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Summary

Background—Intratumoural heterogeneity has been previously shown to be related to clonal 

evolution and genetic instability and associated with tumour progression. Phenotypically, it is 

reflected in the diversity of appearance and morphology within cell populations. Computer-

extracted features relating to tumour cellular diversity on routine tissue images might correlate 

with outcome. This study investigated the prognostic ability of computer-extracted features of 

tumour cellular diversity (CellDiv) from haematoxylin and eosin (H&E)-stained histology images 

of non-small cell lung carcinomas (NSCLCs).

Methods—In this multicentre, retrospective study, we included 1057 patients with early-stage 

NSCLC with corresponding diagnostic histology slides and overall survival information from four 

different centres. CellDiv features quantifying local cellular morphological diversity from H&E-

stained histology images were extracted from the tumour epithelium region. A Cox proportional 

hazards model based on CellDiv was used to construct risk scores for lung adenocarcinoma 

(LUAD; 270 patients) and lung squamous cell carcinoma (LUSC; 216 patients) separately using 

Lu et al. Page 2

Lancet Digit Health. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data from two of the cohorts, and was validated in the two remaining independent cohorts 

(comprising 236 patients with LUAD and 335 patients with LUSC). We used multivariable Cox 

regression analysis to examine the predictive ability of CellDiv features for 5-year overall survival, 

controlling for the effects of clinical and pathological parameters. We did a gene set enrichment 

and Gene Ontology analysis on 405 patients to identify associations with differentially expressed 

biological pathways implicated in lung cancer pathogenesis.

Findings—For prognosis of patients with early-stage LUSC, the CellDiv LUSC model included 

11 discriminative CellDiv features, whereas for patients with early-stage LUAD, the model 

included 23 features. In the independent validation cohorts, patients predicted to be at a higher risk 

by the univariable CellDiv model had significantly worse 5-year overall survival (hazard ratio 1·48 

[95% CI 1·06–2·08]; p=0·022 for The Cancer Genome Atlas [TCGA] LUSC group, 2·24 [1·04–

4·80]; p=0·039 for the University of Bern LUSC group, and 1·62 [1·15–2·30]; p=0·0058 for the 

TCGA LUAD group). The identified CellDiv features were also found to be strongly associated 

with apoptotic signalling and cell differentiation pathways.

Interpretation—CellDiv features were strongly prognostic of 5-year overall survival in patients 

with early-stage NSCLC and also associated with apoptotic signalling and cell differentiation 

pathways. The CellDiv-based risk stratification model could potentially help to determine which 

patients with early-stage NSCLC might receive added benefit from adjuvant therapy.

Funding—National Institue of Health and US Department of Defense.

Introduction

Tumour cellular heterogeneity has been shown to be a hallmark of all cancers, with a diverse 

group of cell populations including cancer cells, immune cells, mesenchymal cells, and the 

like making up a heterogeneous solid tumour.1-3 Several studies have shown that tumour 

progression and carcinogenesis are related to clonal evolution and genetic instability, with 

highly aggressive tumours being far more heterogeneous than less aggressive variants. The 

presence of genetic sub-clonal populations in cancers, termed intratumoural heterogeneity, 

has been shown to be an independent prognostic factor of outcome in several different 

cancer types such as breast cancer3 and head and neck cancer,4 with high intratumoural 

heterogeneity having markedly worse patient survival and implicated in drug resistance.5

Nuclear morphological differences or nuclear pleomorphism have traditionally been known 

to be pathognomonic of cancer and a marker for tumour differentiation.6 This genetic 

intratumoural heterogeneity is reflected in the morphological makeup of the tissue, with 

more rapidly growing or aggressive cancers showing a greater cellular heterogeneity among 

cancer cells compared with a relatively indolent tumour.7 Tumours with higher intratumoural 

heterogeneity and higher nuclear diversity have been shown to have a poorer prognosis than 

cancers with low intratumoural heterogeneity and less nuclear diversity. Thus, quantifying 

this sub-visual morphological diversity in tissues would be a good surrogate for genetic 

intratumoural heterogeneity.

In early-stage (stage I and II) non-small cell lung carcinomas (NSCLCs), surgical resection 

is the treatment of choice, but almost 40–55% of these tumours recur after surgery.8 Several 

genomic-based prognostic biomarkers of outcome exist in early-stage NSCLC, but these are 
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typically developed from a single biopsy and thus might not comprehensively account for 

genetic and morphological intratumoural heterogeneity present in NSCLC. Features relating 

to tumour cellular diversity and local morphological heterogeneity within tissue slides might 

be driven by the genomic and epigenetic alterations and could potentially provide a tissue 

non-destructive way of predicting disease outcome.

