) framework. The observed patterns were compared to those 
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generated with spatially explicit computer simulations using several plausible historical 

scenarios (Table 1) and 6-9 demographic parameters (Table 2). Based on observed genetic 

patterns, classical phylogeographic analyses and ecological knowledge of the species, a 

scenario consisting of a single colonisation from the Iberian Peninsula was hypothesized. As 

geographic variation in genetic diversity might arise by other processes than colonisation, 

we also tested scenarios with a south-west/north-east gradient of effective population size 

and extinction rate. Additionally, considering that many species were shown to have more 

than one glacial refugium (Taberlet et al. 1998), we looked at models with two glacial refugia 

in the Iberian Peninsula and in Greece. Finally, to control for the possibility that the patterns 

observed might not be derived from a colonisation process, several models without 

colonisation were tested as well. 

Using the parameters obtained for the best-supported scenario for neutral genetic 

markers, we ran additional simulations to model the evolution of the colour trait. Different 

possible genetic architectures underlying the colour trait were investigated. For each one of 

these, we estimated the probability of generating a cline as steep as the one observed in the 

natural populations without selection. 
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Table 1. Demographic models tested with ABC for the demographic history of the European barn 
owl. Two dimensions of the models are described (colonisation and heterogeneity) with the each 
model’s number of variable parameters. 

 

Colonisation model Heterogeneity model 
Nb. of varying parameters 

(i.e. with prior distributions) 

One-refugium 
(Iberian) 

One-carrying-capacity (base model) 6 

Carrying-capacity-cline (SW-NE) 7 

Extinction-rate-cline (SW-NE) 8 

Two-migration-rate (one during colonisation and one 
at carrying capacity) 

7 

Two-refugium 
(Iberian and Greek) 

One-carrying-capacity 7 

Carrying-capacity-cline (SW-NE) 8 

Extinction-rate-cline (SW-NE) 9 

Two-migration-rate (one during colonisation and one 
at carrying capacity) 

8 

No-colonisation 

One-carrying-capacity 6 

Carrying-capacity-cline (SW-NE) 7 

Extinction-rate-cline (SW-NE) 8 

 

Material & Methods 

I. Sampling and molecular analyses 

From 20 locations throughout Europe, a total of 390 barn owls were sampled by 

collaborators working in survey programs, recovery centres and museums (Fig. 1). Genomic 

DNA was extracted from the basal 1 mm of breast feather quills, or from blood or muscles 

stored in 96% ethanol. Extractions were performed either on a BioSprint 96 extraction robot 

using the BioSprint 96 DNA blood kit or using the DNeasy blood and tissue kit, following the 

manufacturer’s protocols (Qiagen, Hilden, Germany). 

 



Chapter 2 : Range expansion and a phenotypic cline 

70 

 

 

Figure 1. Map of the sampling locations and sampling sizes. Sampling sizes and sampling locations for the 
observed dataset are indicated. Similar sampling locations and sampling sizes are generated for the simulated 
dataset. The Iberian glacial refugium demes are indicated in dark grey. We use a Europe Albers Equal Area 
Conic projection to adequately represent surfaces (Snyder 1987). 

 

Population genetic statistics were estimated from genotypes obtained for 22 

polymorphic microsatellite loci [(Ta-202, Ta-204, Ta-206, Ta-210, Ta-212, Ta-214, Ta-215, Ta-

216, Ta-218, Ta-220, Ta-305, Ta-306, Ta-310, Ta-402, Ta-408 and Ta-413 from Burri et al. 

2008) and (54f2, Calex-05, FEPO42, Oe053, GgaRBG18 and Tgu06 from Klein et al. 2009)]. 

Polymerase chain reactions (PCR) were performed in five multiplexes using the QIAGEN 

Multiplex PCR Kit (Qiagen, Hilden, Germany) and the following protocol: initial step of 

denaturation for 15 min at 95 °C, 34 cycles of 30 sec denaturation at 94 °C, annealing for 1.5 

min at 57 °C, and elongation at 72 °C for 1 min. Final elongation for 30 min was conducted at 

60 °C. The primer concentration and multiplexes composition can be found in Table S1. 

Fragment analyses were run on an ABI 3100 sequencer with a ROX 500 size standard and 

allele lengths were assigned using GENEMAPPER 4.0 (Applied Biosystems, Foster City, CA, 

USA). After verifying that no null-alleles were present (MICRO-CHECKER 2.2.3, Van 
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Oosterhout et al. 2004) and that populations were not showing departure from Hardy-

Weinberg equilibrium (Goudet 1995) the dataset was used to calculate observed summary 

statistics for the ABC estimation procedure. All summary statistics for both observed and 

simulated data were calculated using quantiNEMO (Neuenschwander et al. 2008a) and 

custom R (R Development Core Team 2008) scripts. 

 

II. Approximate Bayesian computation (ABC) 

1. Population genetics patterns and choice of summary statistics 

The rationale behind ABC is to compare simulated genetic data obtained under 

various scenarios and demographic/genetic parameters against observed genetic data 

through summary statistics (Beaumont 2010; Beaumont et al. 2002; Bertorelle et al. 2010; 

Csillery et al. 2010; Sunnaker et al. 2013). The choice of summary statistics on which the 

comparison is based is thus a key component of an ABC analysis. The summary statistics 

should describe the genetic data sufficiently, but should also be kept to a minimal number: 

Each additional summary statistic adds both information and noise to the parameter 

estimation (Beaumont et al. 2002). 

The present data exhibit strong geographic patterns of genetic diversity and 

population structure, which can be summarized by few summary statistics: (i) a significant 

signal of isolation-by-distance [IBD; pairwise FST as a function of pairwise geographic 

distances, Fig. S2 (Mantel test, R2 = 0.310, p < 0.001)], and (ii) a significant reduction in 

genetic diversity from south-west to north-east [mean allelic richness per population as a 

function of geographic distance from the south-western most population, Fig. S1 (R2 = 0.779, 

p < 0.001)]. Four statistics were implemented to summarize these patterns: (i) The IBD slope 
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(5.68 × 10-4); (ii) average mean pairwise FST between populations (1.68 × 10-2); (iii) the slope 

of the regression of the mean allelic richness per population as a function of its distance to 

the south-western-most population (-2.18 × 10-2); and (iv) the average mean allelic richness 

per population (5.32). 

 

2. Base model 

One of the major drivers of barn owl populations’ dynamics is winter harshness 

(Altwegg et al. 2006; Marti & Wagner 1985; Massemin & Handrich 1997). The sensitivity of 

this species to climate, notably to long periods of snow cover, is well known. There is no 

doubt that European barn owls endured the LGM in refugia in ice- and largely snow-free 

ranges south of their current European distribution. The strong cline in genetic diversity 

from south-west to north-east Europe points toward a single colonisation from the Iberian 

Peninsula (or north-Africa via Gibraltar, Fig. S1). Our basal simulation model is thus based on 

a colonisation of Europe from a single, Iberian glacial refugium. 

Simulating colonisation processes requires spatially explicit modelling. A modified 

version of the quantiNEMO programme was used to simulate the colonisation and the 

resulting neutral genetics (Neuenschwander et al. 2008a), using an integrated coalescent 

layer for increased efficiency. Our simulations consisted of two phases, similar to the 

approach implemented in SPLATCHE (Currat et al. 2004; Ray et al. 2010), but with extra 

features (e.g. possibility to simulate quantitative traits). In a first phase, spatially explicit 

demographic history was simulated forward in time (starting with the post-glacial 

colonisation and ending today). In this phase the demographic history of populations is 

simulated based on the demographic parameters presented in Table 2. In the second phase 

genetic data were generated in a coalescent approach (backward in time, starting from 
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today’s sample and going back to the most recent common ancestor of all sampled lineages) 

using the demographic information obtained from the demographic simulations (Hudson 

1990; Nordborg 2001). The genetic data (22 unlinked microsatellite markers) was simulated 

for the same number of individuals and populations as in the observed data. Mutations 

followed a stepwise mutation model (SMM). 

Simulations were performed on a raster map of Europe consisting of 2671 square 

land demes, each 50 km × 50 km in size (Fig. S3). The deme size was chosen to correspond to 

the dispersal abilities of the species. In the Netherlands, about 30% of the juveniles disperse 

more than 50km (Bunn et al. 1982) and the deme size chosen permits to be at a scale for 

which dispersal values can be well estimated (see below details on the definition of the prior 

for migration).  

Simulations started with a single population in the glacial refugium in the south of 

the Iberian Peninsula. At the start of a simulation, this refugium population was distributed 

in equal numbers among the nearest 100 demes (Fig. S3). In the following generations, the 

population range expanded successively across Europe based on demographic processes, 

such as local logistic population growth and migration to the four neighbouring demes 

(stepping-stone migration model). This described base model requires five demographic 

parameters (time of the onset of colonisation, migration rate, deme carrying capacity, size of 

the refugium population, and intrinsic population growth rate) and a single genetic 

parameter (mutation rate of the microsatellites, Table 2). 

 

3. Prior distributions 

Even if plenty of information is available on the barn owl biology in general, we chose 

to use uninformative priors in order to extract the information present directly in our 
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population genetic dataset. For most priors, uniform distributions were chosen and their 

limits where defined with the available ecological data on the species. For two parameters, 

carrying capacity and mutation rate, a lognormal distribution seemed more appropriate for 

concentrating the parameter search on the lower values of these parameters. Also, the 

prior-distribution densities where defined using available ecological literature (see details 

bellow). 

 Start of the colonisation (time): As a result of high sensitivity of barn owls to winter 

harshness, the colonisation of the northern part of Europe necessarily occurred after 

the warming of the continent, i.e. after the LGM around 20 000 years ago (Clark et al. 

2009). Since no information on the onset of colonisation is available, a broad uniform 

prior was chosen ranging from 2000 to 10 000 generations, which is about 7200-36 

000 years BP assuming a constant generation time of 3.6 years for barn owls 

(Altwegg et al. 2006). 

 Migration rate: Migration rate is generally high in the barn owl. In the Netherlands, 

more than 30% of the juveniles disperse more than 50 km from their place of birth to 

their place of reproduction (Bairlein 1985; Bunn et al. 1982). We account for these 

dispersal distances by defining a deme size of 50 km × 50 km (see above) and by 

defining a wide uniform migration prior allowing for high migration rates from 0 to 

0.5, where the migration rate represents the proportion of the population in a given 

deme that emigrate to the four directly neighbouring demes at each generation. 

 Carrying capacity: The barn owl census population size is well estimated in Europe 

and it counts about 140 000 breeding pairs (Hagemeijer & Blair 1997). We chose to 

cover a broad interval of 5-10 000 individuals per deme (so between 13 355 and 26 
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710 000 overall), but we put more weight on small values by using a lognormal 

distribution with a mean of 300 and a variance of 400.  

 Size of the refugium population: As no information is available about this population 

size we used a wide uniform distribution between 100 and 100 000 individuals. 

 Population growth rate: We chose a wide uniform prior between 0 and 2. Note, that 

the growth rate has only an effect during colonisation when population size has not 

reached carrying capacity. Its effect on the model is therefore limited to this stage of 

the simulations. The population growth was modelled with a logistic regulation 

model, where growth rate represent the slope of logistic regression. 

 Mutation rate: a lognormal distribution between 10-8 and 10-2 with a mean of 10-3 

and a variance of 8 × 10-2 was used as prior to span the full range of plausible 

mutation rate values (Ellegren 2000). 
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Table 2. Demographic parameters for the different scenarios (models). Details on the a priori value 
distributions of the different models. Uniform distributions have equal probability of sampling any 
value between the defined boundaries; lognormal distributions have a higher probability of sampling 
values closer to its mean in a logarithmic scale, with predefined upper and lower limits (truncated). 
The brackets describing lognormal distributions give: (lower bound, upper bound, mean, variance). 
 

Parameters For which model Prior characteristics 

Start of the colonisation All models Uniform (2000-10 000 generations) 

Population growth rate All models Uniform (0-2) 

Mutation rate All models Lognormal (1e
-8

-1e
-2

, 1e
-3

, 8e
-2

) 

Size of refugium population All models 

Uniform (100-100 000) but for 2-refugia 
models 

Uniform (200-100 000) for 1-refugium 
models 

Migration rate All models but two-migration-rate Uniform (0-0.5) 

Migration rate high density Two-migration-rate Uniform (0-0.5) 

Migration rate low density Two-migration-rate  Uniform (0-0.5) 

Carrying capacity 
All models but carrying-capacity-
cline 

Lognormal (5-10 000, 300, 400) 

Carrying capacity of the SW 
deme 

Carrying-capacity-cline Lognormal (5-10 000, 300, 400) 

Carrying capacity of the NE 
deme 

Carrying-capacity-cline Lognormal (5-10 000, 300, 400) 

Extinction rate SW deme Extinction-rate-cline Uniform (0-0.5) 

Extinction rate NE deme Extinction-rate-cline Uniform (0-0.5) 

Divergence time Two-refugium Uniform (0-120 000) 

 

4. Model comparison 

ABC does not only allow estimating model parameters, but it is also effective in 

contrasting different models (eg. Sunnaker et al. 2013 and references therein). We took 

advantage of this feature to test for different scenarios that could explain the barn owl’s 

post-glacial evolutionary history, and then applied the parameter estimation to the best 

supported model, using the same prior distributions as in the model comparison, but 

increasing the number of simulations used to 1 million. 
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Three colonisation models: Our observation of a strong decrease of allelic richness 

from the Iberian Peninsula towards north-eastern populations (Fig. S1) suggests a single 

colonisation from the Iberian Peninsula. Our base model (one-refugium model) thus consists 

of a single colonisation of Western Europe from this Peninsula. However, many taxa in 

Europe are known to have survived the cold period also in eastern glacial refugia (Hewitt 

1999; Taberlet et al. 1998). We tested this hypothesis by adding a second eastern glacial 

refugium, of identical size situated in Greece (two-refugium model). Finally, we tested the 

hypothesis of whether barn owls resisted the cold period and remained across Europe and 

thus had no colonisation phase after the LGM. We implemented this model by directly 

spreading the initial population size over the whole continent (no-colonisation model). 

Four heterogeneity models: The described base model has constant environmental 

characteristics (one-carrying-capacity model), i.e. deme characteristics did not change over 

space. However, several ecological aspects of the barn owl, apart from the colonisation, 

might have induced spatial variation in genetic diversity. Half of the extant European barn 

owls are breeding in the Iberian Peninsula, and there is a strong decrease in population sizes 

from south-western to north-eastern Europe (Hagemeijer & Blair 1997). We thus tested 

whether a model with clinal variation in carrying capacity from south-west to north-east 

Europe fits the data better (carrying-capacity-cline model). A second key characteristic that 

might influence the spatial variation in genetic diversity is the variation in the extinction 

rate. The European barn owl is very sensitive to cold, snow-rich winters, and the gradient of 

continentality from south-western to north-eastern Europe might play an important role in 

creating the observed pattern of genetic variation. We thus also ran a model that includes a 

south-west/north-east cline in extinction rates (extinction-rate-cline model). Both extinction-

rate and carrying-capacity clines were implemented by defining independent values for 
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south-western and north-eastern extremes (sampled from the same prior distributions), 

with a linear interpolation for the demes along the clines. Finally, the last model investigated 

is based on the observation that migration rates may differ depending on the stage of 

colonisation looked at: Migration is often higher during the colonisation and then goes down 

once carrying capacity has been reached (Neuenschwander et al. 2008b; Saether et al. 

1999). In this model (two-migration-rate model), we allowed for two migration rates, one at 

low density during colonisation and one at high density when demes are completely 

populated. 

The four heterogeneity models were combined with the three colonisation models. 

The combination of the no-colonisation and two-migration-rate models was not used since 

the migration rate during colonisation is not part of this model. Eleven different models 

were therefore compared (Table 1). 

For the model comparison in ABC, we run 105 simulations for each of the eleven 

models based on parameters drawn from the corresponding prior distributions (Table 2). 

Each simulation was compared to the observation by their summary statistics, resulting in a 

Euclidean distance. Models were then compared based on their posterior probabilities 

following Leuenberger and Wegmann (2010), as implemented in ABCTOOLBOX (Wegmann 

et al. 2010). 

 

5. Parameter estimates 

The best demographic model was then selected for final parameter estimation. A 

total of 106 simulations were generated as before based on parameters drawn from the 

prior distributions. The 1000 simulations closest to the observation were retained for 
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parameter estimation using a locally-weighted linear-regression approach implemented in 

the package ABCTOOLBOX (Wegmann et al. 2010). 

 

6. Quality assessment of estimates 

To test the accuracy of our estimates, we use 1000 randomly chosen simulations 

(from the 106 simulations dataset) with known parameter values and their resulting genetic 

data as pseudo-observations. Using the same ABC framework as before, we estimated the 

parameter values for these pseudo-observations. The accuracy of the estimation was 

measured by comparing the estimated parameter value (mode) against the “true” 

parameter value using the following statistics: relative root mean square error (RRMSE), 

mean relative bias, proportion of high posterior density 50% (HPD50%) encompassing the 

pseudo observed value, proportion of HPD95% encompassing the pseudo-observed value. 

We also computed the R2 of the linear regression of the estimated parameter values as a 

function of the pseudo-observed parameter values (Neuenschwander et al. 2008b). 

