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Abstract 

Schizophrenia pathophysiology implies both redox dysregulation and dysconnectivity of 

prefrontal cortex, likely related to oligodendrocyte and myelin impairments. As 

oligodendrocytes are highly vulnerable to oxidative stress, we investigated the interplay 

between glutathione and myelin. In control subjects, multimodal brain imaging revealed a 

positive association between medial prefrontal glutathione levels and both white matter 

integrity and resting-state functional connectivity along the cingulum bundle. In early 

psychosis patients, only white matter integrity was correlated with glutathione levels. On the 

other side, in prefrontal cortex of peripubertal mice with genetically impaired glutathione 

synthesis, mature oligodendrocyte numbers, as well as myelin markers were decreased. At the 

molecular levels, under glutathione deficit conditions induced by shRNA targeting the key 

glutathione synthesis enzyme, oligodendrocyte progenitors showed a decreased proliferation 

mediated by an upregulation of Fyn kinase activity, reversed by either the antioxidant N-

acetylcysteine or Fyn kinase inhibitors. In addition, oligodendrocyte maturation was impaired. 

Interestingly, the regulation of Fyn mRNA and protein expression was also impaired in 

fibroblasts of patients deficient in glutathione synthesis. Thus, glutathione and redox 

regulation play a critical role in myelination processes and white matter maturation in 

prefrontal cortex of rodent and human, a mechanism potentially disrupted in schizophrenia. 

Keywords: schizophrenia; glutathione; myelin; Fyn; MRI; oxidative stress 
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Introduction 

Abnormalities in brain connectivity appear to be cardinal features of schizophrenia, and recent 

research has focused on white matter and factors affecting its integrity (1). Findings from 

transcriptomics (1-3), neuropathology (4-6) and neuroimaging (1, 7-9) provide compelling 

evidence for alterations of oligodendrocytes and myelin in various subregions of the 

prefrontal cortex including anterior cingulate cortex of schizophrenia patients. Nevertheless, 

the underlying pathophysiological mechanisms are still elusive and their clarification would 

require investigating the early phase of the disease as their developmental emergence would 

be masked by chronicity. 

Converging data indicate a role for redox dysregulation in the pathophysiology of 

schizophrenia (10-13). In some studies, decreased glutathione (GSH) levels, the main cellular 

non-protein antioxidant and redox regulator (14, 15), have been reported in cerebrospinal 

fluid and prefrontal cortex of patients by using Magnetic Resonance Spectroscopy (MRS) (16, 

17) and in postmortem tissues (13, 18). Moreover, the abnormal function of proteins encoded

by various candidate genes for schizophrenias (i.e. PRODH (19), DISC1 (20), G72 (21), 

DTNBP1  (22), NRG1 (23)) can increase the production of reactive oxygen species (ROS) and 

therefore induce oxidative stress (19, 21, 24-26). We have thus proposed that developmental 

redox dysregulation constitutes one final common pathway, on which converge genetic and 

environmental vulnerability factors generating oxidative stress (11). In addition, 

polymorphisms in the genes coding for the catalytic (GCLC) (27) and modifier (GCLM) (28) 

subunits of the glutamate-cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis, 

are associated with schizophrenia in case-control studies. The GAG trinucleotide repeat 

polymorphisms of GCLC, which are more frequent in patients (“GAG high-risk” genotypes) 

(27), are associated with changes in plasma thiol levels (29). Compared to the “GAG low-

risk” genotypes, GCL activity and GSH content in fibroblasts are lower in “GAG high-risk” 
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genotypes under oxidative stress conditions (27). These data prompted the investigation of 

GCLM knockout mice (GCLM-KO) as a model of schizophrenia. In developing and adult 

animals, brain GSH levels are decreased by 70% (30), and GCLM-KO mice show signs of 

oxidative stress in discrete brain regions (30, 31), including the anterior cingulate cortex (31). 

These mice present behavioral alterations such as impaired sensory gating, abnormal response 

to environmental novelty, abnormal social and emotion-related behaviors (32), all known as 

hallmarks of the disease. 

In fact, oligodendrocytes are highly vulnerable to oxidative stress. They display high 

metabolic activity and contain large stores of iron (33), both of which favor ROS production. 

Despite of that, they contain three times less GSH than astrocytes (33). Oligodendrocytes and 

their progenitors are particularly sensitive to hydrogen peroxide (15) and nitric oxide inducers 

(34). Moreover, a GSH deficit decreases the survival of oligodendrocyte progenitor cells 

(OPC) in vitro (35). 

The notion that a redox dysregulation during critical periods of neurodevelopment could alter 

structural and functional connectivity has not yet been established. We propose that redox 

dysregulation and oxidative stress could contribute to the white matter anomalies observed in 

schizophrenia. We thus hypothesized that GSH levels in the medial prefrontal cortex can be 

involved in the white matter integrity of the cingulum bundle, a fiber tract connecting frontal 

brain areas to posterior limbic structures. The finding of an association between prefrontal 

GSH levels and the cingulum white matter integrity in humans motivated us to study further 

the underlying mechanisms in experimental models. The consequences of a GSH deficit on 

OPC and myelination during development were characterized using in vitro and in vivo 

models, including GCLM-KO mice. 
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Materials and Methods 

Subject recruitment 

Patients in the early phase of psychosis, having met the threshold for psychosis (according to 

the CAARMS criteria) (36) were recruited from the TIPP Program (Treatment and Early 

Intervention in Psychosis Program, University Hospital, Lausanne, Switzerland) (37). Normal 

controls were recruited and assessed by the Diagnostic Interview for Genetic Studies (38). 

Major mood, psychotic, or substance-use disorder and having a first-degree relative with a 

psychotic disorder were exclusion criteria for controls. At the time of the MRI study, 28 

patients were receiving antipsychotic medication. Eleven patients were receiving quetiapine, 7 

aripiprazole, 4 olanzapine, 3 amisulpride, 2 risperidone and 1 paliperidone. At the time of Fyn 

study, 24 patients were receiving antipsychotic medication. Five patients were receiving 

quetiapine, 4 aripiprazole, 6 olanzapine, 3 amisulpride, 5 risperidone and 1 clozapine (see 

Table 1a-c for details on demographic information and chlorpromazine equivalents). 