Here, we present a new histogenomic approach—local cellular morphological diversity 

(referred to as CellDiv)—to interrogate the diversity of nuclear morphology in the 

epithelium region, and employ it in conjunction with a Cox proportional hazards model to 

predict overall survival in early-stage NSCLC. A deep-learning neural network model based 

on U-net9 was first employed to segment the epithelium region and nuclei in the image for 

downstream calculation of the nuclear morphological features. Because early-stage NSCLC 

can be broadly differentiated into the two major groups—lung squamous cell carcinoma 

(LUSC) and lung adenocarcinoma (LUAD)—with varying driver mutations and epigenetic 

pathways,10 we independently analysed the two subpopulations, keeping in mind the 

intrinsic differences between them. Our histogenomic analysis involved investigating the 

associations of these computerised CellDiv features with biological pathways implicated in 

carcinogenesis as well as studying the underexpression and overexpression of biological 

pathways associated with the CellDiv-derived prognostic risk groups.

Methods

Study design

The experimental design of this study has five key steps: data acquisition, local cellular 

diversity computation, calculation of the cellular diversity-based risk score, survival 

analysis, and histogenomic analysis (appendix 1 pp 9–10). Digitised tissue micro-arrays 

(TMAs) and whole slide images (WSIs) were obtained from four independent cohorts, 

which were divided into two training cohorts, and two independent validation cohorts. The 

nuclei identified in the haematoxylin and eosin (H&E)-stained images were segmented by an 

automatic method and a local nuclear graph (LNG) was constructed based on nuclear 

proximity. CellDiv features were then extracted from each LNG and used to calculate the 

cellular diversity-based risk score. We used the Least Absolute Shrinkage and Selection 

Operator (LASSO) method to discover the top features for constructing risk score, for 

LUAD and LUSC specifically, using a Cox proportional hazard model on the training 

cohorts. After locking down the Cox model, a risk score was generated for each patient in 

the two independent validation cohorts and survival analysis was done to evaluate the pre-

trained Cox model. We compared the CellDiv model with existing models based on clinical 

variables in terms of precision-recall area under the receiver operating characteristic curve 

(AUC). Finally, we did histogenomic analysis to explore the association of morphological 

tumour cellular diversity with biological pathways.

Datasets

Formalin-fixed paraffin-embedded H&E-stained WSIs and TMAs collated from four 

independent and well characterised NSCLC cohorts were included in this study, representing 

2213 patients. We required routine H&E-stained diagnostic images from patients with 
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overall stage I and II cancer, for whom overall survival information was available (appendix 

1 p 8). We excluded patients with locally advanced and metastatic (stage III and IV) tumours 

(n=1155), TMA spots that were not usable due to a lack of sufficient tissue for analysis 

(n=62), and slides with artifacts such as tissue folding and bubbles (n=37). Of the 1057 

patients retained for this study, 506 had early-stage LUAD and 551 had early-stage LUSC 

(appendix 1 p 8).

The four cohorts are represented by D1 (n=395), D2(n=91), D3 (n=473), and D4 (n=98). D1 

comprised TMA samples from the Cleveland Clinic, resected between 2004 and 2014, with 

a mean follow-up of 53· 8 months (SD 9·6). D2 comprised TMA samples from Yale Medical 

School, resected between 1988 and 2003, with a mean follow-up of 41·7 months (11 ·5). D3 

comprised diagnostic WSIs from The Cancer Genome Atlas (TCGA). D4 comprised TMA 

samples from the University of Bern,11 resected between 2000 and 2013, with a mean 

follow-up of 29·1 months (SD 1838). All cohorts featured patients with LUAD and LUSC, 

except for the University of Bern cohort, which featured LUSC only. Scanning details of the 

different cohorts are included in appendix 1 (p 5). Clinicopathological and outcome 

information for patients in D1, D2, and D4 was obtained from Insitutional Review Board-

approved retrospective chart review from the respective institutions. The corresponding 

information for patients in D3 was obtained from the TCGA. Cohorts D1 and D2 were used 

for feature discovery and model training, whereas D3 and D4 were used for independently 

validating the trained model.