 

III. Simulations applied to the colour trait 

Additional simulations were performed to assess the probability of neutral processes 

generating the colour cline observed in the barn owl across Europe. These simulations were 

run using the best-supported demographic model and parameter values drawn from the 

posterior distributions therein (HPD95% intervals). In order to simulate colour as a 

quantitative trait, we ran the simulations forward in time in quantiNEMO (Neuenschwander 

et al. 2008). For the observed data, colour measurements (phenotypes) were obtained for 

each individual by sampling four reflectance spectra with an Ocean optic USB 4000 
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spectrophotometer (Ocean Optics, Dunedin, FL) on five breast feathers per individuals 

lightened by a dual deuterium and halogen light source (Mikropackan DH-2000-BAL, 

Mikropack, Ostfildern, Germany). As in (Antoniazza et al. 2010), the individual mean brown 

chroma, which represents the contribution of the red part of the spectrum (600-700nm) to 

the whole spectrum (300-700nm), was calculated. 

The individual breast-colour variation in the barn owl ranges from purely white to 

rufous-brown (dark). Because the genetic basis for this trait is still poorly known (Roulin & 

Dijkstra 2003), we investigated five alternative genetic architectures. (i) The simplest 

architecture consists of a single bi-allelic locus. More complex ones involved (ii) 25 bi-allelic 

loci; and (iii) a single multi-allelic locus with 50 serial alleles. For these three architectures, 

the determination of the colour phenotype was defined as purely additive (i.e. no 

dominance, nor epistasis). Additionally, we explored architectures with (iv) a single bi-allelic 

locus and (v) 25 bi-allelic loci, where the dark allele was completely recessive. Even though 

somewhat unrealistic, this dominance scheme was used in order to allow for a higher initial 

dark allele frequency in the refugium, while keeping the frequency of the dark phenotype at 

its observed value, which would facilitate the surfing phenomenon (Hofer et al. 2009). In 

other words, we chose this dominance scheme in order to be conservative, by favouring the 

neutral processes. 

In the bi-allelic architectures (for either one locus or 25 loci), one allele was 

considered “white” (representing the whitest birds), the other “dark” (representing the 

darkest birds). In the multi-allelic architecture, alleles are distributed over a linear gradient 

ranging from “whitest” to “darkest” with 50 different levels. Also, as a control, we simulated 

22 microsatellite loci to mimic the purely neutral markers used in the previous simulations. 
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As the initial frequency of a given allele (Hofer et al. 2009) or the geographic location 

where a new allele appears (Klopfstein et al. 2006; Travis et al. 2007) may play a major role 

in the probability of observing the surfing phenomenon, two models varying in these 

respects were designed: (i) evolution from standing variation and (ii) facilitated allele surfing. 

This second scenario was implemented only for the architectures without dominance, in 

order to estimate the probability of surfing for a new mutation occurring at the front of the 

expansion. For all these models, range expansion started from an Iberian refugium 

colonising the rest of the continent, potentially generating clines in colour polymorphism 

through the process of allele surfing. 

Initial allele frequencies depended on the model used. For models based on standing 

variation, the average initial frequencies were calculated based on the current phenotype 

frequencies observed in the refugium of the Iberian Peninsula where the white phenotype is 

currently present at a ~90% frequency. Accordingly, for the co-dominance models, the initial 

frequency of the “white” allele was 90%; for the complete dominance models, it was 68%. In 

the multi-allelic model, the frequency of each allele was given by an exponential distribution, 

in which the lighter-coloured half of the alleles had a frequency of 90%. 

For the simulations with facilitated allele surfing, the whole Iberian Peninsula started 

already occupied and the white allele was fixed in all patches. One patch, located in the 

north-eastern corner of the Iberian Peninsula, contained a single dark allele at each locus 

(also for the multi-locus architecture) and initial population size (Ni) determined by 

migration rate (m) and carrying capacity (K): Ni = K × m/4. For the multi-allelic trait, the new 

mutation was implemented by bringing the darkest allele into the population which, in this 

case, contained the same exponential distribution of the other alleles as used in the 

evolution from standing variation scenario. As a result, this dark allele was at the very front 
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end of the expansion, giving it an enhanced chance to spread by hitchhiking on the 

colonisation wave and creating the observed cline. 

Beyond dominance effects, the mapping of genotypes into phenotypes was also done 

considering two different values for heritability of the colour trait (h2 = 0.81 or 1). These 

values were chosen because narrow-sense heritability for colour was estimated to be 0.81 in 

Switzerland (Roulin & Dijkstra 2003; Roulin et al. 1998), and complete heritability (h2 = 1) 

makes the estimation of phenotypic differentiation (QST) more conservative. 

For all simulations, we calculated the linear regression between pairwise geographic 

distances and the neutral genetic (FST) or phenotypic differentiation (QST) between the 20 

sampled populations. To assess the steepness of the cline produced, we retained the slope 

of the linear regressions, and following (Antoniazza et al. 2010) used the difference in slope 

between QST and FST as a statistic to summarize the discrepancy between phenotypic and 

neutral markers differentiation. Finally, we compared the values for the difference of slopes 

obtained in each one of the simulation models with the relative position of this statistic as 

calculated for the observation. The proportion of simulations in each model that returned 

values equal or higher than the observation provided us with an estimate of the probability 

of attaining the observed values with that given neutral model. 

 

Results 

Model comparison 

The posterior probability of each of the eleven models tested is presented in Fig. 2. 

The four models with one glacial refugium are best supported and their total posterior 

probability is higher than 90%. Among the one-refugium models, the base scenario with a 
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constant carrying capacity over the continent had the highest posterior probability (0.31), 

followed by the model with a south-west/north-east cline in carrying capacities (0.25). The 

former model has not only higher support, but is also more parsimonious than the latter and 

was therefore used for all further simulations. Interestingly, the estimation of the 

parameters for the second best model, with a cline in carrying capacity, (although clearly 

less supported) results in estimates with a very shallow or non-existent cline of carrying 

capacities, thus equivalent to the simplest one-refugium one-carrying-capacity model. This 

also applies to the other two one-refugium models (see Fig. S5-7 for the parameter 

estimates). 

 

 

Figure 2. Posterior probabilities of the 11 models tested based on Leuenberger and Wegmann (2010). Based on 
four pattern statistics, 1000 simulations over 100 000 simulations per models were retained. 
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Demographic parameter estimates 

The posterior distributions for the demographic and genetic parameters of the base 

model (one refugium with one carrying capacity) are shown in Fig. 3, and the corresponding 

point estimates are reported in Table 3. The carrying capacity shows a narrow posterior 

distribution with a mode at 203 individuals per deme and a HPD95% varying between 76.5 

and 555. The population growth rate as well as the refugium population size show broad 

posterior distributions, and their point estimates of respectively 1.58 and 59 800 should be 

considered with caution given their low estimability (see below). Migration rate estimates 

show high values with a mode at 0.375 and an HPD95% of 0.188-0.5. The mutation rate 

showed a very narrow posterior distribution with a mode of 1.03 × 10-4 and a HPD95% 

between 2.85 × 10-5 and 3.8 × 10-4. The estimation of the onset of colonisation indicates high 

values with a mode at 7350 generations, which corresponds to about 24 500 years BP 

according to the generation times estimated in a Swiss barn owl population (Altwegg et al. 

2006) and its HPD95% varies between 3810 and 10 000 generations ago. 
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Figure 3. Posterior distributions of the estimated parameters. Grey lines show prior density and black lines the 
posterior distributions. Note that carrying capacity and mutation rate are in logarithmic scale. The same 
smoothing parameters were used for all parameter estimates (i.e. Dirac peak width = 0.02). 

 
 

Table 3. Parameter estimates under the best supported model (one-refugium single carrying 
capacity). Estimated modes are used as point estimates; HPD95% stands for the 95% highest 
posterior density intervals. 
 

Demographic parameters Estimated modes HPD95% 

Start of the colonisation (generations) 7350 3810 - 10 000 
Population growth rate 1.58 0.338 - 2.00 

Mutation rate 1.03 × 10
-4

 2.85 × 10
-5

 - 3.80 × 10
-4

 
Size of refugium population 59 800 8840 - 98 800 

Migration rate 0.375 0.188 - 0.500 
Carrying capacity 203 76.5 - 555 

 

Quality assessment 

All statistics that assess the quality of the estimation of the parameters (RRMSE, R2, 

relative bias) are consistent with which parameters can be well estimated and which ones 

cannot (Table 4). The RRMSE of the parameter estimation varies widely from 0.0516 to 7.55. 

The estimate for mutation rate is highly accurate; those for migration rate, carrying capacity 

and start of the colonisation are also quite good. Population growth rate and refugium 
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population size are poorly estimated, which is not unexpected since these parameters have 

only an effect on the demographic history during a short period of the simulation (i.e. during 

the colonisation process). The validation analyses showed that our estimates are generally 

conservative: More pseudo-observed simulations are generally found in the posterior 

distribution than expected in general (Table 4), but for start of colonisation and the refugium 

population size. As these distributions were used as the background model for the colour 

simulations, we can be confident that they provided solid foundations. 

 

Table 4. Validation of the estimates for the one-refugium, one-carrying-capacity model based on 
1000 pseudo-observations. See Material & Methods, Quality assessment of estimates for more 
details. 
 
Demographic parameters Rel. bias RRMSE Prop. HPD 50% Prop. HPD 95% R

2
 

Start of colonisation 0.109 0.536 47 93.2 0.154 
Population growth rate 0.744 5.9 52.6 94.9 0.0952 
Mutation rate* 0.00336 0.0516 60.8 98.0 0.955 
Refugium population size 1.24 7.55 48.9 94.7 0.0582 
Migration rate 0.206 0.919 56.5 97.3 0.576 
Carrying capacity* 0.00978 0.114 65.5 98.7 0.649 

*As for the parameter estimate, these parameters are in log scale. 

 

Colour simulations reveal adaptive origin of colour cline 

The probability of generating the observed colour cline under a strictly neutral model 

was assessed with a second round of simulations. For each combination of genetic 

architecture and model of polymorphism distribution (dominance or not, facilitated allele 

surfing or not), we generated 1000 replicates. The results for the comparison between these 

simulations and the observed values are presented in Fig. 4. For the models based on 

standing variation, we observe that no simulation reached the observed values (with either 

h2 = 1 or 0.81), no matter the dominance. When mutations are enforced to take place at the 

very front of the expansion (facilitated allele surfing), between one and five simulations 
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produced differences of slopes equal to or larger than what is observed in the owl 

populations (1 out of a 1000 for both one-locus traits, 3 and 5 out of 1000 for the multi-locus 

trait with the h2 = 0.81 or h2 = 1, respectively). In summary, without selection, very few 

simulations under an unlikely scenario managed to recreate the abrupt cline in colour visible 

in the observed data. 

 

 

Figure 4. Probability of the neutral simulations to replicate the observed cline in colouration in the European 
barn owl. Comparison of distributions obtained from the calculation of the slope of IBD for the quantitative 
trait (colour, QST) and the neutral loci (FST). Each model of different genetic architectures and starting 
polymorphisms is represented as a different distribution. The observed values for different levels of heritability 
are represented by the vertical lines: dashed line with h

2
 = 1, plain line h

2
 = 0.81. 

 

Discussion 

Neutral demographic model 

The spatially explicit approximate Bayesian computation analysis strongly supported 

the hypothesis that barn owls colonised Europe after the LGM from a single refugium 
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situated on the Iberian Peninsula. It appears that the sequential bottlenecks during 

colonisation alone explain the pronounced continuous decrease in diversity from the Iberian 

Peninsula to Eastern Europe. Alternative models including additional processes capable to 

explain the observed cline (cline in carrying capacity, cline in extinction rate, or to the 

existence of two refugia) were less supported than the simpler model. Even more complex 

models ¬– including, for example, mountain ranges or variation in ecological suitability – 

might be more precise for some parts of the distribution of the European barn owl; but this 

general model provides a good approximation of the general picture. Another possible 

development of our model would be to allow for long-distance dispersal (LDD). However, we 

believe that – if LDD were a meaningful process in the whole scenario of the barn owl’s 

colonisation of Europe – it would have left a different signature of isolation by distance, with 

a less consistent pattern than the one observed both in pairwise genetic distances between 

populations and in the decay of genetic diversity (Antoniazza et al. 2010). Furthermore, a 

long distance is determined by the scale of the model in use: The deme dimensions we 

implemented here represent the average dispersal distance of barn owls in nature (50km) 

(Bunn et al. 1982), which we believe is probably larger than the dispersal ability during the 

deglaciation period post-LGM. In summary, LDD may have played o role in the demographic 

history of Tyto alba, but not a role that was relevant in the colonisation process and, 

therefore, not a role that would alter the significance of our findings. 

The estimated start of the colonisation of 7350 generations ago with a 95% 

confidence interval of 3810 to 10 000 generations ago corresponds to 26 460 years BP and a 

95% confidence interval from 36 000 to 13 700 year BP (assuming the estimated 3.6 years 

per generation, Altwegg et al. 2006) falls in line with an expansion following the LGM. This 

estimate is, although slightly higher, in good agreement with the expected time of 
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colonisation of Europe after the LGM 20 000 years BP. The estimated time of colonisation in 

years BP depends highly on the generation time, which is difficult to estimate and also 

assumes that the generation time remains constant over time. The generation time 

estimated by Altwegg et al. (2006) came from short interval of time in a stable population. 

Given the ability of Barn owls to already reproduce at one year of age (Cramp 1985) and that 

this age at first breeding is the parameter that matter in a range expansion scenario; it is 

very likely that the generation time measured by Altwegg et al. (2006) is higher than the 

actual generation time over the post-glacial history of European barn owls. This could 

explain the relatively old estimates of the colonisation time by the barn owls. 

The estimated carrying capacity of ~200 individuals per deme with a 95% confidence 

interval of 77 to 555 individuals extrapolated to the European scale results in a population 

size of 542 000 with a confidence interval of 204 300 to 1 482 400. Compared to the 

estimate of 140 000 breeding pairs (Hagemeijer & Blair 1997), i.e. 280 000 breeding 

individuals in Europe this seems to be overestimated. Even if these two numbers cannot be 

compared directly (the first one is an effective population size and the second one a census 

size for the breeding adults), they are in the same order of magnitude and our estimate is 

plausible. The overestimation is probably also based on the fact that the simulated European 

map is slightly larger than the actual natural range of barn owls. 

The estimated migration rate of 0.375 between neighbouring demes of 50 km × 50 

km is in accordance with what was estimated by Bunn et al. (1982) for the Netherlands (32.1 

% of the young move more than 50 km in their first year). The estimated size of the refugium 

population of 59 800 individuals has to be taken with caution. As expected the accuracy tests 

show that this parameter is difficult to estimate since its traces in the genetic diversity in the 

present is secondary. In contrast, the estimate of the mutation rate is very accurate, with an 
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estimate of 1.03 × 10-4 and a sharp 95% confidence interval from 2.85 × 10-5 to 3.80 × 10-4. 

This estimate is in good agreement with the expectation (see discussion in Wegmann & 

Excoffier 2010). These estimates seem to be biologically meaningful and we are thus 

confident that this demographic and genetic model is a good approximation of the actual 

post-glacial history of the European barn owls and that it provides a sound demographic null 

model to investigate further questions regarding barn owl biology. 

 

Colour simulations 

Our finding that Europe was colonised from a single Iberian refugium has the 

implication that the colour cline (Fig. S4) might have been established by surfing during this 

colonisation. Simulations of a colour quantitative trait in our neutral demographic model 

were run in order to evaluate this possibility. Overall, the formation of the observed cline 

under neutrality is extremely unlikely: We seldom obtained simulations showing the same 

strong difference in geographic differentiation between phenotype and neutral markers. We 

never observed it with standing genetic variation in the refugium. Only with facilitated allele 

surfing (i.e. explicitly seeding mutations in the front of expansion) did we obtain between 1 

and 5 simulations (out of a 1000) showing the same or larger differences. The highest 

number of such simulations was obtained for the trait architecture based on 25 bi-allelic loci 

(and hence, 25 mutations, 1 per locus, in the deme at the start of the expansion), but even 

with this unrealistically favourable architecture the probability of generating by neutral 

processes only such a difference in slope was less than 0.5%. 

The colour simulations thus show that the evolution of the colour cline by surfing is 

almost impossible. While we could not be exhaustive in our tests of alternative genetic 
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architectures, we believe that the architecture where the surfing mutation is recessive and 

therefore present at a fairly high frequency is the most favourable for surfing. Under this 

architecture, surfing did not happen.  Architectures with epistasis were not investigated but 

would also need one allele to be driven to a high frequency. Furthermore, the current 

knowledge on the typical architectures underlying pigmentation traits in birds suggests that 

a rather simple architecture is to be expected in the case of the barn owl (Mundy 2006; 

Roulin & Ducrest 2013). Therefore, the conclusion drawn by Antoniazza et al. (2010), that 

the European colour cline results from a local adaptation process, is thus confirmed by our 

simulation approach. With the exclusion of neutral scenarios, the evolution of the colour 

cline by natural selection generating local adaptation is indeed far more likely. 

 

Evolution and maintenance of the European barn owl colour cline 

The classical view on the evolution of barn owl colour variation in Europe is that the 

colour morphs evolved in allopatry in two refugia during the last glaciations and that the 

cline evolved by secondary contact after the ice age (Voous 1950). The model inferred above 

for the post-glacial history of the barn owl in Europe points toward a very different scenario. 

