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Abstract  

Vesicle trafficking is an essential process by which molecules (nutrients, protein, 
lipids, etc.) are transported from a donor compartment to an acceptor within the 
eukaryotic cell. Currently, it is becoming clear that the important proteins 
participating in vesicular trafficking are highly conserved, not only between different 
species but also between different vesicle trafficking steps. Previous phylogenetic 
analyses showed that the interacting proteins of the vesicle fusion apparatus arose by 
duplication and diversification of prototypic protein machinery. It is conceivable that 
these proteins might show common patterns of episodes of duplication and 
diversification. Exploring the sequence information of the key proteins of the vesicle 
fusion machinery can provide better insights about their evolution, function and 
interacting surfaces. The main aim of this thesis was to extract novel insights about 
the structure and function of the proteins of the vesicle fusion machineries, by 
exploiting the covariation pattern from the multiple sequence alignments of these 
proteins. To perform a comprehensive sequence analysis, a tool with different 
analysis options and visualizations was developed. As a first step towards exploring 
sequence information, the tool was used to identify intra-protein covariation for the 
SM protein family, which has been studied for two decades, but their molecular role 
is still debated. The covarying residues obtained were found to be lying in distant 
regions in the tertiary structure of the protein. The result appeared to hint at 
conformational changes and allosteric coupling as discussed in the recent literature. In 
order to understand the functional relevance of the covarying sites obtained, heatmap 
visualization and improved analysis pipeline with clustering of the covariation data 
was developed. The improved approach was applied on test cases from previous 
studies, on simulated dataset and on SNAP proteins. SNAP proteins are structurally 
and functionally different from SM proteins and participate in the dissociation of the 
SNARE complex together with NSF ATPase. In all the test cases, the clusters of 
covarying residues were found to be restricted to a particular region of the protein. 
Many residues with known structural and functional importance were also identified. 
The improved analysis pipeline was applied again on the SM proteins. Differences 
between the clusters of covarying residues were observed for SM proteins and 
proteins like enzymes and SNAPs. Most of the covarying residues within the clusters 
were lying close to each other, while some were lying distant to each other. The 
distant residues appeared to be forming a chain in the 3D structure of the protein. 
Comparable pattern of covarying residues within the 3D structure was observed for 
all the analyzed subfamilies of SM proteins, suggesting that the analysis uncovered a 
common feature within the protein family. An inter-protein analysis of Sly1 and 
Syntaxin 5 pair also revealed clusters of distantly lying residues that appeared to form 
networks connecting different regions of the protein. Overall, the results suggested a 
possible communication between the two binding sites involving a network of co-
varying residues along the structure of SM/Syntaxin complexes. Thus, the approach 
of clustering the covariation data and detecting the groups of covarying residues 
helped to identify putative novel structural and functional features for the SM proteins 
and SNAP proteins. The future scope of this work would include performing 
mutational and biochemical studies to test the importance and allosteric nature of the 
identified covarying sites. 
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Résumé 

Le trafic vésiculaire est un processus essentiel pour lequel des molécules (nutriments, 
protéines, lipides, etc.) sont transportés d'un compartiment donneur à un accepteur dans la 
cellule eucaryote. Actuellement, il est devenu clair que les protéines qui participent au trafic 
vésiculaire sont hautement conservées, non seulement entre les différentes espèces, mais aussi 
entre les différentes étapes du trafic vésiculaire. Les analyses phylogénétiques antérieures ont 
montrées que les protéines d’interaction venant de l'appareil de fusion vésiculaire sont nées de 
la duplication et de la diversification de la machinerie protéique prototypique. Il est 
concevable que ces protéines pourraient montrer des modèles communs d'épisodes de 
duplication et de diversification. Explorer l'information de séquence des clés protéines de la 
machine de fusion des vésicules peut offrir de meilleures compréhensions de l'évolution, la 
fonction et les surfaces en interaction. L'objectif principal de cette thèse était d'extraire des 
informations nouvelles sur la caractéristiques structurales et fonctionnelles des protéines des 
machineries vésicules de fusion, en exploitant le modèle de covariation des alignements de 
séquences multiples de ces protéines. Pour effectuer une analyse complète de la séquence, un 
outil comprenant différentes options d'analyse et de visualisations a été développé. La 
première étape de cette étude s’articule autour de l'exploration de l'information de séquence. 
L'outil a été utilisé pour identifier les covariations intra-protéiques de la famille des protéines 
SM, qui a été étudié pendant deux décennies, mais où leur rôle moléculaire est encore débattu. 
Les résidus covariants obtenus se sont avérés se trouvant dans des régions éloignées de la 
structure tertiaire de la protéine. Le résultat semblait faire allusion à des changements de 
conformation et à des couplages allostériques tels que discutés dans la récente littérature. Afin 
de comprendre la pertinence fonctionnelle des sites covariants obtenus, une visualisation de la 
carte de chaleur et une meilleure canalisation de l'analyse avec le regroupement des données 
de covariance ont été développées. L'approche améliorée a été appliquée à partir d’études 
antérieures, sur des données simulées et sur des protéines SNAP. Les SNAP protéines sont 
structurellement et fonctionnellement différentes de protéines SM et participent à la 
dissociation du complexe SNARE avec NSF ATPase. Tous les groupes de covariants se sont 
révélés être limité à une région particulière de la protéine. Beaucoup de résidus ayant une 
importance structurale et fonctionnelle connue ont également été identifiés. La canalisation 
d'analyse améliorée a été appliquée à nouveau sur les protéines SM. Les différences entre les 
groupes de résidus covariants ont été observées chez les protéines SM, chez les protéines tels 
que  les enzymes et chez les SNAP. Les plus résidus covariants dans les groupes étaient 
allongés les uns près des autres, alors que certains étaient couchés et éloignés les uns des 
autres. Les résidus éloignés sembleraient être relié et sembleraient ainsi former la chaîne dans 
la structure 3D de la protéine. Le modèle de comparaison des résidus covariants se trouvant 
au sein de la structure 3D a été observée pour toutes les sous-familles de protéines SM 
analysées, suggérant ainsi que les régions similaires des différentes sous-familles covarient. 
Une analyse inter-protéines de Sly1 et Syntaxin 5 paire aussi délectait amas de résidus de loin 
couché qui est apparu pour former des réseaux reliant les différentes régions de la protéine. 
Dans l'ensemble, les résultats suggèrent une possible communication entre les deux sites de 
liaison impliquant un réseau de résidus de covariables le long de la structure des complexes 
SM / de Syntaxin. Ainsi, l'approche du regroupement des données de covariation et la 
détection des groupes des résidus covariants ont permit d'identifier des nouvelles 
caractéristiques structurales et fonctionnelles concernant les protéines SM et les protéines 
SNAP. La future portée de ce travail pourrait comprendre la réalisation d'études mutationnels 
et biochimiques pour tester l'importance et la nature allostérique des sites covarying identifiés. 
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1 Introduction 

1.1 Intracellular membrane trafficking 

A salient feature of eukaryotic cells is the presence of a complex system of 

intracellular membrane delimited compartments, called organelles. These organelles 

are biochemically distinct and exchange material through vesicle trafficking. Vesicles 

are small membrane bound carriers that bud from a donor organelle and then fuse 

specifically with an acceptor organelle. This enables cells to take up nutrients and 

transport soluble molecules and membrane components. Thus, vesicle trafficking is 

an essential process of the eukaryotic cell. 

The newly synthesized proteins and lipids are transported within the cell through the 

exocytic pathway. Exocytosis is a process in which the secretory vesicle fuses with 

the plasma membrane and releases its contents in the extracellular space or to put 

lipids and protein into the plasma membrane. Many essential processes in our body 

such as signaling, insulin secretion by pancreas, secretion of neurotransmitters, etc. 

are dependent on it. Constitutive exocytosis occurs in all cells and helps to release the 

newly synthesized membrane proteins that can be incorporated in the plasma 

membrane. Regulated exocytosis occurs in some specialized cells where the vesicles 

require a stimulus or signal for fusion with the plasma membrane. For example, in 

neurons, the vesicle filled with neurotransmitters fuses with the presynaptic plasma 

membrane upon the rise in intracellular Ca2+ concentration. The Ca2+ influx occurs 

because of the opening of the voltage-gated calcium channels upon the arrival of 

action potential in neurons. Conversely, the cells take up the nutrients through the 

endocytic pathway. Endocytosis is a process by which a cell retrieves the proteins and 

other molecules from the plasma membrane. 

Each of the vesicular transport reactions can be divided into four major steps. These 

steps include budding, transport, tethering and fusion (Bonifacino & Glick 2004; Cai 

et al. 2007) (Figure 1.1). Over the last decades, a large amount of work has been 

performed to identify the molecular machines involved in these processes. Each step 

is mediated by conserved homologous sets of protein machineries. The vesicle 
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budding step, during which a vesicle buds form the donor organelle is mediated by 

vesicle coat proteins, like the COPI, COPII and Clathrin complexes. The molecular 

motor proteins, such as microtubules or actin, transport the vesicle to their final 

destination along the cytoskeletal tracks. The vesicles are then specifically tethered to 

their target organelle with the help of tethering proteins belonging to the CATCHR 

(Complex Associated with Tethering Containing Helical Rods) family and Rab 

proteins (Stenmark 2009). These proteins play an important role in determining the 

specificity of the target membrane. The final step of vesicle fusion is catalyzed by a 

protein machinery that involves SNARE (Soluble N-ethylmaleimide-sensitive factor 

Attachment protein REceptors) proteins (Jahn & Scheller 2006) and SM 

(Sec1/Munc18) proteins (Toonen & Verhage 2003). 

Currently, it is becoming clear that the molecular machineries involved in the major 

steps of vesicular trafficking are highly conserved, not only between different species 

but also between different vesicle trafficking steps within the cell. Most probably they 

arose by duplication and diversification of prototypic protein machineries during 

evolution. This suggests that the proto-eukaryotic cell was already equipped with the 

various compartments and the vesicle transport machinery found in contemporary 

cells. 

 
Figure 1.1: Different steps of intracellular vesicular transport.  
The vesicle buds from the donor compartment (Budding), moves along tethers and finally fuses with 
the receptor compartment. Modified from (Cai et al. 2007). 
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1.1.1 The SNARE protein family 

The members of the SNARE proteins family form the core machinery for each 

intracellular vesicle fusion process (Wickner & Schekman 2008; Sudhof & 

Rothman 2009; Jahn & Fasshauer 2012). These are relatively small, mostly tail-

anchored, cytoplasmically oriented membrane proteins. Their defining feature is the 

presence of a so-called SNARE motif. It is conserved domain of 60-70 amino acids, 

arranged in heptad repeats and connected to the C-terminal transmembrane domain by 

a short linker (Figure 1.2).  

 
Figure 1.2:Domain compositions of SNARE subfamilies showing the SNARE motif flanked by 
the N-terminal domain and the C-terminal transmembrane domain.  
Qa SNAREs have a short N-terminal peptide and a three-helical domain (Habc domain). The three-
helical domain can also be found in members of Qb and Qc SNAREs. Qbc SNAREs represents a small 
subfamily of SNAREs-the SNAP-25 subfamily, that contains an N-terminal Qb and a C-terminal Qc 
SNARE motif that are interconnected by a linker region. The linker often carries a cysteine stretch that 
is known to be palmitoylated (zig-zag lines) and serves as a membrane anchor. Most R-SNAREs have 
an N-terminal profilin/longin domain and a transmembrane anchor. Ykt6 is an exception as it does not 
contain the longin domain and the transmembrane domain is replaced by farnesylated CAAX box. 
Adapted from (Jahn & Scheller 2006). 

The SNARE proteins are present either on the vesicle membrane or on the target 

organelle membrane. They assemble into a tight four-helix bundle complex between 

opposing membranes. This complex assembly occurs in a zipper-like fashion from the 

N-terminus towards the C-terminus of the SNARE motif, thereby pulling the 

opposing membranes into close proximity (Figure 1.3), resulting into fusion. It is 

believed that the formation of a tight four-helix complex between SNAREs from the 

opposing membranes provides the energy to drive membrane fusion. Initially, the 

SNAREs were classified as v-SNARE and t-SNARE depending on their association 

with either the vesicle membrane or the target membrane. However, very similar 

crystal structure of three distantly related SNARE complexes (Sutton et al. 1998; 

Antonin et al. 2002; Zwilling et al. 2007) revealed high degree of structural 
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similarity, suggesting that they all form complexes consisting of an elongated parallel 

four-helix bundle. The interior of the bundle contains 16 (−7 to +8) layers of highly 

conserved, mostly hydrophobic residues, except for a central (‘0’) hydrophilic layer 

that contains three conserved glutamine (Q) residues and one conserved arginine (R) 

residue. These highly conserved 0-layer residues lead to the classification of SNAREs 

into Q- and R- SNAREs (Weimbs et al. 1997; Fasshauer et al. 1998). SNARE 

complex formation requires three different type of Q-SNAREs (Qa, Qb, Qc) and one 

R-SNARE. For example, in the neuronal SNARE core complex, Syntaxin1a 

contributes the Qa SNARE domain, SNAP-25 contributes the Qb and Qc-SNARE 

domain and Synaptobrevin contributes the R-SNARE domain. Later, a detailed 

phylogenetic classification of different SNAREs reflected their participation in 

different trafficking steps and divided them into four subclasses: group I, involved in 

trafficking towards the endoplasmic reticulum (ER; I), group II, involved in 

trafficking towards the Golgi apparatus (II), group III, involved in trans-Golgi 

network vesicle trafficking (TGN; III.a) and digestive endosomal compartment 

trafficking (III.b), and group IV, involved in secretion (IV) (Kloepper et al. 2007). 

The study revealed that in the cell distinct sets of SNARE proteins are present that 

work together in different trafficking steps. In each set, four basic types of SNAREs 

occur, reflecting their position in the four-helix complex. A basic set of SNAREs has 

already been existed in the least common eukaryotic ancestor or the proto-eukaryotic 

cell. This basic SNARE set then evolved in different lineages giving rise to distinct 

types found in all eukaryotes.  
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Figure 1.3: Model of SNARE cycle during vesicle docking and fusion.  
The three Q-SNARE motifs from SNARE proteins present in clusters on the acceptor membrane, form 
the acceptor complex (Qabc). The vesicle R-SNARE interacts with the acceptor complex and forms a 
four-helical trans-complex (SNAREs anchored on opposing membranes). This zipper-like process 
starts at the N- terminus and assembles towards the transmembrane anchors at the C-terminus. This 
leads to opening of the fusion pore and fusion of vesicle with the plasma membrane, transferring the 
SNAREs into a cis-complex-configuration (SNAREs anchored on the same membrane). Disassembly 
of the cis-complex is managed by the AAA+ ATPase NSF together with its cofactor SNAP (soluble 
NSF attachment protein). Adapted from (Jahn & Scheller 2006). 

 

1.1.2 Sec1/Munc18 (SM) protein family  

Members of the SM protein family are essential regulatory factors in different 

vesicular trafficking steps (Jahn & Fasshauer 2012; Burkhardt et al. 2008) that 

genetically and biochemically interact with the core SNARE fusion machinery, 

specifically with the Syntaxin or Qa-SNARE, of that particular membrane fusion step. 

The SM proteins are a small family of cytosolic proteins of 60–70 kDa with moderate 

sequence homology (Halachmi & Z. Lev 1996). The functional importance of SM 

proteins in intracellular trafficking was shown by several independent genetic studies 

(Novick & Schekman 1979; Ossig et al. 1991; Harrison et al. 1994; Verhage et al. 

2000). The first SM genes were independently identified in genetic screens of 

membrane trafficking mutants in Caenorhabditis elegans and yeast (Brenner 1974; 

Novick & Schekman 1979). Unc-18 in Caenorhabditis elegans and Sec1 in yeast, 

both were found to be critical for functioning. Loss-of-function mutations for nine SM 

genes in four species have been carried out which showed severe impairment of 

vesicle trafficking and fusion, most of which lead to a lethal phenotype (Toonen & 

Verhage 2003). These studies established SM proteins to be a central and 
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indispensable factor in intracellular trafficking.  However, the exact molecular mode 

of interaction of SM proteins is still not entirely understood.  