This study conforms to Health Insurance Portability and Accountability Act guidelines and 

was approved by the Institutional Review Board at University Hospitals Cleveland Medical 

Center (number 02–13–42C). Informed consent requirement was waived as the study used 

archival tissue. Usage of the University of Bern cohort was approved by the local Ethics 

Commission (KEK 200/14), which waived the requirement for written informed consent.

Automatic characterisation of cellular diversity

A U-net-based convolutional neural network model9 was employed to detect the epithelial 

region from the digitised H&E-stained images, and then to detect and segment the nuclei. 

Once nuclei were detected and segmented, LNGs were constructed on the basis of the 

proximity of the individual nuclei (appendix 1 p 11). The intuition behind using LNGs was 

to capture the dissimilarity of proximally situated nuclei. The process of construction of an 

LNG involves first representing the centroids of the individual nuclei as nodes of a graph. 

Using the approach described by Foulkes12 and Corredor and colleagues,13 each node is 

then connected to the other nodes according to the Euclidean distance, a weighting function 

that favours the connectivity between proximal nodes. After this process, multiple 

disconnected subgraphs or clusters of nuclei are generated (appendix 1 p 2).

A set of 11 nuclear morphologic features, quantifying nuclear shape and appearance, were 

first extracted from the H&E-stained images to quantify the nuclear shape and appearance 

based on the presegmented nuclei (appendix 1 pp 20–22). Each individual nuclear feature 

was discretised into five levels. We explored the discretisation criterion ω for values ranging 

from 3 to 7. Setting ω=3 will lead to a small co-occurrence matrix of size 3 × 3, which limits 

the spectrum of the diversity that can be captured, whereas setting ω=7 will lead to a very 
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sparse co-occurrence matrix. Thus, empirically, we identified ω=5 to be the ideal level for 

discretising the nuclear diversity features. To explore the local tumour cellular diversity in 

terms of different shape and texture attributes, corresponding co-occurrence matrices based 

on the 11 extracted nuclear features were constructed (appendix 1 pp 2–4). 13 high-order 

statistical features (eg, entropy, energy)14 were then extracted from each of the 11 co-

occurrence matrices. Thus, each of the M different LNGs in each WSI represented by Gu, 

where u belongs to the set {1, 2, …., M}, is uniquely represented by a total of 11 different 

13-dimensional feature vectors Hk=[hk,1,…,hk,13], where k ranges from one to 11. The final 

CellDiv signature (715-dimensional vector) for each single WSI is formed by the first-order 

statistics (mean, SD, kurtosis, skewness, and range) aggregated across all Gu.

Cox proportional hazard model

A Cox proportional hazard model, henceforth referred to as the Cox model, was trained 

using the top CellDiv features identified from D1 and D2 to generate continuous risk scores 

for all patients. We chose this model because it considers the time-to-event duration as well 

as censoring information to construct the model. The top discriminant CellDiv features were 

identified using LASSO with the Cox model as the cost function. The LASSO model was 

fitted under a ten-fold cross-validation scheme. The risk score for each patient was then 

calculated as the linear combination of the weights, β, of the top CellDiv features and 

associated values. The median value Topt of all the risk scores in training cohorts D1 and D2 

was locked down as the optimal threshold for separating patients by risk level, with any 

value higher than the median categorised as high risk and median or lower categorised as 

low risk. We constructed the image models specifically for early-stage LUAD and LUSC 

and evaluated them separately.

The performance of the locked-down Cox model was evaluated in a blinded fashion on the 

independent validation test sets D3 and D4. The locked-down Cox model generated a risk 

score for each patient in the validation test set. The optimal threshold Topt learnt from the 

training cohorts was then applied to these risk scores to separate the patients into low risk 

and high risk.

Survival analysis

We chose overall survival as our endpoint because it is considered the gold standard in 

outcome for clinical trials and studies. We focused on 5-year overall survival because studies 

have shown that in early-stage NSCLC, 5-year and 10-year overall survival were equivalent.
15 Overall survival was defined as the time interval between the date of diagnosis and the 

date of death. Patients who were still alive at the last reported date were labelled as 

censored.

We used Kaplan-Meier survival analysis to examine the difference in overall survival 

between patients categorised as high risk or low risk by the model, and the difference of 

overall survival in each group was assessed by the log-rank test. Univariable Cox regression 

analysis was calculated to examine the prognostic ability of CellDiv features and other 

clinical and pathological parameters including age (>65 years vs ≤65 years), sex (male vs 
female), race (white vs other), smoking status (ever smoker vs never smoker), overall stage 
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(II vs I), T stage (T2/T2a/T2b/T3 vs T1/T1a/T1b), and N stage (N1 vs N0). Multivariable 

Cox regression analysis was calculated to examine the predictive ability of CellDiv risk 

group when controlling for the effects of clinical and pathological parameters including age, 

smoking status, overall stage, T stage, and N stage. Mantel-Haenszel hazard ratios were 

calculated in univariable and multivariable analysis. p values were two sided and p<0·05 was 

considered to be statistically significant.

