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Abstract. In the collective risk theory literature, horizontal dividend barrier strategies are
frequently used to account for a profit participation of shareholders in the insurance business.
This is mainly motivated by some optimality results of this strategy available in the classical
compound Poisson model and in the diffusion setting. In this paper, we show that the optimality
of horizontal barrier strategies does not carry over to Sparre Andersen models in general, by
explicitly constructing a counter-example. As a by-product, a heuristic upper bound for the
optimal dividend payout in the Erlang(n)-model is derived.
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1. Introduction

The optimal dividend problem has a long history in risk theory. In its classical formulation
it consists of finding the payment strategy that maximizes the expected present value of all
dividend payments from the surplus of a non-life insurance portfolio before the event of ruin.
De Finetti was the first to investigate such a problem, arguing that expected dividend pay-
ments might be a more appropriate way to compare insurance portfolios rather than criteria
based on ruin probabilities. In [15], he considered a random walk model with step sizes ±1 as
an approximation for the risk process and identified the optimal dividend payment strategy to
be of constant barrier type, i.e. whenever the surplus is above a given barrier, this overshoot
is immediately paid out as dividends. Since then, the problem has received a great amount
of interest: if the surplus process of the portfolio is approximated by a Brownian motion, the
optimal strategy again turns out to be of constant barrier type (see Asmussen & Taksar [5],
Jeanblanc-Picqué & Shiryaev [24]), whereas the related problem of maximizing the expected
present value of the utility of dividends for this diffusion model might lead to different optimal
strategies (see e.g. Hubalek & Schachermayer [20]). For the classical Cramér-Lundberg model
the optimal dividend problem was studied by various authors, e.g by Gerber [16], Bühlmann [9],
Borch [8] and more recently by Azcue & Muller [7] and Gerber & Shiu [18]. For jump diffusion
processes, optimal dividend strategies are discussed by Øksendal & Sulem [25]; recently Avram
et al. [6] analyzed the problem for spectrally negative Lévy risk processes.

Let us consider the surplus process of an insurance portfolio at time t

R(t) = u + c t −

N(t)
∑

j=1

Xj,

where the claim sizes Xj are independent and identically distributed positive random variables
with distribution function F and mean µ < ∞, c > 0 denotes the constant premium density
and u > 0 is the initial capital. Moreover, the stochastic process N(t) represents the number
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of claims in the portfolio up to time t and Wj (j = 1, 2, . . . ) is the sequence of inter-occurrence
times (i.e. Wj is the time between the (j − 1)th and the jth claim in the portfolio). Let T
denote the time of ruin, i.e. T = inf{t ≥ 0 : R(t) < 0}.
A dividend strategy π is admissible, π ∈ Π, if the induced process of accumulated dividends
Lπ(t) up to time t is predictable, nondecreasing, càglàd (left continuous with right limits) and

Lπ(t) ≤ u + c t −

N(t−)
∑

j=1

Xj for all t ≥ 0.

The controlled surplus process is then given by

Rπ(t) = u + c t −

N(t)
∑

j=1

Xj − Lπ(t)

and the corresponding ruin time is denoted by T π. Let δ > 0 denote the discount factor and,

for every t, τ := t −
∑N(t)

j=1 Wj be the time since the last claim occurrence in the portfolio. The
optimal dividend problem at time t is to find the strategy π ∈ Π that maximizes the expectation

Ju,τ (Lπ(·)) = E





∫ T π

t
e−δ(s−t) dLπ(s)

∣

∣

∣

∣

∣

∣

R(t) = u, t −

N(t)
∑

j=1

Wj = τ



 ,

where the integration is understood in the ordinary Lebesgue-Stieltjes sense (note that J even-
tually does not depend on t).
In the classical Cramér-Lundberg model, N(t) is a homogeneous Poisson process and optimal
strategies π∗ turn out to have a band form (see [16] or [7] for details) and in particular do not
depend on t and τ (which is to some extent due to the lack-of-memory property of the expo-
nentially distributed inter-occurrence times). In the special case of exponentially distributed
claims, i.e. F (x) = 1− e−βx, (β > 0), the optimal strategy is a horizontal barrier. That is, there
exists a b ≥ 0, such that the optimal strategy is of the form

(1) dLb =







u − b if u > b,
c dt if u = b,
0 if u < b.