According to the literature, the SM protein family contains four basic members: 

Sec1/Munc18, Sly1, Vps33, and Vps45 (Jahn & Südhof 1999; Chen & Scheller 

2001) (Figure 1.4). Sec1/Munc18 regulate exocytosis by interacting with Qa 

SNAREs type IV. Sly1 functions in transport between the endoplasmic reticulum 

(ER) and Golgi apparatus and interacts wit Qa SNAREs of type II (Sed5 or 

Syntaxin5) and type I (Ufe1 or Syntaxin18). Vps33 is active in the 

endocytic/lysosomal sorting system and interacts with Qa SNARE of type III a, Vam3 

or Syntaxin 7. Vps33 is also a part of the large HOPS protein complex. Vps45 acts in 

the trans-Golgi network and endosomal pathways and interacts with Qa SNAREs of 

type III b, Tlg2 or Syntaxin 16 (Chen & Scheller 2001). An unpublished 

phylogenetic analysis of the SM protein family in my laboratory has uncovered a fifth 

member of the SM protein family, for which no SNARE protein binding partner could 

be identified yet. Different rounds of duplication during vertebrate evolution have 

resulted in three homologs of Munc18 (Munc18a, Munc18b and Munc18c) and two 

homologs of Vps33 (Vps33a and Vps33b).  

SM proteins from different sub-types show high sequence variation, for example, 

Sec1, Sly1, Vps33 of yeast have only 22-23 % sequence identity, however, they have 

a high structural similarity as can be seen by comparing the different solved X-ray 

structures of Sly1 from Saccharomyces cerevisiae (1MQS), Munc18-1 from Rattus 

norvegicus (3C98), Munc18-2 from Homo sapiens (4CCA), Munc18-3 from Mus 

musculus (2PJX), Unc18 from Monosiga brevicolis (2XHE), Sec1 from Loligo pealei 

(1FVF) and Vps33 from Chaetomium thermophilum (5BUZ). These crystal structures 

reveal that SM proteins have a highly conserved overall fold. SM proteins display an 

arch shaped structure with a large central cavity and 3 domains (domain 1-3). The 

third domain is a large insertion between the third and fourth parallel strands (b9 and 

b12) of domain 2 (Figure 1.5). 
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Figure 1.4: Schematic summary of known mammalian SNARE complexes and SM proteins and 
their sites of action along the exocytic and endocytic pathways.  
Potential v-SNAREs are indicated in red; the SM proteins are indicated in purple. ER: endoplasmic 
reticulum; ERGIC: ER–Golgi intermediate compartment; MVB: multivesicular bodies; PM: plasma 
membrane; TGN: trans-Golgi network. Adapted from (Hong & S. Lev 2013). 

  
Figure 1.5: Topology of SM protein, Munc18a of Rattus norvegiucus.  
Different domains of Munc18a are color-coded and are also shown in a separate bar. Binding partner 
Syntaxin1 is shown in brown. The displayed protein sequence of Rattus norvegiucus of Munc18a is 
also color-codded as per the domains.  

1.1.2.1 Interaction of SM proteins with SNAREs 

Specific SM proteins are thought to interact with Qa SNAREs of particular membrane 

fusion steps. The exact molecular role of SM proteins, in particular their binding 

mode with syntaxins, is still debated as different binding modes were proposed for the 

different SM proteins (Toonen and Verhage, 2003). More recently, biochemical and 

structural data suggest that SM proteins and syntaxins generally utilize two spatially 
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separated binding sites. Generally, SM proteins seem to interact with their cognate 

Syntaxin via two different binding surfaces, the “closed” conformation in which the 

SNARE (H3) domain folds back onto the Habc domain, such that it is inaccessible for 

SNARE complex formation and the very N-terminal region of Syntaxin, called the 

‘N-peptide’.  

The mammalian isoform of Sec1, Munc18a was initially shown to bind to syntaxin1 

in the closed conformation and thus to block SNARE assembly (Misura & Weis 

2000; Pevsner et al. 1994; Chen & Scheller 2001). In order to form a SNARE 

complex, Syntaxin 1 must dissociate from the tight grip of Munc18a and switch to 

open conformation (Burkhardt et al. 2008; Pevsner et al. 1994). By contrast, Sly1 

was found to bind with nanomolar affinity to another binding site of Sed5, the N-

peptide (Yamaguchi et al. 2002; Kosodo 2002; Peng & Gallwitz 2004). Consistent 

with the high affinity interaction, the crystal structure showed that the N-peptide binds 

via an extensive interface to the outer surface of Sly1 (Bracher & Weissenhorn 

2002). A similar binding was also shown for Vps45 and the TGN Syntaxin Tlg2p 

(Dulubova 2002). These SM proteins were believed not to be interacting with the 

remaining of Syntaxin. It was thus suggested that this mode of binding somehow 

assists in the SNARE complex formation, rather than inhibiting it (Dulubova 2002; 

Peng 2002; Peng & Gallwitz 2004; Carpp et al. 2006; Furgasona et al. 2009). This 

mode of interaction is also supported by the notion that that Sly1 can stay bound 

during SNARE complex formation (Peng 2002). Such an idea was strengthened by 

the observation that yeast Sec1 interacts with the assembled secretory SNARE 

complex but not with its isolated Qa-SNARE (Carr et al. 1999; Scott 2004; Togneri 

et al. 2006). Unfortunately there is so far no structural confirmation for the 

interaction of Sec1 with its cognate SNARE.  

Thus, a decade ago, the general consensus in the field regarding the interaction of SM 

protein with Syntaxin was that SM proteins function by binding to the N-terminal 

peptide region of their partner syntaxins. Munc18a binding involving only the close 

conformation of Syntaxin was considered to be a special adaptation for neuronal 

exocytosis.  

Recent biochemical and structural studies have shed new light into this discrepancy 

by showing a possible common mode of interaction, involving two spatially separated 

binding sites for SM proteins and Syntaxins (Burkhardt et al. 2008; Demircioglu et 
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al. 2014). A refined crystal structure of Munc18a-Syntaxin1a complex from rat 

revealed that Munc18a could also bind to the second spatially separate N-peptide of 

Syntaxin1 although with a lower affinity (Burkhardt et al. 2008) (PDB ID: 3C98). 

This observation was similar to the interaction of Sly1 with Sed5 N-peptide. 

Interestingly, a so-called open mutant of Syntaxin, containing a double mutation 

L165A/E166A in the linker region, binds tightly to Munc18a and allows the SNARE 

complex formation as well (Dulubova et al. 1999). Thus, the N-peptide of Syntaxin 

acts as a switch controlling Munc18a to either bind to a closed conformation of 

Syntaxin and thereby inhibiting the SNARE complex formation or allowing the bound 

Syntaxin to form the SNARE complex. Interestingly, both N-peptide and closed 

conformation binding modes were also observed in the crystal structure of Munc18-

Syntaxin1 complex of the choanoflagellate Monosiga brevicollis (Burkhardt et al. 

2011). Choanoflagellates are a group of single-celled eukaryotes that are thought to 

be the closest living relatives of metazoans. This suggests that the binding mode 

involving two different binding sites could be evolutionarily conserved. A comparable 

binding mode was shown for the trans-Golgi network trafficking SM protein Vps45. 

Vps45 interacts with Tlg2p lacking the N-peptide, possibly in closed conformation 

(Furgasona et al. 2009; Burkhardt et al. 2008). Similar results were found for Sly1p, 

which was shown to interact not only with the N-peptide but also with the remainder 

of Sed5, making use of both binding modes (Demircioglu et al. 2014). 

Recent biochemical and structural studies on Munc18a/Syntaxin1 (Khvotchev et al. 

2007; Burkhardt et al. 2008), Vps45/Syntaxin16 (Carpp et al. 2006), Vps45/Tlg2p 

(Furgasona et al. 2009; Burkhardt et al. 2008), Munc18b (Hackmann et al. 2013)  

Munc18c/Syntaxin 4 (Aran et al. 2009), Unc18 (Johnson et al. 2009) have shown 

that SM proteins generally bind to their respective Syntaxin using both modes of 

interaction, however with different relative binding affinities. For example, 

mammalian Munc18a binds to the closed conformation of Syntaxin 1 with a higher 

affinity but has a weak interaction with the N-peptide (Burkhardt et al. 2008). This 

suggests that the SM proteins share a common mode of interaction with Syntaxin 

involving the two modes of interaction, although with different binding affinities. 

Also, different trafficking steps may favor one over the other. 

However, not all SM proteins interact with N-peptide of their cognate Syntaxin. For 

example, the crystal structure of Vps33 from Chaetomium thermophilum (Baker et al. 
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2013) and of the human homolog Vps33A (S. C. Graham et al. 2013), showed that 

the N-peptide binding pocket in Vps33 is blocked. Vps33 is also a part of the 

multisubunit-tethering complex, the homotypic fusion and protein-sorting (HOPS) 

complex. Despite having a blocked N-peptide binding pocket and a low sequence 

similarity, the overall structure of Vps33 is very similar to other SM proteins (Baker 

et al. 2013; S. C. Graham et al. 2013). 

It is possible that the occurrence of high structural conservation in SM protein is 

important to preserve a similar or conserved molecular function. Both binding sites 

seem to be crucial for the function of the complex in vesicle fusion, but it is still 

unclear how the two binding sites are able to communicate. The existence of a 

possible conformational switch between the two binding (open and close) interactions 

that enables the SM protein to control the accessibility of the bound Syntaxin, is still 

not clear.  

1.1.2.2 Interaction of SM proteins with other proteins  

Many other recent biochemical studies also suggest that SM proteins interact with a 

number of accessory proteins also known as tethering factors. Tethering factors are 

multiple protein complexes that help the vesicles to link or tether to their target 

membranes. They can be divided into two major groups, homodimeric long coiled-

coil proteins and multisubunit tethering complexes (MTCs). MTCs can further be 

divided into two major classes, complexes associated with tethering containing helical 

rods (CATCHR) and Class C vacuolar protein-sorting (Vps) complexes. Multisubunit 

tethering complexes such as the exocyst, the Conserved Oligomeric Golgi (COG), the 

Golgi-associated retrograde protein (GARP) and DSL1 complex belong to the 

CATCHR family. Homotypic fusion and protein sorting (HOPS) and class C core 

vacuole/endosome tethering (CORVET) belong to the Class C Vps complexes. They 

all are involved in different vesicular trafficking steps within the cells and interact 

with the SNARE and SM proteins of those trafficking steps (Hong & S. Lev 2013). 

COG subunit Cog4 interacts with Sly1 and Vps45 (Figure 1.6-A) (Hong & S. Lev 

2013). Dsl1 complex that belong to the CATCHR protein family interacts with Sly1 

on the endoplasmic reticulum (ER) membrane (Figure 1.6-B) (Hong & S. Lev 2013). 

The yeast SM protein Vps33 is a part of multisubunit tethering HOPS complex 

(Homotypic fusion and vacuole Protein Sorting) (Figure 1.6-C) (Hong & S. Lev 
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2013). The yeast exocyst complex subunits interact with Sec1 (Figure 1.6-D) (Hong 

& S. Lev 2013). The exocytotic SM protein Munc18 may work together with 

Munc13 to chaperone the assembly of neuronal SNARE complex (Ma et al. 2011; 

Ma et al. 2013; Rizo & Rosenmund 2008)  (Figure 1.6-E). Possible interactions 

between Munc18a and accessory exocytic proteins like Mint1, granuphilin, Rab3, 

Doc2 and phospholipase D (Okamoto & Sudhof 1997; Coppola et al. 2002; 

Verhage et al. 1997; Dulubova et al. 1999; M. E. Graham et al. 2008) , have been 

put forward. However, the function and binding regions of many of these interactions 

remains poorly understood. Both, COG and Dsl1 complexes show structural 

homology to Munc13 (W. Li et al. 2011). 

 
Figure 1.6: Interaction of SM and SNARE proteins with tethering factors.  
A) A schematic representation of COG and GARP complex interaction with multiple SNAREs on the 
Golgi membranes. The light blue and dark blue circle represent the eight subunits of the COG complex 
organized into two structurally and functionally distinct lobes. The Cog4, Cog6, and Cog7 subunits 
bind the SNARE domains of the indicated SNAREs. Cog4 subunit also binds the Sec1/Munc18 (SM) 
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proteins Sly1 and Vps45. The Vps52, Vps53, and Vps54 subunits of GARP are shown in purple circles 
and Vps51 subunit in pink. The Vps51 subunit interacts with the N-terminal regulatory Habc domain of 
Syntaxin 6. The N-terminal regions of human Vps53 and Vps54 bind to the SNARE motifs of Stx6, 
Stx16, and Vamp4. B) A schematic representation of the yeast HOPS complex interaction with 
SNARE motifs (pink) of target membrane SNAREs (t- SNAREs) Vam3 and Vam7 and the transport 
vesicle SNARE (v-SNARE) Nyv1 via its Vps33 subunit (pink). The Vps11, Vps16, and Vps18 
subunits (green) interact with the regulatory Habc and PX domains of the t-SNAREs Vam3 and Vam7 
on the vacuole or lysosome membrane (green). Vps39 and Vps41 subunits (yellow) bind the small Rab 
GTPase Ypt7. C) A schematic representation of the yeast DSL1 complex showing its interaction with 
the t-SNAREs Sec20 and Use1 via its Tip20 and Sec39 subunits. The interaction induces t-SNARE 
gathering on the endoplasmic reticulum (ER) membrane. The Dsl1p subunit interacts with subunits of 
the COP-I coat and tethers COP-I vesicles to the ER membranes. D) A schematic representation of the 
yeast exocyst complex that tethers secretory vesicles to the plasma membrane (PM). The Sec3 and 
Exo70 (pink) subunits interact with the PM via their positively charged residues, whereas the Sec15 
subunit interacts with the Rab GTPase Sec4, which localizes on a secretory vesicle. The interactions of 
the Sec6 subunit with the t-SNARE Sec9 and the SM protein Sec1 and of the Sec3 subunit with Sso1/2 
regulate the assembly the Sec9–Sso1 t-SNARE complex that binds the v-SNARE Snc1/2. E) A 
schematic representation of interaction of Munc18-1, Mun13, complexin and synaptotagmin-1 with the 
SNARE complex. The ribbon diagram shows the structure of the complexin-I–SNARE complex. 
Figures A), B), C) and D) adapted from (Hong & S. Lev 2013) and E) adapted from (Rizo & 
Rosenmund 2008). 

 

1.1.3 SNARE complex disassembly  

After vesicle fusion, the SNARE complex needs to be disassembled to regenerate the 

SNAREs for consecutive rounds of fusion. The disassembly process is carried out by 

the AAA+ ATPase NSF (N-ethylmaleimide-Sensitive Fusion) protein together with 

its cofactor SNAP (Soluble NSF Attachment Protein) protein (Clary et al. 1990; 

Hanson et al. 1997; Sollner et al. 1993; Marz et al. 2003) (Figure 1.7). NSF is a 

member of AAA+ (ATPase Associated with diverse cellular Activities) superfamily. 

It is thought to form ring-shaped homohexamers that utilizes ATP hydrolysis for 

SNARE complex disassembly (Hanson et al. 2005). NSF consists of an N-terminal 

domain (N-domain) and two consecutive ATPase domains (D1 and D2) (Sollner et al. 

1993; Zhao et al. 2015). Domain D1 is considered to be mostly responsible for 

ATPase activity, while domain D2 contributes mainly to the hexamerization. The N-

domain of NSF is considered to be involved in binding with SNAP and possible 

binding with SNARE complex (Zhao et al. 2015; Hanson et al. 1997). SNAP acts as 

an adaptor protein between NSF and SNARE complexes as SNAREs do not have a 

direct binding site for NSF. SNAP binds to the SNARE complex and stimulates ATP 

hydrolysis of NSF, which causes conformational changes that induces the 

disassembly of the SNARE complex (Clary et al. 1990; Sollner et al. 1993; Hanson 

et al. 1997). 
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Figure 1.7: Representation of SNARE complex disassembly. 
The AAA+ protein NSF, together with its adaptor protein SNAP, disassembles the SNARE complex 
formed during membrane fusion. The released individual SNAREs can then participate in new 
membrane-fusion events. The figure is modified from Hanson et al. 2005 and is based on cryo-
electron-microscopy reconstruction of the structurally similar AAA+ protein. 