Histogenomics analysis

We first used CellDiv features to construct a machine learning classifier for KRAS 
mutational status, using data from the 236 patients with LUAD with data on KRAS 
mutational status (appendix 1 pp 4–5). We evaluated the association of CellDiv-identified 

prognostic risk groups and differentially expressed pathways, to help to elucidate the 

relationship between the histological image phenotype and the corresponding genotype. For 

the TCGA LUAD and LUSC cohorts, normalised mRNA expression data were available for 

405 patients (195 with LUAD and 210 with LUSC), obtained from the Genomic Data 

Commons portal. These transcriptomic data (IlluminaHiSeq), which consisted of 20 531 

annotated genes, were used to investigate the underlying biological pathways of the risk 

scores derived from the pathological image analysis. First, all the normalised genes were 

recorded based on their association with the CellDiv risk group, with patients categorised as 

high risk or low risk. Based on an assumption that gene expression values are not normally 

distributed,16 genes that differentially express across patients in the two risk categories were 

selected using the Wilcoxon rank sum test, using a statistically significant threshold of 0·5. 

The Benjamini and Hochberg method was used to adjust p values and control for the false 

discovery rate in multiple testing.17 The most differentially expressed genes, which were 

significantly associated with the risk score, were then used in Gene Ontology analysis to 

identify distinct Gene Ontology-based biological processes.18 Gene Ontology provides 

structured, controlled vocabularies and classifications that cover several domains of 

molecular and cellular biology. Gene Ontology analysis highlights the most over-represented 

genes and finds the systematic linkages between those genes and biological processes.

The next step in the histogenomic analysis involved selecting a set of pathways that were 

representative of biological processes and doing single-sample gene set enrichment analysis 

(ssGSEA). ssGSEA, an extension of GSEA, is a computational method that determines 

whether a predefined set of genes shows significant, concordant differences between two 

biological states (eg, phenotypes),19 and calculates an enrichment score for every patient in 

the cohort. Each ssGSEA enrichment score represents the degree to which the genes in a 

particular gene set are coordinately upregulated or downregulated within a sample. The 

predefined sets of genes for the Gene Ontology-based biological processes were acquired 

from the Molecular Signatures Database. In our case, ssGSEA was used to find pathway 

associations with tumour cellular diversity-defined phenotypes individually for LUSC and 

LUAD. This helps to overcome limitations of single-gene analysis which often misses 

important biological pathways that tend to affect a set of genes acting together, rather than a 

single gene-based analysis.19 Significant differentially expressing pathways with respect to 

CellDiv features that contributed to the risk score were then selected using the Wilcoxon 

rank sum test.
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Role of the funding source

The funders of the study played no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. All authors had full access to all the data in the study 

and the corresponding author had final responsibility for the decision to submit for 

publication.

Results

Clinical and pathological data for all four cohorts are summarised in table 1. Patients were 

primarily white men in their mid-60s, and about 80% of patients were current or former 

smokers.

For early-stage LUSC prognostication, the CellDiv LUSC model included the 11 most 

discriminative CellDiv features, which were related to the nuclear shape (ie, major axis 

length of nuclei) and the nuclear intensity; the full list of feature names and their associated 

weight is presented in appendix 1 (p 23). In the univariable analysis of LUSC in D3, the 

CellDiv model was prognostic of 5-year overall survival, whereas none of the included 

clinical and pathological factors were significant (table 2). CellDiv LUSC was prognostic of 

overall survival in D4 as well, along with sex (table 2). In multivariable analysis, while 

controlling for clinicopathological factors, CellDiv was independently prognostic of overall 

survival in both validation test sets (table 2). This was supported by the Kaplan-Meier 

analysis (figure 1). When considering two representative cases of patients with LUSC who 

were identified as high risk and low risk by CellDiv with feature maps overlaid, the model 

determined that the low-risk tissue image had more local cell clusters (represented by the 

coloured patches) than the high-risk tissue image, with relatively lower CellDiv (figure 2).