Our results suggest that the colour cline evolved during or after the colonisation out of a 

single refugium through a local adaptation process and also imply a very recent evolution of 

the colour cline (post-glacial, hence younger than 20 000 years BP). A rapid colonisation of 

Europe after the last ice age is supported by the observation of barn owl remains that dated 

at least from 10 000 years BP found in the UK (Del Hoyo et al. 2000; Yalden & Albarella 2009) 

and the estimated onset of colonisation of 7349 generation points toward a colonisation 

date close to the end of the last glacial maximum. Evaluating the strength of selection will be 
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a next step to further the understanding of this system, but the lack of information on the 

selective agent behind the colour variation puts a serious challenge to this extension 

(Antoniazza et al. 2010). 

 

Continental clines and evolution during range expansions 

We feel that the case of the barn owl, where evolution of a locally adapted trait 

happened during or after the recolonisation of the continent after the ice age, might be far 

more common than currently recognized in other taxa. The climatic oscillations of the 

quaternary that shape the dynamics of the ranges of many species of temperate latitudes on 

both hemispheres, generated retreat/recolonisation cycles that occurred along major 

climatic axis (mainly north-south). Also, there is a growing body of evidence that local 

adaptation along such climatic axes is rather common [for instance, size clines first describe 

by Bergmann (1847)]. 

Continental clines in temperate latitude thus offer a scope to study both local 

adaptation at large scale, but also the dynamics of this adaption in time and its interaction 

with colonisation processes. The interaction between natural selection and colonisation 

processes is a key question in evolutionary biology, but is still in its infancy (Excoffier et al. 

2009). The study of large scale continental gradient might represent a fruitful area to study 

these questions in more details (see Kujala & Savolainen 2012 for a first approach with a 

non-spatial demographic model). 

The European barn owl is a good illustration and provides a superb case study to 

investigate these questions. Here, we were able to show that the colour cline observed in 

this species was not established by neutral demographic processes during the colonisation of 
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the European continent. This shows that selection processes must have been involved in the 

establishment of the European colour cline, even if the mechanism by which these colour 

clines established remain to be elucidated. We believe that the demographic model 

developed in this study provides a sound historical scenario to further decipher adaptive and 

non-adaptive processes in this and potentially other species. 
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Supplementary information 
 
 

 
Figure S1. Observed cline in mean allelic richness (mean allelic richness over 22 loci per population as a 
function of distance to the south-westernmost population). Note that distances are in deme units (50 km). R

2
 = 

0.779. 
 
 

 
Figure S2. Observed isolation by distance (pairwise FST as a function of pairwise distances). Note that pairwise 
distances are in deme units (50 km). R

2
 = 0.310. 



Chapter 2 : Range expansion and a phenotypic cline 

105 

 

 

Figure S3. Simulated map of the sampling locations and sampling sizes. Sampling sizes and sampling locations 
as for the observed dataset are indicated. Similar sampling locations and sampling sizes are generated for the 
simulated dataset. Colonisable demes are indicated in grey, sea demes (not colonisable) are indicated in white. 
The Iberian glacial refugium demes are indicated in dark grey. We use a Europe Albers Equal Area Conic 
projection to adequately represent surfaces. 
 
 

 
Figure S4. Observed isolation by distance for the microsatellites (pairwise FST as a function of pairwise 
distances, same data as in Fig. S1) and for the colour data (pairwise PST as a function of pairwise distances). 
Note that distances are in kilometres. This figure is an update (more microsatellite markers and more 
individuals) of bottom left panel of figure 2 in the first chapter of this thesis. 
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Figure S5. Posterior distributions of the estimated parameters for the one-refugium carrying-capacity-cline 
model based on 1000 retained simulations over ~10

6
 simulations. Grey lines show prior density and black lines 

the posterior distributions. Note that carrying capacity and mutation rate are in logarithmic scale. The same 
smoothing parameters were used for all parameter estimates (i.e. Dirac peak width = 0.02). The estimated 
modes for the carrying capacities of the south-west and north-east corner of the map are very similar (205 vs. 
166 respectively with massive overlap of the posterior distributions). The estimated model is thus very similar 
to the one-refugium one-carrying-capacity model and the difference in carrying capacity is in the expected 
direction. 
 
 

 
Figure S6. Posterior distributions of the estimated parameters for the one-refugium extinction-rate-cline model 
based on 1000 retained simulations over ~10

6
 simulations. Grey lines show prior density and black lines the 

posterior distributions. Note that carrying capacity and mutation rate are in logarithmic scale. The same 
smoothing parameters were used for all parameter estimates (i.e. Dirac peak width = 0.02). Both estimates for 
extinction rate fall in the lower part of the prior distribution, especially the one in the south-west, which would 
have a strong effect on the fate of the simulations. 
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Figure S7. Posterior distributions of the estimated parameters for the one-refugium two-migration-rate model 
based on 1000 retained simulations over ~10

6
 simulations. Grey lines show prior density and black lines the 

realised distributions. Note that carrying capacity and mutation rate are in logarithmic scale. The same 
smoothing parameters were used for all parameter estimates (i.e. Dirac peak width = 0.02). The posterior 
estimates for the two migration rates are very similar. It is interesting to note that mode of the current 
migration rate is somehow higher than the one during colonisation, which might be constrained by the low 
genetic structure observed in the barn owl today. 

 
 

Table S1. Multiplex composition and primer concentration for microsatellite genotyping. 
 

Multiplex Locus Dye Final Conc. [μM] 

Multiplex 1 

Ta-206 FAM 0.45 

Ta-210 HEX 0.105 

Ta-216 FAM 0.135 

Ta-306 NED 0.165 

Multiplex 2 
Ta-218 HEX 0.178 

Ta-220 FAM 0.11 

Multiplex 3 

Ta-204 HEX 0.25 

Ta-214 FAM 0.5 

Ta-305 FAM 0.5 

Ta-310 NED 0.25 

Ta-413 NED 0.25 

Multiplex 4 

Ta-202 FAM 0.25 

Ta-212 DYO630 1 

Ta-215 FAM 1 

Ta-402 NED 0.25 

Ta-408 HEX 0.5 

Multiplex 5 

FEPO42 FAM 0.24 

54f2 NED 0.24 

Tgu06 HEX 0.48 

Calex-05 DYO630 0.48 

RBG18 FAM 0.72 

Oe053 HEX 0.96 

Primer concentration is indicated for both forward and reverse primer together. 
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Summary 

Unraveling how neutral and adaptive evolution contribute to the build-up of 

reproductive isolation is key to advance our understanding of speciation. Species with a ring-

like colonization around a geographic barrier in which reproductive isolation evolved in 

terminal populations offer unique insights, as intermediate stages of speciation can be 

observed across the ring. Here we present evidence for incipient speciation in European 

barn owls (Tyto alba) in a ring around the Mediterranean. From the Middle East barn owls 

colonized the Palearctic in two directions. A major colonization advanced over North Africa 

and Iberia, from where it colonized Europe and reached the secondary contact zone in 

Greece. A second colonization front arrived in Greece over the Bosporus. The colonization of 

Central Europe was accompanied by the evolution of a novel rufous phenotype caused by a 

non-synonymous derived variant of the melanocortin-1- receptor (MC1R) gene. Steep 

geographic clines in coloration and in the frequency of the novel MC1R variant are 

maintained by local adaptation, despite weak neutral genetic population structure. 

Admixture patterns and linkage disequilibrium of coloration with the neutral genetic 

background in the secondary contact zone suggests that introgression is limited among the 

terminal forms of the ring. The evolution of a novel color phenotype during the ring-like 

colonization of barn owls resulted in color-related limitation of introgression at secondary 

contact. This shows how derived genetic variation can contribute to the evolution of new 

phenotypes and may ultimately lead to the evolution of reproductive isolation in the face of 

ongoing gene flow. 
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Introduction 

The ‘Origin of Species’ established adaptation by natural selection as the foremost 

process by which species evolve. Ever since, the relative contributions of adaptive and 

neutral evolution in species diversification have been debated. For decades, the prevailing 

view held that reproductive isolation evolves in geographic isolation, and emphasized the 

need for a period with restricted gene flow during which incompatibilities not necessarily 

evolve by local adaptation, but are established by neutral genetic drift (Bolnick & Fitzpatrick 

2007; Mayr 1963). Today an increasing body of theoretical and empirical work shows that 

under strong ecology-driven divergent selection populations can diverge and species evolve 

in the presence of gene flow (Coyne & Orr 2004; Nosil 2008; Via 2001). Allopatric speciation 

and speciation-with-gene flow represent two extremes of the speciation process in which 

either genetic drift or selection predominate (Fitzpatrick et al. 2008). However, species may 

rather evolve by a complex interaction of demographic effects and local adaptation. Insights 

into the interplay of demography, geography and ecology during species evolution are 

therefore key to understanding how biodiversity unfolds. 

Ring species represent ideal systems to study the interplay of demography and 

selection during the evolution of reproductive isolation. They consist of populations with a 

ring-like distribution around a geographic barrier – such as mountain ranges (Irwin et al. 

2001b), valleys (Kuchta et al. 2009), or a sea (Bensch et al. 2009) – which vary gradually in 

one or several phenotypic traits, and the populations at the ends of the ring meeting in 

secondary contact are reproductively isolated (Irwin et al. 2001a). Within such systems, 

reproductive isolation is predicted to evolve through the interaction of drift during 

colonization and local adaptation to the environments through which the colonization fronts 

advance (Doebeli & Dieckmann 2003; Martins et al. 2013). During this process populations 
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remain interconnected by gene flow throughout the ring. Ultimately, reproductive isolation 

is revealed only at secondary contact, where the colonization fronts have accumulated too 

many genetic and/or phenotypic differences to successfully interbreed. Despite a high, 

world-wide abundance of geographic barriers that could give rise to ring species (Monahan 

et al. 2012), ring speciation has only rarely been documented (Irwin et al. 2001a). The 

scarcity of the phenomenon is likely explained by the narrow demographic conditions under 

which ring species evolve. For reproductive isolation among terminal forms to evolve, the 

rate of diversification by genetic drift and divergent selection must outweigh the 

homogenizing force of gene flow (Irwin et al. 2001a). Conversely, the ring may break up into 

multiple taxa if diversification occurs too fast (Doebeli & Dieckmann 2003).  Accordingly, ring 

species known to date exhibit varying degrees of phenotypic and genetic differentiation. 

Ensantina salamanders (Pereira & Wake 2009), Greenish warblers (Phylloscopus trochiloides, 

Irwin et al. 2001b), and Australian Platycercus parrots (Joseph et al. 2008) show little or 

limited gene flow among populations and complete cessation of gene flow between the 

terminal taxa. The opposite extreme, with high rates of gene flow across a ring around the 

Baltic Sea, is found in the willow warbler (Phylloscopus trochilus, Bensch et al. 2009). 

With a zone of secondary contact in which the two colonization fronts meet, and 

gradual genetic and phenotypic changes in-between, ring species join two systems to study 

speciation: they provide access to a hybrid zone in which incompatibilities can be mapped, 

while the evolutionary history of the reproductive barriers can be studied in the phenotypic 

and genetic cline between the reproductively isolated terminal taxa. Here, based on genetic 

data from 22 microsatellite markers and a mitochondrial marker (NADH-dehydrogenase-6 

gene, ND6) together with data on melanin-based coloration and from a candidate color gene 

(melanocortin-1-receptor, MC1R) in an extensive sampling of >700 barn owls (Tyto alba) 
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from 28 populations from Europe, North Africa and the Middle East (Figure 1A, Table S1), we 

provide evidence for circum-mediterranean ring speciation of barn owls, and link limited 

introgression at secondary contact with the adaptive evolution of a novel color phenotype 

that arose during colonization. 

 

 

Figure 1. Sampling and population structure. A) Geographic distribution of sampling locations of barn owls. The 
distribution of barn owls in the study range is shaded in light grey. AEG; Aegean (N=22); BAL, Baleares (N=29); 
CH, Switzerland (N=27); CT, Crete (N=61); CZ, Czech Republic (N=20); D-BB, Germany Brandenburg (N=27); D-
NE, Germany Northeast (N=21); D-NS, Germany Niedersachsen (N=30); D-S, Germany South (N=37); D-T, 
Germany Thüringen (N=19); DK, Denmark (N=37); E-C, Spain Center (N=20); E-N, Spain North (N=11); F-E, 
France East (N=28); F-LR, France La Rochelle (N=13); F-N, France North (N=15); F-NA, France Nantes (N=28); GC, 
Gran Canaria (N=16); GR, Greece (N=24); H, Hungary (N=32); I, Italy (N=25); ME, Middle East (N=32); NAF, 
North Africa (N=19); NL, Netherlands (N=30); P, Portugal (N=30); SRB, Balkans (N=28); TEN, Tenerife (N=26); 
ECA, Eastern Canaries (Lanzarote, Fuerteventura) (N=17). B) PCoA based on nuclear markers. Coloration follows 
A). C) Correlation of the first PCo axis of mainland populations with ring distance from the Middle East. The 
regression line is based on all European populations but Greece. D) Geographic structure of nuclear allelic 
richness. The regression line is based on all European mainland populations. C) and D): Greece, the Aegean and 
Crete are depicted with squares, Middle Eastern and North African populations with triangles, islands in D) with 
a black border. 

 

Results 

Ring-like population structure around the Mediterranean 

Genetic differentiation among barn owl populations follows a shallow pattern of 

isolation-by-distance (overall FST: microsatellites, 0.045; ND6, 0.134) (Table 1, Figure S1). 

Strongest differentiation on the mainland was identified between the populations in Eastern 
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Europe and the Middle East, discordant with these population’s spatial proximity (nuclear 

FST: Hungary-Middle East, 0.085; Balkans-Middle East, 0.084; Figure S2A). Principal 

Coordinate Analyses (PCoA) showed the same close relationship of the Middle Eastern 

population with the geographically distant populations from the Canary Islands, North 

Africa, and Iberia, while placing it most distant from the geographically closer populations in 

Eastern Europe (Figures 1B, S3), suggesting ring-like colonization around the Mediterranean. 

This hypothesis is consistent with the geographic distribution of admixture proportions 

estimated in Bayesian analyses of population structure (Pritchard et al. 2000) (Figures 2A, 

2B). These analyses found highest support for two clusters among mainland populations 

(ΔK(2)=251, Figures S4A-D), and for two and three clusters with islands included (ΔK(2)= 237, 

ΔK(3)=331, Figures S4E-H). Individuals from the Middle East, North Africa, the Canary Islands, 

and Crete were predominantly assigned to a “southern” lineage, while populations from 

Central, Northern, and Eastern Europe formed a “northeastern” lineage (K=2; Figures 2A, 

2B). Populations from Iberia to Central Europe showed a gradual change from southern to 

northeastern ancestry (Figures 2A, 2B). The island population from Crete was split off from 

the southern lineage into its own cluster at K=3. 
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Table 1. Mantel r for tests comparing classical isolation-by-distance and ring-colonization 
hypotheses. In Mantel tests and partial Mantel test taking into account flight distance insularity was 
taken into account when island populations were included. P-values are provided in parentheses. 
Flight distance is denoted “Flight”, shortest overland distance “Land”, and ring distance “Ring”. 
Values for models explaining most of the variance are provided in bold. 
 

 Mantel tests Partial Mantel tests 

 
Islands included Mainland Islands included Mainland 

Flight Land Ring Flight Land Ring Land Ring Land Ring 

Msat 
0.616 

(0.001) 
0.616 

(0.001) 

0.674 

(0.001) 
0.751 

(0.001) 
0.777 

(0.001) 

0.845 

(0.001) 
0.079 

(0.170) 

0.381 

(0.002) 
0.326 

(0.071) 

0.590 

(0.001) 

ND6 
0.441 

(0.001) 
0.461 

(0.001) 

0.544 

(0.001) 
0.620 

(0.001) 
0.632 

(0.001) 

0.722 

(0.001) 
0.161 

(0.059) 

0.355 

(0.001) 
0.159 

(0.120) 

0.471 

(0.013) 

MC1R 
0.255 

(0.004) 
0.184 

(0.019) 
0.168 

(0.061) 

0.307 

(0.001) 
0.253 

(0.003) 
0.250 

(0.002) 
-0.349 

(1) 
-0.064 
(0.781) 

-0.324 
(1) 

-0.029 
(0.655) 

Color 0.199 

(0.010) 
0.126 

(0.066) 
0.109 

(0.119) 

0.356 

(0.002) 
0.319 

(0.001) 
0.265 

(0.002) 
-0.361 

(1) 
-0.088 
(0.812) 

-0.340 
(1) 

-0.122 
(0.902) 

 

 

Figure 2. Admixture and color distribution per barn owl population. A) STRUCTURE barplot. Each horizontal line 
represents one individual. Proportions to which each individual was assigned to the southern (orange) and 
north-eastern (red) cluster are depicted. B) Population-wise frequencies at which individuals were assigned to 
the southern (left, orange shading) and northeastern (right, red shading) clusters. C) Population-wise color 
distribution (brown chroma). Population abbreviations are provided in Figure 1. 
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To corroborate the evidence for ring-colonization around the Mediterranean we 

performed tests that contrast alternative colonization hypotheses. Classical hypotheses of 

isolation-by-distance were modelled using distance matrices representing (i) flight distance, 

and (ii) shortest overland distance; ring colonization was modelled using (iii) ring distance, 

i.e. distance within a clockwise ring starting in the Middle East, through North Africa, Iberia, 

and Europe, and ending in Crete (see Figure S5), following PCoA results (Figure 1B, S3). Two 

methods that compared these models unequivocally supported the ring-colonization 

scenario (Tables 1, 2). In linear models that related flight, overland, and ring distance from 

the Middle East to genetic structure measured by the first PCo axis (PCo1), ring distance 

explained the highest amount of genetic structure (R2=0.74, Table 2, see also Figure 1C). 