Cryo-electron-microscopy (cryo-EM) structures from a recent study (Zhao et al. 

2015)  have suggested that depending on the SNARE complex composition, up to 

four molecules of SNAP can be present during the disassembly process. Based on the 

cryo-EM structure a working model for SNARE complex disassembly was proposed. 

The first step in the process of disassembly is the binding of SNAP to the SNARE 

complex (Figure 1.8-a). This involves association of SNAP with the membrane 

through a putative, conserved membrane attachment site (Figure 1.8-b), which could 

facilitate the binding to the SNARE complex (Winter et al. 2009). The N-domain of 

NSF then binds to SNAP, which stimulates the ATPase hydrolysis of NSF (Figure 

1.8-c). This provides sufficient force to exert a torque that loosens the SNARE 

complex (Figure 1.8-d).  

 
Figure 1.8: Model of SNF-mediated SNARE complex disassembly derived from cryo-EM 
structures generated in the Zhao et. al. 2015. 
The model refers to the neuronal SNARE complex (consisting of synaptobrevin-2 (Syb2), syntaxin-1A 
(Stx1A), and SNAP-25) and α-SNAPs, but is applicable to other SNARE complexes as well. Figure 
taken from (Zhao et al. 2015).  

Eukaryotes have three isoforms of SNAPs: α-, β-, and γ-SNAP (Clary et al. 1990),  
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whereas fungi only posses the single α-SNAP homolog Sec17. α-SNAP, is a 

ubiquitous SNAP isoform, β-SNAP is a neuronal isoform, and γ-SNAP is strongly 

expressed in heart, kidney, liver and spleen (Bitto et al. 2007). Studies have shown 

that γ-SNAP can promote the intercisternal Golgi transport in-vitro, however, less 

efficiently than α-SNAP and β-SNAP (Clary et al. 1990).  

Previous phylogenetic analysis carried out in my group (Kienle 2010) revealed two 

distinct groups with α-SNAP and β-SNAP in one group and γ-SNAP in another group. 

β-SNAP is a duplication of α-SNAP specific to vertebrates. γ-SNAP was found to be 

lost in Fungi except for some basal fungi species. The analysis shows that the 

duplication of SNAP into α-SNAP and γ-SNAP must be ancient, which suggests that 

these two SNAP proteins were already present in the assumed proto-eukaryotic 

ancestor (Figure 1.9). Multiple subtypes of SNARE proteins exists in eukaryotes, but 

there are only a few SNAPs and one NSF species (Zhao et al. 2015). It is still not 

known as how α-Snap recognizes the different SNAREs involved in different 

membrane fusion reactions.  

 
Figure 1.9: Unrooted phylogenetic tree of SNAP protein from various eukaryotic lineages. 
The α-, β- and γ-SNAP branches are color-coded. The labels on the major branches represent the 
Likelihood Mapping (left) and AU support values (right). Figure modified from Dissertation of (Kienle 
2010). 

Several deletion mutagenesis and in vitro binding studies have been carried to 

understand the interaction between SNAPs and the SNAREs complex, as well as the 
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interaction between SNAP and NSF. These studies showed 63 N-terminal and 37 C-

terminal residues of α-SNAP to be essential for binding to the SNARE complex 

(Hayashi et al. 1995). Subsequent electron microscopy studies revealed that SNAP 

appears to coat the SNARE complex along its length (Hohl et al. 1998). The extreme 

C-terminal amino acids of α-SNAP have been shown to be required for its ability to 

stimulate the ATPase activity of NSF (Barnard et al. 1997). The N-terminal domain 

of NSF has been shown to be essential for the interaction between NSF, SNAP and 

the SNARE complex (Rice & Brunger 1999). The extreme C-terminal tail of γ-

SNAP has also been shown to bind to NSF in absence of the SNARE bundle (Tani et 

al. 2003). The 23 N-terminal residues and 89 C-terminal residues of γ-SNAP also 

form a complex with Gaf-1/Rip11 (Tani et al. 2003). Evidences have also shown that 

alteration in expression levels of α-SNAP may be associated with certain pathological 

conditions. The ‘‘Hydrocephaly with Hop-gait’’ (HYH) missense mutation in the 

gene encoding α-SNAP, causes abnormalities in the apical protein localization and 

cell fate determination in neuroepithelial cells (Chae et al. 2004). The 

aforementioned membrane attachment site of α-SNAPs is located in the loop 

connecting the first two helices of the N-terminal region (Winter et al. 2009). 

Mutation of the two conserved residues (α-SNAPF-27S, F28S) in this loop did not 

support disassembly on the liposomes, suggesting that the loop accommodates the 

membrane attachment site (Winter et al. 2009). It was speculated that the membrane 

might be the first SNAP attachment site which could increase the local concentration 

of SNAP or induce a conformational change, thereby facilitating its binding to the 

SNARE complex (Winter et al. 2009).  

The Sec17 (α-SNAP homolog in yeast) structure shows that it has 14 α-helices (Rice 

& Brunger 1999) (Figure 1.10). The N-terminal region has a twisted sheet of 9 α-

helices (Rice & Brunger 1999). The C-terminal region has a globular bundle formed 

by 5 α-helices which are connected by loops of variable lengths (Rice & Brunger 

1999). The N-terminal α-helices form tetra-tricopeptide repeats (TPRs) with the 

exception of α-helices α1and α2. TPR-containing proteins are considered to be rigid 

proteins that do not undergo large conformational changes upon ligand binding, but 

they do have some degree of flexibility (Cortajarena & Regan 2006). This typical 

arrangement creates a significant cleft on one face of the molecule, which provides a 

concave face whose curvature complements the convex surface of SNARE complex. 
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The concave face has more conserved residues than the convex one and is 

characterized by slightly basic charge distribution, whereas the convex face has a 

negative charge distribution (Rice & Brunger 1999). Mutation studies have also 

shown concave face to be the SNARE complex binding surface of α-SNAP (Marz et 

al. 2003).  

 
Figure 1.10: Structure of Saccharomyces cerevisiae α–SNAP, Sec17 (PDB code 1QQE) 

 
Figure 1.11: Structure of monomer A of the γ -SNAP of Brachydanio rerio  (PDB code 2IFU) 

The crystal structure of γ-SNAP from Brachydanio rerio (Bitto et al. 2007) revealed 

an elongated α-helical structure similar to Sec17, with 12 α-helices forming twisted 

antiparallel pairs at the N-terminal and 3 α-helices forming the globular C-terminal 

(Figure 1.11). The overall structural alignment of the Sec17 and γ-SNAP is poor with 

a root mean square deviation (rmsd) of 3.4Å (Bitto et al. 2007). This poor alignment 

is due to the differences in the twist from the middle portion of γ-SNAP (Bitto et al. 

2007). However, the N-terminal portion and the C-terminal portion of γ-SNAP align 

well with the corresponding regions of the Sec17 (Bitto et al. 2007). Like Sec17, γ-

SNAP possesses a similar charge distribution on the concave side (i.e., positively 

charged residues) (Bitto et al. 2007). 
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1.1.4 A previous phylogenetic analysis showed comparable patterns 

of Qa SNAREs and SM proteins changes in metazoans 
 
A previous phylogenetic analysis established in my laboratory has shown that the 

current set of molecular machines involved in vesicle tethering and fusion arose by 

duplication and diversification of a prototypic protein machinery (Kloepper et al. 

2007). It is therefore highly likely that the interacting proteins of the vesicle fusion 

apparatus may show common duplication and diversification patterns. A preliminary 

phylogenetic analysis of SNARE proteins and SM proteins already revealed 

comparable changes (Figure 1.12). For example, of the five different Qa-SNARE 

types, only the ones involved in endosomal/vacuolar trafficking and in secretion were 

duplicated and diversified in animals. Comparable patterns of change were observed 

for SM proteins, as only Vps33 (endosomal/vacuolar trafficking) and Sec1/Munc18 

(secretion) proteins duplicated and diversified. However, it is unclear whether these 

similarities denote co-evolution between the interacting proteins.  

 
Figure 1.12: Schematic depiction of the evolutionary changes of the SNARE and SM proteins in 
animals. 
The details of the evolution of Qa-SNAREs and SMs in metazoans are shown. Qa-SNARE and SM 
proteins that are involved in endosomal/vacuolar trafficking (yellow) and in secretion (blue) were 
duplicated and diversified in animals.  
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Many of the essential cellular processes (e.g. replication, transcription, translation, 

protein degradation, signal transduction and vesicular trafficking) are carried out by 

assemblies of 10 or more protein and ribonulceoproteins. These assemblies are often 

referred to as molecular machines. Often these machines have a catalytic core on 

which different layers of accessory factors bind. Some interactions in molecular 

machines are strong and long-lasting, whereas others are weak and highly transient. 

One can distinguish between very stable assemblies like the ribosome and dynamic 

machines that have to come together first to carry out their functions. The protein 

machinery involved in vesicle trafficking, for example, is different from other large 

protein machineries, such as ribosomes, as they interact transiently and assemble into 

intermediates.  

Until now, the principal organization of the secretory and endocytic pathways has 

been established. However, a complete description of the vesicle pathway has not 

been achieved yet as there are clear differences between different eukaryotic lineages. 

Although a large amount of cell biological, genetic and biochemical work has been 

aimed to understand the underlying protein interaction network of vesicle trafficking; 

yet only fragmented insights are obtained. Often the biological processes are studied 

only in a few different model organisms, leaving it unclear if a certain feature is a 

special adaptation or a common principle. Bioinformatics investigations can fill in the 

gap as the entire spectrum of sequences and species can be integrated and investigated. 

Sequence analysis opens up new questions and new direction for further biochemical 

analysis. Deeper insights into the evolution of vesicle trafficking proteins and their 

changes within different eukaryotic lineages will be able to shed more insight on the 

molecular event.  

Recent developments in sequencing technologies have led to an almost exponential 

growth of publicly available sequence data. From these, a wealth of information can 

be readily obtained by computational methods. Several sequence analysis methods are 

now available that can provide new insights about the function and interaction of 

various molecular machines. Sequence covariation analysis is one such approach that 

can help to identify the changes occurring within the protein in order to maintain its 

function and structure. This could help to recognize the structurally and functionally 

important sites within the protein that might also be involved in maintaining its 

interaction with different proteins. Novel insights about the vesicle fusion machineries 
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and their changes within different eukaryotic lineages would provide explanations for 

different molecular events and would thus provide new directions for biochemical 

research. 

1.2 Sequence analysis  

Sequence analysis can be used to identify the residues that are under evolutionary 

constraints and have certain functional significance. Such residues can be conserved 

within the protein family or conserved within the subfamily or coevolve (Figure 1.12). 

Sequence analysis provides a novel insight into the evolution of protein family and 

the protein-protein interaction network. The experimental characterization of function 

and functionally important sites is usually expensive and time consuming. Sequence 

analysis can provide a starting point of a complete inspection for biochemical and 

structural analysis as the most interesting changes can later be tested. Several different 

methods have been developed to explore sequence space and thus predict functionally 

important regions.  

 
Figure 1.13: Information extracted from multiple sequence alignments (MSAs).  
Left: fully conserved, family-dependent conserved positions and pairs of positions showing a 

correlated behavior are shown in a multiple sequence alignment. Right: An ideal model illustrating the 

relationships between these positions and functional and structural features. Conserved positions (red) 

are in the structural core of the protein and in the active sites. Family dependent conserved positions 

(blue) are also present in the active site conferring specificity. Coevolving positions (green) indicate 

structural or functional dependencies. In the case of inter-protein correlations, these pairs are many 

times pointing to the interaction surface but not directly on it. Modified from (Pazos & Bang 2006). 
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Conserved positions  

Conserved positions represent functionally or structurally important residues. These 

positions are usually the first indicators of functionality and can be related to all types 

of functions (e.g.: active sites, ligand binding, protein-protein interaction sites, nucleic 

acid binding) as well as to structural requirements like forming the structural core of 

the protein (Pazos & Bang 2006). Many different approaches have been developed to 

locate conserved positions in an alignment (Pazos & Bang 2006). Some methods 

detect sequence conservation at a position by calculating the difference between the 

maximum possible entropy and the entropy of the observed amino acids distribution 

(e.g., sequence logo (Schneidery & Stephens 1990). Some methods make use of 

complex models with phylogenetic trees to avoid the artifacts caused by a potential 

uneven distribution of sequences in an alignment (e.g. highly similar sequences can 

result in more conserved positions (Pazos & Bang 2006). Methods based on sequence 

profiles are also used to identify sequence conservation (Pazos & Bang 2006). 

Sequence profiles are extracted from the multiple sequence alignment (MSA) and 

provide information about the conservation as well as the amino acid distribution 

within the position. 

Subtype-specific positions 

Information regarding positions that are conserved but vary in their amino acids type 

within different subgroups of proteins can also be extracted from the alignment. The 

subgroups can be defined based on phylogenetic, phenotypic or functional criteria. 

These positions are functionally important as they provide functional specificity to the 

subfamilies and can also be used to define subfamilies. Various methods have been 

developed to analyze and predict protein subtypes from alignments. Livingstone & 

Barton in 1993 developed a method to annotate MSAs to identify conserved positions 

within subtypes using the amino acid properties and sequence similarity. Principal 

component analysis was used by Casari et al. in 2004 to identify positions conserved 

across the protein family as well as subtype specific residues. Olivier Lichtarge et al. 

in 1996, proposed an evolutionary trace method to explore the phylogenetic tree of a 

protein family for sequence conservation at different branches and locate the protein 

binding surfaces. Sjolander in 1998 developed a method of phylogenetic inference, in 

which the nodes are represented by a sequence profile of sequence at that node. This 

method ensures that highly conserved sites have higher weights. Hannenhalli & 
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Russell in 2000 proposed an approach that compares the intra and inter-group residue 

entropy for every possible split in the tree. 

Covarying positions  

Most of the sequence analysis methods proceed with the common assumption that 

sites or positions within biological sequences (DNA, RNA or proteins) vary 

independently. However, several biochemical and biophysical studies have shown 

evidence that this assumption is not biologically realistic. Some sites are under strong 

evolutionary constraints to maintain the basic structure and function. 

Substitutions/mutations at such sites can partly destabilize the molecule’s structure or 

function and are thus compensated by subsequent ( Yanofsky et al. 1964)) or 

simultaneous (Fitch & Markowitz 1970) substitution/mutation at another site. Such 

positions thus imply an important conserved interaction that can be ultimately 

detected in MSAs and are commonly referred to as covarying or coevolving positions. 

Covarying positions are the positions undergoing correlated or compensatory 

mutations (i.e., a mutation at one site is compensated by a mutation at another site). 

Such positions share a common selection constraint and undergo correlated evolution 

or coevolution. Therefore, they show great potential for the prediction of functional 

and structural characteristics of molecules. Such covarying mutations can indicate 

residues that interact within the protein to carry out a specific functions such as, 

catalysis, structure stabilization, protein-protein interactions, and allosteric regulation 

(Teppa et al. 2014). They also provide useful information to understand evolutionary 

processes, to predict protein structure and to predict the effects of site-directed 

substitutions. Different studies have shown that such compensatory mutations are 

frequent and are involved in functional and biophysical properties of proteins (Teppa 

et al. 2014).  

1.2.1 Molecular Covariation – Current Theories and Hypothesis 

The precise model of sequence changes leading to the observation of covariation is 

still under debate. However, two scenarios have been proposed for how sites can 

covary: the second-site suppressor model proposed by Yanofsky et al. in 1964 and the 

concomitantly variable codon model or covarion model proposed by Fitch & 

Markowitz in 1970. Under second-site suppressor model, the first substitution is a 

deleterious mutation and leads to a decrease in fitness. This is then followed by 
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substitution at a second site that could suppress the mutation and restore the function 

(Talavera et. al. 2015). In the second scenario of covarion model or directional 

selection model, the first substitution is neutral or near neutral and the second 

substitution then provides a selective advantage (Talavera et. al. 2015). However, 

both the hypotheses imply that coevolution occurs in order to generate the 

compensatory change (Wollenberg & Atchley 2000; Gloor et al. 2010; Talavera et al. 