For early-stage LUAD prognostication, the CellDiv-LUAD model included the 23 most 

discriminative CellDiv features, which were related to the nuclear shape (eg, the solidity of 

nuclei) and the nuclear intensity; the full list of feature names and their associated weight is 

presented in appendix 1 (p 24). In the univariable analysis of LUAD in D3, the CellDiv 

model was prognostic of 5-year overall survival, while N stage was also significant (table 2). 

In multivariable analysis, CellDiv was independently prognostic of overall survival, along 

with overall stage and N stage (table 2). This was supported by the Kaplan-Meier analysis 

(figure 1). When considering two representative cases with local nuclear shape diversity 

feature maps overlaid, the high-risk example had a higher expression of the CellDiv feature 

relating to nuclear shape than the low-risk example (figure 2). In precision-recall AUC 

analysis, the CellDiv model outperformed existing clinical variable-based models for LUSC 

and LUAD (appendix 1 p 26).

We obtained a mean AUC of 0·63 in classification of KRAS status (60 KRAS mutation 

positive vs 176 KRAS mutation negative) using top six discriminative CellDiv features 

under five-fold cross-validation over 100 iterations (appendix 1 pp 4–5).

As part of our histogenomics analysis, we did an empirical analysis of the 20 531 annotated 

genes across the D3 LUSC and LUAD cohorts, which resulted in 299 and 207 differentially 

expressing genes (DEGs), respectively, between CellDiv-defined low-risk and high-risk 
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groups based on 5-year overall survival (the full list of DEGs is presented in appendix 2). 

Our Gene Ontology analysis using these DEGs identified 23 significant biological pathways 

for LUSC and 15 for LUAD (a complete list of pathways is presented in appendix 2). These 

significant pathways were chosen on the basis of their biological significance in regulating 

tumour cellular diversity and carcinogenesis. In LUSC and LUAD, these pathways were 

broadly concerned with cell signalling, adhesion, division, localisation, apoptosis, and 

replication. Specifically, in LUAD, dendritic cell cytokine production, mast cell 

proliferation, regulation of apoptosis, pathways leading to DNA replication, and nucleus 

development were overexpressed in high-risk patients with higher cellular diversity. In 

LUSC, pathways of apoptotic signalling by p53, regulation of protein imports into the 

nucleus, cell adhesion and negative regulation of cellular differentiation, and cell signalling 

were differentially expressed between the CellDiv risk groups. The fold enrichment changes 

and strength of association between the CellDiv risk groups and significant biological 

processes in LUAD and LUSC are shown in appendix 2.

For a comprehensive histogenomics analysis, we evaluated the molecular underpinning of 

the prognostic CellDiv features by studying the corresponding association with ssGSEA. 

Gene set annotations for the 15 and 23 biological processes that were found significant in 

Gene Ontology analysis were used to calculate ssGSEA scores for each of the 23 most 

discriminative tumour cellular diversity features for LUAD and the 11 features for LUSC, 

respectively. In LUAD, CellDiv features were strongly associated with gene sets 

corresponding to apoptotic signalling, DNA replication, acute inflammatory response, and 

chromosome separation in meiosis pathways (figure 3). Meanwhile, in LUSC, CellDiv 

features were strongly correlated with pathways related to adhesion, cytokine activity, cell 

differentiation, leucocyte activation, and apoptotic signalling, among others (figure 4). A 

complete list of these differentially expressing genes can be found in appendix 2. In the case 

of LUSC, the local CellDiv features in terms of nuclear intensity (eg, mean intensity and 

mean inside boundary intensity: median [energy], which measure the nuclear intensity 

diversity in a local region) were strongly associated with cell ageing, adhesion, localisation, 

replication, apoptosis, and cytokine production. CellDiv features related to nuclear shape 

(eg, length of minor axis) were similarly strongly associated with pathways regulating 

cellular differentiation, cell signalling including bone morphogenetic protein signalling, and 

extracellular organisation. Similarly, in the case of LUAD, the local CellDiv in terms of 

shape (solidity and circularity) were strongly associated with pathways controlling histone 

acetylation, nuclear division, apoptosis, cellular differentiation, and nuclear autophagy 

among others. CellDiv features related to nuclear intensity meanwhile was found to be 

strongly correlated with apoptosis, nuclear autophagy, inflammatory response, nuclear 

division, and protein targeting.