This fact motivated a series of papers that study properties of the controlled process, see e.g.
Lin et al. [23], Dickson & Waters [14] and Paulsen & Gjessing [26]. Other types of barrier
strategies in the classical risk model were for instance investigated in Siegl & Tichy [28] and
Albrecher et al. [2, 4].

In this paper, we aim to study dividend strategies in the more general Sparre Andersen model,
where the inter-occurrence times Wj, (j = 1, 2, . . . ) are independent and identically distributed
random variables with distribution function G, i. e. the claim number process Nt is modelled by
a general renewal process. The renewal assumption allows for more flexibility than the classical
risk process (where Nt constitutes a homogeneous Poisson process) and enables to some extent
contagion between claim occurrences. This model was introduced by Sparre Andersen in 1957
[29] and since then has received a lot of attention in risk theory (see Rolski et al. [27] for a
survey on the subject). Note that, in contrast to the Cramér-Lundberg model, the resulting
surplus process is in general not a Lévy process any more. If G is the generalized Erlang(n)
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distribution, then each inter-occurrence time can be represented as a convolution of exponen-
tial distributions, which allows to utilize the lack-of-memory property of the latter to retain
analytical tractability of the model (concretely, by increasing the dimension of the process, it
can be “markovized” again). Various properties of the Erlang(n) model were analyzed recently,
see for instance Dickson [11], Dickson & Hipp [12], Cheng & Tang [10], Sun & Tang [30], Tsai
& Sun [31], Gerber & Shiu [17] and Li & Garrido [21]. For a horizontal dividend barrier in
such a model, Li & Garrido [22] investigate the corresponding discounted penalty function and
Albrecher et al. [1] provide formulae for the distribution of the discounted dividends.

Whereas for the classical Cramér-Lundberg model the intensity of a jump within the next
infinitesimal time step (i.e. the hazard rate of the inter-occurrence distribution) is constant, in
the Erlang(n) model this intensity depends on the time τ since the last claim occurrence, so
that one may expect the optimal barrier strategy to depend on τ as well.
In this paper we will show that even for exponential claim sizes, one can identify situations in
which a horizontal dividend barrier strategy is indeed not optimal. To that end, in Section 2 we
first define “virtual” states of the risk process, assume that at each point in time the current state
i is known and subsequently consider a piecewise constant barrier strategy, where the barrier
height depends on i. For such a model, integro-differential equations for arbitrary moments of
dividend payments are derived and explicitly solved for an Erlang(2)-model with exponential
claim amounts. The corresponding optimal dividend payouts outperform the horizontal dividend
barrier strategy of the corresponding model. More than that, for reasons specified later, this
strategy might provide an upper bound for the optimal dividend payout in the Erlang(n)-model
in general. In practice, the current state i of the system will not be observable. However, in
Section 3 the approach of Section 2 is used as a heuristic to define a time-dependent barrier
strategy that indeed outperforms the (optimized) horizontal barrier strategy in this Sparre
Andersen model. This fact is illustrated by several stochastic simulations with incorporated
variance reduction techniques of control variate type.

2. A heuristic upper bound for the optimal dividend payout

In the sequel we will use the special structure of the Erlang(n) inter-occurrence times explicitly.
Let us decompose each Wj into a sum of independent exponential random variables Yj1, . . . , Yjn

with parameters λ1, . . . , λn. For that purpose, let us introduce n states of the risk process: After
the occurrence of a claim, the risk process is in state 1 and for each j, the process jumps into state
i at the time τ =

∑i−1
k=1 Yjk after the previous claim (i = 2, . . . , n). Finally, at τ =

∑n
k=1 Yjk,

an actual claim with distribution F occurs and the process jumps into state 1 again (similar
constructions were used in Gerber and Shiu [17] and Albrecher et al. [1]). Assume for the rest of
this section that at every point in time the actual state i of the risk process is known: Then, the
corresponding optimal strategy gives an upper bound for the optimal strategy in the Erlang(n)
model, where this information is in general not available.
In view of the fact that, given the current state i is known, the intensity of a jump to the next
state i + 1 is constant, it is reasonable to expect that a strategy with constant barriers bi for
each state i is optimal: For 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn, let the dynamics of the dividend stream in
state i (i = 1, . . . , n) be defined as follows

dLb =







u − bi if u > bi,
c dt if u = bi,
0 if u < bi.