Flight distance best explained the genetic structure along PCo2 (R2=0.40, Table 2), indicating 

genetic exchange among spatially close populations following colonization. In Mantel tests 

pairwise flight, overland, and ring distances all significantly correlated with genetic 

differentiation (Table 1, Figure S1). However, ring distance explained most of the variance 

(Mantel r=0.674, Table 1), also when accounting for dispersal (flight distance) among 

geographically close populations unrelated to colonization history (Mantel r=0.381, Table 1). 

Results were concordant between nuclear microsatellites and mitochondrial data, and not 

sensitive to the inclusion or exclusion of island populations (Tables 1, 2). 
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Table 2. Correlations of Principle Coordinate axes with geographic variables in barn owls. Flight 
distance is denoted “Flight”, shortest overland distance “Land”, and ring distance “Ring”. Values for 
models explaining most of the variance are provided in bold. 
  

    PCoA 1 PCoA 2 

Marker Distance Isl. included* Mainland Isl. included* Mainland 

    p R
2
 p R

2
 p R

2
 p R

2
 

Msat 

Flight 0.034 * 0.41 0.351 0.04 <10
-3 

* 0.40 0.040 0.20 

Land 0.043 * 0.40 0.476 0.03 0.003* 0.34 0.075 0.15 

Ring <10
-6 

*
 

0.74 <10
-6 

* 0.76 0.825 0.05 0.748 0.01 

ND6 

Flight 0.169 0.23 0.269 0.06 0.815 0.01 0.394 0.04 

Land 0.140 0.24 0.360 0.04 0.638 0.02 0.366 0.04 

Ring <10
-4 

* 0.58 <10
-4 

* 0.59 0.561 0.02 0.218 0.07 

* Insularity included as factor 

 

Genetic diversity and origin of the ring colonization 

Colonization is expected to leave traces in the geographic distribution of neutral 

genetic diversity. Highest diversity was found in Southern Iberian populations (nuclear allelic 

richness, AR: Portugal, 4.60, Central Spain, 4.58) followed by Italy, Northern Spain, North 

Africa and the Middle East (Figure 1D). Lowest diversity on the mainland was found in 

Eastern Europe (nuclear AR: Hungary, 3.96; Balkans, 3.98; Brandenburg, 4.00) (Figure 1D). 

Diversity is lower on islands (islands: median AR=4.00, range 3.78-4.28; mainland: median 

AR=4.17, range 3.96-4.60) and decreases eastwards in the north of the Mediterranean 

(latitude x longitude: t=-3.84, p<10-3; insularity: t=3.17, p=0.004; longitude: t=3.94, p<10-3; 

latitude: -1.24, p=0.23; R2=0.64). Diversity also showed a strong tendency to decrease with 

increasing ring distance (islands included: insularity: t=-2.13, p=0.043, R2=0.28; ring distance 

t=-1.80, p=0.084; mainland populations: t=-2.97, p=0.008, R2=0.31, Figure 1D) but no 

relation to flight or shorter overland distance. Within the European continent, a strong, 

significant decrease of diversity with distance from the Middle East was observed, with ring 

distance explaining most of the variance (ring distance: t=-8.73, p<10-6, R2=0.82; flight: 
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t=3.87, p=0.001, R2=0.47; overland: t=5.00, p<10-3, R2=0.60) (Figure 1D). The same 

relationship was found for mitochondrial diversity (t=-2.24, p=0.038, R2=0.22). 

To infer the population with allele frequencies closest to the ancestral population, we 

introduced outgroup populations from California, USA (T. a. pratincola), Singapore (T. a. 

javanica), and Australia (T. a. delicatula) into analyses of population structure. Both a 

dendrogram depicting relationships among the clusters inferred by Bayesian analyses, and a 

neighbour-joining tree based on pairwise FST between populations placed the populations 

from the Middle East at the root of the circum-mediterranean colonization (Figure S6, Text 

S1). 

It thus appears that out of the Middle East barn owls first colonized the region south 

of the Mediterranean, and later spread through Europe in a more recent expansion from 

Iberia (Figure 3, Text S2). 

 

 

Figure 3. Circum-mediterranean ring colonization of European barn owls. The putative region of origin of the 
colonization is marked in red. Arrows indicate the colonization routes, the black dashed line the region of 
secondary contact with limited introgression at nuclear microsatellites. The color gradient (interpolated using 
the Kriging algorithm) and two typical white and rufous phenotypes are shown. 
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Secondary contact zone in Southeastern Europe  

The above results place the populations from Eastern Europe and the Middle East, 

respectively, at the ends of a genetic continuum. The geographic region in-between 

therefore likely holds a zone of secondary contact. In line with this hypothesis, populations 

from Greece, the Aegean, and Crete exhibit peculiar genetic compositions reminiscent of 

hybrid zones: (i) Microsatellite data placed these three populations at intermediate positions 

in PCoA (Figures 1B, S2A), rather than with the geographically closest populations from 

Eastern Europe (and so did also mitochondrial data for Greece and the Aegean; Figure S3). 

(ii) The Greek population neither fits the otherwise strong correlation of mainland 

population structure with ring distance (Figure 1C); and (iii) for Crete, relationships were 

discordant between microsatellites (Figures 1B, 2A) and mitochondrial ND6 (Figure S3). 

Results from the above Bayesian clustering analyses were used to obtain further 

insights into patterns of admixture in Greece, the Aegean, and Crete. All Cretan individuals 

but 4 out of 61 (putatively one migrant, two F1 hybrids and one first-generation backcross) 

showed southern ancestry (Figures 2A, 2B). In contrast, the prevalence of predominantly 

Northeastern European haplotypes at mitochondria (Figures S7, S8) placed Crete 

unambiguously with Eastern European populations, a pattern also found for one out of 22 

microsatellites (Ta-220). The presence of northeastern mitochondrial variation on a 

predominantly southern nuclear background provides evidence for a southern origin of 

Cretan barn owls, with mitochondrial introgression from the north and more limited 

introgression at the nuclear level. 

The Greek and Aegean populations showed a fundamentally different genetic 

composition than the geographically close Cretan population. Different from all other 

populations, individual-level admixture appeared restricted: many individuals had either a 
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predominantly northeastern or southern genotype (Figures 2A, 2B). Although population-

mean admixture was similar to Iberia (Figures 2A, 2B), the population-level variance in 

admixture proportions in Greece and the Aegean were significantly higher than in Iberia 

(non-parametric bootstrap test, p<10-6). The same result was found using the hybrid index 

(HI) (Buerkle 2005) instead of admixture proportions (non-parametric bootstrap test,     

p<10-6). This result indicates limited admixture between individuals from northeastern and 

southern origin within the secondary contact zone. 

 

Locally adapted clinal color variation 

Plumage coloration is sexually dimorphic with a bimodal distribution in both sexes 

(Figure 4A), and showed a pronounced geographic structure. Barn owls in the south are 

white, while in the north they get gradually darker rufous towards the east (latitude: t=5.44, 

p<10-4; longitude: t=-7.60, p<10-7; interaction: t=8.02, p<10-7; R2=0.89) (Figure 4B). Ring 

distance from the Middle East explained 22% of color variation (t=2.72, p=0.011), and only 

the Middle East, Crete, Greece, and the Aegean did not follow a stark spatial pattern (Figure 

S9). With these populations excluded, ring distance alone explained 85% of color variation 

(t=11.23, p<10-9), which was more than explained by flight (t=-3.76, p=0.001, R2=0.39) or 

overland distance (t=-5.28, p<10-5, R2=0.56). 
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Figure 4. Color distributions in barn owls. A) Color frequency distributions for both sexes separately and jointly. 
B) Geographic distribution of coloration. Boxes are provided at approximate ring distance from the Middle East 
(exact distances overlap between some populations). 

 

Color differentiation among populations was marked, and followed an isolation-by-

distance pattern best explained by spatial proximity (flight distance) of populations (Table 1). 

FST-PST comparisons between mainland populations showed that color differentiation 

(overall PST=0.40) exceeds predictions from neutral genetic markers (overall microsatellite 

FST=0.045) ten times (Figure 5). Concordantly, PST differed significantly from the expected 

distribution of neutral differentiation (1973) (p<10-15), demonstrating that genetic drift alone 

cannot explain color differentiation. Bayesian quantitative genetic modelling (Ovaskainen et 

al. 2011) also rejected neutral evolution as the only driver of color differentiation (S>0.999). 

These results provide evidence for diversifying selection on coloration at the scale of the 

Palearctic distribution of barn owls and confirm previous results found at a smaller scale 

(Antoniazza et al. 2010). 
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Figure 5. FST-PST comparisons. Overall differentiation in color (PST) and at MC1R are compared against neutral 
genetic differentiation at nuclear microsatellite markers (grey bars) and at the mitochondrial ND6 locus. Grey 
bars: histogram of FST of the 22 nuclear makers. Solid line: theoretical FST-distribution (Lewontin & Krakauer 
1973). Broken lines: Overall differentiation at ND6 corrected for differences in nuclear and mitochondrial 
effective population sizes, and differentiation in color and at MC1R. 

 

Genetic basis and origin of coloration 

Sequencing of the melanocortin-1-receptor (MC1R) gene in 671 individuals revealed 

a frequent non-synonymous Ile-Val polymorphism at amino acid position 126 (Text S3). 

Heterozygotes and Ile-homozygotes were significantly more rufous than Val-homozygotes 

(Figure 6). MC1R genotype, sex, and population structure together explained 63% of color 

variance (sex: t=-9.31, p<10-15; FST: t=3.14, p=0.002; MC1R (Val-Ile): t=-4.65, p<10-5; MC1R 

(Val-Val): t=-24.35, p<10-15). Analyses by sex and population confirmed this result (Figure 

S10, Text S4). Given their strong correlation with coloration, we hereafter refer to the Ile and 

Val variants as MC1RRUFOUS and MC1RWHITE, respectively. 
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Figure 6. A) Relationship of coloration with MC1R genotype in barn owls. Values provided for coloration are 
residuals after correcting brown chroma for population structure and sexual dimorphism. B) Spatial frequency 
distribution of the MC1RWHITE (white) and MC1RRUFOUS variants (black). 

 

MC1R allele frequencies showed a pronounced geographic structure (overall 

FST=0.383, range 0-0.797, Figures 5, 6B, S2B), and population structure (FST) at MC1R was 

strongly correlated with color differentiation (PST) (Mantel R=0.823, p=0.001), but much less 

with neutral genetic differentiation or spatial distances (max 31%, Table 1). Partial Mantel 

tests demonstrated that neither geography nor neutral genetic differentiation explain color 

differentiation nearly as well as MC1R (Table 1). Together with the significantly stronger 

differentiation than predicted from neutral genetic differentiation (Figure 5), this suggests 

that neutral evolution alone cannot explain population structure of coloration and of the 

underlying MC1R genotypes. The stronger correlation of geographic structure of coloration 

(and MC1R) with spatial proximity of populations (i.e. flight distance), rather than with ring 

distance (Table 1) suggests that selection mediated by locally prevailing environmental 

factors rather than colonization history determines the geographic structure observed for 

coloration and MC1R, and provides additional evidence for the local adaptation of 

coloration. 

In order to evaluate the relative ages of the non-synonymous MC1R variants, we 

analyzed linked genetic variation. Ten low-frequency polymorphisms linked to MC1RWHITE 

(0.2-3.1% within MC1RWHITE) were identified from full-length coding sequences (N=870 
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alleles). Conversely, only two polymorphisms were found linked to MC1RRUFOUS (N=252 

alleles), both occurring at minimal frequency within MC1RRUFOUS (1 and 2 copies, 

respectively). Their higher frequencies on MC1RWHITE indicate that they originally evolved on 

this allele and got linked to MC1RRUFOUS by recombination. Non-parametric bootstrap tests 

show that the over ten times lower polymorphism linked to MC1RRUFOUS (π=2.16 ∙ 10-6) than 

to MC1RWHITE (π=2.66 ∙ 10-5) is not an artifact from unequal sample sizes (p<10-6). The 

significantly elevated variation linked to MC1RWHITE together with sequence information 

from five outgroup individuals establish MC1RWHITE as the ancestral variant. 

Our results therefore demonstrate that a derived non-synonymous mutation at 

MC1R was involved in the evolution of a novel rufous barn owl phenotype, which is locally 

adapted to environmental conditions prevailing in Northeastern Europe. The lack of private 

variation linked to the derived MC1RRUFOUS variant together with this variant’s geographic 

distribution suggest, that it evolved early during the colonization of Europe. 

 

Linking coloration and genetic ancestry 

If the rufous phenotype evolved early during the colonization of Europe and is locally 

adapted, selection may be expected to keep it restricted to a European genetic background. 

Indeed, even after taking into account sexual dimorphism, MC1R genotype, and population 

structure, the genetic ancestry of individuals estimated in Bayesian analyses of population 

structure (Q) explained a significant amount of color variation (sex: t=-10.08, p<10-15; 

MC1R(Val-Ile): t=-4.73, p<10-5; MC1R(Val-Val): t=-21.48, p<10-15; FST: t=2.21, p=0.027; Q: 

t=7.65, p<10-13; R2=0.67). Still, this result may establish by the spatial correlation of 

coloration with genetic structure, and potentially insufficient correction for genetic structure 
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in our model. However, especially in the secondary contact zone rufous and white 

phenotypes are expected to be associated with predominantly northern and southern 

genetic ancestry, respectively, if gene flow between the terminal populations within the ring 

is restricted. This prediction is supported by the observation that Greece is not only where 

individuals of northeastern and southern ancestry meet, but is also the region with highest 

variance in plumage coloration (Figure 4B). 

We therefore tested whether in the secondary contact zone in Greece and the 

Aegean rufous coloration was associated with northeastern ancestry by estimating genetic 

ancestry using (i) admixture proportions (Q), (ii) the first axis of an individual-based principle 

component analysis (PCA), and (iii) the hybrid index. All analyses confirmed that in the 

secondary contact zone darker rufous individuals have elevated northeastern ancestry 

(Figure S11; Q: sex: t=-2.95, p=0.006; MC1R(Val-Ile): t=-0.60, p=0.55; MC1R(Val-Val): t=-2.36, 

p=0.025; ancestry: t=2.53, p=0.017, R2=0.60; PCA, sex: t=-2.45, p=0.021, MC1R(Val-Ile): t=-

0.74, p=0.464; MC1R(Val-Val): t=-2.49, p=0.019, ancestry: t=2.35, p=0.026, R2=0.59; for HI, 

sex: t=-2.53, p=0.017, MC1R(Val-Ile): t=-0.86, p=0.397; MC1R(Val-Val): t=-2.63, p=0.013, HI: 

t=-3.15, p=0.004, R2=0.64). No other population showed the same consistent correlation 

between color and genetic ancestry. The secondary contact zone in Greece and the Aegean 

is thus the only region with evidence for linkage disequilibrium of coloration with neutral 

genetic ancestry. 

 

Discussion 

The present study establishes the barn owl as a ring species around the 

Mediterranean, and shows how local adaptation during range expansion may lead to the 
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evolution of reproductive isolation in the face of gene flow. We first present the evidence for 

incipient ring speciation in European barn owls and then discuss our results in the light of 

the origins of adaptive genetic variation. Finally, we consider how our results may elucidate 

how range expansion dynamics and local adaptation can contribute to the build-up of 

reproductive isolation. 

 

Speciation in a ring around the Mediterranean 

With a high level of genetic diversity and allele frequencies closest to outgroups, the 

Middle East represents the most likely origin of the circum-mediterranean colonization, 

which first reached North Africa and Iberia. From this refugial area barn owls subsequently 

colonized the European continent northeastward in a range expansion during which genetic 

diversity diminished successively. The closest relationship of the populations in the Middle 

East and North Africa/Iberia, and the strong unidirectional expansion signal in diversity 

exclude alternative colonization scenarios invoking multiple refugia (Text S2). The steep 

diversity gradient and shallow population structure throughout Europe suggest that the 

expansion into Europe happened quickly and recently. Recent spatially-explicit analyses of 

demographic history confirm this result, dating the onset of colonization to after the last 

glacial maximum ~20,000 years ago (Antoniazza et al.). In the east, a second, smaller 

colonization closed the ring around the Mediterranean, having advanced over the Bosporus 

into Southeastern Europe (Greece) (Figure 3). Despite the vast geographic distance covered 

by the ring (>8,000 km), differentiation along the ring is shallow (nuclear FST: mean 

mainland=0.027, max=0.085), suggesting that populations are interconnected by high rates 

of ongoing gene flow. Model-based estimates of gene flow and field observations show that 
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in Europe almost 40% of barn owls disperse 50 km or further after fledging (Antoniazza et al. 

submitted). Gene flow appears thus more restricted than across the willow warbler ring 

(Bensch et al. 2009), which covers around 4,000 km. Compared to greenish warblers, which 

show deep phylogeographic breaks in mitochondrial variation (Irwin et al. 2001b), barn owls 

have way lower mitrochondrial diversity and display only gradual shifts in mitochondrial 

haplotype frequencies. The barn owl system thus appears to be younger than the greenish 

warbler ring, and despite the larger geographic scale of the barn owl ring, barn owl 

populations appear more interconnected by gene flow (greenish warbler ring: 6-7,000 km 

around the Tibetan Plateau). 