Statistical analysis with one-way ANOVA did not reveal any significant effect of 

chlorpromazine equivalents of antipsychotic drugs on GSH, Fyn mRNA and Fyn protein 

expression. 

Diffusion and functional MRI acquisition and data processing 

MRI was performed for all subjects on a 3 Tesla scanner (Trio, Siemens Medical, Germany) 

with a 32-channel head-coil. Diffusion Spectrum Imaging (DSI) was acquired and 

reconstructed as described in Wedeen et al. (39). Specifically, diffusion weighted images 

were sampled in a Cartesian 3D grid of q-space using 128 diffusion encoding gradients 

covering a hemisphere with b-values varying between 0 and 8000 s/mm
2
. The acquisition

volume was made of 96x96x34 voxels of 2.2x2.2x3 mm
3
; TR/TE were respectively 6100/144

ms. Acquisition time was approximately 13 min. In addition, each subject was scanned in 
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resting state conditions using a standard gradient echo EPI sequence sensitive to BOLD 

contrast. An axial plane was used with a matrix of 64x58 voxels, each 3.3x3.3 mm. Thirty-

two slices of 3.3 mm thickness with a 0.3 mm gap were acquired. Repetition time was 1920 

ms, and acquisition time was 9 min. 

Furthermore, a magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence 

was acquired in a matrix of 240x256x160 voxels, 1 mm in-plane resolution and 1.2 mm slice 

thickness. TR/TI/TE were respectively 2300/900/2.98 ms. Acquisition time was 

approximately 4 min. 

DSI, resting state fMRI and MPRAGE data were processed using the Connectome Mapping 

Toolkit (www.cmtk.org) (40) and the Connectivity Decoding Toolkit (41), as described 

below. 

gFA in the cingulum bundle: (1) Gray and white matter were segmented from the MPRAGE 

acquisition, and the cortical surface was partitioned into 68 regions of interest (ROIs) with 

FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) according to the Desikan-Killiany 

atlas (42). (2) Whole-brain streamline tractography was performed from the DSI using in-

house software (37). (3) Average gFA was extracted along the cingulum bundle defined as the 

connections between FreeSurfer regions: medial orbitofrontal, rostral anterior cingulate, 

caudal anterior cingulate, posterior cingulate, isthmus of cingulate, and precuneus (43) 

(Figure 1a). 

Functional connectivity along the cingulum bundle: (1) fMRI volumes were preprocessed 

including motion correction, regression of movement, average white matter and cerebrospinal 

fluid signals, and linear detrending. (2) Resting state time series were averaged over the 

FreeSurfer cortical ROIs, and band-pass filtered using the discrete wavelet transform (41). (3) 

http://www.cmtk.org/
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Functional correlation through the cingulum bundle was characterized with the Pearson 

correlation between the average low frequency cortical signals extracted from the medial 

prefrontal cortex (covering medial orbitofrontal and superior frontal cortex) on the one hand, 

and isthmus of the cingulate cortex and precuneus on the other hand (Figure 1a). 

MRS and data processing 

All MRS experiments were performed with a transverse electromagnetic (TEM) volume head 

coil (MR Instruments, Inc., Minneapolis, MN, USA). The magnetic field homogeneity was 

optimized by adjusting first- and second-order shims using FAST(EST)MAP (44). In vivo 
1
H

NMR spectra were acquired from a volume of interest (VOI) positioned in the medial bilateral 

prefrontal lobe using short-TE spin-echo full-intensity acquired localized single voxel 

spectroscopy technique (45, 46). The following scan parameters were used: 

VOI=20x20x25mm
3
, TR/TE=4000/6ms, acquisition bandwidth=2kHz, number of

averaged=148, vector size=2048. GSH concentration was obtained by analyzing water 

suppressed in vivo 
1
H NMR spectra using LCModel (47) with a basis set consisting of 

simulated individual metabolite spectra (48). Unsuppressed water 
1
H NMR spectra were used

as an internal reference for the quantification of metabolite concentrations. The spectral range 

for analysis was set to 0.2-4.2 ppm. By using the short-TE MRS technique at 3T, GSH was 

quantified with a Cramer-Rao lower bounds of 7 ± 2% (mean ± s.d.). 

Fibroblast cell culture and treatment 

Fibroblast cell cultures were obtained from skin biopsies using a standard procedure (28). 

Cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 2% 

Ultroser-G serum (Biosepra), 1 mM sodium pyruvate, 100 U/ml penicillin and 100 μg/ml 

streptomycin. Fibroblasts were plated at 73 cells/mm
2
. One day after plating, we treated
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fibroblasts with 50 μM tBHQ or vehicle for 18 h. Cells were trypsinized, pelleted and stored 

at -80°C. 

Animals 

GCLM-KO mice generated by Yang et al. (49) were bred, weaned, genotyped and maintained 

as described previously (32). All animal procedures were approved by the Swiss cantonal 

veterinary office. 

Oligodendroglial cell culture and lentivirus infection 

Mixed glial primary cell cultures were prepared from 1 to 3 days-old Wistar rat. Cerebral 

cortices were dissected and dissociated in papain solution (20 U/ml papain, 100 U/ml DNase, 

1 mM L-cysteine, in L15 medium) for 30 min at 37°C, followed by mechanic dissociation. 

Cells derived from one brain were grown into two poly-L-ornithine-coated 75 cm
2
 flasks in

DMEM with 10% foetal calf serum and 100 U/ml penicillin-100 μg/ml streptomycin. After 7 

days, one flask was tranduced with lentivirus containing the scrambled shRNA and the other 

with GCLC shRNA. Puromycin (1 µg/ml) was added two days after cell transduction for 24 

h. OPC were then isolated by a method adapted from McCarthy and Vellis (1980) (50).

Briefly, flasks were shaken for 1 h at 37°C, rinsed twice with DMEM and shaked for 18 h at 

37°C. Supernatant was plated in plastic dish for 45 min, afterwards OPC (supernatant) were 

plated in poly-L-ornithine-coated coverslips and maintained in DMEM medium supplemented 

with 100 U/ml penicillin-100 μg/ml streptomycin, 2.5 µM forskolin, 50 µg/ml apo-transferrin, 

5 µg/ml insulin, 30 nM sodium selenate, 10 nM hydrocortisone, 10 nM D-biotin, 1 mg/ml 

BSA, 10 ng/ml PDGF-AA and 10 ng/ml bFGF. In late differentiation experiments, OPC were 

grown in medium lacking growth factors (PDGF-AA and bFGF) and supplemented with 40 

ng/ml 3,3’,5-triiodo-L-thyronine (thyroid hormone: T3) from 7-days after transduction. OPC 
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were exposed to 1 mM of N-acetylcysteine (NAC; Sigma), or 1 µM PP1 (Fyn inhibitor; 

Sigma), or to vehicle for 24 h. 