2015; Ackerman & Gatti 2011). Many experimental studies have been conducted 

proving either of the theories. Poon in 2005 measured compensatory mutation in 

DNA Bacteriophage ΦX174 and found that in most cases they occurred at a second 

site. Merlo et al. in 2007 performed domain-swapping experiments on triosephosphate 

isomerase and detected the rare covarions. Despite several studies been carried out 

there is still a clear controversy regarding the mechanism of covariation.  

1.2.2 Complexity of covariation 

Covariation between amino acids at two sites/position can be detected by using an 

MSA. Wollenberg & Atchley in 2000, suggested that covariation observed between 

two sites i and j can be decomposed into:  

Cij =Cphylogeny +Cstructure +Cfunction +Cinteractions +Cstochastic 

Cstructure and Cfunction signify the covariation occurring due to the selective constraints 

acting on the sites to maintain the structure and function. These two sources of 

covariation are difficult to distinguish, as often they are not independent from each 

other.  Cinteraction reflects the interactions between the amino acid sites and is also a 

structural or functional component of covariation.  Cstochastic represents the stochastic 

factors such as, random effects from uneven or incomplete sequencing. Identifying 

this covariation is the realm of statistics used for detection of covariation. The 

statistics based covariation detection methods usually distinguish the stochastic 

component of covariation.  Cphylogeny is the correlation due to the shared ancestry 

between homologous sequences. This component can result in a global correlation of 

patterns occurring throughout the data set and thus add to the random noise further 

complicating the detection of coevolving positions. Thus, distinguishing phylogenetic 

correlation from functional correlation is a crucial and challenging step in detection of 

coevolution (Dunn et al. 2008; Dutheil 2011). 
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1.2.3 Molecular Covariation detection methods – Different strategies 

and controversies 

For the past 20 years, many studies have been dedicated to identifying covarying site 

pairs in MSAs. Several parametric and non-parametric methods have been 

implemented to identify important residues based on the theory of site covariation.  

Initially the methods to detect covariation were solely based on multiple sequence 

alignments. A number of different scoring ways have been proposed to identify 

coevolving positions including methods based on substitution matrix (McLachlan 

based substitution correlation (McBASC) (Gobel et al. 1994), methods based on 

perturbation (statistical coupling analysis (SCA)) (Lockless & Ranganathan 1999) 

mutual information based methods (MI) (Martin et al. 2005), methods to detect 

difference between observed versus expected frequencies of residue pairs (OMES) 

(Larson et al. 2000; Marks et al. 2012).  Some of the methods were later modified to 

either add information about the conserved sites, as in positional conservation based 

SCA (SCAnew) (Halabi et al. 2009) or to remove phylogenetic and background noise, 

as in corrected mutual information (MIp) (Dunn et al. 2008). Marks et al. in 2011 and  

2012 divided these methods into methods based on local statistical models and those 

on global statistical models. MI, SCA, McBASC, OMES, MIp belong to local 

statistical model based methods. They assume that pairs or residue positions are 

statistically independent of the other pairs of residues. In contrast, global methods like 

direct coupling analysis (DCA) (Marks et al. 2012), Bayesian network model (Burger 

& van Nimwegen 2010) and protein sparse inverse covariation (PSICOV) (Gouveia-

Oliveira & Pedersen 2007), consider correlated residue pairs to be dependent on each 

other and thereby remove the effect of transitivity. These methods have shown 

success in detecting covariations that relate to contact in 3D-strutcute and have been 

used for detection of 3D-structures by several studies (Marks et al. 2011; Marks et al. 

2012; Hopf et al. 2012; Hopf et al. 2014; Hopf et al. 2015). 

Several other methods were developed that attempt to model covariation of sites 

directly on a phylogenetic tree. These studies take the evolutionary history of the 

sequences into account (Pollock et al. in 1999, Tuffery & Darlu in 2000, Dutheil & 

Galtier in 2007 and Linda Dib et al. in 2014). These methods aim to account for 

phylogenetic correlation due to shared ancestry, by incorporating the phylogenetic 
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correlation in observed statistics. They require a phylogenetic tree reconstruction of 

the sequence alignment and then compute the coevolutionary statistics from the 

phylogeny. 

Phylogenetic noise is one of the major problems faced by methods based on sequence 

alignments such as MI. It is due to the fact that the proteins sequences are not 

independent and have an inherent signal due their phylogenetic relationship 

(Wollenberg & Atchley 2000; Gouveia-Oliveira & Pedersen 2007). A number of 

different approaches have been proposed to lower the background phylogenetic noise 

and thus enable more accurate identification of the coevolving positions (Dutheil 

2011; de Juan et al. 2013). These include correction of the sequence based MI 

methods like MIp and the previously mentioned tree based methods.  

Drawbacks have been identified for both approaches (Caporaso et al. 2008). There is 

an on-going debate on the validity of assumptions used on both the approaches. Such 

debates are further complicated by the fact that the field of molecular 

coevolution/covariation is at the crossroads of two distinct communities, 

structural/functional biologists and evolutionary biologists (Dutheil 2011). The 

covariation of two positions in a sequence alignment can refer to associate pattern 

from comparative sequence analysis point of view. However, from phylogenetic 

perspective it can refer to simultaneous substitution pattern of sites that they undergo 

during their evolutionary history. The tree-based methods are computationally 

expensive and have the disadvantage of being sensitive to the model that is used to 

generate a phylogenetic tree. The tree-ignorant or sequence based methods are easy to 

implement with low computational cost required, but are sensitive to the effect of 

shared ancestry of the sequences. However, as mentioned earlier, sequence based 

methods were further improved to explicitly account for the shared ancestry (e.g. 

MIp). 

Comparative analysis studies have shown that tree-ignorant methods that account for 

shared ancestry out-performed the tree-based methods in identifying coevolving 

positions (Caporaso et al. 2008) and are thus more reliable than tree- based methods. 

Such methods, like MIp, are easy to implement, fast and minimizes the assumption on 

the data and therefore can be a reliable choice for a large data sets analysis (Dutheil 

2011). 
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1.2.3.1 Mutual Information (MI) 

Mutual information (MI) is the measure of reduction of uncertainty and is based on 

Shannon’s entropy. The MI between two columns of a MSA reflects the degree to 

which the knowledge of the amino acid at one position helps to predict the identity of 

the amino acids at the other position. High MI values indicate correlation between the 

two positions. MI score ranges between 1 and 0, with higher MI value reflecting a 

higher interdependence between the two positions of an MSA.  

Korber et al. 1993 first applied MI to MSAs of a short variable loop of an HIV 

envelope protein to identify correlated pairs. The initial formulations of MI were 

affected by high variability positions in MSAs and by the effect of phylogenetic 

background (Caporaso et al. 2008; del Sol Mesa et al. 2003; de Juan et al. 2013) and 

thus subsequent, improved versions of this approach had to be developed (Tillier & 

Lui 2003; Marino Buslje et al. 2010; Gouveia-Oliveira & Pedersen 2007; Dunn et al. 

2008).  

1.2.3.2 Corrected Mutual Information (MIp) 

The mutual information approach was corrected to suppress the phylogenetic bias by 

normalizing the observed covariance of a pair of column by the background 

covariance of the columns. This correction on MI provided a substantial improvement 

compared to previously published methods for predicting covarying positions (Dunn 

et al. 2008). 

Different comparative studies have also shown it to be better than tree-based methods 

for identifying coevolving positions (Caporaso et al. 2008). It is a fast and easy to 

implement method and has been shown to be a good choice for large data set analysis 

(Dutheil 2011). 

1.2.4 Groups of covarying residues  

Most of the covariation or coevolution detecting algorithms provide pairwise scores 

of residues. However, due to flexibility of the protein structure, it is possible that such 

compensatory mutations do not always occur only as pairs but can be compensated by 

other substitutions occurring at different positions. Groups or networks of covarying 

residues may reflect a series of mutational events within a local region of a molecule. 

Networks of such residues can also show a coordinated action of these residues in a 
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functional or structural context. Such groups can thus provide information that is not 

related to direct contacts. They can provide information about long-range indirect 

interactions that are induced by chains of directly interacting residue pairs that run 

through the protein to connect distal pairs.  

A few studies have demonstrated the existence of groups of covarying residues 

(Lockless & Ranganathan 1999; Süel et al. 2002; Halabi et al. 2009; Burger & van 

Nimwegen 2010). These studies have shown that such residues create physically 

connected networks that link the distant positions in the tertiary structure of proteins. 

They believed them to be thermodynamically coupled residues involved in allosteric 

communications within the protein. Allosetry represents the dynamics of proteins, 

where a perturbation at one site (substrate binding, covalent modifications or 

mutations) affects a spatially and sequentially distant site. Such distant sites within a 

protein communicate through local conformational changes that produce dynamics 

that leads to global changes. A recent review by Motlagh et al. in 2014, explains that 

allosetry can also be associated with changes in dynamics of proteins and large scale 

conformational disorders occurring within the protein.  A recent study has also shown 

the involvement of coevolving fragments in the binding specificity and folding 

constraints that explains folding intermediates, peptide assembly and known 

mutations with roles in genetic diseases (Dib & Carbone 2012). 

Thus, looking at just the pairs of residues as attempted so far may underestimate the 

covariation signal within a protein. However, performing an exhaustive search for 

groups of residues of arbitrary size is also difficult due to high number of possible 

combinations within a protein. It is also difficult to evaluate the roles of so many 

pairwise residue couplings. Clustering techniques are standard methods, which can be 

used to cope with such issues. 
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2 Aims of the project  

Vesicle trafficking is a vital process of eukaryotic cells by which molecules (nutrients, 

protein, lipids, etc.) are transported from a donor compartment to an acceptor 

compartment via small membrane-bound carriers called vesicles. SNARE (Soluble N-

ethylmaleimide-sensitive factor Attachment protein REceptors) and SM 

(Sec1/Munc18) proteins form the core machinery for vesicle fusion. Various other 

factors including Rab proteins, NSFs (N-ethylmaleimide-Sensitive Factor), SNAPs 

(Soluble NSF Attachments Proteins) and tethering proteins belonging to the 

CATCHR (Complex Associated with Tethering containing Helical Rods) family also 

co-ordinate the vesicle fusion process. All these proteins are highly conserved, not 

only between different species but also between different vesicle trafficking steps 

within the cell. Probably they arose by duplication and diversification of prototypic 

protein machineries during evolution. Although a considerable amount of research has 

been conducted on the vesicle fusion machinery, it has remained challenging to come 

to a comprehensive understanding the underlying protein interaction networks, 

possibly as most of the studies have been carried out only in few model organisms. 

Proteins from different eukaryotic lineages undergo different adaptations and losses 

or gains and thus it becomes difficult to clarify if a certain feature is a result of special 

adaptation of a particular protein or whether it is a shared trait. Sequence analysis can 

help in filling this gap as the whole set of sequences across all species can be 

investigated.  

A large amount of work has previously been carried out in my group towards 

analyzing the sequences of the various factors involved in the vesicle fusion step. To 

store and analyze the sequences of factors involved in vesicle fusion, my group has 

implemented a database management system, which provides an opportunity to search 

for functionally and structurally important residues using computational approaches. 

Previously, my group has also analyzed the evolutionary history of the key proteins 

participating in vesicular fusion. The phylogenetic analysis of SNARE proteins and 

SM proteins had revealed some comparable patterns of duplications and 

diversifications between the closely interacting proteins. It would thus be interesting 
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to explore the covariation patterns of these different protein families to gain better 

insight about the structurally and functionally important sites in these proteins. 

The main aim of my project was therefore to identify functionally and structurally 

important residue networks by extracting their covariation relationship from multiple 

sequence alignments and thus explore their evolutionary changes across different 

eukaryotic lineages. This will provide novel insights into the structural and functional 

constraints as well about the complex mutational dynamics that took place during the 

evolution of proteins involved in the vesicular fusion process. The information 

obtained can later be used as a guide to structural or mutational studies on vesicle 

trafficking proteins so as to gain a better understanding of their function and 

interaction. 

To achieve this aim, development of a comprehensive bio-informatics framework for 

sequence analysis was needed as the available software solutions had limited scope 

and provided insufficient visualizations for my purpose. The objective of the software 

was to provide a conglomerated set of information about a MSA. The basics are 

similar to software such as JalView, however, the focus of my software was on 

enriching data with statistical information, covariation detection analytics, advanced 

subtyping, visualizations and automatic analytic pipelining 

SM proteins form the core of vesicle fusion machinery along with SNARE proteins. 

They interact with SNARE protein Syntaxins and thus control and guide the vesicle 

fusion process. Since more than a decade, the molecular role of SM proteins, in 

particular their binding mode with Syntaxins is debated. The two proteins generally 

make use of two spatially separated binding sites, but it is unclear how the two 

binding sites are able to communicate. To gain novel insights into their interplay I 

aimed at extracting novel information by investigating at their sequence covariation. 

As initial covariation results were rather complex, an improved analysis approach by 

combining the covariation detection methods and network analysis methods needed to 

be developed to be able to better understand the co-variation pattern of proteins of the 

vesicle fusion machinery.  
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3 Materials & Methods 

3.1 Sequence Alignments 

Previously, my group has developed and implemented a database management system 

and analyzed the evolutionary history of the SNARE protein (Kloepper et al. 2007; 

Kloepper et al. 2008; Kienle et al. 2009) and Rab protein family (Klöpper et al. 2012). 

The database system was consequently extended to incorporate additional protein 

families involved in intercellular traffic. Currently the database has sequences of 

SNARE proteins, SM proteins, Rab proteins, SNAP proteins and AAA proteins. 

Sequences of the SM protein subfamilies and SNAP proteins were collected from the 

in-house database. They were aligned by using a previously developed strategy 

(unpublished work). The well-conserved regions in domains were aligned with the 

HMM output (Krogh et al. 1994) and the inserts were realigned with MUSCLE 

(Edgar 2004). The alignments were further refined, by using an iterative block 

strategy. This strategy searches for conserved blocks and realigns and recursively 

refines the unconserved blocks in between them. Additionally, a conserved alignment 

filter was used to ensure that alignment contains only significant information. This 

filter removes the columns and rows with information content (either in terms of gap 

or entropy) below a certain threshold.  

3.2 Phylogenetic Tree Generation 

The phylogenetic trees used to generate the simulated alignments were obtained from 

a combination of three different programs IQ-TREE (Nguyen et al. 2014), RAxML 

(Stamatakis 2006), and PhyML (Guindon et al. 2009). IQTREE was first used with 

the test option to estimate the best fitting parameters. For all trees generated, the LG 

matrix was the most fitting substitution model together with gamma rate 

heterogeneity. All the three programs were used with 1000 bootstrap replicates. After 

the successful reconstruction of the trees, site-wise log likelihoods were calculated 

with RAxML. Consel (Shimodaria & Hasegawa 2001) was then used to rank the trees. 

The best tree was taken as a reference. TREE-PUZZLE (Schmidt et al. 2002) was 
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then used as an additional independent confidence estimator to run likelihood 

mapping on the best tree.  

3.3 Generation of Simulated Alignments 

In molecular evolution, computer simulation of data has been widely used to test a 

hypothesis, compare or evaluate tools or methods, to access the fit of a model and 

study complex evolutionary processes.  

At molecular level, the analysis of dependent or coordinated substitutions provides 

information about the potential structurally or functionally important positions along a 

DNA/RNA or protein sequences. A wide variety of algorithms have been developed 

to detect covarying positions from a MSA. Since there is no general analytical 

evolutionary model for covariation, simulated MSAs have been used as a tool by 

many studies to test their methods for filtering out the background coevolutionary 

signal (Dib et al. 2014; Fares & Travers 2006; Fodor & Aldrich 2004; Tillier & Lui 

2003; Martin et al. 2005; Gloor et al. 2005; Ackerman et al. 2012; Dutheil & Galtier 

2007; Dutheil 2011). The simulated alignments are generated based on certain 

properties of the real alignments, such as, conservation level, distribution of amino 

acid at each site, pairwise similarities between the sequences.  