Discussion

Definitive resection in early-stage NSCLC is potentially curative and the standard of care, 

yet almost half of these patients experience recurrence following surgery. While adjuvant 

chemotherapy is routinely used in patients with stage II NSCLC, it is currently not 

recommended in patients with stage IA disease and there is controversy regarding its use in 

stage IB NSCLC due to contradictory results from prospective clinical trials.20 There is thus 
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a need to develop a prognostic biomarker that can identify which patients with stage I 

NSCLC have more aggressive disease and can derive potential benefit from additional 

therapy following resection. Subsequently, a prognostic biomarker would also work to 

eliminate unnecessary chemotherapy for patients with low-risk stage II disease who would 

do well with surgery alone.

Existing prognostic biomarkers in NSCLC mostly rely on molecular or multigene-based 

assays.21 These tend to be expensive, time consuming, and tissue destructive while also not 

accounting for the inherent intratumoural heterogeneity present in tissues. For instance, 

Sandoval and colleagues22 presented a prognostic five-gene DNA methylation signature 

analysing 450 000 CpG sites from the tumoural DNA for stage I NSCLC. On an 

independent test cohort of 143 patients with stage I disease, the signature had a hazard ratio 

of 3·24 (95% CI 1·61–6·54; p<0·001) in prognosticating recurrence-free survival. Chen and 

colleagues23 presented a five-gene signature panel using RT-PCR that was prognostic of 

recurrence-free survival and overall survival on an independent test cohort of 42 patients 

with early-stage NSCLC, with a hazard ratio of 3·36 (1·35–8·35; p=0·009). Several studies 

have also shown the usefulness of single gene-based biomarkers including p53,24 ERBB2,25 

RRM1,26 and BRCA for prognosticating survival in early-stage NSCLC.21

In this work, a risk score leveraging quantitative pathomorphometric features related to 

nuclear and morphologic diversity (CellDiv) was used to prognosticate overall survival in 

early-stage (stage I and II) NSCLC. Accounting for the well explored differences both 

morphologically and in the genetic makeup between LUSC and LUAD, independent CellDiv 

models were developed for each histological subtype to maximise model performance and to 

showcase the different biological underpinning behind the CellDiv features depending on 

tumour subtype. The developed CellDiv models were independently validated on a large 

multi-institutional cohort from the TCGA as well as an independent and blinded test cohort 

from the University of Bern.

Previous work in the area of computational pathology-based prognostic predictors for early-

stage NSCLC includes works by Corredor and colleagues,13 Wang and colleagues,27 Saltz 

and colleagues,28 and Yu and colleagues.29 While not explicitly capturing cellular diversity, 

these approaches involved characterising the spatial arrangement and appearance of tumour-

infiltrating lymphocytes and nuclei and relating these measurements with the likelihood of 

disease recurrence and progression. Andor and colleagues6 showed that diversity in nuclear 

intensity and shape were correlated with intratumoural heterogeneity in four different cancer 

types (LUAD, head and neck squamous cell carcinoma, and bladder and renal cell 

carcinomas, in 382 patients). Coudray and colleagues30 showed that a deep learning model 

is able to classify NSCLC into LUAD, LUSC, and normal with AUC of 0·97. In addition, 

the trained deep learning model can predict the ten most commonly mutated genes in 

LUAD, with AUCs from 0·73 to 0·86. Unlike the approach presented in this work, which 

relied on computationally derived intuitive features representing local cellular diversity, 

Coudray and colleagues30 used so-called black-box deep learning features with little 

explainability. Additionally, their work considered associations with single-gene driver 

mutations, whereas we explicitly looked at genome-level representations. Similarly, the 

work of Kather and colleagues31 showed an association between deep learning 
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representations from WSI for gastrointestinal cancer and microsatellite instability. Note that 

while we did employ deep learning, it was solely used for tissue partitioning and nuclear 

segmentation, the pre-processing steps for the subsequent feature extraction.

Our work differed from these studies by developing and validating CellDiv features that 

represent morphological intratumoural heterogeneity and are representative of gene 

expression, and are also prognostic of survival in early-stage NSCLC. The CellDiv features 

employed a mathematical and computational model to capture local morphological 

heterogeneity. Given that there are both morphological and biological differences between 

LUAD and LUSC, independent dedicated prognostic models for LUAD and LUSC were 

separately constructed. The present work also encompasses histogenomics analysis by 

investigating the molecular and biological pathways that might drive these 

histomorphometric prognostic features by Gene Ontology and ssGSEA analysis. 

Additionally, we believe this is the first work to show that computer-extracted 

histomorphometric features were not only strongly prognostic of overall survival but 

associated with underlying morphological and biological pathway correlations.