The secondary contact zone in Greece is characterized by unique distributions of 

genotypes, genetic diversity, and color phenotypes reminiscent of hybrid zones. Admixture 

analyses indicate that these patterns are a result of limited introgression at secondary 

contact. This conclusion is supported by several other lines of evidence. First, in Crete 

despite historical introgression at mitochondria and evidence for contemporary immigration 

from the north, introgression is strongly limited for color and the nuclear genome. Likewise, 

no nuclear introgression from the south is detected in Eastern European populations. 

Second, with free introgression among terminal taxa, linkage disequilibrium between color 

phenotype and genetic ancestry would be expected to break down after secondary contact, 

unless maintained by strong persistent gene flow from the north and south. It appears 

unlikely that the secondary contact zone should receive more such immigrants than the 

genetic transition zone in Iberia. The significant association of rufous coloration with 

northeastern genotypes in Greece thus provides additional support for limited introgression 

among terminal taxa. 
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Our results demonstrate that following the last glaciation, settling out from the 

Middle East barn owls colonized North Africa and Europe in a ring around the 

Mediterranean, and met in secondary contact in Southeastern Europe, where they appear to 

be at the verge of speciation. 

 

Adaptive evolution of coloration from novel genetic variation 

An important question in evolutionary biology addresses the origin of adaptive 

genetic variation: does local adaptation evolve from genetic variation segregating in 

populations (standing variation), or from novel, derived variants (Barrett & Schluter 2008)? 

Studies demonstrating local adaptation of color phenotypes and identifying the underlying 

genes have previously contributed remarkable insights in this respect (Hoekstra et al. 2006). 

The young age of the color cline in the barn owl that accompanies the gradual genetic 

changes within Europe might have suggested that color adaptation in the barn owl evolved 

from genetic variation present at the onset of colonization. However, as we discuss, the 

colonization of continental Europe indeed may only have been enabled by the evolution of a 

novel genetic variant.  

Local adaptation of barn owl coloration is highlighted by one of the most remarkable 

findings of the present study: Differentiation in color and the underlying gene (MC1R) is 

strongest within the geographic region with the by far weakest – indeed almost absent – 

population structure (Central, Northern, and Eastern Europe). Together with quantitative 

genetic analyses and previous ABC-analyses (Antoniazza et al. submitted) this demonstrates 

local adaptation of coloration and/or phenotypic traits linked by pleiotropy (Ducrest et al. 

2008). In accordance with this result, previous studies highlight differences in the ecology of 
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alternative barn owl color phenotypes: Rufous owls exploit more open habitat, and 

accordingly feed predominantly on voles rather than muroids both in Switzerland and Israel 

(Charter et al. 2012; Roulin 2004). Females choose breeding habitat to match their color 

phenotype, with rufous females producing more offspring in open habitat (Dreiss et al. 

2012). Rufous males make higher reproductive investments and produce more fledglings 

(Roulin et al. 2001). Rufous juveniles grow better under harsh conditions when food is 

limited (Roulin et al. 2008) and show more altruistic behavior (Roulin et al. 2012). The 

multidimensional ecological differences between barn owl color phenotypes appear to 

contribute to local adaptation even at a very local scale (Dreiss et al. 2012), and are situated 

in the range of ecological differentiation typically found within young adaptive radiations 

such as in cichlid (Seehausen 2006) and stickleback fish (McKinnon & Rundle 2002), but for 

which only few examples exist in birds (Edelaar et al. 2012; Ryan et al. 2007; Schluter et al. 

1985). Taken together, the currently available evidence unanimously suggests that the 

ecology of rufous individuals is better adapted to the open and harsh environment found in 

continental Europe, and opens a scope for ecology-driven selection to result in isolation-by-

ecology and potentially ecological speciation within European barn owls, evidence for which 

is rare in birds (Price 2007). 

Previous work on color-related adaptation identified MC1R as a major genetic 

determinant of color polymorphism in a wide range of species (Hoekstra et al. 2006; Mundy 

et al. 2004; Theron et al. 2001; Våge et al. 1997). The identification of this gene as major 

contributor to color variation in barn owls greatly helps understanding the evolutionary 

history of color adaptation. The MC1RRUFOUS variant predominant in the most recently 

colonized northeast of Europe appears to be both derived and way younger than the 

ancestral MC1RWHITE variant. The young age of this novel variant implies a recent origin of 
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the rufous barn owl phenotype. Together with its almost complete absence in the south of 

the range this suggests that the MC1RRUFOUS variant arose not before the colonization of 

Central Europe. Interestingly, several studies link rufous coloration of barn owls to increased 

juvenile dispersal distance (Roulin 2013; Van den Brink et al. 2012) and phenotypic traits 

enhancing long-distance flight (longer wings, Charter et al. 2012; Roulin 2004), and may 

suggest that rufous coloration is connected to a disperser phenotype. Theoretical models 

suggest that in such cases increased dispersal propensity itself could have conferred rufous 

birds with an additional advantage during range expansion (Travis & Dytham 2002). 

It thus appears that the rapid colonization of Northern and Eastern Europe by barn 

owls may have been triggered by the novel phenotype’s ability to cope with harsher 

environments, and accelerated by this phenotype’s enhanced dispersal ability. 

 

Range expansion, local adaptation, and the evolution of reproductive barriers 

Range expansions leave remarkable traces in the genetic make-up of populations by 

influencing rates of fixation, the direction of introgression, and the relative strength at which 

selection can operate (Excoffier et al. 2009). Barn owls may represent a unique system to 

study the interplay of range expansion and local adaptation, and how in conjunction they 

may contribute to the formation of reproductive barriers. 

By enabling barn owls to live in a harsher environment and disperse over longer 

distances, the evolution of a new phenotype may have resulted in a sudden burst of 

colonization of Central Europe after the last glaciation. For the evolution of reproductive 

barriers two aspects of this scenario appear particularly interesting. Both (i) pervasive 

selection on MC1R and (ii) rapid range expansion have the potential to accelerate rates of 
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evolution and lead to a coincidental accumulation of genetic incompatibilities. During 

adaptation polymorphisms physically linked to the positively selected variant can hitchhike 

along and increase in frequency, provided the net fitness change is positive (Hill & Robertson 

1966; Maynard Smith & Haigh 1974). With strong selection on the novel MC1R variant, even 

previously slightly counter-selected (nearly neutral) linked polymorphisms may thus have 

increased in frequency. Likewise, allelic turnovers are accelerated during range expansion 

due to enhanced rates of genetic drift, and disadvantageous allele combination can persist 

at the colonization front owing to the decreased efficiency of selection (Burton & Travis 

2008; Peischl et al. 2013). As we demonstrated, coloration and MC1R have evolved under 

local adaptation in barn owls and not as a byproduct of expansion dynamics (Antoniazza et 

al. submitted). In contrast, for genes less constrained by selection especially the rapid 

colonization of Europe may have provided ample opportunity to overcome fitness 

disadvantages of previously counter-selected allelic combinations and shift genetic variants 

towards new coadapted combinations which contribute to reproductive isolation at 

secondary contact (Mayr 1963). Although gene flow between the ancestral white and 

derived rufous phenotype appear restricted in secondary contact, and a direct involvement 

of coloration in reproductive isolation has been demonstrated in various species (e.g. 

Kronforst et al. 2006; Seehausen et al. 2008), in barn owls it appears more likely that 

selection is targeted also towards life history traits linked to coloration via the melanocortin 

system, rather than coloration alone (Ducrest et al. 2008). Simultaneous selection on both 

coloration and other phenotypes linked to the melanocortin system may further have 

accelerated the evolution of the rufous phenotype and indirectly contributed to the 

evolution of reproductive barriers. 
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Conclusions & Prospects 

We showed that European barn owls form a ring species around the Mediterranean 

Sea, and demonstrate that the locally adapted color cline found within the ring evolved by 

the adaptive evolution of a novel MC1R variant. We propose that the evolution of the novel 

rufous phenotype is associated with the persistence of barn owls in the harsher 

Northeastern European environmental conditions, and that the colonization of Europe was 

additionally accelerated by enhanced dispersal abilities of the novel color phenotype. 

Enhanced rates of evolution during the colonization may have contributed to the 

accumulation of intrinsic reproductive barriers that limit introgression at secondary contact. 

Future studies based on genome-wide data will have to provide conclusive evidence for 

reproductive isolation of the terminal forms of the ring, and will allow identifying genomic 

regions resistant to introgression, and trace their evolution by population genetic studies 

along the barn owl ring species. 

 

Summary Experimental Procedures 

724 barn owls were sampled in 28 localities all around the Mediterranean and 

throughout Europe. Based on data from 22 microsatellite loci and 411 bp of the 

mitochondrial ND6 gene (Table S1) neutral genetic population structure and colonization 

history were inferred using principle coordinate analyses, Mantel tests, and Bayesian 

admixture analyses in STRUCTURE (Pritchard et al. 2000). Individual coloration was 

measured in 626 individuals using photospectometry. 543-998 bp of the MC1R gene were 

sequenced for 671 individuals (Table S1). A link between coloration and variation at MC1R 

was investigated using linear models correcting for sexual dimorphism and geographic 
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structure. Linked polymorphism levels and sequences from outgroups from California, USA 

(T. a. pratincola, N=65), Australia (T. a. delicatula, N=19), and Singapore (T. a. javanica, N=11) 

were used to infer the ancestral and derived states of the MC1R polymorphism linked to 

coloration. FST-QST analyses and a Bayesian quantitative genetic model (Karhunen et al. 2013; 

Ovaskainen et al. 2011) were used to infer the role of local adaptation in maintaining color 

differentiation. Patterns of introgression in the secondary contact zone were studied using 

an array of admixture analyses (Buerkle 2005; Pritchard et al. 2000) combined with linear 

models linking individual neutral genetic ancestry with coloration. 

 

Acknowledgements 

We thank Matthias Stöck, Alice Cibois, and Ricardo Tomé for help with establishing 

contacts, Laura Clément for lab assistance, and Aaron Shafer and Takeshi Kawakami for 

comments on drafts of the paper. Raúl Alonso, the Natural History Museums in Frankfurt 

and Munich, Alfred Häller, Bernd Hartung, Manfred Hug, Gerfried Klammer, Gitta Linde, 

Jürgen Luge, Gilles Moyne, Olaf Schmidt, and Francisco Valera provided additional samples. 

We are indebted to the Wildlife Rehabilitation Centres La Tahonilla (Cabildo de Tenerife), 

Tafira (Cabildo de Gran Canaria), and the Biological Station of La Oliva (Cabildo de 

Fuerteventura), and the Natural History Museum of Tenerife and Gustavo Tejera (Lanzarote) 

for providing numerous tissue samples from the Canary Islands. Thanks to ANIMA (Athens, 

Greece), the Natural History Museum Paris, and the Association CHENE for collaboration, 

and to Markku Karhunen for assistance with the RAFM and Driftsel packages. The Fondation 

Agassiz provided financial support. 



Chapter 3 : Circum-mediterranean ring speciation 

134 

 

References 

Antoniazza S, Burri R, Fumagalli L, Goudet J, Roulin A (2010) Local adaptation maintains clinal 

variation in melanin-based coloration of European barn owls (Tyto alba). Evolution 

64, 1944-1954. 

Antoniazza S, Kanitz R, Neuenschwander S, et al. (submitted) Natural selection in a post-

glacial range explansion: the case of the colour cline in the European barn owl. 

Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends in Ecology 

& Evolution 23, 38-44. 

Bensch S, Grahn M, Müller N, Gay L, Åkesson S (2009) Genetic, morphological, and feather 

isotope variation of migratory willow warblers show gradual divergence in a ring. 

Molecular Ecology 18, 3087-3096. 

Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: Models and empirical evidence. 

Annual Review of Ecology Evolution, and Systematics 28, 459-487. 

Buerkle CA (2005) Maximum-likelihood estimation of a hybrid index based on molecular 

markers. Molecular Ecology Notes 5, 684-687. 

Burton OJ, Travis JM (2008) Landscape structure and boundary effects determine the fate of 

mutations occuring during range espansions. Heredity 101, 329-340. 

Charter M, Peleg O, Leshem Y, Roulin A (2012) Similar patterns of local barn owl adaptation 

in the Middle East and Europe with respect to melanic coloration. Biological Journal 

of the Linnean Society 106, 447-454. 

Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland. 

Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421, 259-

264. 



Chapter 3 : Circum-mediterranean ring speciation 

135 

 

Dreiss AN, Antoniazza S, Burri R, et al. (2012) Local adaptation and matching habitat choice 

in female barn owls with respect to melanic coloration. Journal of Evolutionary 

Biology 25, 103-114. 

Ducrest A-L, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and 

behavioural syndromes. Trends in Ecology & Evolution 23, 502-510. 

Edelaar P, Alonso D, Lagerveld S, Senar JC, Björklund M (2012) Population differentiation and 

restricted gene flow in Spanish crossbills: not isolation-by-distance but isolation-by-

ecology. Journal of Evolutionary Biology 25, 417-430. 

Excoffier L, Foll M, Petit RJ (2009) Genetic Consequences of Range Expansions. Annual 

Review of Ecology, Evolution, and Systematics 40, 481-501. 

Fitzpatrick BM, Fordyce JA, Gavrilets S (2008) What, if anything, is sympatric speciation? 

Journal of Evolutionary Biology 21, 1452-1459. 

Hill WG, Robertson A (1966) THe effect of linkage on limits to artificial selection. Genetics 

Research 8, 269-294. 

Hoekstra HE, Hirshmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid 

mutation contributes to adaptive beach mouse color pattern. Science 313, 101 - 104. 

Irwin D, Irwin J, Price T (2001a) Ring species as bridges between microevolution and 

speciation. Genetica 112-113, 223-243. 

Irwin DE, Bensch S, Price TD (2001b) Speciation in a ring. Nature 409, 333-337. 

Joseph L, Dolman G, Donnellan S, et al. (2008) Where and when does a ring start and end? 

Testing the ring-species hypothesis in a species complex of Australian parrots. 

Proceedings of the Royal Society B: Biological Sciences 275, 2431-2440. 



Chapter 3 : Circum-mediterranean ring speciation 

136 

 

Karhunen M, Merila J, Leinonen T, Cano JM, Ovaskainen O (2013) driftsel: an R package for 

detecting signals of natural selection in quantitative traits. Molecular Ecology 

Resources 13, 746-754. 

Kronforst MR, Young LG, Kapan DD, et al. (2006) Linkage of butterfly mate preference and 

wing color preference cue at the genomic location of wingless. Proceedings of the 

National Academy of Sciences 103, 6575-6580. 

Kuchta SR, Parks DS, Mueller RL, Wake DB (2009) Closing the ring: historical biogeography of 

the salamander ring species Ensatina eschscholtzii. Journal of Biogeography 36, 982-

995. 

Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of theory of selective 

neutrality of plymorphisms. Genetics 74, 175-195. 

Martins AB, de Aguiar MAM, Bar-Yam Y (2013) Evolution and stability of ring species. 

Proceedings of the National Academy of Sciences 110, 5080-5084. 

Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a facourable gene. Genetical 

Research 23, 23-35. 

Mayr E (1963) Animal Species and Evolution. Belknap, Cambridge, MA. 

McKinnon JS, Rundle H (2002) Speciation in nature: the threespine stickleback model 

systems. Trends in Ecology & Evolution 17, 480-488. 

Monahan W, Pereira R, Wake D (2012) Ring distributions leading to species formation: a 

global topographic analysis of geographic barriers associated with ring species. BMC 

Biology 10, 20. 

Mundy NI, Badcock NS, Hart T, et al. (2004) Conserved Genetic Basis of a Quantitative 

Plumage Trait Involved in Mate Choice. Science 303, 1870-1873. 



Chapter 3 : Circum-mediterranean ring speciation 

137 

 

Nosil P (2008) Speciation with gene flow could be common. Molecular Ecology 17, 2103-

2106. 

Ovaskainen O, Karhunen M, Zheng C, Arias JMC, Merila J (2011) A New Method to Uncover 

Signatures of Divergent and Stabilizing Selection in Quantitative Traits. Genetics 189, 

621-U729. 

Peischl S, Dupanloup I, Kirkpatrick M, Excoffier L (2013) On the accumulation of deleterious 

mutations during range expansions. Molecular Ecology 22, 5972-5982. 

Pereira RJ, Wake DB (2009) Genetic leakage after adaptive and nonadaptive divergence in 

the Ensantina eschschlotzii ring species. Evolution 63, 2288-2301. 

Price TD (2007) Speciation in birds. Roberts and Company Publishers, Greenwood Village, 

Colorado. 

Pritchard JK, Stephens M, Donnelly P (2000) Inference of Population Structure Using 

Multilocus Genotype Data. Genetics 155, 945-959. 

Roulin A (2004) Covariation between plumage color polymorphism and diet in the Barn Owl 

Tyto alba. Ibis 146, 509-517. 

Roulin A (2013) Ring recoveries of dead birds confirm that darker pheomelanic Barn Owls 

disperse longer distances. Journal of Ornithology 154, 871-874. 

Roulin A, Da Silva A, Ruppli CA (2012) Dominant nestlings displaying female-like melanin 

coloration behave altruistically in the barn owl. Animal Behaviour 84, 1229-1236. 