Earlier available methods for simulation used Markov models to simulate each 

position independently and thus were not appropriate to evaluate coevolution of 

positions in nucleotide or amino acid sequences. In this study, simulator developed by 

(Dib et. al. 2015) was used, which was based on their evolutionary model, Coev 

Markov model (Dib et al. 2014). Given a rooted binary tree in Newick format and the 

values of the 4 continuous parameters of Coev model (Dib et al. 2014) the method 

simulates the nucleic and protein pairs of positions. The method randomly picks a 

coevolving profile and lets it evolve along the branches of the tree as per the Coev 

substitution matrix. Given a profile, the instantaneous rate matrix Q of the model, 

Coev, is modeled as follows: 
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where, the parameter s is the rate of transition from a coevolving combination present 

in the profile to a non-coevolving combination, parameter d is the rate of transition 

from one non-coevolving to a coevolving combination; the additional parameters r1 

and r2 are the rates of transitions between two non-coevolving combinations at 

positions 1 and 2, respectively. A combination of d>> s would simulate coevolving 

pairs, while a combination of s=d would simulate non-coevolving pairs. 

To evaluate the efficiency of the analysis pipeline in detecting the coevolving residues, 

simulated MSA was generated using the CoEv Simulate.  

Application of the developed improved analysis pipeline on 

simulated data 

The developed approach for identifying groups of covarying residues was applied on 

a simulated dataset, where certain residue pairs were artificially forced to be 

coevolving with each other. This was done to verify the accuracy of the range of MIp 

scores obtained on the real dataset and also to check if the top scoring MIp residues 

indeed matched with those that are set to be coevolving in the simulation.  

A rooted binary tree was generated by using a combination of three different 

softwares (IQ-TREE (Nguyen et al. 2014), RAxML (Stamatakis 2006), and PhyML 

(Guindon et al. 2009) from the alignment of an SM protein subfamily, Sly1, with a 

few sequences of another SM protein subfamily, Vps45 used as outgroup (for details 

see Methods section). Using this tree as an input two simulated alignments with only 

coevolving and only non-coevolving pairs were generated. A simulated alignment 

was generated with 50 coevolving pairs (100 residues), using s parameter equal to 10 

and d parameter equal to 10000. Another simulated alignment was generated with 200 

coevolving pairs (100 residues), using s parameter equal to 10 and d parameter equal 

to 10. The two alignments were then concatenated into one alignment of 500 amino 

acid positions. The number of coevolving pairs was chosen such that it is about L/5, 

where L is the total length of the concatenated alignment. Earlier studies like Gobel et. 

al. 1994 used a cut off of L/5 for coevolutionary residue prediction and so this was 

chosen as a reasonable number of coevolving sites.   

MIp and then average linkage clustering with varying stopping criteria from mean, 1-

σ, 2-σ, 3-σ and 4-σ was applied on the concatenated alignment. The MIp scores 

generated were visualized with the help of a heat map (Figure 3.1) and the selected 
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clusters were also highlighted in a heat-map organized according to the rank of the 

clusters (Figure 3.2). 

 
Figure 3.1 : Heat map of MIp scores from the simulated alignment. 
The color code bar represents the color corresponding to the range of MIp score. The dark red, red, 
dark orange, orange, represent the high MIp scores and light green, dark green, blue, purple represent 
the low MIp scores. The original heat map can be found in the supplements that can be enlarged to 
have a clear view of the residue numbers. 
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Figure 3.2: Heatmap of MIp scores of simulated coevolving residues. 
The heatmap is arranged according to the ranking of clusters. Only the part containing the simulated 
pairs is shown. The residues appearing as clusters of more than 2 residues are marked in Black squares.  
 
To identify covarying pairs, the clusters were scored and ranked as per average 

weighted degree of the cluster. Stopping criteria of mean and 1-σ resulted in clusters 

with both coevolving and non-coevolving residues being clustered together. Stopping 

criteria of 2-σ resulted in clusters of 8, 4 and 2 residues with coevolving and non-

coevolving residues in separate clusters. Stopping criteria of 3-σ, resulted in one 

cluster of 4 residues and rest all with 2 residues with coevolving and non-coevolving 

residues in separate clusters.  4-σ stopping criteria resulted only in clusters with 

coevolving residues. Based on the result obtained at different cut off, 2-σ was chosen 
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as stopping criteria. Cluster selection cut off of 95% or 90% of cluster scores was 

chosen as it resulted in all selected cluster with coevolving residues.  

Standard performance methods were then used to evaluate the pipeline. The number 

of positions correctly predicted as coevolving (true positives, TP), the number of 

positions correctly predicted as non-coevolving (true negatives, TN), the number of 

non-coevolving positions predicted as coevolving (false positives, FP) and the number 

of coevolving residues predicted as non-coevolving (false negatives, FN), were 

estimated. Using these measures, the sensitivity TP/(TP + FP) and specificity TN/(TN 

+ FP) of the approach was calculated. In my case, the true positives were 100, as at 

95% cluster score cut off, all the cluster with total of 50 coevolving pairs were 

obtained and since no cluster with non-coevolving position was found the false 

positive and false negative were 0 and true negatives were 400. Thus, the sensitivity 

of the approach was 1 and specificity was also 1. Further, a true positive rate (TPR=1-

specificty or TP/TP+FN) and a false positive rate (FPR= FP/TN+FP) can be 

calculated. The combinatorial approach resulted in a TPR of 1 and FPR of 0, thus 

indicating maximum sensitivity and specificity.  

3.4 Covariation Analysis  

Mutual Information (MI) 
Mutual information (MI) is a method based on Shannon’s entropy that indicates the 

dependencies of the two columns. It is a measure of reduction of uncertainty. The MI 

between two columns of a MSA reflects the degree to which the knowledge of the 

amino acid at one position helps to predict the identity of the amino acids at the other 

position. A high MI values indicates correlation between the two positions. The 

implementation of MI is based on (Martin et al. 2005). 

MI between two positions of MSA is calculated by: 

𝑀𝐼 𝑥,𝑦 = 𝐻 𝑥 + 𝐻 𝑦 − 𝐻(𝑥,𝑦) 

where, 𝐻 𝑥   and 𝐻 𝑦  are entropy of columns x and y, calculated as, 

𝐻 𝑥 = − 𝑝 𝑥!

!

!!!

log! 𝑝 𝑥!  
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where 𝑝 𝑥!  is probability of amino acid i in column x, k=20 (for 20 amino acids). 

The logarithm base b=20. The value of 𝐻 𝑥 varies from 0, in case of complete 

conservation to 1, when all 20 amino acids are equally distributed.  𝐻(𝑥,𝑦)Is the joint 

entropy, which is defined as: 

𝐻 𝑥,𝑦 = − 𝑝 𝑥! ,𝑦! log! 𝑝 𝑥! ,𝑦!

!

!!!

!

!!!

   

where  𝑝 𝑥! ,𝑦! is joint probability of amino acid i in column x and amino acid j in 

column y, k=l=20 for amino acids, and b is logarithm base, here set to 20. The joint 

entropy can range from 0 to 2. 

MI score ranges between 1 and 0 with high MI value reflecting a higher 

interdependence between the two positions of a MSA.  

The initial formulations of MI were affected by high variability positions in MSAs 

and by the effect of phylogenetic background (de Juan et al. 2013) and thus many 

subsequent version of this approach were developed. One of them is described next. 

Mutual Information Corrected (MIp) 
The mutual information approach was corrected to suppress the phylogenetic bias by 

normalizing the observed covariance of a pair of column by the background 

covariance of the columns. The background covariance is the average covariance 

score of the column with all the other columns (Dunn et al. 2008). Thus, 

𝑀𝐼𝑝 𝑎, 𝑏 = 𝑀𝐼 𝑎. 𝑏 − 𝐴𝑃𝐶(𝑎, 𝑏) 

where APC(a,b) is the average product correction of the background scores, 

calculated as: 

𝐴𝑃𝐶 𝑎, 𝑏 =
𝑀𝐼 𝑎, 𝑥 𝑀𝐼 𝑏, 𝑥

𝑀𝐼
 

where 𝑀𝐼 𝑎, 𝑥  is mean mutual information of column a, defined as: 

𝑀𝐼 𝑎, 𝑥 =
1
𝑚∑𝑀𝐼(𝑎, 𝑥) 
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where n is the number of columns in MSA, and m=n-1, and summation is over x=1 to 

n, x≠a, and 𝑀𝐼  denotes the overall mean mutual information,  

𝑀𝐼 =
2
𝑚𝑛∑𝑀𝐼(𝑥,𝑦) 

where indices run from x=1 to m, y=x+1 to n. 

This correction on MI, provided a substantial improvement compared to other 

previously published methods for predicting covarying positions (Dunn et al. 2008;  

de Juan et al. 2013). 

3.5 Network Analysis  

Clustering is an approach to structure data by placing similar cases together in a group 

called cluster. Partition and hierarchical methods are the two major classes of 

clustering methods. However, there are wide ranges of different algorithms like 

model-, density- and grid-based methods.  

Partitioning methods divide n cases into small discrete k classes, as described by p 

variable. They suffer from two major problems. Firstly, the value of k needs to be pre-

defined and secondly, the solutions are not unique as the iterative algorithm that starts 

at random locations is used. 

Hierarchical clustering does not require pre-specifying the number of clusters needed. 

It arranges data into a hierarchy based on the distance or similarity. Alifea provides 

three hierarchical clustering methods. 

While using covariation data as a network, the covariation score is used as the 

distance between the two nodes or the residues. The higher the covariation score, the 

shorter is the distance between the residues and vice-versa. 

Single Linkage Clustering 

In single linkage clustering, also known as minimum or nearest neighbor methods, the 

distance between the clusters is the minimum distance between the members of the 

two clusters. This method produces long chains that can form loose clusters. The two 

clusters are fused together if the minimum distance (maximum covariation score) 

between the members of the two clusters is more than the average covariation score. 
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Complete Linkage Clustering 

The complete linkage clustering is also known as maximum or furthest neighbor 

method. The distance between the clusters is the greatest distance between members 

of the two clusters. This method tends to produce very tight clusters of similar scores. 

The two clusters are fused together if the maximum distance (minimum covariation 

score) between the members of the two clusters is more than the average covariation 

score.  

Average Linkage Clustering 

The average linkage clustering uses the average values between the members of the 

two clusters as the distance between the clusters. The two clusters are merged if the 

average distance (or the average covariation score) between the members of the two 

clusters is more than the total average covariation score. It is a compromise between 

the sensitivity of complete-link clustering to outliers and the tendency of single-link 

clustering to form long chains that do not correspond to the intuitive notion of clusters 

as compact, spherical objects.  

A stopping criterion was used for the average linkage clustering. This stopping 

criterion can be varied in different statistical steps of the distribution of the edge 

weights (such as 1-σ, 2- σ, 3- σ and 4- σ from the mean-µ of the weights. Only residue 

pairs that have the covariation score above the stopping criteria were considered for 

clustering. This step was used to remove weak connections between the residues, so 

that only those residues that have strong covariation were considered. 

3.6 Scoring and ranking the clusters 

Each cluster was then scored and ranked. Clusters can be scored either based on the 

average weighted degree of the cluster or based on the average weight of the cluster 

and then ranked in the decreasing order of the score.  

Average weighted degree score of the cluster is calculates as: 

1
𝑁 𝑊! 

where, Wi is the weight of the connection i and N is the total number of nodes. This 

score can be summarized as sum of edge scores/number of nodes. In general, this 

should result in large clusters being ranked higher and can be used to identify the 
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groups of covarying residues.  

Average weighted score of the cluster can be calculated as:  

𝑊!

𝐸  

where, Wi is the weight of connection i and E is the total number of connections or 

edges. This score can be summarized as sum of edge scores/number of scoring pairs. 

In general, this should result in small clusters being ranked higher and can be used to 

identify small groups of covarying residues. 

A cut-off was then used to select the top clusters that have significant residue-to-

residue interactions within the cluster. The cluster selection cut-off can be varied from 

10% to 90% of the cluster scores.  

Defining these cut-offs appropriately plays an important role in the quality of clusters 

that are identified. Different choices for selecting the values of cut offs (either the 

cluster selection cut-off or the stopping criteria) are given, as a certain cut-off might 

be more suitable for a particular MIp dataset. Thus, the cut-off values need to be 

adapted to the type of protein.  

A simulation-based method was used to define the cut-offs for the particular protein 

family under analysis. Simulation was performed using the software CoEv Simulate 

to generate two simulated alignments, one with some coevolving residues and another 

with some non-coevolving residues. The co-evolving residues were then uniformly 

distributed with the non-coevolving residues, resulting in a concatenated alignment 

with known coevolving residues. The clustering process was then repeatedly 

performed with different values of stopping criteria and cluster selection cut off. The 

value of stopping criteria and cluster selection cut off that resulted in identifying the 

co-evolving residues of the simulated data set accurately and uniquely (with least 

false positives) was chosen.  

3.7 Visualizations  

Heat Map View 
A heatmap view is a graphical representation of data, where individual pairwise 

values contained in a matrix generated by covariation analysis method, are 

represented by varying degree of colors. This view was developed and implemented 



Chapter 3. Materials & Methods 

 39 

so as to have a detailed look at the entire covariation (MIp) dataset rather than looking 

only at certain high scoring sites. It can help to provide a complete picture of the 

distribution of covarying residues within a protein. A heatmap visualization of the 

MIp scores illustrates the correlated mutation properties of residue pairs. The 

covariation matrix is mapped to an appropriate color map displayed as a symmetrical 

grid. 

The heatmap can be arranged according to the alignment positions or to a 

representative sequence positions or according to the ranking of the clusters. The user 

has options to select different color schemes. The default color scheme maps higher 

covariation scores into red regions (dark red, red, dark orange, orange, light orange) 

and lower covariation scores blue region (lemon, light green, dark green, blue, purple). 

The user can also set up different values of maximum and minimum covariation score. 

There is also a choice to display only the positive covariation scores or all the 

covariation scores. The zero values of the covariation matrix can also be shown with a 

different color to differentiate them from the rest of the score. Information about the 

secondary structural elements can also be mapped on top of the heatmap. This 

information can be extracted from the PDB file if available or from the secondary 

structure prediction file provided by JPred.  

Network View 

The cluster obtained after applying clustering approach can be visualized with the 

help of the developed and implemented network view.  In this view, nodes are shown 

as circles, representing the residue. The circle or nodes are connected by an edge 

representing the covariation score between the two residues. The color of the edge 

represents the strength of the covariation score, with red being highest and blue being 

the lowest. The color and size of the node represents the importance of the residue in 

terms of the average of the score of the edges connected to it. 

Structure View 
A Jmol viewer [75] has been integrated in tool, which can be used to map the results 

directly on a 3D structure, if available. The user has a choice to add one or more than 

one structure of different proteins. There is also possibility to map the identified 

positions along with the conserved positions (conservations degree as chosen by the 

user) position. The program can also automatically mark these positions on the MSA 
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and show them as a sequence logo. It can also extract information like distance 

between the residues and secondary structure elements form the PDB file.   

Hierarchy/Tree View 

A tree view or the hierarchy view has been implemented that allows the user to 

visualize any phylogenetic tree in form of a hierarchy. This view can also be used to 

visualize the generated clusters. 

3.8 Analysis Pipeline 

Figure 3.1 illustrates the developed analysis pipeline. 