Here b := (b1, . . . , bn).
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2.1. The moment-generating function of the discounted dividends. Let M (i)(u, y,b) =
E(ey D|i, R0 = u) denote the moment-generating function of the discounted dividends D accord-
ing to the above piecewise constant barrier strategy, given that the risk process starts in state
i (i = 1, . . . , n). We will use the differential approach to derive a system of integro-differential

equations for M (i)(u, y,b). For i = 1, . . . , n − 1 and 0 ≤ u < bi, conditioning on the occurrence
of a jump within an infinitesimal time interval gives

M (i+1)(u, y,b) =

(

δy ∂
∂y − c ∂

∂u + λi

λi

)

M (i)(u, y,b).

At u = bi, we have

M (i+1)(bi, y,b) =

(

δy ∂
∂y − (c y − λi)

λi

)

M (i)(bi, y,b).

Thus, by continuity we obtain the conditions

yM (i)(bi, y,b) =
∂

∂u
M (i)(u, y,b)

∣

∣

∣

∣

u=bi

.

An actual claim can only occur in state n, and for 0 ≤ u < bn the differential approach yields

M (n)(u, y,b) = (1 − λn dt)M (n)(u + c dt, ye−δ dt,b)

+λn dt

(

∫ (u−b1)+

0
M (1)(b1, ye−δ dt,b)ey(u−v−b1) dF (v)

+

∫ u

(u−b1)+
M (1)(u + c dt − v, ye−δ dt,b) dF (v) +

∫ ∞

u
dF (v)

)

+ o(dt).

Taylor expansion and collection of terms of order dt yields for 0 ≤ u < bn:
(

c ∂
∂u − δy ∂

∂y − λn

λn

)

M (n)(u, y,b) + M (1)(b1, y,b)ey(u−b1)

∫ (u−b1)+

0
e−v y dF (v)

+

∫ u

(u−b1)+
M (1)(u − v, y,b) dF (v) + 1 − F (v) = 0

Considering u = bn and using continuity again, we get the boundary condition

yM (n)(bn, y,b) =
∂

∂u
M (n)(u, y,b)

∣

∣

∣

∣

u=bn

.

Let us define

M (i)(u, y,b) =
i
∑

j=1

M (i,j)(u, y,b)I(bj−1≤u<bj).

The system of integro-differential equations now reads as follows:
For i = 1, . . . , n and bi−1 ≤ u < bi,

(2)





n
∏

j=i

(

−c ∂
∂u + δy ∂

∂y + λj

λj

)



M (i,i)(u, y,b) + M (1,1)(b1, y,b)ey(u−b1)

∫ (u−b1)+

0
e−v y dF (v)

+

∫ u

(u−b1)+
M (1,1)(u − v, y,b) dF (v) + 1 − F (v) = 0
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(note that the product y ∂
∂y is not commutative).

For i = 1, . . . , n − 1, j = 1, . . . , i and bj−1 ≤ u < bj,

(3) M (i+1,j)(u, y,b) =

(

δy ∂
∂y − c ∂

∂u + λi

λi

)

M (i,j)(u, y,b).

The boundary conditions, for i = 1, . . . , n, are given by

(4) yM (i,i)(bi, y,b) =
∂

∂u
M (i,i)(u, y,b)

∣

∣

∣

∣

u=bi

,

(5) lim
b1→∞

M (i)(u, y,b) = 1,

and in addition there are continuity conditions: for i = 2, . . . , n and j = 2, . . . , i

(6) M (i,j)(bj−1, y,b) = lim
u→b−

j−1

M (i,j−1)(u, y,b).