Roulin A, Dijkstra C, Riols C, Ducrest A-L (2001) Female- and male-specific signals of quality in 

the barn owl. Journal of Evolutionary Biology 14, 255-266. 

Roulin A, Gasparini J, Bize P, Ritschard M, Richner H (2008) Melanin-based colorations signal 

strategies to cope with poor and rich environments. Behavioral Ecology and 

Sociobiology 62, 507-519. 



Chapter 3 : Circum-mediterranean ring speciation 

138 

 

Ryan PG, Bloomer P, Moloney CL, Grant TJ, Delport W (2007) Ecological Speciation in South 

Atlantic Island Finches. Science 315, 1420-1423. 

Schluter D, Price TD, Grant PR (1985) Ecological Character Displacement in Darwin's Finches. 

Science 227, 1056-1059. 

Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. 

Proceedings of the Royal Society B: Biological Sciences 273, 1987-1998. 

Seehausen O, Terai Y, Magalhaes IS, et al. (2008) Speciation through sensory drive in cichlid 

fish. Nature 455, 620-626. 

Theron E, Hawkins K, Bermingham E, Ricklefs RE, Mundy NI (2001) The molecular basis of an 

avian plumage polymorphism in the wild: A melanocortin-1-receptor point mutation 

is perfectly associated with the melanic plumage morph of the bananaquit, Coereba 

flaveola. Current Biology 11, 550-557. 

Travis JM, Dytham C (2002) Dispersal evolution during invasions. Evolutionary Ecology 

Research 4, 1119-1129. 

Våge DI, Lu D, Klungland H, et al. (1997) A non-epistatic interaction of agouti and extension 

in the fox, Vulpes vulpes. Nature Genetics 15, 311-315. 

Van den Brink V, Dreiss AN, Roulin A (2012) Melanin-based coloration predicts natal 

dispersal in the barn owl. Animal Behaviour 84, 805-812. 

Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends in ecology & 

evolution 16, 381-390. 

  



Chapter 3 : Circum-mediterranean ring speciation 

139 

 

Supplemental information 

Supplemental Experimental Procedures 

Sampling, molecular analyses, and genotyping 

A total of 724 unrelated barn owls have been sampled in 28 different localities 

around the Mediterranean Sea and all over the European continent (Figure 1). Genomic DNA 

from all individuals was extracted from the basal 1 millimetre of breast feather quills, from 

blood, or from muscles stored in 96% ethanol. DNA extractions were performed on a 

BioSprint 96 extraction robot using the BioSprint 96 DNA blood kit, or with the DNeasy Blood 

and Tissue Kit (Qiagen, Hilden, Germany). The sex of most individuals was determined using 

the molecular method described in Py et al. (2006) (sexing did not work for 10, 2, and 2 

samples from museum skins from North Africa, Italy, and Greece, respectively, and for 4 

individuals from the Balkans and 1 from the Eastern Canaries). This method distinguishes 

sexes based on a length-dimorphism of the SPINDLIN gene between the Z and W 

chromosomes. 

All 724 individuals were genotyped for 22 microsatellite markers that show no 

evidence for null alleles and no constant deviation from Hardy-Weinberg genotype 

proportions (Table S2). Polymerase chain reactions (PCR) were performed in five PCR 

multiplexes (Table S2) using the Multiplex PCR Kit (Qiagen). Reactions were carried out in a 

final volume of 8 µl, and contained 2.5 µl mix MM (Qiagen), primers as indicated in Table S2, 

and 12 ng of DNA. PCR conditions included an initial step of denaturation for 15 min at 95 °C, 

34 cycles of 30 sec denaturation at 94 °C, annealing for 1 min 30 sec at 57 °C, and elongation 

at 72 °C for 1 min. Final elongation for 30 min was conducted at 60 °C. Fragment analyses 

were run on an ABI 3100 sequencer with a ROX 500 size standard and allele lengths were 

assigned using Genemapper 4.0 (Applied Biosystems, Zug, Switzerland). 
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411 bp of the mitochondrial NADH-dehydrogenase-6 (ND6) locus were sequenced for 

424 individuals (on average 16 per population, Table S1) using primers L14906-TyalND6 (5’-

CGA GAT AGC CCA CGA ACA AGC-3’) and H15378-TyalND6 (5’-GAG GTG CGA GTC TGG TTT 

TGG-3’). Reactions were carried out in a final volume of 25 µl, containing 1x Buffer Gold, 2 

mM MgCl2, 1x Q-Solution (Qiagen), 0.2 mM each dNTP, 0.5 µM each primer, 1 unit Taq Gold 

(Applied Biosystems), and 20 ng DNA. PCR conditions included an initial step of denaturation 

for 7 min at 95 °C, 35 cycles of 30 sec at 95 °C, 45 sec at 62 °C, 45 sec at 72 °C, and a final 

elongation for 7 min at 72 °C. 

The melanocortin-1-receptor (MC1R) gene was repeatedly shown to underlie 

melanin-based coloration in birds and mammals (Dessinioti et al. 2011; Roulin & Ducrest 

2013). In order to study whether this gene explains coloration in barn owls, 543 bp (N=211) 

or the whole 998 bp (N=417) of the exon were sequenced for 671 individuals (Table S1) 

using primers MC1R_34Fw (5’-GGG ACC CCG GGG TTG AGG CG-3’) and MC1R_568Rev (5’-

GGC AGA GGA GGA TGG CGT TGT TGC G-3’) for the short and MC1R_34Fw (5’-GGG ACC CCG 

GGG TTG AGG CG-3’) and MC1R_969Rev (5’-GCG TTA ACC CGC GTC CCG CTG C-3’) for the 

long fragment with the following PCR conditions: 95 °C for 3 min followed by 34 cycles at 

94°C for 40 sec, 68°C for 40 sec, 72°C for 60 sec and then final extension at 72°C for 10 min 

with 250 nM of the above primer pairs, 1x Qiagen buffer, 2.5 mM MgCl2, 0.2mM dNTPs, 1x 

Q solution (Qiagen), 1 U Taq DNA Polymerase (Qiagen), and 50 ng DNA in 50 µl. The 

amplified DNA fragments were then purified using the MinElute PCR purification kit 

(Qiagen). Sequencing was conducted at Microsynth (Balgach, Switzerland) and at the 

university facility on a 3130XL Genetic Analizer (Applied Biosystems) with a special 

sequencing protocol in a final volume of 10 µl containing 2 µl of Big Dye v3.1, 2 µl of 5x Q 

solution (Qiagen), 1 µl of 10 µM of one of the primers and 2 µl of amplified DNA with 
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amplification at 98°C for 2 min, 39 cycles at 96°C for 15 sec, 60°C for 15 sec, 60°C for 3 min. 

For museum samples and a few low-quality DNA samples amplification of these fragments 

was not possible (N=43), and we used an allelic discrimination (AD) assay for the Val126Ile 

mutation. For this we pre-amplified a shorter fragment of MC1R spanning 255 bp with 

primers MC1R_198fw (5’-CCT GCA CTC GCC CAC GTA CTA CTT C-3’) and MC1R_453Rev (5’-

GTG GTA GCG CAG GGC GTA GAA GAT-3’) followed by a nested PCR of 91 bp with primers 

MC1R_V126I_fw (5’-CAT GGA CAA CGT CAT CGA-3’) and MC1R_V126I_rev (5’-GCG TAG AAG 

ATG GTG ATG TA-3’) and fluorescence marked specific probes V126I_wt_Fam_B1 (FAM-5’-

TGC AGC TCC GTC GTG TCC TC-3’-BHQ1), and V126I_mut_AT550_B2 (ATTO-550-5’-TGC AGC 

TCC ATC GTG TCC TC-3’-BHQ2) for the wild type and mutant alleles, respectively. Pre-

amplification PCRs were performed in 20 µl using exactly 20 ng DNA, 250 nM of primers 

MC1R_198Fw and MC1R_453Rev, 2.5 mM MgCl2, 0.2 mM dNTPs, 1x Q solution (Qiagen), 

and 0.2 U of Taq Qiagen with the following cycle: 95 °C for 5 min, 34 cycles at 94 °C for 30 

sec, 63 °C for 30 sec, and 72 °C for 30 sec. The quantities of pre-amplified PCR products were 

compared using a 2% agarose gel, adjusted among each other, and diluted 100x before the 

AD assay. 24 µl of AD assay were run in an ABI 7500 qPCR machine (Applied Biosystems) 

using 2 µl of diluted DNA with 12 µl of qPCR MasterMix Plus Low ROX w/o UNG 2x 

(Eurogentec, Liege, Belgium) and 300 nM of the primers MC1R_V126I_fw and 

MC1R_V126I_rev, 100 nM of V126I_wt_Fam_B1, and 250 nM of V126I_mut_AT550_B2 with 

the ABI 7500 recommended cycling conditions except for an annealing and extension 

temperature of 57°C. Each qPCR plate contained three positive samples (corresponding to 

both homozygous and the heterozygous genotypes) and at least two negative controls. The 

plates were then read with the allelic discrimination program of the ABI 7500 machine. 
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Microsatellite markers were genotyped in Gene Mapper version 4.0. Sequences (ND6 

and MC1R), assembled and edited in CodonCode Aligner version 3.7.1, and aligned using the 

Clustal W algorithm (Thompson et al. 1994) in BioEdit (Hall 1999). Polymorphisms in the 

MC1R sequences were statistically phased using the PHASE software (Stephens et al. 2001) 

implemented in DnaSP 5.10.01 (Librado & Rozas 2009) using 1000 burnin and 1000 post-

burnin iterations and a thinning interval of 10. 

 

Neutral genetic population structure and admixture analyses 

In order to infer neutral population structure and diversity, pairwise fixation indices 

(FST) between populations and allelic richness (AR) based on microsatellite and 

mitrochondrial data were estimated in R using the hierfstat v4-10 package (Goudet 2005). 

The same package was used to perform Principle Coordinate Analyses (PCoA) based on 

pairwise FSTs. To complement PCoA, Mantel tests were performed in R using the ecodist 

1.2.7 package (Goslee & Urban 2007). A haplotype network for ND6 was constructed using 

TCS 1.21 (Clement et al. 2000). 

Linear models were used to test whether population genetic structure (as estimated 

by PCo axes) and genetic diversity (AR) are related to geographic proximity measured as 

flight and shortest overland distance, or to ring distance (see Figure S5 for an example). 

Flight distance and the shortest overland distance were used, because on one hand barn 

owls have good flying abilities and colonized many far off-shore islands, but on the other 

hand may still avoid flying over water. Ring distance was modeled as the distance between 

populations within a clock-wise ring starting in the Middle East and ending in Crete. The start 

and end point were determined from the population structure depicted by PCoA (Figures 1B, 

S3). All distances were measured manually in Google Earth. Ring distance was measured as 
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the shortest overland distance from the Middle Eastern population clock-wise in a ring 

around the Mediterranean.  

In order to estimate which populations/clusters exhibit allele frequencies closest to 

outgroups, we ran two analyses. First, we ran STRUCTURE 2.3.4 (Pritchard et al. 2000) (with 

a burnin of 5∙104 and 5∙105 post-burnin generations) including outgroup populations from 

California, United States (T. a. pratincola, N=65), Australia (T. a. delicatula, N=19), and 

Singapore (T. a. javanica, N=11), and estimated neighbor-joining (NJ) trees based on the 

allele-frequency divergence (net nucleotide distance) among clusters to infer the 

relationships between the inferred clusters. We ran 10 iterations for each number of clusters 

(K), and increased K until no new cluster splitting off one or several populations was 

observed (at K=7). When more than one pattern of clustering was observed at a given K the 

one with higher likelihood and lower variation in likelihood was selected. Second, we 

estimated a population tree using FST. Three microsatellite markers showed more than 10% 

missing data in these populations, and were excluded from both analyses (Tak.Oeo53, 

Ta.305, Ta.408). As island populations showed increased differentiation relative to the other 

populations, and to avoid problems connected with long-branch attraction of the NJ 

method, island populations were excluded from both analyses. 

Bayesian clustering analyses implemented in STRUCTURE were performed using 

microsatellite data in order to detect the number of genetic clusters, and estimate 

admixture proportions for each individual. K from K=1 to K=10 were tested. Analyses were 

run for all populations and for mainland populations plus the Aegean exclusively. The latter 

was included with mainland populations because it was a focal population for admixture 

analyses and because of the Aegean islands’ proximity to the mainland and their genetic 

diversity very similar to the neighboring mainland population in Greece (the other island 
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populations show much lower genetic diversity than close-by mainland populations). Ten 

runs each with a burnin of 105 and 106 post-burnin generations were performed for each K 

using an admixture model with correlated allele frequencies. The number of clusters was 

inferred using the ΔK-method (Evanno et al. 2005) implemented in STRUCTURE HARVESTER 

(Earl & Vonholdt 2012). 

To test whether the mean and variance in admixture proportions observed in the 

secondary contact zone in Greece and the Aegean differed significantly from the ones in 

other populations with similar admixture proportions (Portugal, Central and Northern 

Spain), we performed non-parametric bootstrap tests. As no significant differentiation of the 

populations in the secondary contact zone (Greece, Aegean) was observed, these 

populations were combined for the following analysis. Random samples the same size of the 

combined Greek and Aegean sample (N=46) were drawn from the admixture proportion (Q) 

distributions of the combined Iberian populations (N=61, these populations show the most 

similar admixture patterns to Greece). The same procedure was performed using the hybrid 

index (HI) (Buerkle 2005) instead of Q. For each analysis 106 random samples were drawn 

with replacement to generate expected distribution of the variance in admixture 

proportions. HI was estimated using the “introgress” package (Gompert & Alex Buerkle 

2010) in R. To estimate HI, “southern” and “northeastern” parental populations were 

defined from STRUCTURE results, by using individuals with a respective Q≧0.97 and without 

missing data that from Northern and Eastern Europe (northeastern lineage), and from the 

Middle East, Crete, and the Canary Islands (southern lineage), respectively. The northeastern 

parental population thus consisted of 78 individuals from the Netherlands (n=10), 

Niedersachsen (n=15), Brandenburg (n=8), Denmark (n=14), Northeastern Germany (n=8), 

Hungary (n=11), Czech Republic (n=4) and the Balkans (n=8). The “southern” parental 
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population consisted of 24 individuals from the Middle East (n=5), Eastern Canaries (n=6), 

and Crete (n=13). 

 

Measurement and quantitative genetics of color phenotypes 

For 626 individuals breast feathers were available and measured for coloration. 

Pheomelanin-based plumage color of each individual bird was measured from one to five 

breast feathers (mean: 4.15, SD: 1.08, depending on the number of feathers available). To 

measure color, reflectance spectra from four points per breast feather were captured with a 

USB4000 spectrophotometer (Ocean Optics, Dunedin, FL, USA) and a DH-2000-bal dual 

deuterium/halogen light source (Mikropackan, Mikropack, Ostfildern, Germany). For each 

reflectance spectrum, the brown chroma was calculated following Montgomerie (2006). The 

brown chroma represents the contribution of the red part of the spectrum (600–700 nm) to 

the complete visible spectrum (300–700 nm). For each individual, the brown chroma was 

averaged per feather (average among point measurements) and then per individual (average 

among feathers). The repeatability of assessing coloration was very high (97.6% of among 

individual variance) as shown by the repeated measurement of coloration of 14 individuals 

twice one year apart. 

To test whether the color differentiation among populations evolved by genetic drift 

exclusively or whether local adaptation played a role in its evolution, we used two 

complementary, recently proposed approaches. The first is derived from classic FST-QST 

comparisons (Brommer 2011; Leinonen et al. 2013; Leinonen et al. 2008; McKay & Latta 

2002; Merilä & Crnokrak 2001). This approach by Whitlock (Whitlock 2008), instead of 

directly comparing overall values of QST and FST compares QST estimates to the distribution of 

FST. For this, we estimated FST as outlined above, and obtained the theoretical distribution 
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from Lewontin and Krakauer (1973). PST (an analog of QST based on phenotypic traits) for 

color differentiation was estimated using ANOVA with color as response variable and the 

populations of origin and sex as explanatory variables following Antoniazza et al. (Antoniazza 

et al. 2010). Variance components where then combined with the estimated heritability of 

coloration (Roulin & Dijkstra 2003). Following the general approach proposed by Whitlock 

(Whitlock 2008), Whitlock & Guillaume (Whitlock & Guillaume 2009) have proposed a 

parametric bootstrap approach to compare the overall QST and FST. This approach was not 

applicable to our system because it implies a resampling of the variance components of QST 

extracted from a quantitative genetics breeding design. As our quantitative measurements 

are field-based, the required variance components are not available in our case. We thus 

used the general idea of Whitlock’s (Whitlock 2008) proposition and directly compared our 

empiric PST-estimates to the theoretical chi-squared distribution of Lewontin & Krakauer 

(1973) to obtain a p-value for the FST-QST comparison. FST estimates for ND6 (divided by four 

to account for the difference of effective population size of mitochondrial markers) and for 

MC1R were added for comparison. The second approach is a Bayesian quantitative genetic 

method suggested by Ovaskainen et al. (Ovaskainen et al. 2011). This method compares 

Bayesian estimates of population differentiation at neutral genetic makers and quantitative 

traits. To apply this method, we used the two recently published R packages RAFM 

(Karhunen & Ovaskainen 2012) and Driftsel (Karhunen et al. 2013). The AFM function of the 

RAFM package was used to estimate a co-ancestry matrix based on 22 microsatellites 

markers. This function uses a Bayesian implementation of the admixture F-model to infer 

pairwise population differentiation. Driftsel uses the color measurements along with the 

population of origin and sex, and compares their variation to the neutral genetic 

differentiation estimated from microsatellites. A neutrality test makes use of the S 
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parameter of the model to infer whether the magnitude and regime of selection, i.e. 

whether selection acted on the quantitative traits either towards different optima in 

different populations (S≈1), or towards the same selective optimum in all populations (S≈0). 