The basic required input for the analysis was an MSA. The alignments would undergo 

a preprocessing step, where columns with 90% gaps would be removed. The resulting 

alignment was subjected to a covariation analysis using MIp method. The gaps were 

treated as signals or the 21st amino acid type. A conservation check for 80% 

conserved columns was added so that MIp scores were calculated only if neither of 

the columns was 80% conserved. The resulting MIp dataset can be visualized with the 

help of the developed heat map visualization. Average linkage clustering with a 

certain stopping criteria was then performed on the complete MIp dataset. In order to 

identify groups of strongly covarying residues the obtained clusters were scored and 

ranked based on average weighted degree of the cluster. Top clusters above a certain 

cut-off were selected as the groups of covarying residues. The final selected clusters 

can be visualized as a network. The residues within the selected clusters can be 

mapped on a PDB structure, if available. In order to identify the evolutionarily 

dependent residues, a clade-specific analysis, where the covariation of the identified 

residues is mapped on the phylogenetic tree, was then performed.  
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Figure 3.3: Schematic representation of the workflow of the improved analysis pipeline. 
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4 Results  

As mentioned in the Introduction, my group had previously developed a database 

management system to store and analyze sequences from various factors involved in 

the vesicle fusion step. Among others, my group has collected sequences of SNARE 

proteins, Rab proteins, SNAP proteins, NSF family, and the SM protein family. With 

its well-curated sequence information this database provides a basis for the search for 

functionally and structurally important residues using computational approaches. My 

group has already analyzed the evolutionary history of several protein families 

participating in vesicular fusion. Systematic evolutionary analysis of SNAREs 

(Kloepper et al. 2007; Kloepper et al. 2008; Kienle et al. 2009) and Rabs (Klöpper et 

al. 2012) has been performed already. Preliminary phylogenetic analysis has also been 

carried out for the SM protein family. The phylogenetic analysis of SNAREs and SM 

proteins has brought to light some comparable patterns of duplications and 

diversifications between these closely interacting proteins. For example, of the five 

different Qa-SNARE types, only the one involved in endosomal/vacuolar trafficking 

and in secretion were duplicated and diversified during the rise of animals. 

Comparable patterns of change were seen for SM proteins, where the ones involved in 

endosomal/vacuolar trafficking and in secretion, duplicated and diversified in animals. 

These comparable patterns might denote co-evolution. To obtain more functional and 

structural information from the large sequence collection, I decided to explore the 

covariation relationship residing within the multiple sequence alignments. This, so the 

reasoning would help to explore the evolutionary changes occurring in the proteins of 

vesicle fusion machinery across different eukaryotic lineages. 

To begin with I choose to investigate the SM protein family, as these proteins, 

compared to other proteins of the vesicle fusion machinery, have a manageable 

number of subtypes. By contrast, the previously studied SNARE and Rab protein 

families are composed of many different subfamilies, about 20 or more subclasses for 

SNAREs can be distinguished (Kloepper et al. 2007) and even more subclasses for 

Rab protein types were found (Klöpper et al. 2012). However, the SM protein family 

consists of only five subtypes that probably had been present in the last eukaryotic 
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common ancestor. 

As explained already in the Introduction section, SM proteins interact with Qa-

SNAREs/Syntaxins and are essential factors in vesicular fusion machinery. The SM 

protein family comprises of five basic members: Sec1/Munc18, Sly1, Vps33, and 

Vps45 and scfd2 that participate in different trafficking steps within the cell. The 

exact the molecular role of SM proteins, in particular their binding mode with 

Syntaxins is still debated. Recent biochemical and structural studies on different 

SM/Syntaxin complexes suggest, however, that SM proteins and syntaxins generally 

make use of two spatially separated binding sites (Carpp et al. 2006; Furgasona et al. 

2009; Aran et al. 2009; Martin et al. 2005; Johnson et al. 2009; Burkhardt et al. 2008; 

Demircioglu et al. 2014; Hackmann et al. 2013). Both binding sites appear to be 

important, although it is still unclear how the two binding sites are able to 

communicate in the complex. It is possible that there is a conformational switch that 

enables the SM protein to control the accessibility of the bound Syntaxin. So to gain 

deeper insights into these proteins and to extract additional functional and structural 

information, covariation analysis was initially applied on SM protein subfamilies. 

4.1 Initial Covariation analysis on the SM protein Sly1  

As a first step, intra-protein covariation analysis was performed on SM dataset using a 

widely used sequence covariation detection method, MIp. Following the approach 

used in earlier studies (Gloor et al. 2005; Martin et al. 2005; Dunn et al. 2008) only 

pairs that scored significantly (above Z-score=4.0 cutoff, corresponding to 99.99% 

cutoff) were selected. In the following, I briefly present the initial covariation analysis 

performed on the SM protein Sly1. Sly1 was used as it occurs in most eukaryotic 

genomes as singleton. A table of all residue pairs scoring higher than Zscore=4 is 

given in the Appendix section (Appendix A.1 (table can be provided on request)). The 

residues identified by this analysis were found to be spread all over the protein as can 

be seen by mapping the residues on the structure of Saccharomyces cerevisiae Sly1 

(PDB-ID: 1MQS) (Figure 4.1). Some residue pairs were found to be lying close to 

each other, while some residues were found in groups or clusters of many residues. 

Often individual residue pairs were found lying next to each other. Figure 4.2 shows 

examples of pairs found in close proximity in the structure. An example of residues 

that appear to form a larger group is given in Figure 4.3. Often the residues that 
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formed a group are lying distant from each other in tertiary structure. Some of the 

residues that formed the group, overlapped in such a way that they appeared to form a 

network. 

 
Figure 4.1: Covarying residues with Z-score > 4 marked on structure of Saccharomyces cerevisiae 
Sly1 in complex with the N-peptide of Sed5 (1MQS).  
Sly1 structure is shown in green and the Sed 5-N-peptide structure is shown in orange. Residues 
identified in the intial analysis that have scores above a cut off of Z-score=4 are shown in red color.  
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Figure 4.2: Paired residues with Z-score>4, marked on the structure of Saccharomyces cerevisiae 
Sly1 in complex with the N-peptide of Sed5 (1MQS).  
Sly1 structure is shown in green and Sed5-N-peptide structure is shown in orange. The paired residues 
that are identified in the initial analysis and shown in Table 4.1, are circled and marked in red. Most of 
the paired residues were found next to each other.  

Table 4.1: Top 6 residue pairs with Z-score>4 from Sly1 MIp data.  

Residue1 Residue2 MIp score Z-score 
 I543 S544 0.137 7.95 
 L28 N29 0.134 7.78 
 F404 A405 0.132 7.66 
 S68 V69 0.118 6.84 
 L58 S62 0.116 6.72 
 V539 G540 0.115 6.66 
The numbers in the first two columns indicate the residue position as in Saccharomyces cerevisiae 
Sly1p and the letters indicate the amino acid at that position. 
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Figure 4.3: An example of residues with Z-score>4 appearing as groups, marked on the structure 
of Saccharomyces cerevisiae Sly1 in complex with the N-peptide of Sed5 (1MQS).  
Sly1 structure is shown in green and Sed5-N-peptide structure is shown in orange. The distantly lying 
residues identified in the initial analysis and shown in Table 4.2, are shown in blue. The residues lie 
distant from each other and appear to form a connected network.  

Table 4.2: Table of residues appearing as groups, identified in the initial analysis on Sly1.  

Residue1 Residue2 MIp Score Z-score 
F274 I279 0.102 5.90 
L76 S84 0.095 5.53 

K120 S453 0.094 5.43 
A64 L76 0.085 4.91 
L76 K120 0.082 4.74 
L76 R292 0.079 4.60 
A64 R292 0.077 4.44 
I51 L76 0.075 4.34 
S84 K120 0.0743 4.29 
I279 R292 0.07425 4.28 
S62 L76 0.0731 4.23 

F274 C282 0.0713 4.12 
L76 C282 0.0710 4.08 
S84 R292 0.0705 4.07 
I279 C282 0.0704 4.07 
L76 S453 0.0703 4.06 
A64 I279 0.069 4.02 

The numbers in the first two columns indicate the residue position as in Saccharomyces cerevisiae 
Sly1p and the letters indicate the amino acid at that position. 

 



Chapter 4. Results 

 48 

Covarying positions, as shown by previous studies on other proteins, are usually 

occupying adjacent positions (Gloor et al. 2005; Gobel et al. 1994; Wollenberg & 

Atchley 2000; Tillier & Lui 2003; Fodor & Aldrich 2004; Martin et al. 2005; Fares & 

Travers 2006; Gouveia-Oliveira & Pedersen 2007; Dunn et al. 2008; Marks et al. 

2011; Hopf et al. 2014). In earlier reports often the top high scoring residue pairs were 

found to be lying close to each other and in close proximity to the enzyme’s 

catalytic/substrate-binding site. The earlier studies generally used a cut-off, for 

example Z-score>4.0, and then considered the highest scoring pairs. In my case, using 

a preliminary cut-off seemed to limit the results to certain sites and to neglect some 

other sites, suggesting that it might be advisable to analyze the entire MIp data set 

first. The results obtained during this initial analysis may hint at conformational 

changes and allosteric coupling as discussed in the recent literature (Lockless & 

Ranganathan 1999; Süel et al. 2002; Halabi et al. 2009; Baussand & Carbone 2009; 

Burger & van Nimwegen 2010; Dib Linda 2012b). 

When I started the co-variation analysis on SM proteins, I expected to obtain results 

similar to previously published studies. That is, I expected to find co-varying residues 

pairs in close proximity, possibly also lying close to the SM-Syntaxin binding sites. 

However, the result from my initial covariation analysis on Sly1 appeared to deviate 

from earlier reports and I often observed covarying residues that appeared to from a 

network within the tertiary structure. These deviating findings on the SM protein Sly1 

made it challenging, at first glance, to understand the significance of the obtained MIp 

scores. Apart from few studies (Gloor et al. 2005; Halabi et al. 2009; Burger & van 

Nimwegen 2010; Dib Linda 2012b) occurrence of distantly lying residues was not 

shown or published for large-scale studies. Instead, most of studies were performed 

only on small proteins domains or enzymes. So possibly, networks of co-varying 

positions do occur in more complex proteins like Sly1. Maybe they even can be found 

in many other protein types as well, but the current strategy to analyze the co-variance 

data focuses the attention on co-varying residues in close proximity, which are easier 

to interpret. In fact, it has not been shown that larger networks of co-varying positions 

are indeed important for the structure and function of proteins. As my initial results 

did not appear in accord with published findings, it seemed possible that the current 

approaches to analyze the MIp scores by mostly selecting the most high-scoring pairs 

were not suitable and sufficient to analyze the co-varying positions in more complex 
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proteins like Sly1. I therefore proceeded to device a new analysis approach, as I will 

outline in the following. 

4.2 Development of an improved analysis approach for 
detecting groups of covarying residues and its 
application on the test cases from prior publications 

 
To further investigate and understand the initial observations, an improved analysis 

pipeline was developed to visualize and analyse the networks of covarying residues. 

To test and improve the analysis pipeline, it was first applied on dataset of enzymes 

obtained from prior publications. This was done in order to see whether the developed 

approach helps to have a better look at the entire covariation data and to find out 

whether this approach can detect groups of covarying residues in a known dataset. 

4.2.1 Test case 1: The Methionine amino peptidase1 (MAP1) 

contains two types of covarying positions 

In the following, this approach will be explained along with the example of the 

Methionine amino peptidase (MAP), previously studied for positional coevolution by 

(Gloor et al. 2005). The basis for the analysis was a structure-based alignment of 174 

protein sequences of the Methionine amino peptidase (MAP). The available crystal 

structure of methionine amino peptidase from Escherichia coli (PDB 1C24) was used 

for residue mapping. 

Gloor et al.  had calculated the mutual information (MI) scores between all ungapped 

positions in the alignment. To reduce the influence of entropy on MI, they normalized 

the raw MI scores. The raw MI scores were divided by the joint entropy of the 

position. Then they calculated a Z-score for each normalized ratio and used a Z-score 

cut-off of 4 to identify coevolving positions. They found two kinds of coevolving sets. 

One subsets contained sites that are not near the active sites or the subunit interface. 

Such sites were found to coevolve only with another site in close proximity. The other 

subset comprised of interconnected sites that had Z-score > 4 with more than one 

positions. These sites were found near the active site of the protein and belong to one 

large cluster. 

They had speculated that the latter group of residues might have functional 

importance and might form a network along with some of the conserved residues in 



Chapter 4. Results 

 50 

that region. By contrast the isolated pairs were found to be lying away from the active 

site and on the surface of the protein. They reasoned that these pairs have coevolved 

to maintain the local structure and that thus might be involved in protein folding and 

structural stability. 

Application of MIp on MAP1 protein  

For my analysis, I used MIp on the MAP1 dataset from Gloor et al. 2005. MIp is a 

statistical correction of MI for removing the phylogenetic noise. This resulted in 

residues that were identified in the earlier prediction (Gloor et al. 2005). Some 

additional residues were also found, probably because I did not use the same stringent 

cut-off of Z-score=4. 

A detailed look at the 50 highest scoring residue pairs (Table 4.3) confirmed that 

some of the residue pairs were lying in close proximity, for example residue pairs 6 

and 179, 154 and 158, 122 and 230, and 147 and 187, while some residue pairs were 

lying distant from each other in the tertiary structure, for example, residue pairs 78 

and 202, and 95 and 177 (Figure 4.4). Some residues appeared to form connections 

with many other residues, thus forming groups, for example, residues, 21, 59, 67, 71, 

78, 95, 96, 99,101, 109, 110,112, 177, 201 and 202. 

 
Figure 4.4 : Some of the residues with high MIp score mapped on the structure of Escherichia 
coli MAP1 (1C24 ).  
E.coli MAP1 structure is shown in green and the residues with high MIp scores are shown in red. Some 
of these residues lie close to each other, while some lie distant from each other. 
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Table 4.3 : Top 50 covarying residues ranked according to their MIp scores. 

Residue 1 Residue 2 MIp 
scores 

  Residue 1 Residue 2 MIp scores 
C78 T202 0.1582   T99 F177 0.1095 
K6 E179 0.1560   T99 T202 0.1092 

   Q154 E158 0.1530   L60 F177 0.1088 
G122 L230 0.1470   N95 F201 0.1077 
R147 D187 0.1424   F177 F201 0.1063 
N95 F177 0.1410   T99 S110 0.1058 
N95 S110 0.1392   A21 T109 0.1049 

D187 N192 0.1370   D187 E190 0.1041 
C59 F177 0.1332   F177 T202 0.1037 

M217 K224 0.1304   E148 E190 0.1030 
Y168 T216 0.1301   K67 N95 0.10292 
E190 N192 0.1294   S110 F177 0.10290 
A58 I101 0.1288   I144 E148 0.1010 
Y48 Q53 0.1263   C59 N95 0.1001 
C59 T99 0.1262   K67 F177 0.0995 
N95 T99 0.1230   V239 L248 0.0990 
C78 N95 0.1211   C59 I71 0.0989 
S110 M112 0.1192   C59 C78 0.0983 
N46 L60 0.1186   A121 N95 0.0963 

V140 V240 0.1140   K67 C78 0.09631 
A21 T99 0.1130   G150 T202 0.0960 
I101 S110 0.1129   K67 T202 0.0953 
C78 T99 0.1120   C59 L60 0.0935 
C78 F177 0.1115   E148 D187 0.0922 
N95 T202 0.1104   K67 P142 0.0910 

The numbers in the first two columns indicate the residue position as in MAP1 of Escherichia coli and 
the letters indicate the amino acid at that position. 

Development of a heatmap visualization  

To better understand the initial observations, I wanted to have a detailed look at the 

entire covariation (MIp) dataset rather than looking only at certain high scoring sites. 

Heatmap visualization was thus developed to have a complete picture of the 

distribution of covarying residues within a protein. It is a graphical representation of 

data, where individual pairwise values contained in a matrix generated by covariation 

analysis method, are represented by varying degree of colors. It basically maps the 

covariation matrix values to an appropriate color map and displays it as a symmetrical 

grid. It allows easier comparative analysis and provides a compact view of the 

complete covariation dataset. It also offers to the user a selective choice of color scale, 

with default value option, where red regions (dark red, red, dark orange, orange, light 

orange) indicate a higher covariation scores and blue region (lemon, light green, dark 

green, blue, purple) indicate a lower covariation scores. It thus helps to highlight and 

detect interesting groups or clusters of residue with high covariation scores.  

Note that Liu & Bahar in 2012 also used heatmap to visualize and map the MIp scores 

in their study. This was developed in parallel to my study. Some other studies 
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(Gouveia-Oliveira et al. 2009; Dutheil 2011; Halabi et al. 2009; Ackerman & Gatti 

2011) also used heatmaps like plots to represent the covariation score.  

Heatmap of MIp results from MAP1 protein 

The MIp scores generated for the Map 1 dataset from Gloor et. al. were visualized 

with the help of a heat map (Figure 4.5). This showed that certain hot spots for high 

covarying residue pairs. 