Define the mth moment V
(i)
m (u,b) of the discounted dividend payments due to the above strategy

(given that the process starts in state i) and let again

V (i)
m (u,b) =

i
∑

j=1

V (i,j)
m (u,b)I(bj−1≤u<bj).

The system (2)-(6) can be converted into integro-differential equations for the moments of the
discounted dividends through the representation

M (i,j)(u, y,b) = 1 +

∞
∑

m=1

ym

m!
V (i,j)

m (u,b).

By comparison of coefficients at powers of y, we obtain for i = 1, . . . , n and bi−1 ≤ u < bi,

0 =





n
∏

j=i

(

−c ∂
∂u + δ m + λj

λj

)



V (i,i)
m (u,b)

(7)

+ I(u≥b1)

∑

l1+l2+l3=m

m!

l1!l2!l3!
V

(1,1)
l1

(b1,b)(u − b1)
l2

∫ u−b1

0
(−v)l3 dF (v) +

∫ u

(u−b1)+
V (1,1)

m (u − v,b) dF (v).

For i = 1, . . . , n − 1, j = 1, . . . , i and bj−1 ≤ u < bj, we have

(8) V (i+1,j)
m (u,b) =

(

−c ∂
∂u + λi + δm

λi

)

V (i,j)
m (u,b).

The boundary conditions are given by (i = 1, . . . , n)

(9) V
(i,i)
m−1(bi,b) =

∂

∂u
V (i,i)

m (u,b)

∣

∣

∣

∣

u=bi

.

Finally, the continuity conditions give for i = 2, . . . , n and j = 2, . . . , i:

(10) V (i,j)
m (bj−1,b) = lim

u→b−j−1

V (i,j−1)
m (u,b).

Remark: Note that, technically, dropping the assumption b1 ≤ b2 ≤ · · · ≤ bn is easily possible by
considering the additional payouts at the times of a state change. However, in view of optimality
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considerations the assumption is natural since in states with lower index one can “afford” a lower
dividend barrier, as the next claim will not arrive before the process has jumped from state n
to state 1.

2.2. Erlang(2) interarrival-times and exponential claims. In principle, the above equa-
tions can be solved explicitly for claim size distributions with rational Laplace-Stieltjes transform
through an adaptation of the algorithm developed in Section 4.2 in Albrecher et al. [1]. In the
following, we illustrate the approach for an Erlang(2, λ)-model and exponential claim sizes (with
parameter η) and derive an explicit solution for the first moment V1(u,b).

Let us ignore for a moment that V
(1,1)
1 is only defined in [0, b1) and take the Laplace transform

of the equation

(

λ + δ − c ∂
∂u

λ

)2

V
(1,1)
1 (u,b) −

∫ u

0
V

(1,1)
1 (u − v,b)ηe−ηv dv = 0

to obtain the structure of the solution. Define Ṽ
(1,1)
1 (s,b) :=

∫∞

0 e−suV
(1,1)
1 (u,b) du, then

Ṽ
(1,1)
1 (s,b) =

G1(s)

(δ + λ − cs)2 − λ2η
(s+η)

,

where G1(s) is a linear function in s. The inverse Laplace transform yields

(11) V
(1,1)
1 (u) =

3
∑

k=1

αk(b)eRku,

where αk(b) are constants and Rk are the three (real) roots of the Lundberg fundamental
equation

(12) P (R) = (R + η)(λ + δ − cR)2 − λ2η

(for simplicity these are assumed to be distinct). By substituting (11) in (7) and (9), for i = 1,
and comparing coefficients, we get the conditions

(13)
3
∑

k=1

αk(b)

Rk + η
= 0,

3
∑

k=1

αk(b)RkeRkb1 = 1.

From (8), we have

(14) V
(2,1)
1 (u,b) =

3
∑

k=1

αk(b)
(λ + δ − cRk)

λ
eRku.