Antibodies 

Antibodies used for immunofluorescent staining are: rabbit polyclonal anti-NG2 (1:600; 

Millipore), mouse monoclonal anti-O4 (1:200; Millipore), mouse monoclonal anti-CNP 

(1:500; Chemicon, clone 11-5B), rat monoclonal anti-MBP (1:400; Millipore), mouse 

monoclonal anti-APC (CC1; 1:70; Calbiochem), mouse anti-BrdU (Roche Applied Science), 

Cy3 goat anti-mouse IgG (1:300; Molecular Probe), Alexa488 goat anti-rabbit IgG or anti-

mouse IgG (1:300; Molecular Probe), Cy3 goat anti-rat IgG (1:600; Millipore), anti-mouse-

Ig-fluorescein (Roche Applied Science). For Western blot experiments, we used mouse 

antibody to GCLC at 1:10000 (kindly provided by P. Vliet, University of Washington, 

Seattle, WA), rabbit polyclonal anti-PDGFR (1:2000; Santa Cruz), mouse monoclonal anti-

Fyn (1:1000; Abcam),  mouse monoclonal anti-CNP (1:2000; Chemicon, clone 11-5B), 

mouse monoclonal anti-α-Tubulin (1:200; Santa Cruz), mouse monoclonal anti-β-actin 

(1:10000; Abcam), horseradish peroxidase-conjugated anti-mouse or anti-rabbit (1:10000, GE 

Healthcare). Mouse monoclonal antibody to Fyn (Abcam) was used for immunoprecipitate 

Fyn kinase protein. 

Immunohistochemistry, confocal microscopy and image analysis 

Forty- and 90-days-old GCLM-KO mice or wild-type mice were anesthetized, perfused and 

their brains were removed as described in Cabungcal et al. (51). Briefly, three consecutive 

sections (40 µm) from each animal (bregma 1.14-1.34 mm) were selected, permeabilized with 

0.3% Triton X-100 in 0.1 M phosphate buffer saline (PBS), and blocked for 1 h in 0.1 M 

PBS, 0.3% Triton X-100, 2% normal goat serum (NGS). Sections were incubated for 48 h at 
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4°C with the primary antibodies diluted in blocking buffer. After incubation with secondary 

antibodies in 0.1 M PBS, 0.3% Triton X-100 for 1 h at room temperature (RT), sections were 

counterstained with DAPI (4’-6-diamidino-2-phenylindole: 1.5 μM in 0.1 M PBS; Molecular 

Probe) for 10 min, and were mounted in Mowiol solution. Images were captured with Zeiss 

LSM 710 Quasar confocal microscope equipped with 40x objectives. Z-stack of 10 images 

was scanned. As fiber labeling with MBP and CNP was dense, the first five and last five 

images of the z-stack were treated separately. Images were reconstituted with Imaris 6.2 

software. In ImageJ, four areas of 0.02 mm
2
 were placed from layer I (Figure 2b). For MBP 

and CNP quantification, a fixed intensity threshold was applied in each area and ratio of 

stained pixels over the total pixel number was calculated. Each value for one area corresponds 

to mean of sum of both z-stack groups. For CC1 labeling, a fixed intensity threshold was 

applied in each area and the number of CC1 positive cells over 60 pixels was quantified. 

Values reported correspond to sum of CC1 positive cells in all areas.  

 

shRNA construction and lentivirus particle production  

GCLM shRNA (5’-CTCAGTCCTTGGAGTTGCA ttcaagaga 

TGCAACTCCAAGGACTGAG-3’), GCLC shRNA (5’-GGAGGCTACTTCTATATTA 

ttcaagaga TAATATAGAAGTAGCCTCC-3’) and scramble shRNA (5’-

CTTACAATCAGACTGGCGA ttcaagaga TCGCCAGTCTGATTGTAAG-3’) were inserted 

in a pSP-93P vector containing puromycin resistance gene.  

Human embryonic kidney 293T cells were plated and transfected the day after using calcium 

phosphate method with the vectors coding for virion packaging elements (5 μg pMD2.G; 15 

μg pCMV-dR8.74) and vector genome (20 μg shRNA-pSP-93P). Medium was replaced 8 h 

after transfection. Supernatants were collected 24 h later, filtered through 0.45 μm membrane, 
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pelleted at 19,000 rpm for 90 min at 4°C and resuspended in DMEM. Lentivirus titration was 

measured with HIV-1 p24 antigen ELISA Kit (ZeptoMetrix). 

Monochlorobimane assay 

Cells were incubated with 100 µM monochlorobimane (Calbiochem) in Hepes buffer (140 

mM NaCl, 5 mM KCl, 20 mM glucose, 2 mM CaCl2, 10 mM Hepes, 1 mM MgCl2, pH 7.4) 

and fluorescence emission (460 nm) was measured every minute for 40 min under inverted 

Nikon eclipse TE300 microscope, equipped with 20x objective. For quantification in 

MetaMorph, we selected image captured at 40 min and we subtracted background. Each value 

reported corresponds to mean fluorescence intensity of cells.  

Survival assay 

Sytox® Orange Nucleic Acid Stain (Invitrogen) was added to cells at 1 µM for 30 min at 

37°C before fixation. Nuclei were labeled with DAPI for 10 min and coverslips were mounted 

in Mowiol solution. Four images per coverslip were captured with Axioskop2 fluorescence 

microscope (Zeiss) equipped with 16x objective. We calculated ratio between Sytox positive 

cell number and total cell number with ImageJ. Values reported correspond to mean of ratio 

from the four images. 

Proliferation assay 

OPC were treated with 10 µM BrdU (Roche Applied Science) for 4 h at 37°C. Cells were 

fixed, blocked (2% NGS in PBS for 30min) and immunolabeled following manufacturer 

instructions. After DAPI staining, coverslips were mounted in Mowiol. Images were captured 

using Axioskop2 fluorescence microscope (Zeiss) with a 16x objective. We analyzed four 
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images per condition with ImageJ. Values reported represent mean of ratio between BrdU and 

NG2 positive cells. 