 

Relating coloration to MC1R polymorphism, geography, and neutral genetic ancestry 

To investigate whether MC1R polymorphism explains individual variation in 

pheomelanin-based coloration, linear models were estimated with coloration measured as 

brown chroma as response variable, and MC1R genotype at amino acid position 126 and sex 

as factors. Models were estimated for the entire data set, taking into account population 

structure by using the neutral genetic distance (FST) from the Middle East as covariate, and 

for each population separately. Population structure for the non-synonymous polymorphism 

at amino acid position 126 was estimated by calculating FST using hierfstat. We investigated 

how population structure at MC1R was correlated to color differentiation and spatial 

distances between populations using Mantel tests and partial Mantel tests as implemented 

in ecodist. To illustrate color variation within and between populations (Figure 4B), 

coloration was corrected for sexual dimorphism using a linear model. 

In order to evaluate whether there were significantly more polymorphisms linked to 

the MC1RWHITE allele that was sampled more often, we applied a bootstrap randomization 

procedure on all variation observed across the full sequence (10 polymorphic sites, the 

polymorphism at amino acid position 126 was excluded). Only sequences covering all 

variable sites were used for this analysis (618 MC1RWHITE, 252 MC1RRUFOUS). Then we 

randomly sampled 252 out of the 618 full-length MC1RWHITE alleles for 106 times. Each time 

we estimated the mean number of pairwise differences (π) in the sample. The p-value of the 
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observed variation was then retrieved by comparing the observed π to the distribution 

obtained by bootstrapping. 

Linear models were used to examine the hypothesis that within the secondary 

contact zone more rufous individuals have an elevated neutral genetic ancestry from 

Northeastern Europe. As the populations from Greece and the Aegean are not genetically 

differentiated, they were combined for this analysis. Models included coloration (brown 

chroma) as a response variable, and sex, MC1R genotype, and neutral genetic ancestry as 

explanatory variables. We used three approaches to estimate neutral genetic ancestry. The 

first models made use of the admixture proportions (Q) attributed to the “Northeastern” 

cluster by STRUCTURE for mainland populations (including the Aegean). Second, ancestry 

was approximated by individuals’ first principal axis score of an individual-based Principal 

Component Analysis (PCA; PCA eigenvalue of first axis=5.7). The PCA was conducted in R 

using the adegenet 1.3-7 package (Jombart et al. 2008). Third, neutral genetic ancestry was 

expressed in terms of the hybrid index (HI) estimated as outlined above. 

 

Supplemental texts 

Text S1 

The neighbor-joining (NJ) tree based on FST between mainland populations shows 

that the population from the Middle East is the most basal after the split of the outgroup 

populations. The next ones to split off are the ones from North Africa, Greece and Aegean, 

and Iberia (Figure S6A). The NJ trees estimated from allele-frequency divergence (net 

nucleotide distance) between clusters inferred by STRUCTURE confirm this result (Figures 

S6B-E). After the split of the outgroup populations from Europe (Figures S6B), the first 
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branching within Europe occurs at K=4 (Figure S6C) between clusters predominantly 

contributing to ancestry in (i) the Middle East, Iberia, and Italy, and (ii) the rest of Europe 

(populations in the secondary contact zone show a mixed composition). With the 

subsequent split of predominantly individuals from Hungary and the Balkans at K=5, the 

basal position of the cluster encompassing all individuals from the Middle East, and 

contributing to ancestry in Iberia and the secondary contact zone becomes apparent (Figure 

S6D). This basal position of the Middle Eastern population is reinforced at K=6, when 

individuals from Iberia and Italy split off into a cluster of their own (Figure S6E). No 

additional resolution could be reached at higher values of K. 

 

Text S2 

The geographic distribution of white and rufous barn owls lead Voous (1950) to 

propose that these barn owl phenotypes evolved in two refugia, in the Mediterranean and 

Southeastern Europe respectively. According to this hypothesis, the color cline between 

these regions would be a result of admixture after secondary contact. Together with 

previous evidence (Antoniazza et al. 2010) and spatially explicit ABC-modeling (Antoniazza et 

al. submitted) several lines of evidence clearly reject this hypothesis. The unidirectional 

decrease in genetic diversity (Figure 2D) is not expected with two disjunct refugia in Iberia 

and Southeastern Europe, respectively. In an alternative scenario with colonization of 

Europe from refugia in Iberia and the Middle East or on Crete, a close relationship of the 

latter two populations with the Southeastern European populations (Balkans, Hungary, 

Czech Republic) would be expected. Clearly, our results with a closer relationship of the 

populations in the Middle East and on Crete to populations on the Canary Islands and in 

Iberia (Figures 2A, S2) rule out this hypothesis. 
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Text S3 

Sequencing of the melanocortin-1-receptor (MC1R) gene in 671 individuals revealed 

three non-synonymous polymorphisms, at amino acid positions 112 (Arg-His), 126 (Val-Ile), 

and 212 (Arg-Cys). The polymorphisms at positions 112 and 212 are rare and only occur in 

heterozygous state (two 112His alleles in Eastern France; one, 212Cys allele in Switzerland, 

one in Italy, two in Central Spain and eleven on the Baleares). Only the Ile-Val polymorphism 

at amino acid position 126 is frequent, with a total of 448 Val-homozygotes (66.8%), 110 Ile-

homozygotes (16.8%), and 113 heterozygotes (16.4%). 

 

Text S4 

The relationship of coloration with MC1R genotype was confirmed also when data 

were analysed separately for each sex, and for each population. 53% and 72% of variance 

were explained for females and males, respectively, if analyses were carried out separately 

for each sex (females, FST: t=2.87, p=0.004; MC1R(Ile-Val): t=-2.10, p=0.036; MC1R(Val-Val): 

t=-13.68, p<10-15; males, FST: t=1.20, p=0.230; MC1R(Ile-Val): t=-4.58, p<10-5; MC1R(Val-Val): 

t=-21.97, p<10-15). Apart from the populations in Portugal, Hungary, and the Balkans, in 

populations variable for MC1R the MC1R genotype had a significant (Gran Canaria, Baleares, 

Italy, Northern France, Eastern France, all German populations, Denmark, Netherlands, 

Czech Republic, Greece, Aegean, Crete) or nearly significant (France Nantes, p=0.056; 

Switzerland, p=0.053) effect on coloration (Figure S11), and a model including sex explained 

between 36% (Southern Germany) and 90% (Gran Canaria) of color variation in each 

population (mean 58% ± 16% sd). 
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Supplementary data 

 

 

Figure S1. Isolation by distance patterns for different distance models in the barn owl. Regression lines are 
shown for illustrative purposes. Statistics for the Mantel regressions are provided in Table 1. 
 
 

 
Figure S2. Neighbor-joining trees based on pairwise population differentiation (FST) estimated from A) 22 
nuclear microsatellite markers and B) allele frequencies at MC1R amino acid position 126 in the barn owl. 
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Figure S3. Principle coordinate analysis based on population differentiation (FST) at mitochondrial ND6 in the 
barn owl. Labels and colors follow Figure 1. 
 
 

 

Figure S4. STRUCTURE results for mainland populations only (A-D) and for all populations (E-H). A,E) Lean 
likelihood ± standard deviation. B,F) Absolute change of the likelihood distribution (mean). C,G) Rate of change 
of the likelihood distribution (mean). D,H) Delta K. 
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Figure S5. Alternative distance models. The example illustrates flight distance (red), shortest overland distance 
(green), and ring distance (blue) between the populations from the Middle East (ME) and the Balkans (SRB). 
 
 

 
Figure S6. Population trees among European mainland populations rooted with outgroup populations from the 
United States and Oceania (Australia and Singapore). A) NJ-tree based on pairwise FST between populations. B) 
- E) NJ-trees based on on the allele-frequency divergence (net nucleotide distance) among clusters inferred by 
STRUCTURE for K=3 to K=6. 
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Figure S7. Spatial frequency distribution of mitochondrial ND6 haplotypes in the barn owl. The legend shows 
haplotype numbers. 
 
 

 

Figure S8. Mitochondrial ND6 haplotype network in the barn owl. The surface of the pies is proportional to 
haplotype frequencies. Black dots represent unobserved haplotypes. 
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Figure S9. Spatial distribution of populations’ mean coloration along the circum-mediterranean ring in the barn 
owl. Ring distance is the population’s distance from the Middle East. Solid line: Regression across all 
populations (R

2
=0.22, t=2.69, p=0.012). Dashed line: Regression with populations from the Middle East, Greece, 

Aegean, and Crete (open circles) excluded (R
2
=0.85, t=11.23, p<10

-9
). 
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Figure S10. Population-wise relationships of coloration with MC1R genotype in the barn owl. Coloration is 
shown as residual brown chroma after correcting for differences between sexes. 
 
 

 
Figure S11. Correlations of coloration with genetic ancestry in the secondary contact zone (Greece and 
Aegean). Coloration is given as residual brown chroma after correcting for sex differences and MC1R genotype. 
Genetic ancestry was measured by admixture proportions (Q), the first axis of an individual-based PCA (PC1), 
and with the hybrid index (HI). 
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Table S1. Population sample sizes, sample sizes for genetic markers and color phenotypes, and ring 
distance from the Middle East. 
 

Population Abbrev. Msat ND6 MC1R Color 
Ring distance 

(km) 

Middle East ME 32 15 32 15 0 

North Africa NAF 19 10 12 18 4150 

Tenerife TEN 26 14 20 10 5130 

Gran Canaria GC 16 15 16 11 5020 

Eastern Canaries ECA 17 14 16 7 4890 

Baleares BAL 29 14 28 29 4890 

Portugal P 30 15 26 30 4410 

Spain Center E-C 20 15 20 20 4560 

Spain North E-N 11 11 11 11 4880 

Italy I 25 22 22 14 5550 

France LaRochelle F-LR 13 12 13 13 5220 

France Nantes F-NA 28 15 28 28 5370 

France North F-N 15 15 15 15 5640 

France East F-E 28 15 28 28 5670 

Switzerland CH 27 16 27 27 5560 

Germany South D-S 37 30 37 37 5930 

Germany Thuringen D-T 19 14 19 19 6140 

Netherlands NL 30 15 30 30 6160 

Germany Niedersachsen D-NS 30 15 30 30 6270 

Germany Brandenburg D-BB 27 15 26 27 6360 

Denmark DK 37 30 37 37 6440 

Germany Northeast D-NE 21 15 21 21 6510 

Czech Republic CZ 20 14 20 20 6370 

Hungary H 32 15 32 16 6470 

Balkans SRB 28 15 18 21 6470 

Greece GR 24 19 17 21 7060 

Aegean AEG 22 16 19 20 7390 

Crete CT 61 25 51 51 7550 

Total  724 456 671 626  
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Table S2. Microsatellite multiplex sets. 

 
Multiplex Locus Dye Final Conc. [μM] Reference 

Multiplex 1 

Ta-206 FAM 0.450 

Burri et al. (2008) 

Ta-207 NED 0.052 

Ta-210 HEX 0.105 

Ta-216 FAM 0.135 

Ta-306 NED 0.165 

Ta-308 HEX 0.075 

Multiplex 2 

Ta-218 HEX 0.178 

Burri et al. (2008) 

Ta-219 NED 0.110 

Ta-220 FAM 0.110 

Ta-304 HEX 0.041 

Ta-414 HEX 0.275 

Multiplex 3 

Ta-204 HEX 0.250 

Burri et al. (2008) 

Ta-214 FAM 0.500 

Ta-305 FAM 0.500 

Ta-310 NED 0.25 

Ta-413 NED 0.25 

Multiplex 4 

Ta-202 FAM 0.250 

Burri et al. (2008) 

Ta-212 DYO630 1.000 

Ta-215 FAM 1.000 

Ta-402 NED 0.250 

Ta-408 HEX 0.50 

Multiplex 5 

FEPO42 FAM 0.250 

Klein et al. (2009) 

54f2 NED 0.250 

Tgu06 HEX 0.500 

Calex-05 DYO630 0.500 

RBG18 FAM 0.750 

Oe053 HEX 1.00 
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General discussion 

In this thesis, I studied the evolution and maintenance of the genetically based colour 

cline observed in the European barn owl (Tyto alba) in unprecedented details. I was able to 

show that the post-glacial history assumed for European barn owls until the beginning of my 

thesis was wrong and that the colour cline did not evolve by secondary contact after the last 

ice age as suggested by Voous (1950) and retaken by all authors after him (eg. Matics et al. 

2005; Roulin 2003). 

With the first populations’ genetics dataset covering more than a few populations for 

this model species, we were able to redefine barn owl post-glacial population history for the 

Western Palearctic. During the ice age, European barn owls were confined in the 

Mediterranean basin and maybe even only in its eastern part. As all barn owl of the 

Mediterranean basin present very few variation today, the colour variation was probably 

also minor at that time. After the ice age most of Europe was recolonized by the species 

from the Iberian Peninsula. During or just after this colonisation, the colour polymorphism 

that we observe today, evolved mainly by the mutation of a single amino acid of one of the 

“light” haplotype of the MC1R gene into a “dark” haplotype. We were also able to show that 

the differences in colour and on the frequency of the MC1R allele are maintained despite 

high gene flow by selection for local adaptation. Probably at the same time, a second minor 

colonisation occurred from the eastern Mediterranean basin toward Greece by light barn 

owls. Those two colonisation routes meet back in Greece (and maybe more extensively 

toward the black sea) in a secondary contact zone where we observed dark and light barn 

owls and where we have some evidence of limited introgression between these two colour 

morphs. If the reproductive isolation between dark and light barn owls is complete in 
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Greece, the European barn owl will constitute a perfect example of a ring species (Irwin 

2009; Irwin et al. 2001b; Martens & Packert 2007). 

In the next sections of this discussion, I will first present and discuss the main missing 

pieces of the post-glacial history of European barn owl and the evolution of the colour cline. 

I will then present the major perspectives that the western Palearctic barn owls offer for our 

understanding of the interaction between range expansion, local adaptation and ultimately 

speciation. 

 

The selective agent behind European barn owl colour variation: the missing 

piece. 

The main missing piece for the understanding of the European barn owl colour 

variation is to identify the selective agent that drives either the colour variation itself or part 

of its underlying genetics. 

Our European dataset is however unfortunately probably not the best way to 

approach the question. Many environmental variables show a south-west/north-east 

gradient across Europe and it would be difficult to get a definitive answer of which one 

might be the selective agent for the colour variation (see discussion in chapter 1). 

Furthermore, the number of potential selective forces acting on colouration is enormous 

and their comprehensive review is far beyond the scope of this discussion. Broad categories 

include sexual selection, natural selection on optical properties (for example camouflage) or 

non-optical properties (for example the roles of melanins as mechanical strengthening) 

(reviews include Andersson 1994; Bortolotti 2006; Hill 2006; McGraw 2006; Senar 2006). On 

the top of direct selection on colour itself, it must not be overlooked that the colour 
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variation might arise due to its correlation with other traits or for pleiotropic effects of the 

gene determining colour (Ducrest et al. 2008). 

I will first review what is known about pheomelanic colour variation in the barn owl 

and hypothesise the selective agent behind European colour variation. And second  highlight 

a research agenda that might be most rewarding regarding this question. 

Many ecological characteristics of barn owls have been shown to covary with its 

pheomelanic colour variation (the variation from white to rufous-brown of its underparts): in 

Switzerland the diet varies among the different colour phenotypes (Roulin 2004) and this 

relationship has also been observed in Israeli barn owls even if the colour variation is far less 

pronounced (Charter et al. 2012). In the long term population study in Switzerland, a link 

between colour and breeding rate has been found as well as with the growth rate of the 

owlet (Roulin & Altwegg 2007; Roulin et al. 2008). A link between colour variation and 

dispersal propensity has also been described (van den Brink et al. 2012). Even if the 

synthesis of all those scattered observations is still lacking, this shows that small ecological 

differences exists among barn owl colour variants. This is consistent with the observation of 

some evidence for local adaptation, even in Switzerland at a small spatial scale (Dreiss et al. 

2012). The claim by Galván and Alonso-Alvarez (2011) that natural radioactivity might be the 

selective agent behind colour variation is interesting but deserves a proper analysis including 

more than a single environmental variable. 

One level of complexity might be added by the correlation among colour traits and by 

the putative pleiotropic effects of the genes underlying the colour variation. Those two 

possibilities might be partially met in the barn owl. Roulin have shown that pheomelanic 

colouration in the barn owl is correlated with eumelanic variation (Roulin 2003) and the 

eumelanic variation is under directional selection in female barn owl (Roulin et al. 2010). The 
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second possibility of having the genes underlying the phenotypic variation showing 

pleiotropic effects for other functions could also bet met in the barn owl. The MC1R, which 

seems to be at least one of the major driver of the colour variation has recently be shown to 

be involved in many other functions (Ducrest et al. 2008). 