Equation (7) yields for i = 2
(

λ + δ − c ∂
∂u

λ

)

V
(2,2)
1 (u,b) = u−b1−

1

η
+

3
∑

k=1

αk(b)eRkb1 +e−η(u−b1)

(

1

η
−

3
∑

k=1

αk(b)
RkeRkb1

Rk + η

)

.

As the homogenous solution is of the form e
λ+δ

c
u, we try to find a solution of the form

(15) V
(2,2)
1 (u,b) = K1(b)e

λ+δ
c

u + K2(b)u + K3(b) + K4(b)e−ηu.
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Substitution in (7) for i = 2 and comparing coefficients then yields

K2(b) =
λ

λ + δ
,(16)

K3(b) =
λ

λ + δ

(

3
∑

k=1

αk(b)eRkb1 − b1 −
1

η
+

c

δ + λ

)

,(17)

K4(b) =
λeηb1

(

1
η −

∑3
k=1 αk(b)RkeRkb1

Rk+η

)

λ + δ + cη
.(18)

Next, consider the conditions (9), for i = 1, and (10), for i = 2, to get

K1(b)
λ + δ

c
e

λ+δ
c

b2+
λ

λ + δ
−

ληeη(b1−b2)

λ + δ + cη

(

1

η
−

3
∑

k=1

αk(b)
Rke

Rkb1

Rk + η

)

= 1,(19)

K1(b)e
λ+δ

c
b1−

3
∑

k=1

αk(b)eRkb1

(

1 +
δ

λ + δ
−

Rkλ

(Rk + η)(λ + δ + cη)

)

=
λ

η

(

1

λ + δ
−

1

λ + δ + cη

)

−

(

1

λ
+

λ

(λ + δ)2

)

(20)

The expected dividends are therefore given by (11), (14) and (15), where the constants are
determined by (13) and (16)-(20).

2.3. Numerical Example. For illustration, let us consider the model of Section 2.2 and choose
λ = 2, η = 1, δ = 0.03 and c = 1.1 > 1 (so that the net premium condition is fulfilled). Let us
further consider the zero-delayed renewal model (that is τ = 0 and i = 1).
The analytical formulas of Section 2.2 allow to quickly determine the expected value of the
discounted dividends under the strategy π = b = (b1, b2) for given values b1 ≤ b2. The optimal
pair (b∗1, b

∗
2) can for instance be determined using a bisection method. Table 1 depicts the cor-

responding numbers for u = 0 for a representative set of combinations of barrier values, with a
finer grid close to the maximum value of V1. The optimal barrier choice is in this case b∗1 = 1.2
and b∗2 = 2.3 (with corresponding expected value V1 = 1.13329). Figure 1 illustrates that the
maximum of V1(b1, b2) is not very pronounced, but a zoom into its neighborhood identifies a
single peak. Figure 2 shows that for other choices of parameters, the maximum can be even
flatter.

b2 \ b1 0 1 2 2.2 2.3 2.4 3
0 1.07574 1.10180 1.10309 1.11308 1.10307 1.10306 1.10301
1 1.11745 1.13234 1.13251 1.13252 1.13251 1.13228

1.1 1.13286 1.13310 1.13309 1.13306 1.13282
1.2 1.13300 1.13327 1.13329 1.13328 1.13296
1.3 1.13277 1.13308 1.13311 1.13309 1.13296
2 1.12541 1.12478 1.12431 1.12379 1.12105
3 1.09500

Table 1. Expected value of discounted dividend payments V1(u, (b1, b2)) for
Wj ∼Erlang(2,2), Xj ∼Exp(1), δ = 0.03, u = 0 and c = 1.1.
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Figure 1. Expected present value of dividends in the two barrier strategy:
c = 1.1, δ = 0.03, u = 0. On the right is a zoom into the left plot.
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Figure 2. Expected present value of dividends in the two barrier strategy:
c = 1.2, δ = 0.01, u = 0. On the right is a zoom into the left plot.
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One might expect that, as in the classical model, the optimal barrier levels do not depend on
the initial capital u. As an illustration in this direction, Table 2 depicts V1 for u = 1 under
otherwise identical parameter values to Table 1, and indeed the maximal value of V1 is achieved
for b∗1 = 1.2 and b∗2 = 2.3 again. Naturally, (b∗1, b