Immunocytochemistry and quantification 

After fixation, cells were permeabilized with 0.1% Triton X-100 in PBS for 5 min at RT, and 

blocked in 0.1 M PBS, 2% NGS, 0.1% Triton X-100 for 30 min at RT. Primary antibodies 

were incubated in PBS, 2% NGS, 0.1% Triton X-100 for 30min at 37°C. After incubation 

with secondary antibodies in PBS for 30 min at 37°C, cells were counterstained with DAPI 

for 10 min. Coverslips were mounted in Mowiol. Four images per coverslip were captured 

with Axioskop2 fluorescence microscope (Zeiss) equipped with 40x objective. On each 

image, we quantified the ratio between immunopositive cells and total cell number using 

ImageJ. 

Western blot 

Anterior cingulate cortex from mice was incubated for 10 min on ice in extraction buffer (50 

mM Tris-HCl pH7.5, 250 mM NaCl, 1% SDS, 1mM dithiothreitol, 1 mM EDTA, 0.01% 

phenylmethanesulfonyl fluoride and protease inhibitor cocktail (Roche)), sonicated and 

centrifuged 15 min at 10,000g. OPC pellets were incubated for 10 min in RIPA buffer on ice 

and centrifuged 15 min at 10,000g. Fibroblasts pellets were suspended in ice-cold lysis buffer 

(50 mM Tris-HCl pH7.5, 150 mM NaCl, 1 mM EDTA, 1% triton, 0.1% SDS, 30 mM sodium 

fluoride, 1 mM phenylmethanesulfonyl fluoride, 30 mM β-glycerophosphate, 0.2 mM sodium 

orthovanadate and protease inhibitor cocktail (Roche)) and centrifuged 15 min at 10,000g.  

Proteins were separated by SDS-PAGE on 10% acrylamide gels, and transferred on PVDF 

membrane (Hybond-P). After blocking in Tris-buffered saline (TBS), 0.1% Tween 20 

(TBST), 5% milk for 1 h at RT, membranes were incubated overnight at 4°C with primary 
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antibodies diluted in TBST, 3% BSA. Membranes were incubated with horseradish 

peroxidase-conjugated secondary antibody in TBST, 0.5% milk for 1 h at RT. Peroxidase 

activities were detected using Amersham ECL Kit (GE Healthcare). Positive signal was 

analyzed and normalized to α-Tubulin or β-Actin with ImageJ. 

Immunoprecipitation and Fyn kinase activity 

Cell lysates (150 µg) were pre-cleared by incubation with Dynabeads® Protein G (Invitrogen) 

30 min at 4°C, prior to hybridization with 6 μg of Fyn antibody for 1 h at RT. Complexes 

were pulled down with 50 μl Dynabeads® Protein G for 30 min at RT. After 

immunoprecipitation, Fyn activity was measured according to manufacturer protocol 

(Universal Tyrosine Kinase Assay Kit: Takara). 

RNA isolation and qRT-PCR  

RNA were extracted using PerfectPure
TM

 RNA cultured cell Kit (5Prime), as described in the

manufacturer protocol. cDNA were synthesized using the following reaction mix: 300 ng 

RNA, 5.5 mM MgCl2, 2 mM dNTP, 0.4 U/μl RNasin Inhibitor, 2.5 μM Random Hexamer, 

1.25 U/μl RTase and bufferRT 10x from Applied Biosystem. Taqman real time PCR was 

performed in final volume of 20 μl containing 10 ng cDNA, 1 μl of selected probes mixed 

with 10 μl of TaqMan Universal PCR Master Mix (Applied Biosystems). Probes used were: 

18S (4333760T), Fyn (Hs00941600_m1) and Fyn (Ms00941600_m1). qPCR was performed 

on Applied Biosystems 7500 Fast Real-Time PCR System and the 7500 Fast System SDS 

Software as established by the provider. Samples were run in duplicate. In animal model, data 

were normalized to the internal control β-Tubulin and cerebellum. Human data were 

normalized to the internal control 18S and analyzed using ΔΔCt method (52). 
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Statistical analysis 

Statistics were performed with R version 2.13. Data from MBP and CNP 

immunohistochemistry were analyzed by linear mixed-effect model. In vitro and in vivo data 

that followed a normal distribution (verified by Shapiro test) were analyzed by paired Student 

t test. Otherwise, a non-parametric test (Wilcoxon test) was applied. For multiple comparisons 

(control vs NAC or DMSO vs PP1), we used a linear mixed-effect model. Antipsychotic drug 

effect on GSH and Fyn was analyzed with ANOVA. Pearson correlation was used to study 

the relationship between GSH and both gFA and functional connectivity in control subjects. 

In early psychosis patients, we noticed highly non-linear relations between psychosis 

duration, medication dose and both gFA and functional connectivity. Consequently, 

Generalized Additive Model was used to measure the association between GSH and both gFA 

and functional connectivity, allowing a smooth semi-parametric relation between explanatory 

variables and the response without imposing any parametric relation on the model. 
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Results 

Relationship between frontal GSH levels and connectivity in the human cingulum 

bundle 

In control subjects and early psychosis patients, we investigated the relationship between 

medial prefrontal GSH levels measured by 1H-MRS, and white matter integrity in the 

cingulum bundle assessed with Diffusion Spectrum Imaging (DSI) and the derived 

generalized Fractional Anisotropy (gFA) values (Figure 1a) (39). In addition, the functional 

connectivity along the cingulum (between the medial prefrontal cortex on one side and the 

isthmus of the cingulate cortex and precuneus on the other) was assessed with resting state 

functional MRI (Figure 1a) (53). To focus on the prefrontal maturation period, we included 

only individuals younger than 30-years-old (54); controls and patients were matched for age 

and gender (Table 1a). In control subjects, significant positive correlations between GSH 

levels and both gFA values and the functional connectivity along the cingulum were found (r 

= 0.33, p = 0.03 / r = 0.40, p = 0.01) (Figure 1b). In early psychosis patients, GSH levels were 

also positively associated with gFA values when medication and psychosis duration were 

included as covariates (r = 0.31, p = 0.01), while functional connectivity did not show any 

correlation with GSH levels even including these cofactors (r = 0.21, p = 0.34) (Figure 1c). 