 

Figure 4.5: Heat map of MIp scores of MAP1 dataset from (Gloor et al. 2005). 
The heatmap is arranged as per the residue numbers from the structure of Escherichia coli MAP1 
(1C24 ). The color code bar represents the color corresponding to the range of MIp score. The dark red, 
red, dark orange, orange, represent the high MIp scores and light green, dark green, blue, purple 
represent the low MIp scores. The original heat map can be found in the supplementary data (provided 
on request) that can be enlarged to have a clear view of the residue numbers. 
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Development of a network theory based clustering method 

To further investigate and understand initial observations, I needed to improve the 

analysis such that it would include the groups or networks of residues as well instead 

of only the pairs of residues. However, it is difficult to perform an exhaustive search 

for groups of residues on the entire dataset due to the existence of high number of 

possible combinations within a protein. It is also difficult to examine the role so many 

residues whether occurring in groups or in pairs. Clustering techniques from network 

theory are standard methods that can be used to handle such issues.  

In order to identify groups or networks of strongly covarying residues, hierarchical 

clustering based average linkage methodology was applied on the covariation dataset 

considered as a residue-to-residue graph, with the residues as nodes and the 

covariation scores as edge weight. A stopping criterion was used for the average 

linkage clustering. This step was used to remove weak connections between the 

residues, so that only those residues that have strong covariation were considered. 

Each cluster was then scored and ranked. Clusters can be scored either based on the 

average weighted degree of the cluster or based on the average weight of the cluster 

and then ranked in the decreasing order of the score. In general, average weighted 

degree scoring of the cluster should result in large clusters being ranked higher and 

can be used to identify the groups of covarying residues. Average weight of the 

cluster should result in large clusters being ranked higher and can be used to identify 

the groups of covarying residues. A cut-off was then used to select the top clusters 

that have significant residue-to-residue interactions within the cluster (see Methods 

Section for details).  

A few other studies were performed that also used clustering for detecting the groups 

of coevolving residues within a molecule, however they all used different methods. 

The study carried out by Dutheil & Galtier in 2007 used a tree-based method called 

CoMap to calculate the covariation score and complete linkage clustering to identify 

the groups of coevolving residues. The method they used for identifying the 

coevolving residues was not a sequence-based method as MIp, which was used in the 

current study. Also the complete linkage clustering always results in a complete graph, 

where all the nodes within a graph are connected to each other. Such a cluster would 

not give a clear indication about the strengths of the connection within the cluster. Liu 

et. al. in 2008 used mutual information (MI) and spectral graph partitioning to analyze 
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the correlated mutations in HIV-1 protease. MI method does not account for the 

phylogenetic noise due to shared ancestry of the sequences. Studies have shown that it 

is crucial to distinguish correlation caused by the phylogenetic noise from the 

functional correlation (Dunn et al. 2008; Dutheil 2011). In my approach, I use the 

improved and wieldy used method, MIp, which corrects the phylogenetic bias and has 

been shown to out perform the tree-based methods for identifying coevolving 

positions (Caporaso et al. 2008; Dutheil 2011). Another study performed by Dib & 

Carbone in 2012, used a new combinatorial approach, Blocks In Sequences (BIS), to 

identify clusters of coevolving blocks using their previously developed automatic 

clustering algorithm CLAG (Dib & Carbone 2012) . CLAG (CLusters AGgregation) 

is an unsupervised non-hierarchical clustering algorithm designed to cluster a large 

variety of biological data and to provide a clustered matrix and numerical values 

indicating cluster strength. It allows for a position to belong to several clusters. In my 

approach, I use a hierarchical clustering method that does not allow a position to 

belong to several clusters and they are scored separately based on their the average 

weighted degree score.  

Application of clustering on MAP1 protein 

Average linkage clustering with stopping criteria of 2-σ as and cluster selection cut 

off of 90% was then applied on the MIp data obtained on MAP1 alignment from 

Gloor et.al. This resulted in three clusters. Most of grouped residues were identified 

among the top selected clusters (Figure 4.6, Figure 4.9) along with some new residues. 

The selected top clusters were mapped onto the structure of MAP1 from E.coli. Each 

cluster was restricted to a certain region of the protein. Most of the residues within 

each cluster were in contact or in significant close proximity (Figure 4.7), similar to 

what was shown in the earlier study. However, cluster 1 (shown as red spheres) had 

residues that were lying in close contact as well as distant from each other. In contrast 

to the earlier result, the residues within this cluster appeared to be interconnected and 

form a network of residues. Again similar to what was already shown in Gloor et. al., 

I found some of the residues that were also located in close proximity to the active 

sites.  
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Figure 4.6 : Residues identified in the current analysis and in the previous study obtained for 
MAP1 alignment.  
Linkages between positions in the MAP1 alignment with residue numbers from a representative 
structure E.coli MAP1(1C24). Residues that make contact with their partner are enclosed in rectangular 
boxes; residues at or near the active site are enclosed in ovals, and the hexagonal nodes represent the 
residues for which neither of the other associations holds. Bold lines represent Z-scores greater than 7; 
solid lines are Z-scores between 5 and 7, and dashed lines represent Z-scores between 4 and 5. The top 
number to the right of each line is the Z-score; the bottom number is the distance of closest approach 
between the two residues. The residues identified by the current clustering approach are indicated by 
circles. The residues circled in red are identified in the first cluster, blue in the second cluster and 
orange in third cluster. The figure is modified from (Gloor et al. 2005).  

 
Figure 4.7: Residue from the selected clusters marked on the structure of Escherichia coli MAP1 
(1C24). 
E.coli MAP1 structure is shown in green. The ligands-MPJ & CO are in magenta. Residues in red are 
from cluster1, in blue from cluster2 and in orange from cluster3.  
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Clustering of the MAP1 MIp dataset of MAP1 corroborated the earlier reports by 

Gloor et al. of a network of co-varying positions. They identified these groups by 

simply selecting residue connections with Z-score>4.0. With the clustering approach, 

I found the residues that appeared as groups in the previous analysis as separate 

clusters. The first cluster contained the residues that had been identified as a large 

group, while the second cluster contained the residues identified before as small group. 

The third cluster contained one of the previously identified residue pairs. In contrast 

to the earlier observation (Gloor et. al.), this pair was part of a network with several 

other residues, although it clearly is the highest scoring pair within this cluster (Figure 

4.6). 

However, some high-scoring residue pairs were not included in the topmost clusters 

(Figure 4.8). These residues were not identified because the current cluster approach 

does not rank them at top-level, as it was designed to preferentially detect groups of 

co-varying positions. The approach was thus successful in identifying the groups of 

covarying residues lying near the active site and which are possibly involved in 

functional constrains of the protein (Gloor et al. 2005).  
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Figure 4.8: Heatmap of MIp scores arranged according to the ranking of clusters from the 
analysis on MAP1 dataset from Gloor et al. 2005. 
Selected clusters are marked in Black squares. Residues previously shown as important but not 
identified in current study are shown by black circle. The color code bar represents the color 
corresponding to the range of MIp score. The dark red, red, dark orange, orange, represent the high 
MIp scores and light green, dark green, blue, purple represent the low MIp scores. The original heat 
map can be found in the supplements (provided on request) that can be enlarged to have a clear view of 
the residue numbers. 

Development of a network visualization  

To visualize and analyze the groups or networks of residues obtained from the 

improved analysis pipeline, a network view was also developed. After the clustering, 

each cluster can be represented as a network. In this view, nodes are shown as circles, 

representing the residue. The circle or nodes are connected by an edge representing 

the covariation score between the two residues. The color of the edge represents the 

strength of the covariation score, with red being highest and blue being the lowest. 
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The color and size of the node represents the importance of the residue in terms of the 

average of the score of the edges connected to it. 

Network view of clusters from MAP1 protein 

The clusters obtained on MAP1 can be visualized with the help of the developed 

network view. This cluster had many of the previously identified grouped residues. 

Many new connections were also found in this cluster. The cluster view showed that 

the strongest connection within the cluster is of residue 78 and 202. Although residue 

78 was identified earlier as well, this particular connection was lost in the previous 

analysis. The figure also showed that residue 95 is the strongest node with most 

number of strong connections. This is similar to what was shown before (figure 

drawing) where 95 had many string connections with other residues. 

 
Figure 4.9: Network of residues of cluster 1 from MAP dataset.  

The color of the edge represents the strength of the covariation score. Nodes are represented by circle 
with residues number from the representative structure 1C24. The color of the edge represents the 
strength of the covariation score, shown in the bar on the right, with red being highest and blue being 
the lowest. The color and size of the node represents the importance of the residue in terms of the 
average of the score of the edges connected to it.  

Thus, the cluster approach detected large networks of covarying residues in MAP1. 

Note, however, that the cluster approach did not detect well individual high scoring 
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paired residues. With the help of the example of previously published data, where 

only MI was used, this showed that my approach can identify additional information 

about groups of covarying residues. 

 

4.2.2 Test case 2: UDG (Uracil-DNA glycosylase) data set from Lui 

& Bahar in 2012  

The combinatorial analysis pipeline was applied on a dataset of a DNA repair enzyme, 

uracil-DNA glycosylase (UDG), previously studied for sequence coevolution (Liu & 

Bahar 2012). They showed that coevolving pairs or even groups of coevolving sites, 

distinguished by high MIp score, have uniquely high mobilities (obtained by Gaussian 

network model (GNM) analysis) and are involved in substrate recognition.  The 

dataset had 6214 sequences and 163 sites and a PDB structure from UDG of human 

(PDB ID: 4SKN) was used for mapping the residues.  

Application of MIp on UDG protein 

MIp was initially applied on the dataset without any conservation check and gap 

column removal. A detailed look at the top 50 covarying residue pairs of the UDG 

dataset showed that most of the residues lying adjacent to each other (Table 4.4). 

Some residues had connections with more than one residue and formed small groups, 

such as, residues 131, 132, 133 and 134. Among the top 50 covarying residue pairs, 

none was found to be lying far apart in the structure. 

The complete MIp dataset was visualized with the help of a heat map (Appendix 

figure A.10 (can be provided on request)). The heatmap of MIp scores revealed that 

the covarying residues were located at certain regions in the protein. They did not 

appear to be spread all across the protein but were restricted to certain hot spots 

within the protein. It also revealed that most of the high covarying residues were lying 

adjacent to each other in the sequence of the protein. 
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Table 4.4: Top 50 covarying residues ranked according to their MIp scores from UDG dataset.  

Residue 1 Residue 2 MIp score   Residue 1 Residue 2 MIp score 
189 190 0.207   190 193 0.101 
182 183 0.169   144 152 0.101 
133 134 0.166   168 171 0.101 
132 133 0.162   169 171 0.099 
171 172 0.151   144 268 0.098 
131 132 0.141   282 285 0.097 
185 186 0.138   235 237 0.096 
189 192 0.132   188 194 0.095 
132 134 0.129   236 240 0.095 
169 172 0.126   185 187 0.095 
276 277 0.124   189 193 0.094 
292 293 0.123   174 176 0.094 
209 211 0.123   164 166 0.093 
209 210 0.123   291 292 0.093 
236 237 0.120   285 286 0.092 
281 283 0.120   182 186 0.092 
189 191 0.119   183 186 0.092 
190 191 0.116   181 183 0.091 
168 172 0.116   186 189 0.091 
187 188 0.116   131 133 0.090 
181 182 0.113   185 188 0.090 
190 192 0.112   289 290 0.090 
186 187 0.107   170 172 0.090 
180 181 0.107   176 189 0.090 
208 209 0.106   188 189 0.088 

The numbers in the first two columns indicate the residue position as in USG of human. Residues 
appearing as a group and also identified in the current clustering approach are colored as red.  

Application of clustering on UDG protein 

To identify the clusters of covarying residues, average linkage clustering with the 

stopping criterion of 2-σ and a cluster selection cut off of 90% of the cluster scores 

was then applied on the MIp data. This resulted in five clusters of different sizes. 

Each cluster was found to restricted to a distinct region of the protein (Figure 4.10). 

The residues involved in substrate recognition and interaction with DNA that were 

previously identified were detected by my improved approach as well.   
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Figure 4.10: Residues from the top 90% clusters mapped onto the structure of human UDG 
(PDB id: 4SKN).  
Human UNG structure is shown in green. Residues in red are from cluster1, in blue from cluster2 and 
in orange from cluster3, yellow from cluster4 and magenta from cluster5. The interacting DNA is 
shown in green and light orange. 

 

Each cluster had residues that were lying next to each other as well as distant to each 

other. The near-by and distant residues within each cluster appeared to be connected 

by a chain of covarying residues (Figure 4.11).  The high scoring pairs within the 

cluster were lying next to each other. For example, residues 182 and 183 from cluster 

1 were lying adjacent to each other.  

The authors considered only the list of high MIp scoring pairs in their analysis but 

they also found that some of the high scoring residues were covarying with many 

other residues (Liu & Bahar 2012), thus essentially forming clusters. For example, 

residues 180, 181,182, 183, 185, 186, 187, 188 and 194 (marked in red in the Table 

4.4) have high covariation score with each other and appeared to form a group of 

inter-connected residues. They defined these cluster by observation based on the list 

of high scoring residue pairs. In my analysis, all these interconnected residues were 

identified in one cluster (cluster 1, Figure 4.11). Thus my cluster approach indeed 

specifically identifies co-varying networks within this protein. 
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Figure 4.11: Network of residues of cluster 1 from the UDG dataset.  
The color of the edge represents the strength of the covariation score. Nodes are represented by circle 
with residues number from the representative structure 4SKN. The color of the edge represents the 
strength of the covariation score, shown in the bar on the right, with red being highest and blue being 
the lowest. The color and size of the node represents the importance of the residue in terms of the 
average of the score of the edges connected to it.  

 

The selected clusters are shown in a heatmap that is organized according to the rank 

of the clusters (Figure 4.12). The heatmap shows that the selected clusters had the top 

50 high scoring residues embedded within them. Some previously identified residue 

pairs involved in DNA interaction and having high MIp score, such as 276 & 277, 

278 & 279 (Liu & Bahar 2012), were not identified by the presented approach. The 

heat map (Figure 4.12) showed that even though these sites had a high MIp score, 

they did not form larger networks.  
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Figure 4.12 : Heatmap of MIp scores arranged according to the ranking of clusters from the 
analysis on the UDG dataset.  
Selected clusters are marked in Black squares. Residue pairs previously shown as important but not 
identified in current study are shown by black circle. 

Here using two test case examples from previously published data, I showed that my 

approach could identify clusters of covarying residues. The earlier studies did suggest 

the existence of such groups by inspecting the list of high-scoring residue pairs in a 

non-automated fashion. My approach of using a computational method is able to 

describe the entire cluster of the covarying residues. 

 

 



Chapter 4. Results 

 64 

4.3 Application of the improved analysis pipeline on SNAP 
proteins  

 
I next applied the improved analysis pipeline on another protein of the vesicle fusion 

machinery. For this I selected the SNAP protein family as a test case, because this 

protein family is structurally and functionally different from SM proteins. SNAP 

proteins participate in the dissociation of the SNARE complex together with NSF 

ATPase. As already mentioned in Introduction, they act as an adaptor protein between 

NSF and SNARE complexes. Three molecules of SNAPs, along with one SNARE 

complex and one NSF hexamer form a complex that drives the disassembly of the 

SNARE complex. Sequences of SNAP proteins have also been collected and analyzed 

previously in my group. The phylogenetic analysis of SNAP has shown two distinct 

groups of SNAPs with α-SNAP and β-SNAP in one group and γ-SNAP in another 

group. γ-SNAP was found to be lost in Fungi except in some more basal Fungi and β-

SNAP was shown to be a duplication of α-SNAP in Vertebrates (Kienle 2010). The 

structure of γ-SNAP from Danio rerio has a fold similar to the structure of 

Saccharomyces cerevisiae α-SNAP, Sec17. The monomer A of γ-SNAP aligns with 

Sec17 with a root mean square deviation (rmsd) of 3.4Å (Bitto et al. 2007). The N-

terminal portion and the C-terminal portion of γ-SNAP align well with the 

corresponding regions of the Sec17, while the poor overall alignment of both 

structures is due to difference in the twist from the middle region of γ-SNAP (Bitto et 

al. 2007).  