∗
2) heavily depends on the choice of the discount

factor δ and the premium income c (see Table 3).

b2 \ b1 1 2 2.2 2.3 2.4 3
1 2.12045 2.14433 2.14460 2.14463 2.14461 2.14424

1.1 2.14540 2.14577 2.14580 2.14578 2.14533
1.2 2.14568 2.14614 2.14618 2.14616 2.14560
1.3 2.14523 2.14578 2.14583 2.14580 2.14511
2 2.13095 2.12977 2.12888 2.12791 2.12276
3 2.07331

Table 2. Expected value of discounted dividend payments V1(u, (b1, b2)) for
Wj ∼Erlang(2,2), Xj ∼Exp(1), δ = 0.03, u = 1 and c = 1.1.

δ → 0.01 0.02 0.03
c ↓ V1 (b∗1, b

∗
2) V1 (b∗1, b

∗
2) V1 (b∗1, b

∗
2)

1.025 1.02236 (0, 1.5) 1.00982 (0, 0) 1.00233 (0, 0)
1.05 1.11792 (2.85, 3.94) 1.04738 (0.47, 1.57) 1.02987 (0, 0.69)
1.1 1.55042 (6.67, 7.78) 1.22852 (2.69, 3.80) 1.13329 (1.20, 2.30)
1.2 3.49383 (10.67, 11.80) 2.05275 (5.83, 6.97) 1.62645 (3.67, 4.808)

Table 3. Optimal two-barrier strategies and the corresponding optimal expected
values of discounted dividend payments V1 for Wj ∼Erlang(2,2), Xj ∼Exp(1)
and u = 0.

2.3.1. Comparison with horizontal barrier strategy. The case of a horizontal barrier strategy can
be retained from the above formulae by choosing b = b1 = b2. Alternatively, one can also use
the explicit formula for the expected discounted dividend payments V1(u) derived in Albrecher
et al. [1] for this case, which is given by

V1(u) =

3
∑

k=1

α̂k(b)e
Rku, and 0 ≤ u ≤ b

where Rk (k = 1, 2, 3) are the three roots of the polynomial (12) and the constants are given as
solutions of the following system of equations:

3
∑

k=1

α̂k(b)

Rk + η
= 0,

3
∑

k=1

α̂k(b)Rke
Rkb = 1,

3
∑

k=1

α̂k(b)R
2
ke

Rkb =
δ

c
.

For the parameters chosen in Table 1, the optimal horizontal barrier turns out to be b∗ = 1.7 and
the corresponding expected present value of the dividends is V ∗

1 (b∗) = 1.12724, which has to be
compared with V ∗(b∗1, b

∗
2) = 1.13329 > V ∗

1 (b∗). For the parameters of Table 2, the maximal hor-
izontal barrier strategy gives V ∗

1 (b∗) = 2.13462, which is again smaller than V ∗
1 (b∗1, b

∗
2) = 2.14618.



10 H. ALBRECHER AND J. HARTINGER

Table 4 depicts the optimal barrier heights b∗ and corresponding expected values for the hor-
izontal barrier strategy for the same set of parameters as Table 3 and thus allows to compare
the performance of the two strategies.

δ → 0.01 0.02 0.03
c ↓ J0,0(Lb∗) b∗ J0,0(Lb∗) b∗ J0,0(Lb∗) b∗

1.025 1.02219 1 1.00982 0 1.00233 0
1.05 1.11588 3.3 1.04353 0.9 1.02684 0
1.1 1.54766 7.2 1.224167 3.2 1.12724 1.7
1.2 3.48784 11.2 2.04567 6.4 1.61809 4.2

Table 4. Optimal horizontal barrier strategies and the corresponding optimal
expected discounted dividend payments for Wj ∼Erlang(2,2), Xj ∼Exp(1) and
u = 0.