These findings indicate a potential dependence between GSH levels and white matter integrity 

during prefrontal cortex development in control subjects and patients. Moreover, GSH levels 

are associated with the functional connectivity in control subjects, a mechanism likely 

disrupted in schizophrenia. 

Low GSH affects oligodendrocyte maturation and myelination 

To explore the influence of brain GSH levels on myelination in prefrontal cortex (in particular 

anterior cingulate cortex (Figure 2a)), we used a mouse model which has low GSH levels 
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(GCLM-KO). The immunolabeling for two myelin-associated proteins, 2',3'-cyclic-nucleotide 

3'-phosphodiesterase (CNP) and myelin basic protein (MBP) were decreased in GCLM-KO 

mice as compared to wild-type animals at peripubertal age (Figure 2b, 2d; Supplementary 

Figure 1a, 1c) but not in adulthood (Figure 2c-d; Supplementary Figure 1b-c). Quantification 

revealed a reduction of MBP immunostaining of 45 ± 15% in the superficial layer (area a; see 

Figure 2b), 63 ± 5% in area b, 41 ± 7% in area c and 35 ± 9% in deeper area (area d) of 

peripubertal GCLM-KO mice compared to wild-type mice (Figure 2d). Similar results were 

obtained with CNP immunolabeling (39 ± 15.3%, 62 ± 6.1%, 43 ± 3.9%, 40 ± 9.1% for areas 

a to d) (Supplementary Figure 1c). We also quantified the number of mature oligodendrocytes 

labeled with CC1 marker. At peripubertal stage, the number of CC1 positive cells was 

reduced by 50,1 ± 4.8% in the anterior cingulate cortex of GCLM-KO mice (Figure 2e-f). 

These observations indicate a critical role of GSH levels for oligodendrocyte maturation and 

myelin formation during the peripubertal period. 

GSH synthesis deficit impairs proliferation and maturation of OPC 

To further investigate the mechanism underlying the effect of redox dysregulation on 

oligodendrocyte maturation, we used OPC-enriched primary cultures (94 ± 0.4% NG2 

positive cells) to assess proliferation and differentiation of OPC having lower GSH levels 

(Figure 3a). Deficit in intracellular GSH was induced by transducing cells with lentiviral 

particles containing a shRNA targeting the catalytic or modulatory subunit of GCL, the rate 

limiting enzyme of GSH synthesis. At 7 days post-infection, the GCLC shRNA caused a 49 ± 

5% reduction in GCLC subunit as shown by Western blot (Figure 3b) and a 28 ± 8% decrease 

in GSH levels compared to control cells transduced with scrambled sequence shRNA (Figure 

3c). The GSH decrease induced with GCLC shRNA remained stable for at least 10 days 

(Figure 3c). In contrast, GCLM shRNA reduced GSH levels only by 15 ± 11% (data not 
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shown) and thus was not further used. Proliferation of OPC was evaluated by BrdU 

incorporation at 7 days post-infection (Figure 3d). The double staining with BrdU and NG2 

indicated that GCLC shRNA leads to a 29 ± 7% reduction in OPC proliferation as compared 

to scrambled shRNA (Figure 3e). To determine if the effect was due to an increase in cell 

death, we assessed necrosis and apoptosis levels by using Sytox dye. The number of Sytox 

positive cells was low and homogenous among groups, indicating that a 28% GSH decrease 

did not affect OPC survival (Supplementary Figure 2). N-acetylcysteine (NAC), a redox 

regulator and GSH precursor, prevented the decrease of proliferation induced by GSH deficit 

in GCLC shRNA conditions (Figure 3e), but also increased OPC proliferation by a factor of 

1.7 ± 0.4 (Figure 3e). 

Early differentiation of the progenitor cells occurring without exogenous differentiation 

factors (thyroid hormone: T3) was also assessed by immunocytolabeling of stage-specific 

markers: O4 for pre-oligodendrocyte and CNP for oligodendrocytes (Supplementary Figure 

3). At 7 days post-infection, the density of O4- or CNP-positive cells was similar in cells 

transduced with GCLC or control shRNA (Figure 3f). However, at 10 days post-infection, the 

proportion of O4 and CNP positive cells was, respectively, 1.7 ± 0.2 and 2.7 ± 0.3 times 

higher in conditions with GCLC shRNA than with the control shRNA (Figure 3g). Together, 

this indicates that a GSH deficit promotes the switch from proliferation to early 

differentiation. 

To evaluate the consequence of GSH deficit on a more mature oligodendrocyte stage, we 

cultured OPC with exogenous differentiation factors (T3) from 7 days post-infection. The 

level of CNP positive cells in control and GCLC shRNA OPC cultures was respectively 2.7 ± 

0.4 times higher in differentiating (T3) than in proliferating medium (PDGF, bFGF) (Figure 

3h). However, the number of mature oligodendrocyte labeled with MBP was reduced by 57.2 

± 11% in GSH deficit conditions (Figure 3i-j). 
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These observations suggest that a compromised GSH synthesis decreases proliferation, 

increases early differentiation of OPC but impairs oligodendrocyte maturation in a later stage. 

We then explored the molecular mechanism that could link GSH deficit to the impairment in 

oligodendrocyte maturation processes. 

GSH synthesis deficit affects Fyn kinase 

It has been suggested that OPC proliferation may depend on platelet-derived growth factor 

receptor (PDGFR)-mediated pathway and the switch from proliferation to early differentiation 

is in part due to a Fyn kinase-mediated degradation of PDGFR (55, 56). Therefore, we asked 

whether an upregulation of Fyn was responsible for the decreased proliferation in OPC 

transduced with GCLC shRNA. At 7 days post-infection, the levels of PDGFR protein 

expression were reduced by 16 ± 5% in GCLC shRNA compared to scrambled shRNA OPC 

cultures (Figure 4a). While there was no difference in Fyn protein levels between control and 

GCLC shRNA OPC (Figure 4b), a two-fold increase in Fyn kinase activity was observed 

under GSH deficit conditions (Figure 4c). Inhibition of Fyn with PP1 prevented the decreased 

proliferation of OPC induced by GCLC shRNA (Figure 4d). These results indicate that a GSH 

deficit leads to a reduction of OPC proliferation through an increase of Fyn kinase activity 

and a decrease of PDGFR protein levels in vitro. 