In this work, we also explored the molecular underpinning of the CellDiv-defined prognostic 

risk groups on the TCGA dataset with available mRNA sequencing data. We showed the 

associations between specific CellDiv features and the significant biological pathways 

determined by ssGSEA. In adenocarcinomas, for instance, the selected CellDiv features in 

terms of nuclear solidity and mean inside boundary showed higher expression of genes 

related to the biological pathway of DNA replication32 and nucleus development.33 With the 

CellDiv features essentially capturing the degree of heterogeneity and diversity in shape, 

size, and texture of cancer nuclei, this seems to suggest that higher expression of those 

developmental pathways leads to more disordered or chaotic nuclei. Meanwhile, in LUSC, 

the family of bone morphogenetic protein and transforming growth factor β receptors, which 

have been already shown to be implicated in lung cancer carcinogenesis,34 were found to be 

associated with CellDiv features that measuring nuclear shape and intensity, clearly 

suggesting that the diversity features are being driven by the cellular differentiating and 

adhesion pathways.35 This was possibly reflective of the increased differentiation present in 

high-risk tumours as analysed by the CellDiv risk groups. Additionally, CellDiv features 

were also found to be associated with KRAS mutational status in adenocarcinomas, with a 

classification AUC of 0·63. Unlike deep learning-based methods presented by Coudray30 

and Kather,31 CellDiv features explicitly capture morphologic heterogeneity in terms of 

cellular diversity, as opposed to more opaque representations that are not as intuitive or 

explainable.5

In LUAD, the apoptotic signalling pathway was found to be significantly associated with the 

degree of the solidity of the nuclei, possibly suggesting that the degree of nuclear diversity is 

dependent on the targeted cellular destruction of cancer nuclei leading to more disordered 

cellular structure in more aggressive cancers.36 Nuclear autophagy, which could be another 

potential reason for the disordered and more heterogeneous cellular structure,37 was also 

correlated with a CellDiv feature relating to the nuclear boundary intensity, reflecting 

textural heterogeneity in nuclei. For LUSC, biological pathways connected with the 

regulation of DNA replication and cell differentiation38 were strongly associated with the 
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CellDiv feature analysing nuclear textural heterogeneity. This seems to suggest that more 

aggressive cancers are represented by a more heterogeneous cellular and nuclear 

organisation and architecture.

Our study had some limitations. First, the CellDiv prognostic model was developed and 

validated using retrospective data for prognosticating patient outcome, but was not validated 

for predicting the added benefit of adjuvant therapy. Future work will entail validation of the 

CellDiv model with access to the appropriate early-stage NSCLC clinical trial datasets (eg, 

one arm with surgery alone, the other arm with surgery plus adjuvant therapy). Similarly, 

another future direction to explore would be evaluating the ability of the CellDiv features to 

predict response to therapies such as checkpoint inhibitors. In addition, the correlative 

analysis between morphology and gene expression was done only on TCGA patients. 

Another limitation of the study was the evaluation of the CellDiv feature solely on TMA 

spot images, but not the WSIs. In the precision-recall AUC analysis, a marked improvement 

was seen in the TCGA LUSC cohort with CellDiv features only compared with the clinical 

variable-based model (0·85 vs 0·84; appendix 1 p 26). However, despite the limited tissue 

area, the CellDiv features were still able to prognosticate patient outcomes.

To summarise, we presented a histogenomics approach that attempts to capture CellDiv in 

the tissue. The CellDiv feature-based classifier was evaluated in H&E-stained image cohorts. 

The CellDiv features showed a strong correlation with overall survival in early-stage 

NSCLC, were associated with biological pathways of cellular differentiation, apoptosis, and 

signalling, and could distinguish KRAS status (in LUAD). CellDiv needs to be clinically 

validated, first on archived clinical samples from completed clinical trials in early-stage 

NSCLC (eg, the International Adjuvant Lung Cancer Trial and SWOG Cancer Research 

Network’s JBR10 trial) for generating level 1 evidence before it can be deployed clinically. 

Our goal following validation is to provide oncologists with a risk score to guide their 

treatment decision making. Those patients with early-stage lung cancer but identified by the 

CellDiv feature classifier as high risk might be good candidates for adjuvant chemotherapy, 

whereas those identified as being at low risk are likely to do well with surgery alone. 