3. Beating the horizontal barrier strategy

The dividend payment strategy advocated in Section 2 can usually not be implemented in
practice, because the knowledge about the state of the risk process is in general not available.
However, the results serve as a heuristic to find a natural candidate for a good barrier strategy
for the Erlang(n, λ) model. Let 0 ≤ b∗1 ≤ b∗2 ≤ · · · ≤ b∗n denote the barrier levels of the optimal
strategy of Section 2. Based on these optimal values, we introduce a strategy that is independent
of the knowledge of the state i of the system and yet still turns out to outperform the horizontal
barrier strategy. Let τ again denote the time since the last claim occurrence. Then define the
time-dependent barrier

(21) b(τ) =
n
∑

i=1

b∗i P (state = i |W1 ≥ τ) =
1

∑n−1
i=0

(λτ)i

i!

n
∑

i=1

b∗i
(λτ)i−1

(i − 1)!
.

This choice can be interpreted as mimicking the strategy of Section 2 on an “average” basis. The
corresponding strategy constitutes a non-linear time-dependent barrier, for which it is usually
not possible to obtain analytical formulae for the expected present value of the dividends (see
e.g. Albrecher & Kainhofer [3]). Therefore we employ stochastic simulation to assess the per-
formance of this strategy (see Glasserman [19] for a survey on simulation techniques in finance
and insurance).

As an example, for n = 2 the strategy (21) is given by

b(τ) =
b∗1 + b∗2 λ τ

1 + λ τ
,

see Figure 3 for a sample path controlled by this strategy.

3.1. The simulation algorithm. The first step is to construct a consistent estimator Z1 for
the expected discounted dividends under the strategy (21). For that purpose, we sample paths
of the risk process in the following way: starting with the initial capital u0 = u, we successively
generate Erlang(2, 2)-distributed random variates wj to generate the claim arrival epochs, and
exponentially distributed random variates xj for the claim sizes (j ∈ N). For every j ∈ N0, if

the surplus uj at time Tj =
∑j

k=1 wk (after the payment of the jth claim) is non-negative, then
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Figure 3. Dividend strategy (21) applied to a sample path of Rt with λ = 2,
δ = 0.02, c = 1.05.

the suitably discounted dividends dj+1 received in the period between Tj and Tj+1 are obtained
by

(22) dj+1 = e−δTj

(

(uj − b(0))+ +

(

∫ wj+1

tj+1

e−δs

(

c −
∂

∂s
b(s)

)

ds

)+)

,

where tj+1 = inf{s ≥ 0|uj + c s ≥ b(s)} and T0 = 0. As soon as uK < 0 for some K ∈ N,
the process is stopped and the present value of the aggregate dividends received for this path is

calculated by z1 =
∑K

j=1 dj .

Let σ2
Z1

be the variance of the estimator Z1. We run N = 107 paths to get samples z1,i,

i = 1, . . . , N , a point estimate Ĵu,0(Lb(τ)(.)) = 1
N

∑N
i=1 z1,i for Ju,0(Lb(τ)(.)) under strategy (21),

and the sample variance σ̂2
Z1

. These quantities may be used to establish an asymptotically valid
95%-confidence interval for the expected present value of the dividend stream:

P

(

Ĵu,0(Lb(τ)(.)) − 1.96
σ̂Z1

N1/2
≤ Ju,0(Lb(τ)(.)) ≤ Ĵu,0(Lb(τ)(.)) + 1.96

σ̂Z1

N1/2

)

= 0.95.

3.2. Variance reduction. Since the variance σ2
Z1

of the estimator Z1 is very high, this direct
approach needs a huge number of sample paths to get sufficiently small confidence intervals.
In addition, since the integral in (22) is not available in closed form, the calculation of each
path is very time consuming. Therefore, we apply a variance reduction technique based on a
control variate (see e.g. [19] for details). Concretely, we use the expected dividends under the
horizontal dividend barrier strategy as a control variate, since the latter is available analytically.
By simultaneously estimating the expected dividends under the horizontal barrier strategy and
strategy (21), one can use the sample error for the horizontal barrier strategy to construct a new
estimator with reduced variance, hence significantly reducing the effort to establish reasonable
confidence intervals. The efficiency of this variance reduction technique depends on the correla-
tion between the two estimators:
Let H be a consistent estimator of the horizontal barrier strategy with variance σ2