Then, we investigated whether a Fyn upregulation was also present in the anterior cingulate 

cortex of GCLM-KO mice. Fyn mRNA expression was increased by 1.2 ± 0.05 times in 20-

days-old but not 40- and 90-days-old GCLM-KO mice as compared to age-matched wild-type 

mice (Figure 4e). Consistently, Fyn protein levels were also increased by 1.2 ± 0.05 times in 

20-days-old GCLM-KO mice as compared to wild-type mice (Figure 4f). These indicate that 

Fyn is upregulated during the development of prefrontal cortex in animal model with low 

GSH levels. 
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Abnormal Fyn mRNA and protein expression in early psychosis patient with redox 

impairments 

We then assessed whether abnormal Fyn kinase levels were also found in early psychosis 

patients with a redox dysregulation. We investigated Fyn regulation in response to oxidative 

stress induced by tert-butylhydroquinone (tBHQ) in skin-derived fibroblasts. In a previous 

study, we found that under oxidative stress conditions, GSH levels were significantly lower in 

fibroblasts with “GAG high-risk” compared to “GAG low-risk” GCLC genotypes (27). This 

and another study on plasma thiol levels indicate that the “GAG high-risk” is associated with 

impaired redox regulation (29). Here, we compared Fyn mRNA expression in fibroblasts from 

control subjects (“GAG low-risk”), with that of early psychosis patients (“GAG low-risk” and 

“GAG high-risk” genotypes) (Table 1b). In absence of tBHQ, Fyn mRNA levels were 

homogenous in all three groups (Figure 4g). The oxidative challenge led to Fyn mRNA 

downregulation in fibroblasts from control subjects and “GAG low-risk” patients, as 

compared to vehicle treatments (Figure 4h). In contrast, no such downregulation was 

observed in fibroblasts of “GAG high-risk” genotypes associated with low GSH levels 

(Figure 4h). Likewise, Fyn protein levels were downregulated in fibroblasts from control 

subjects and “GAG low-risk” patients in response to tBHQ treatment (Figure 4i). However, in 

fibroblasts of “GAG high-risk” genotypes, Fyn protein expression was not different in 

response to oxidative stress (Figure 4i). In conclusion, fibroblasts from schizophrenia patients 

with a genetic risk for an abnormal redox regulation also display an impaired regulation of 

Fyn mRNA and protein expressions. 
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Discussion  

The present study highlights an important role of GSH for oligodendrocyte differentiation and 

myelination processes. We found that GSH levels measured in the medial prefrontal cortex 

are positively associated with white matter integrity in the cingulum bundle of young healthy 

subjects and early psychosis patients. In the anterior cingulate cortex of peripubertal GCLM-

KO mice, a constitutive GSH deficit causes reduced expression of myelin-associated proteins 

and decreased number of mature oligodendrocytes. Using OPC cultures, we found that a 

deficit in GSH decreases OPC proliferation via Fyn upregulation, and it also impairs 

oligodendrocyte maturation. Consistently, fibroblasts of patients carrying “GAG high-risk” 

genotypes in the GCLC gene, which are associated with a phenotype of redox dysregulation, 

present abnormal regulation of Fyn when challenged with an oxidative stress. 

Our observation that a GSH deficit decreases OPC proliferation and promotes early 

differentiation is in agreement with previous studies showing a switch from OPC division to 

early differentiation following treatment with either buthionine sulfoximine (BSO), an 

inhibitor of GSH synthesis, or pro-oxidants (i.e. methylmercury, lead, paraquat) in absence of 

differentiating factors in the medium (55, 56). However, when differentiating factors are 

added to the medium, a deficit in GSH induced either by GCLC shRNA (this study) or BSO 

(57) impairs oligodendrocyte maturation. These latter in vitro data are consistent with the 

impaired oligodendrocyte and myelination observed in GCLM-KO mice. Moreover, these 

data are further supported by the positive relationship between GSH levels and gFA along the 

cingulum bundle in young healthy subjects and early psychosis patients. This suggest a role 

for GSH during the development of fibers, either at the level of myelin or axonal size or fiber 

packing since gFA can be influenced by these various factors (58). Together, these suggest 

that a proper timing of redox regulation and differentiation signals is crucial to control the 

proliferation and the various stages of oligodendrocyte differentiation. Thus, an imbalance 
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between ROS and antioxidant systems could therefore affect myelination processes and white 

matter integrity along various developmental periods. 

Myelination of the prefrontal lobe progresses through adolescence and completes only in 

early adulthood (59-61). Although the dynamics of this process may be different in rodents, 

our observation that GCLM-KO mice present a myelin deficit in the anterior cingulate cortex 

during peripubertal period and no myelin impairment at adulthood suggests that this latter is a 

vulnerable time period during which an adequate redox control is required. In agreement with 

this interpretation, a transcriptomic study in the prefrontal cortex identified genes for which 

expression profiles specifically peak during late adolescence through early adulthood (i.e. 

between ages 15 and 25 years). Besides genes related to either myelin or lipid synthesis, the 

antioxidant response system is one of the most highly expressed during this period (60). In 

line with this, we found a positive association between GSH levels and gFA only when 

individuals under 30 years of age were included. This corresponds to an age until which the 

cingulum bundle is still maturing (54). Early adulthood coincides with the mean onset of 

schizophrenia and the development of higher cognitive processes such as executive function 

and social cognitive function (62), both of which are affected in the disease. We propose that 

a redox dysregulation during the period of myelin maturation could lead to disrupted 

connectivity in the prefrontal cortex and contribute later in the appearance of the symptoms. 

Moreover, oligodendrocyte and myelin impairments may be implicated in cognitive 

dysfunction (63, 64). 