Additionally, following validation on archived clinical trials, we will deploy CellDiv as a 

biomarker to guide therapy in a prospective clinical trial setting, where CellDiv scores will 

be used to randomly assign patients to either adjuvant chemotherapy or surgery alone for 

early-stage NSCLC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched the PubMed database for research articles published between June 25, 2009, 

and Sept 25, 2019, containing the words “lung cancer” and “pathology”, and one of the 

phrases “machine learning”, “artificial intelligence”, or “deep learning”. We reviewed the 

titles and abstracts of the 496 results.

Many studies have explored machine learning-based approaches for lung cancer risk 

assessment. Findings from many of these studies suggest that computerised descriptors of 

tumour morphology are prognostic, but many studies rely on abstract black-box features 

that do not clearly map to and hence are disassociated from tumour morphology. 

Additionally, these studies do not appear to appreciate or account for the distinctive 

morphology associated with adenocarcinomas versus squamous cell carcinomas. Also, 

many of these studies lack large-scale independent validation of their approaches across 

multiple different sites.

Added value of this study

In this study, we show that computer-derived morphological features reflecting the 

diversity in cellular features from haematoxylin and eosin-stained non-small cell lung 

carcinomas (NSCLCs) are associated with disease outcome, and can estimate risk of 5-

year overall survival in early-stage cancers.

Procedures to make the model robust to sample preparation variation yielded a model that 

works across a large study population prepared and digitised across many different 

institutions. The image-based risk model, based on local tumour cellular diversity 

features, showed added value over clinical risk factors in clinically low-risk patients (ie, 

stage I and II) and was prognostic independent of cancer grade and smoking status. 

Additionally, the hand-crafted local tumour cellular diversity features provide an intuitive 

way to associate phenotype with the underlying tumour genotype.

Our study differs from other approaches in its focus on prognosis of early-stage NSCLC, 

as well as the size of the validation set and the plurality of sites from which the validation 

set is drawn for independent testing of the histomorphometric image signature. We also 

attempt to explain the relationship between the prognostic histological image phenotype 

and the corresponding genotype, which has not been done in most related works.

Implications of all the available evidence

The prognostic ability of computer-extracted features of tumour cellular diversity derived 

from images warrants further study into its potential to supplement or replace molecular 

tests, to identify which patients with early-stage NSCLC stand to receive added benefit 

from adjuvant therapy.
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Figure 1: Kaplan-Meier 5-year overall survival according to risk category
HR=hazard ratio. LUAD=lung adenocarcinoma. LUSC=lung squamous cell carcinoma. 

NA=not applicable. TCGA=The Cancer Genome Atlas.
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Figure 2: Cellular diversity feature maps in LUSC risk model (A), LUAD risk model (B), and 
mutational status classification (C)
(A) Representative cases of LUSC and CellDiv feature map illustration. (B) Representative 

cases of LUAD and CellDiv feature map illustration. In (A) and (B), the first column shows 

haematoxylin and eosin-stained images with low-risk and high-risk patients as identified by 

the CellDiv model. The segmented nuclei contour and connecting edges are shown in the 

second column. The third column shows CellDiv features that capture the CellDiv in terms 

of nuclear shape (ie, area in panel A and eccentricity in panel B). Each colour patch 

represents individual LNGs in the image, where the blue and yellow colours represent the 
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low and high normalised feature values. (C) Representative cases of KRAS mutation 

positive versus KRAS mutation negative, and the corresponding CellDiv feature map. 

LNG=local nuclear graph. LUAD=lung adenocarcinoma. LUSC=lung squamous cell 

carcinoma.
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Figure 3: Association between biological processes and the CellDiv features used to construct the 
prognostic models for LUAD
The strength of association of biological processes, shown in rows, with the CellDiv 

features, shown in columns, by ssGSEA analysis. Wilcoxon rank sum test p values are 

shown, where p<0·05 shows an association between histomorphometric features used in the 

CellDiv models and certain pathways (while p<0·05). LUAD=lung adenocarcinoma. 

ssGSEA=single-sample gene set enrichment analysis.
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Figure 4: Association between biological processes and the CellDiv features used to construct the 
prognostic models for LUSC
The strength of association of biological processes, shown in rows, with the CellDiv 

features, shown in columns, by ssGSEA analysis. Wilcoxon rank sum test p values are 

shown, where p<0·05 shows an association between histomorphometric features used in the 

CellDiv models and certain pathways (while p<0·05). LUSC=lung squamous cell carcinoma. 

BMP=bone morphogenetic protein. TGF=transforming growth factor. ssGSEA=single-

sample gene set enrichment analysis.
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