Our understanding of the European barn owl colour cline will be a lot more complete 

with the identification of the selective agents behind the colour variation or some of its 

underlying genes (MC1R and maybe some other genes still to be identified). My guess 

regarding this question is that the European colour cline is driven by metabolic effects linked 

to colour variation and to winter survival. Several lines of evidences may indicate this 

direction: the south-west/north-east colour cline corresponds to a marked cline in 

continentality which has a direct link to winter harshness; one of the major driver of barn 

owl population dynamics is the sensibility of the species to winter harshness (Altwegg et al. 

2006); a link between pheomelanic colouration and winter survival has been shown for 

several species including three owl species (Galeotti et al. 2009; Karell et al. 2011; Mosher & 

Henny 1976; Sirkia et al. 2010). As mentioned earlier, the European dataset suffer the 

problem of having many environmental variables correlated on the south-west/north-east 

axis, I thus think that using long-term population studies dataset is far more promising to 

identify the selective agent behind the colour variation. The first two tests that I would 

propose is (1) to look at the survival as a function of colour and winter harshness as in Karell 

(2011) and (2) to look as the frequency of the MC1R alleles as a function of winter 

harshness. Preliminary data from our lab regarding the second hypothesis seems to show a 

link between the temperature in March and the frequency of the “dark” MC1R allele the 

following spring (Alexandre Roulin, pers. comm.). One potential confounding factor with this 
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approach is that the Swiss population is far from being isolated and that it might be difficult 

or impossible to disentangle effect from natural selection and effect from immigration. 

The identification of the selective agent behind European colour variation remains 

the big question for understanding the evolution of the colour cline. Time has probably 

come to synthetize all data and evidence that have been collected in the last decades and try 

to decipher or at least identify hypotheses to test regarding this question. 

 

The European barn owl model system: perspectives 

The genetic determinism of the colour variation 

The link between phenotypic variation, its underlying genetics and fitness differences 

in natural populations has been a big challenge for a long time (Ellegren & Sheldon 2008; 

Stapley et al. 2010). Thanks to technological advancements, more and more example where 

those links start to be well understood are accumulating (eg. Barrett & Hoekstra 2011; 

Ellegren & Sheldon 2008; McNiven et al. 2011; Savolainen et al. 2013; Stapley et al. 2010). 

Colour variation is no exception to this trend (eg. Hoekstra 2006; Hofreiter & Schoeneberg 

2010; Hubbard et al. 2010; Kronforst et al. 2012; Mundy 2006). Variation in melanic 

colouration are ubiquitous in nature and, when known, the genetic architecture behind 

those colour variation presents a tremendous lability (McGraw 2006). 

However, the MC1R gene has been found to be involved over and over again in 

colour variation of birds, but also other vertebrates’ taxa. It was thus not very surprising that 

at least part of the colour variation in Barn owl was also determined by this gene (see 

chapter 3). 

However, the link between MC1R and colour in Europe seems far to be one to one. 

On average, the MC1R gene explains along with the sex and genetic structure, more than 
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60% of the colour variation in the Western Palearctic (chapter 3), but some populations do 

not conform to this rule: in Hungary for example the link between MC1R genotype and 

colour is very restricted (Chapter 3, figure S8). Another interesting observation is that there 

is a link between neutral genetic ancestry and colour in Israel despite no variation on the 

MC1R gene, which show that some other loci that have introgressed from north-eastern 

Europe must be involved in the colour variation in Israel (Sylvain Antoniazza, pers. obs.). 

These observations show that the genetic architecture of the colour variation in Europe is far 

more complex than just the existence of two different alleles of the MC1R gene, even if this 

gene already permits to explain a significant part of the colour variation in Europe. 

Another interesting aspect offered by barn owls is that colour clines are replicated 

independently on several continents and in several taxa (Roulin et al. 2009). This opens the 

possibility to test whether the genetic determinism of the colour variation evolved 

differently or in the same way in the different colour clines. 

 

How strong is selection on colour and on the MC1R gene? 

The big differences between differentiation on the colour itself and on the MC1R 

gene and neutral genetic markers show that selection is involved in the maintenance of the 

colour cline and on the maintenance of allele frequencies differences of the MC1R gene. This 

suggests that selection on colour and on its underlying genes might be strong (chapter 3, fig. 

4). Estimating the strength of the selection on colour and on the MC1R gene is one of the 

question that must be tackled in a near future to better understand the model system. A few 

attempts have been made but answering the question in a satisfactory way seems 

challenging. 
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One attempt has been made following Mullen and Hoekstra (2008). These authors 

have used classical cline theory to estimate the selection acting on a colour cline that did not 

result from secondary contact (on the contrary of most application of “cline theory”). In this 

case, the application seemed successful and to make sense. However, the application in the 

very similar barn owl case seems less promising. With the R package HZAR (Derryberry et al. 

2013), it was only possible to fit a cline between south-west Europe and north-east Europe 

for the MC1R gene allele frequencies (and not for the colour phenotypic variation). Using the 

cline equation for the gradient model, the selection coefficient found for the MC1R gene is 

of 8.51*10-5. This value seems very low and I have the feeling that this is not very close to 

the actual strength of selection. Based on the project of Ricardo Kanitz to estimate selection 

on a trait subject to local adaptation in a colonisation context (Kanitz et al., in prep.), the 

estimated selection coefficient might be close to 0.3. These two values sets to extrems limits 

to the most likely value of the selective coefficient. One reason for the cline model to 

perform poorly might be that those models have been designed for equilibrium cases where 

the action of migration, drift and selection is at equilibrium. This is probably why cline theory 

performs very well in hybrid zones where those equilibrium conditions are generally met. 

The barn owl case seems to be far from this ideal equilibrium conditions. The historical 

colonisation from the Iberian Peninsula has left strong traces in the genetics of the European 

barn owls for neutral genes and potentially for gene under selection too. On top of this 

historical colonisation, the dynamics of extinction/recolonisation due to cold winter might 

also play an important role and move the model system away from equilibrium conditions 

(see below part on recurrent adaptation). 

I think that the most promising approach to estimate the strength of selection on the 

MC1R gene and on colour itself is to use a simulation approach. The simulation basis that 
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has been set up for the neutral ABC study (see chapter 2) seems to make a perfect basis for 

such a study. One potential limitation might be computer speed. The model that we used 

with coalescence takes several hours to run forward in time with genes under selection. 

Some shortcuts must be found to be able to perform a true ABC approach to estimate 

selection in this system. One possibility might be to first study selection only on the two 

MC1R alleles. For such a simple genetic architecture, coalescent approach have already been 

proposed (Ewing & Hermisson 2010). It might even also well be that forward in time 

simulation are short enough to be considered and Quantinemo directly use to tackle the 

question (Neuenschwander et al. 2008). This is not a very short and simple project, but I am 

sure that this approach will be rewarding, both to understand the barn owl model system 

and in general. 

There is still a bit of work to be able to find a good model to estimate how strong is 

the selection on the color of the European barn owl and on the MC1R gene, but many first 

steps have already been made and I am convinced that this could be a rewarding way to go. 

 

Evolution during colonisation 

Despite the fact that many (if not all) species regularly experience range expansion 

and contraction as well as range shift mostly as a result of past and current climatic changes, 

the genetic consequences of these demographic processes have not been investigated in 

detail (Excoffier et al. 2009). One reason might also be that range expansion, contraction and 

shift are complex processes and that they could essentially only be studied by simulation 

approaches (but see Slatkin & Excoffier 2012 for a first analytical derivation). 
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The effect of range expansion on the fate of neutral genetic variation has received 

most of the attention and several recently described phenomena, like gene surfing, start to 

be well known and understood (Edmonds et al. 2004; Klopfstein et al. 2006). However, range 

expansions may have many other consequences like asymmetrical gene flow (Petit & 

Excoffier 2009), or spatial sectorization of the genetic variation (Excoffier & Ray 2008). These 

results indicate that many population genetic patterns that are generally attributed to 

selective processes should be interpreted with caution and if possible the main neutral 

demographic hypothesis should be ruled out by simulation. This is what we did in the second 

chapter of this thesis, where we show that the probability that the barn owl colour cline 

evolved by purely neutral surfing is extremely low. There is probably many examples in the 

literature of study where an alternative neutral demographic explanation has not been 

rigorously tested; for the most obvious, critical answer have been made (eg. Currat & 

Excoffier 2011; Vasemägi 2006). Even today many studies do not evaluate this issue. But 

there is also good example where this issue has been addressed carefully: White et al. (2013) 

have used three independent colonisation fronts to investigate patterns of selection in the 

bank vole, Kujala and Savolainen developed a basic (non-spatial) demographic model in their 

study of a clinal variation in scots pine (Kujala & Savolainen 2012). 

Following the discovery that range expansion might have effects on neutral genetic 

variation that where not foreseen before their careful investigations, generally by 

simulations, some other effects of range modification have been studied. The most 

straightforward is the effect of range contraction and range shift that have been addressed 

by Arenas (2012). Beside effects on neutral genetic variation, these demographic effects 

have for sure also an effect on loci that are under selection. Given that many of the range 

modification occur by definition along major ecological axes, the interaction between those 
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demographic effect and selection, for example for local adaptation, are of key importance. 

These topic only started to be addressed (Excoffier et al. 2009; Lehe et al. 2012; Peischl et al. 

2013; Travis et al. 2007). 

The European Barn owl provides a perfect model system to investigate these 

questions. We show in the second chapter how this species colonised western Europe from 

the Iberian Peninsula by a major range expansion. We also showed in the first and third 

chapters, how a colour cline evolved during or after this colonisation. All these informations 

and the neutral demographic models developed in the second chapter permit to investigate 

in many details the interaction between the colonisation of western Europe and the 

establishment of the colour cline, as well as its genetic determinants like the MC1R gene. 

One last interesting feature that can be studied in the Barn owl is the possibility to 

discover recurrent adaptation in this species. The fact that the barn owl experiences strong 

population fluctuation because of its sensitivity to winter harshness could drive such a 

pattern (Altwegg et al. 2006; Marti & Wagner 1985; Massemin & Handrich 1997). The 

ornithological literature stipulates that these population crashes are compensated by 

emigration from southern population. This opens the possibility that south-western barn owl 

regularly colonise north-eastern Europe. This would imply recurrent selection on these 

emigrants. The system would have to be studied in far more detail to carefully evaluate this 

possibility, but Barn owl would at least offer the perfect conditions do have such recurrent 

adaptation (strong dispersal abilities, strong selection for local adaptation and regular local 

population crashes). 
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Local adaptation in an homogenous background 

Examples from natural population that shows that some local adaptation exists 

between populations of many species are accumulating at a quick rate (Hereford 2009). Our 

view of local adaptation shifted from something believed to be rare to an ubiquitous process 

(Hereford 2009). It was also realized that even if a trade-off between local adaptation and 

gene flow exists (Räsänen & Hendry 2008), local adaptation might develop even in the 

presence of gene flow. The study of this process – differentiation in the presence of gene 

flow – is also of key importance for the study of the speciation process. The literature on 

ecological speciation, where speciation results from adaptation to various ecological niches 

within a single species, has grown enormously in the last two decades (Nosil 2012) and 

example of speciation gene flow might not be as rare as previously thought (Feder et al. 

2012; Nosil 2008). 

The evolution of the European barn owl cline is also very interesting in this context. 

In the classical view of its evolution, Voous (1950) postulated that the two colour morphs 

evolved in allopatry, which means in the absence of gene flow. In our new scenario, the local 

adaptation of barn owl colour evolved during or after the colonisation of the whole 

European continent by Barn owl coming from the Iberian Peninsula. This scenario suggests 

that the local adaption on colour arise with probably high level of gene flow in a very 

homogenous genetic background. For example, this can be seen in the supplementary figure 

S2 of the third chapter of this thesis. The patterns that can be seen in the MC1R tree are 

opposite to the pattern seen in the neutral genetic tree, in other words all the differentiation 

on the MC1R occur among barn owl that are very similar in their neutral genetic background. 

The European barn owl thus represents one more example of the high level of 

differentiation that can be attained despite high levels of gene flow. The barn owl system is 
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also very interesting in the sense that the white to rufous-brown colour cline from Iberia to 

north-eastern-Europe occurs among very similar Barn owls but that the rufous-brown to 

white colour cline that occur from north-eastern-Europe to the middle-east occur among the 

most different barn owls (on a neutral genetic point of view). The European barn owl model 

thus provides some more opportunities to study the local adaptation process in more 

details. 

 

Studying speciation in space and time 

For several decades, evolutionary biologists have considered that speciation could 

not occur without some form of geographical isolation between the incipient species 

(Bolnick & Fitzpatrick 2007; Mayr 1963). This view has drastically changed in the last decade, 

thanks to both empirical examples (Barluenga et al. 2006; Savolainen et al. 2006; Schliewen 

et al. 1994; Sorenson et al. 2003) and theoretical models (see Bolnick & Fitzpatrick 2007 for 

a review), showing that sympatric speciation can and does occur. One key mechanism 

involved is divergent selection towards local optima (Coyne & Orr 2004; Schemske 2010). 

This mode of selection can be so pronounced that it might cause speciation despite high 

levels of gene flow (Barton 2010; Nosil 2008). In reality, sympatric and allopatric speciation 

represent the two ends of a continuum from speciation with maximal gene flow (panmixia) 

to speciation with zero gene flow. Most natural examples will fall somewhere between these 

two extremes, thus a more integrated view including measures of dispersal, gene flow and 

selection as well as accounting for the spatial and historical contexts is needed to study the 

speciation process (Feder et al. 2013; Fitzpatrick et al. 2009; Mallet et al. 2009). The 

historical context is a key element: when a group of individuals at the same geographical 
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location show signs of incompatibility, it might be because they have diverged on site, or 

because they came into contact after being separated for some times. Understanding the 

speciation process therefore requires a deep understanding of the biogeographical origin of 

a group of sister species to apprehend the relative role of allopatric and sympatric evolution 

in speciation. Ring species in general and the Barn owl model system that I presented in this 

thesis provide ideal model systems to study these questions. 

In the European barn owl model system, one important remaining question is the 

exact taxonomic status of the two colour morphs coming into secondary contact in the 

Balkans. Are those two taxa showing only slight differentiation for colour-phenotypes and a 

handful of genetic markers as in willow warbler (Bensch et al. 2009) or do they present more 

restricted gene flow and merit a species status as in for example greenish warblers (Irwin et 

al. 2001a). In continental Europe, two subspecies of barn owl where generally defined based 

on colour variation, the light breasted Tyto alba alba subspecies and the dark breasted Tyto 

alba guttata subspecies. Following Voous (1950), they were always considered to have 

diverged in allopatry during the last ice age, but we have seen that this scenario has to be 

completely revised according to the results presented in this thesis. 

In the western part of the distribution (one study in Switzerland, one in eastern 

France and one in Hungary), the colour morphs show no sign of assortative mating (Baudvin 

1986; Matics et al. 2002; Roulin 1999). However, if the two colour morphs that come into 

secondary contact in the Balkan Peninsula merit a species status, they might present some 

form of pre-mating isolation and may show assortative mating. Unfortunately, only sparse 

data are available for this area. My research agenda regarding this question would be in two 

steps (1) I would try to better define the structure of the secondary contact zone between 

dark barn owls from the north and light barn owl from the south. Our data show that both 
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light and dark barn owl occur in Greece but we do not have enough data to understand 

where light barn owl does not occur anymore when moving north, except that we only 

found dark barn owl in north of the Balkans. We also have cues that both light and dark barn 

owls occur, for example, in Romania (Sylvain Antoniazza, pers. obs.). I would thus predict a 

secondary contact zone running from the Adriatic Sea towards the black sea. It is even 

possible that a secondary contact zone also exist in Italy (Barn owls are known to be light in 

southern Italy, Cramp 1985). I would thus recommend setting up a sampling scheme 

spanning at least all the Balkans. This should permit to decipher the structure of the 

secondary contact zone between dark and light barn owls and set basis for a deeper 

understanding of the level of gene flow that occur between the two colour morphs in this 

region. This sampling would also permit to take advantage of recent technical progress in 

high-throughput sequencing and would give the perfect settings for the search of 

incompatibility gene involved in post-mating isolation (Feder et al. 2013; Gompert & Buerkle 

2011) (2) After having identified the zones where both light and dark barn owl occur, I would 

set up one or several populations monitoring, to study for example the mating behaviour. It 

would also permit to see if barn owls present ecological differences related to colour 

differences when they occur in sympatry. Such pattern was found in Switzerland, but the 

differences where subtle (Dreiss et al. 2012). We can imagine that the differences might be 

more pronounce between barn owls that are more divergent. 

We have seen in this thesis that the barn owl model system provides wonderful 

settings to study the interaction between historical factors (e.g. range expansion, secondary 

contact), ecological characteristics (e.g. dispersal, local adaptation) and the process of 

divergence and ultimately speciation. If we were able to obtain a clear view of many aspects 

of the evolution and maintenance of the European barn owl colour cline, many others have 
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still to be deciphered. The main questions that should be tackled in a near future include: 

what is the selective agent that drives the colour differences in the barn owl colour cline? 

How strong selection should be to maintain dramatic differences in the frequency of the 

alleles of the MC1R gene despite no neutral genetic differences? How reproductively 

isolated are light and dark barn owl in Greece? 

Beside those question that could maybe be answered quite soon, a deeper 

understanding of the whole model system from metabolic differences between the colour 

variants toward the speciation process at the secondary contact constitute an ambitious but 

probably fruitful research agenda. 
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