In control subjects, GSH levels also positively correlate with the functional connectivity 

between the medial prefrontal and the posterior cingulate cortices in control. Therefore, 

higher GSH levels correspond to better synchronization of these two areas, in line with their 

higher gFA values. 
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Finally, our study reveals that a GSH deficit causes an impairment of Fyn pathway. A GSH 

deficit results in decreased proliferation in OPC culture via the upregulation of Fyn kinase 

activity. Likewise, young GCLM-KO mice have an increase in Fyn mRNA and protein 

expressions in the developing anterior cingulate cortex. The upregulation of Fyn in our in 

vitro and in vivo models of GSH deficit is also in line with redox regulation of Fyn activity 

described in various cell types, including lymphocytes, endothelial cells and fibroblasts (65, 

66). Interestingly, fibroblasts from early psychosis patients with “GAG high-risk” genotypes, 

associated with a vulnerability to redox dysregulation, have impaired regulation of Fyn 

mRNA and protein expressions during an oxidative challenge (tBHQ). Noteworthy, an 

increase in Fyn mRNA and protein levels has been also reported in postmortem prefrontal 

cortex of schizophrenia patients (67). Furthermore, the Stanley Neuropathology Consortium 

Integrative Database (a web-based tool that integrates results of various microarray studies 

done with the Stanley brain array collection: https://www.stanleygenomics.org/) reveals a 

significant upregulation of Fyn mRNA expression in schizophrenia patients (35 cases vs. 35 

controls). To summarize, the increase of Fyn in a patients’ subgroup may result from an 

impairment in redox regulation, and cause impaired Fyn-mediated signaling pathways that 

could contribute to developmental abnormalities including oligodendrocyte maturation.  

All together, these data suggest the presence of a critical developmental period during which a 

proper redox regulation and GSH levels are required for myelination processes. Adverse 

events during early life are risk factors for the psychopathology and myelin development (68, 

69). This also suggests that there are several critical periods during which environmental risk 

factors could impact the normal development of myelin. Indeed, transient changes in GSH 

levels induced by environmental insults during pre-, peri- and post-natal periods may have an 

impact on oligodendrocyte maturation, consequently affecting later structural connectivity. 
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A better understanding of molecular mechanisms underlying redox control of myelination at 

various developmental vulnerability periods will pave the way towards new drug targets and 

strategies for the treatment and prevention of schizophrenia. 
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Table 1 Demographic information for control subjects and early psychosis patients. 

a. MRI study

Control subjects 

(n=40) 

Patients 

(n=30) 

p value 

Age (years ± s.d.) 23.5 ± 3.2 23.1 ± 3.5 0.7a 

Gender 25 men; 15 women 19 men; 11 women 1.0b 

CPZ equivalent (mg ± s.d.) NA 330.3c ± 218.9 NA 

Psychosis duration (years ± s.d.) NA 2.0 ± 1.8 NA 

aIndependent two tailed Student t test; bchi-square; ctwo patients without antipsychotic medication; NA: not applicable; CPZ: chlorpromazine 

equivalents 

b. Fyn mRNA study

Control subjects 

(n=15) 

“GAG low-risk” patients 

(n=14) 

“GAG high-risk” patients 

(n=14) 

p valuea 

Age (years ± s.d.) 25.7 ± 6.3 23.0 ± 3.3 23.4 ± 3.4 0.23 

Gender 

CPZ equivalent (mg ± s.d.) 

15 men 

N/A 

14 men 

358.4b ± 197.1 

14 men 

271.8c ± 149.9 

NA 

NA 

aOne way anova; bone patient without antipsychotic medication; cthree patients without antipsychotic medication; CPZ: chlorpromazine 

equivalents; NA: not applicable 

c. Fyn protein study

Control subjects 

(n=12) 

“GAG low-risk” patients 

(n=10) 

“GAG high-risk” patients 

(n=10) 

p valuea 

Age (years ± s.d.) 24.2 ± 3.1 23.0 ± 3.7 22.9 ± 2.8 0.57 

Gender 

CPZ equivalent (mg ± s.d.) 

12 men 

N/A 

10 men 

361.0 ± 218.2 

10 men 

284.6b ± 200.7  

NA 

NA 

aOne way anova; btwo patients without antipsychotic medication; CPZ: chlorpromazine equivalents; NA: not applicable 
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Figure legends 

Figure 1 Association between GSH levels in the medial prefrontal cortex and white matter 

integrity (gFA) and functional connectivity along the human cingulum bundle. (a) 

Representation of the cingulum bundle in green, illustrating the white matter tract along 

which the gFA values have been averaged. Red box indicates the VOI used for GSH level 

measurement. The cingulate cortical regions considered for the evaluation of the functional 

connectivity through the cingulum are represented in orange, and include the medial 

prefrontal cortex, the isthmus of the cingulate cortex and the precuneus. (b-c) Scatter plots of 

medial prefrontal GSH levels and both gFA values (top panels) and functional connectivity 

(bottom panels) along the cingulum bundle in control subjects (b) and early psychosis patients 

(c). Each point in the scatter plots represents one subject and red lines represent confidence 

intervals. *P<0.05 with Pearson correlation and Generalized Additive Model. 

Figure 2 Forty-days-old GCLM-KO mice present a decreased immunoreactivity for the 

myelin-associated protein MBP and the mature oligodendrocyte marker CC1 in the anterior 

cingulate cortex. (a) Schematic drawing of coronal section with anterior cingulate cortex 

including in the red square, illustrating the region analyzed in panel b, c and d. (b-c) Confocal 

images showing MBP labeling in wild-type and GCLM-KO mice. White box magnified 

images indicate four different areas (yellow box) of 0.02 mm
2
 placed from layer I, and used to

quantify MBP labeling at 40-days-old (b) and 90-days-old (c). Scale bar: 50 µm. (d) 

Quantification of MBP positive pixels in each delimited area for wild-type (diamond) and 

GCLM-KO (square) mice at 40-days-old (red) and 90-days-old (black) (n=6-8 animals per 

group). Data are expressed as mean ± s.e.m. *P<0.05, analyzed by linear mixed-effect model. 

(e) Confocal images showing mature oligodendrocytes labeled with CC1. Scale bar: 50 μm. 

(f) Quantification of CC1 positive cells in area of 0.08 mm
2
 including layer I to layer IV (n=6
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animals per group). Data are expressed as mean ± s.e.m. **P<0.01, analyzed by Student’s t 

test.  

Figure 3 GSH deficit induced by GCLC shRNA reduces proliferation, increases early 

differentiation but decreases later maturation stage of OPC. (a) Oligodendrocyte cell culture 

immunostained for NG2 (green) and cell nuclei counterstained with DAPI (blue). Scale bar: 

50 µm. (b) Quantification by Western blot of GCLC protein levels in oligodendrocyte 

cultures treated with either scrambled or GCLC shRNA. GCLC protein levels were 

normalized to α-Tubulin and expressed as percentage of their respective scrambled shRNA. 