H and let
ρ(H,Z1) denote the linear correlation coefficient between H and Z1. Then the new estimator

Z2(ν) = Z1 − ν(H − E[H]),
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δ → 0.01 0.02 0.03
c ↓ direct control direct control direct control

1.025 1.02263 1.02268 strategies
[1.0217, 1.0232] [1.0223, 1.02231] coincide

1.05 1.11743 1.11632 1.04373 1.04386 1.2467 1.2476
[1.1158, 1.1191] [1.1158, 1.1167] [1.0427, 1.0447] [1.0434, 1.0443] [1.0240, 1.02530] [1.0242, 1.0253]

1.1 1.54870 1.54811 1.22410 1.22506 1.12786 1.12840
[1.5462, 1.513] [1.5478, 1.5484] [1.2225, 1.22572] [1.22469, 1.22546] [1.2667, 1.1291] [1.1280, 1.1284]

1.2 3.49070 3.4888 2.04895 2.04721 1.61967 1.61933
[3.4873, 3.49526] [3.4844, 3.48916] [2.0464, 2.0514] [2.0468, 2.0474] [1.6180, 1.6201] [1.6190, 1.6197]

Table 5. Simulated expected discounted dividend payments (together with 95%
confidence intervals) for dividend strategy (21) for Wj ∼Erlang(2,2), Xj ∼
Exp(1) and u = 0.

is again consistent and has variance

σ2
Z2

(ν) = σ2
Z1

− 2 ν σZ1
σH ρ(H,Z1) + ν2σ2

H .

Clearly, the optimal ν is given by

ν∗ =
σZ1

σH
ρ(H,Z1),

and the corresponding variance improvement is then given by

σ2
Z2(ν∗)

σ2
Z1

= 1 − ρ2(H,Z1).

In our simulations, we estimated the optimal parameter ν∗ for H from the same random deviates
that were used for the point estimate, which introduces a bias of order 1/N (e.g. [19]), but the
latter is negligible for our sample size (since ν∗ turns out to be close to 1 in all the performed
simulations, one can alternatively set ν = 1, in this way getting rid of the bias and the corre-
sponding simulation results turn out to be almost identical). The correlation coefficient ρ(H,Z1)
and hence the variance reduction turns out to be larger for increasing values of horizontal barrier
b (e.g. for c = 1.05, δ = 0.03 (i.e. b∗ = 0) ρ(H,Z1) ≈ 0.65, whereas for c = 1.2, δ = 0.01 (i.e.
b∗ = 11.2) ρ(H,Z1) ≈ 0.99). This can intuitively be understood from the fact that the life times
of the sample paths of the two strategies are closer for larger values of b.

3.3. Comparison of dividend payment strategies. One can now use the discussed algo-
rithm to simulate the performance of the dividend strategy (21). Table 5 shows point estimates
together with the corresponding confidence intervals for the direct estimator Z1 as well as for
the improved estimator Z2 based on the control variate. A comparison of the resulting ex-
pected discounted dividend payouts with Table 4 clearly shows that the proposed strategy (21)
outperforms the (optimized) horizontal strategy in a large set of scenarios. Note that for the
combination c = 1.025 and δ = 0.02, 0.03 in the table, we have b∗1 = b∗2 = b∗ = 0 and hence the
two strategies coincide.

We finally would like to remark that the Erlang(2) model was chosen for this comparison be-
cause of its analytical tractability. Since the structure of this process is still rather similar to the
compound Poisson model (in which case the horizontal barrier is known to be optimal for expo-
nential claim sizes), one can not expect a large improvement of the optimal value. However, this
particular example already serves as an illustration of the non-optimality of the horizontal bar-
rier strategy in the Sparre Andersen framework and for other inter-occurrence time distributions
one may expect larger differences of the respective optimal values.
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