Bar graphs represent mean ± s.e.m. (n=6). **P<0.01. Student’s paired t test. (c) GSH levels at 

different post-infection time 5, 7 or 10 days (n=6-7) measured by amount of fluorescence 

produced by GSH-monochlorobimane. Values are expressed as percentage of their respective 

scrambled shRNA. Bar graphs represent mean ± s.e.m. *P<0.05, **P<0.01. Student’s paired t 

test. (d) Proliferation of OPC assessed by BrdU incorporation (green) and co-staining with 

NG2 (red) and cell nuclei (DAPI: blue). Scale bar: 50 µm. (e) Effect of NAC treatment (24 h) 

on the number of BrdU positive among NG2 positive cells. Data are expressed as percentage 

of their respective scrambled shRNA (n=10, mean ± s.e.m.). **P<0.01, ***P<0.001, analyzed 

by Wilcoxon test for control condition and linear mixed-effect model for multiple 

comparisons (control vs NAC). (f-g) Quantification of O4 and CNP positive cells over total 

cell nuclei (DAPI) at 7 (f) and 10 days (g) post-infection. Values were expressed as 

percentage of their respective control condition. Bar graphs represent mean ± s.e.m. (n=6-7). 

*P<0.05, **P<0.01, analyzed by Student’s paired t test. (h) Quantification of CNP protein

levels in cells treated with either scrambled or GCLC shRNA in either proliferating medium 

(PDGF, bFGF) or differentiating medium (T3). CNP protein levels were normalized to α-

Tubulin and expressed as percentage of their respective control condition (PDGF, bFGF). Bar 

graphs represent mean ± s.e.m. (n=5). **P<0.01, analyzed by Student’s paired t test. (i) 



34 

Representative image of MBP labeling (red) and cell nuclei (DAPI: blue) in oligodendrocytes 

expressing scrambled (top panel) or GCLC shRNA (bottom panel) following T3 incubation. 

Scale bar: 50 µm. (j) Quantification of MBP positive cells over total cell nuclei after T3 

treatment. Values were expressed as percentage of their respective scrambled shRNA. Bar 

graphs represent mean ± s.e.m. (n=6). *P<0.05, analyzed by Student’s paired t test. 

Figure 4 GSH deficit affects Fyn kinase in rodents and patients. (a) PDGFR protein 

expression was evaluated by Western blot at 7 days post-infection (n=7). Protein levels of 

PDGFR were normalized to α-Tubulin and expressed as percentage of their respective 

scrambled shRNA (black bar). Bar graphs represent means of seven different experiments ± 

s.e.m. *P<0.05, Student’s paired t test. (b) Representative Western blot of Fyn protein 

expression at 7 days post-infection. (c) Analysis of Fyn kinase activity. Bar graphs represent 

Fyn-dependent ATP consumption, expressed as percentage of the scrambled condition. Bar 

graphs represent mean ± s.e.m. (n=5). *P<0.05, Student’s paired t test. (d) Effect of Fyn 

inhibitor (PP1) on proliferation assessed by BrdU incorporation. BrdU positive over NG2 

positive cells were quantified after 24 h treatment with PP1 at day 7. Data are expressed as 

percentage of their respective scrambled shRNA treated with vehicle (DMSO) (mean ± s.e.m., 

n=9). *P<0.05, linear mixed-effect model. (e) Fyn mRNA expression in anterior cingulate 

cortex of wild-type and GCLM-KO mice at 20-, 40- and 90-days-old. Data were expressed as 

mean ± s.e.m., relative to wild-type mice (n=6-9). *P<0.05, Wilcoxon test. (f) Quantification 

by Western blot of Fyn protein levels in anterior cingulate cortex of wild-type and GCLM-KO 

mice at 20-days-old. Fyn protein levels were normalized to β-Actin. Data were expressed as 

mean ± s.e.m., relative to wild-type mice (n=6-8). **P<0.01, Student’s t test. (g) Fyn mRNA 

expression assessed by quantitative PCR in vehicle condition (DMSO) in fibroblasts from 

“GAG high-risk” patients, “GAG low-risk” patients or control individuals. Mean delta Ct 

value is shown in bar graphs (± s.e.m.). (h) Fold change in Fyn mRNA expression in 
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fibroblasts following tBHQ treatment. Mean values of fold change relative to DMSO 

treatment (± s.e.m.). *P<0.05, **P<0.01 Student’s paired t test or Wilcoxon test. (i) 

Fibroblast Fyn protein expression analyzed by Western blot following tBHQ treatment. Fyn 

protein expression was normalized by β-Actin. Data were expressed as mean ± s.e.m. (n=10-

12), relative to vehicle condition (DMSO). *P<0.05, ***P<0.001, Student’s paired t test or 

Wilcoxon test. 

Supplementary Figure 1 Decreased immunorecativity for the myelin-associated protein CNP 

in the anterior cingulate cortex of 40-days-old GCLM-KO mice. (a-b) Confocal images 

showing CNP immunolabeling at 40-days-old (a) and 90-days-old (b). Region analyzed in 

panel c was delimited by white box. Scale bar: 50µm. (c) Quantification of CNP positive 

pixels at 40-days-old (red) and 90-days-old (black) in four areas (a, b, c, d) defined in 

delimited white box. (n=6-8 animals per group). Data are expressed as mean ± s.e.m. 

*P<0.05, analyzed by linear mixed-effect model.

Supplementary Figure 2 GCLC shRNA does not affect apoptosis/necrosis levels in OPC. (a) 

Cell death assessed by Sytox incorporation followed by counterstaining of cell nuclei (DAPI: 

blue). Scale bar: 50 µm. (b) Percentage of Sytox positive cell nuclei. Data are expressed as 

mean ± s.e.m. (n=7). Student’s paired t test. 

Supplementary Figure 3 GCLC shRNA enhances early differentiation of OPC. 

Representative images of O4 (red), CNP (red) labeling and cell nuclei (DAPI: blue) in 

oligodendrocytes expressing scrambled (top panel) or GCLC shRNA (bottom panel) at day 

10. Scale bar: 50 µm.
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