SNAPs have several tetra-tricopeptide repeats (TPR). TPR repeat containing proteins 

are thought to be rigid and not undergoing large conformational changes but they do 

have some flexibility for ligand binding (Cortajarena & Regan 2006). SM proteins, on 

the other hand, are globular and have two binding sites for one binding partner. Thus, 

SNAP proteins are different from enzymes and are a more static example than SM 

proteins. 

The alignments were generated and were further refined, by using an iterative block 

strategy (see the Method Section for details). Any column that had more than 10% 

gaps was removed from the alignment. Columns with more than 80% conservation 

were also not considered in the analysis (Figure 4.13). The resulting data set for the 

entire SNAP family contained 740 sequences and 271 columns. The data set for α-
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SNAP had 521 sequences and 278 columns. The crystal structure of Sec17 (homolog 

of α-SNAP) from Saccharomyces cerevisiae (PDB 1QQE) was used for residue 

mapping. The data set for the γ-SNAP had 219 sequences and 280 columns and the 

crystal structure of γ-SNAP of Danio Rerio (PDB 2IFU) was used for residue 

mapping. 

 

Figure 4.13:Sequence logo of the entire SNAP alignment. 
The logo is arranged according to the sequence of Sec17, before removing 90% gapped columns or 
80% conserved columns. The logo is arranged to show the structural elements, N-terminus, C-terminus, 
and different TPRs.   

Correlated Mutation analysis of SNAP proteins 

MIp scores were calculated for the alignment of the entire SNAP family, was well as 

for separate alignments of the two subfamilies α-SNAP and γ-SNAP. For the entire 

SNAP family most of the highly covarying residues were found in the N- and C-

terminal regions. Only few were found in the central TPR region (Figure 4.14). 

Overall, most pairs with positive scores were lying near or around the diagonal in the 

heat map (Figure 4.14, Appendix Figure-A.25, Figure-A.46 (Appendix figures can be 

provided on request)). This indicates that most of the residues score highly with 

neighboring residues in the sequence. 
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Comparable results were obtained for the two subfamilies. The major difference 

between the two subfamilies was that for the γ-SNAP subfamily residues in the 

central TPR region did not score as high as for the α-SNAP subfamily. 

Figure 4.14: Heat map of MIp scores from the entire SNAP alignment. 
The heatmap is arranged as per the residue numbers from the structure of Saccharomyces cerevisiae 
Sec17.The color code bar represents the color corresponding to the range of MIp score. The dark red, 
red, dark orange, orange, represent the high MIp scores and light green, dark green, blue, purple 
represent the low MIp scores. The original heat map can be found in the supplements that can be 
enlarged to have a clear view of the residue numbers. The structural element are marked on the top of 
the heatmap; H1, H2… : different helices, L1.L2…: loops, N-ter: N-terminal region, TPRs: tetra-
tricopeptide repeats, C-ter: C-terminal region. The original heat map can be found in the supplements 
(provided on request) that can be enlarged to have a clear view of the residue numbers. 
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As the results for the entire family and the two subfamilies were very similar, only the 

(representative) results of α-SNAP analysis will be discussed further in detail. 

Table 4.5: Top 50 covarying residues ranked by their MIp scores from the α-SNAP dataset.  

The numbers in first two columns indicate the residue position in Sec17 and the letters indicate the 
amino acid at that position. The residue pairs lying in close contact to each other in the tertiary 
structure are colored orange and the residue pairs lying away from each other are colored in pink.  
 
A closer inspection of the 50 highest scoring covarying residue pairs of the α-SNAP 

analysis revealed that some of the residue pairs are lying next to each other (Table 

4.5). The neighboring residues 3 and 4 were found as the highest scoring pair. 

Similarly, the high-scoring pairs 200 & 204, 24 & 25, 30 & 31, 275 & 279, 120 & 140 

are lying close to each other in the tertiary structure (Figure 4.15). Some high-scoring 

pairs were found to be further away from each other though, for example, the residue 

pairs 53 & 194, 119 & 162, 2 & 14, 198 & 266, 85 & 114, and 4 & 48 were lying 

distant from each other (Figure 4.16). Some residues appeared to be co-varying 

with many other residues thus forming groups of covarying residues, for example, 

residues 1, 3, 4, 6, 7, 8, 9 and 10. 

 
 
 
 
 
 
 
 

Residue1 Residue2 MIp 
Score 

  Residue1 Residue2 MIp Score 
D3 P4 0.1387    L198 F266 0.0906 
 D200 K204 0.1291    C260 L291 0.0904 
 D229 K273 0.1278    K85 R114 0.0902 
 L24 F25 0.1266    L53 N118 0.0894 
 S30 Y31 0.1197    Q112 1N18 0.0893 
 T275 K279 0.1161    D3 L7 0.0884 
 K120 C140 0.1149    Q285 Q286 0.0881 
 E6 K9 0.1138    IO284 Q285 0.0875 
 K261 N265 0.1125    T275 N278 0.0875 
 E6 L8 0.1112    P4 R48 0.0869 
 I274 N278 0.1104    N278 K279 0.0866 
 D74 R110 0.1066    K9 R10 0.0862 
 D171 G172 0.1057    Q150 C164 0.0859 
 L53 S194 0.1033    R268 K271 0.0853 
 L291 L292 0.1020    K68 N102 0.0851 
 M1 P4 0.0992    V5 K14 0.0850 
 K14 Y31 0.0986    N78 R114 0.0849 
 E6 L7 0.0981    I274 T275 0.0848 
 F119 I162 0.0965    N54 L55 0.0847 
 E6 R10 0.0959    R114 A155 0.0842 
 Q209 T221 0.0954    L222 L241 0.0842 
 R50 L53 0.0936    D229 N231 0.0832 
 I162 K163 0.0926    S188 A211 0.0832 
 M1 D3 0.0911    N118 S194 0.0830 
 S2 K14 0.0909    D65 K68 0.0830 
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Figure 4.15: Some of the residue pairs from the top 50 covarying residue pairs of the α-SNAP 
analysis. 
The residues are marked on the tertiary structure of Saccharomyces cerevisiae α-SNAP (Sec17, PDB 
code 1QQE). The Sec17 structure is shwon in gren and the residues that are lying close to each other in 
the structure are represented in orange. 
 

 
Figure 4.16: Some of the residue pairs from the top 50 covarying residue pairs of the α-SNAP 
analysis. 
The residues are marked on the tertiary structure of Saccharomyces cerevisiae α-SNAP (Sec17, PDB 
code 1QQE). The residue pairs that are lying distant from each other in the structure are represented in 
same color. 

Clusters of covarying residues in α-SNAP protein 

In order to identify the groups of covarying residues, average linkage clustering of the 

MIP data was carried out. Average linkage clustering with stopping criteria of 2-σ of 

the MIp score, resulted in 49 clusters, of which, six clusters were above the cluster 

selection cut-off of 80%. 
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The selected clusters are shown in a Heat-map that is organized according to the rank 

of the clusters (Figure 4.17). The heat map showed that the selected clusters had most 

of the high-scoring residues embedded within them (Figure 4.17). Note that few high-

scoring residue pairs were not included in the top 80% clusters.  

Figure 4.17: Heatmap of MIp scores from α-SNAP alignment arranged according to the ranking 
of clusters. 
Selected clusters are marked in Black squares. 
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Figure 4.18: A magnified portion of heat map MIp scores from α-SNAP alignment arranged 
according to the ranking of clusters. 
The magnified view is showing the first cluster identified after applying the average linkage clustering, 
scoring and ranking of the clusters.  

To evaluate and illustrate the selected (top 80%) covarying residue networks, the 

residues from the top 80% clusters were mapped onto the structure of Saccharomyces 

cerevisiae α-SNAP, Sec17 (Figure 4.19).  This revealed that each cluster is restricted 

to a certain region of the protein. 

 
Figure 4.19: Residue from the selected clusters marked on the structure of Saccharomyces 
cerevisiae α-SNAP (Sec17, PDB code 1QQE).  
The structure 1QQE is in green. Red residues represent the first cluster, blue residues represent the 
second cluster, orange residues represent the third cluster, yellow residues represent the fourth cluster, 
magenta residues represent the fifth cluster, light pink represents residues form sixth cluster. 

All the residues of cluster 1 are localized to the N-terminal region that encompasses 

the first helix and a loop that is thought to be involved in membrane attachment. All 

the residues of cluster 2 and cluster 4 from the analysis of α-SNAP are in the middle 

TPR region. The residues in this cluster lie in TPR 1, 2, 3 and 4. The residues from 
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cluster 3, 5 and 6 all are located at the C-terminal region and lie close to each other. 

The highest scoring pair of the entire MIp dataset residue 3 and 4 is a part of cluster 1. 

Some other residues with high MIp scores within this cluster are also lying close to 

each other. However, some other residue pairs, also with high scores, such as 8 & 22, 

30 & 2, 31 & 2, 15 & 3, are lying further away in the tertiary structure. The cluster 

analysis thus helped to identify networks of residues. 

Figure 4.20 shows a network view of this cluster. Many of the residues from the top 

50 scoring pairs that were found to be lying as isolated pairs (Figure 4.15) and the 

residues that were found to be lying distant from each other (Figure 4.16) were 

clustered together into one cluster. For example, residues 3 & 4, 24 & 25 and 30 & 31, 

appeared as pairs (Figure 4.15) and residues 2, 5 and 14 were found to be lying 

distant from each other (Figure 4.16). All of these residues were clustered together 

into cluster 1 by the cluster analysis. Residues 3 and 4 have the strongest connection 

as they have the highest covariation score, however, they appeared to be less 

connected or connected by very low scores to most other residues. Residue 14 

appeared to be a stronger node, with high number of strong connections. Distribution 

of amino acids from this cluster showed that most of the identified residues in this 

region are hydrophobic and polar or negatively charged (Figure 4.21). The 

hydrophobic and polar amino acids usually have an important role in protein 

folding and structural stability and also mediate binding to the substrates or other 

proteins. This suggests that the residues from this cluster might have some structural 

and functional importance. 

Interestingly, when the stopping criterion for clustering was increased to 3σ the 

cluster 1 fell apart into three distinct clusters of 7, 5 and 3 residues (Figure 4.22). 

Thus, within this cluster there were small groups of highly covarying residues that 

had residues that appeared to be lying close or adjacent to each other. These groups 

were connected together by some low scoring connections thereby connecting the 

distantly lying covarying residues. This showed that selecting the cluster stopping 

criteria is very important for identifying the clusters of significant size. Higher cluster 

stopping criteria (3σ, 4σ) results in smaller clusters.  
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Figure 4.20: Network of residues of cluster 1 from α-SNAP analysis. 
The color of the edge represents the strength of the covariation score. Nodes are represented by circle 
with residues number from the representative structure of Sec17. The color of the edge represents the 
strength of the covariation score, shown in the bar on the right, with red being highest and blue being 
the lowest. The color and size of the node represents the importance of the residue in terms of the 
average of the score of the edges connected to it.  

 
Figure 4.21: Helical wheel view of residues of cluster 1 from α-SNAP analysis. 
The helical wheel represents the helix by a projection of the Cα backbone structure down the helix axis. 
Aliphatic/hydrophobic residues are shown as blue squares, polar or negatively charged or hydrophilic 
residues as red diamonds, positively charged residues as black octagons and special cases as purple 
letters. 
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Figure 4.22: Network view of three different clusters from α-SNAP analysis. 
Average linkage clustering with stopping criteria of 3σ on the MIp scores from α-SNAP, breaks the 
cluster1 into three different clusters. The three clusters have residues same as in the cluster 1 obtained 
at stopping criteria of 2σ. Color-codes are same as in Figure 4.20. The residues within the subclusters 
appear to be lying adjacent or close to each other. 

Similar observations were noted for other clusters as well (Appendix Figure A.33-

A.38 (can be provided on request)). The clustering thus helped to identify the 

networks of covarying residues occurring within the protein.  

Clade-specific analysis of covarying residues of α-SNAP 

The covariation of the highest scoring pair residue 3 and 4 occurring along the 

different lineages was mapped on the phylogenetic tree of the α-SNAP protein. These 

residues showed a change in pattern of substitution according to the major branches of 

the tree, i.e., Fungi, Viridiplantae, Metazoa and others (Figure 4.23).  

A previous phylogenetic analysis of SNAP proteins carried out in my group showed 

that SNAP proteins underwent duplication to α- and β-SNAP in vertebrates (Kienle 

2010). The distribution of the highest scoring pair revealed that in α- and β-SNAP of 

vertebrates, the residues 3 & 4 had EA, while in rest of the metazoans or invertebrates 

they had RA, RG, KA and KG. A strong change of one residue from being positively 

charged (K/R) to negatively charged (E) might relate to specialization specific to 

vertebrates. Examining this distribution further revealed that the branches closer to 

metazoans like Capsaspora also had KA at these two residue positions, which was a 

pattern similar to the metazoan invertebrates. Thus, Capsaspora is very similar and 

closer in evolution to the metazoans.  

In other branches, the highest scoring pair residue 3 and 4, varied from Q-A in Basal 

Fungi, P-A and Q-G in Basidiomycota, D-P in Ascomycota and R-G, K-G, R-A, K-A 

in Viridiplantae. In most of the other eukaryotic lineages, this pair varied from K-A, 
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R-A, E-A, R-G, Q-A and D-A, E-A, D-I, E-I, corresponding to further branching 

(Table 4.6). Some other eukaryotic lineages, like Kinetoplastida, Entamoebidae, 

Mycetozoa, Stramenophiles, Amoebozoa, Rhodophyta, Haptophyceae, Apusozoa, 

Rhizaria, Jakobida showed pattern similar to metazoans, i.e., K-A, R-A or K-G, R-G. 

Alveolata showed a different pattern as D-A, E-A, D-I, E-I, T-P, N-P or N-A. 

Similarly some other lineages like Diplomonadida, Euglenozoa, Malawimonadidae, 

Cryptophyta, Heterolobosea showed Q-A, S-A pattern at these residue positions. 

Similar substitution pattern was observed for high scoring residues in the other 

clusters. Thus, the identified residues showed clade-specific covariation. 

 

Figure 4.23: Highest scoring pair 3<--> 4 from cluster 1 mapped on phylogenetic tree of α-SNAP. 
The colors represent the changes in distribution of the covarying amino acid pairs. The branches that 
have same amino acid distribution are colored in same color and the ones where the amino acid 
distribution changes are colored differently. The detail of distribution of covarying amino acids in other 
branches for the highest scoring pair 3<->4 is shown separately in the Table 4.6. 
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Table 4.6: Distribution of highest scoring pair 3<--> 4 from cluster 1 of α-SNAP.  

Branches Residue 3 Residue 4 
Kinetoplastida K/R G/A 

Kinetoplastida duplication S A 
Entamoebidae K/R A 

Mycetozoa K/R A 
Stramenophiles K/R G/A 

Amoebozoa K/R I/G 
Rhodophyta R I 

Haptophyceae K A 
Apusozoa K A 
Rhizaria K A 
Jakobida K A 

Choanoflagellata K G/A 
Diplomonadida Q A 

Euglenozoa Q A 
Malawimonadidae S A 

Cryptophyta Q A 
Heterolobosea E/Q V/A 
Apicomplexa D/E A/I 

Ciliophora K G 
Chromera velia/Perkinsea N A 

The rows are colored as per the changes in the other branches. The branches that have same amino acid 
distribution are colored in same color and the ones where the amino acid distribution changes are 
colored differently. 

 

4.4 Application of the improved analysis pipeline for intra-
protein analysis of SM proteins  

 
As outlined earlier (in section 4.1), on performing the initial co-variation analysis on 

the SM protein, Sly1, several high-scoring residue pairs were found to be lying distant 

from each other and some covarying residues also appeared to form networks within 

the tertiary structure. To be able to further analyze the MIp data on Sly1, novel tools 

were developed as outlined in the previous sections. 

Correlated Mutation analysis of Sly1  

The heatmap of MIp scores of Sly1 (Figure 4.27) revealed several regions with 

several high-scoring residue pairs. Although several covarying residues were 

concentrated in the N-terminal region of subdomain d1, and in some parts in the 

subdomains d2 and d3, many covarying residues were found to be spread all over the 

sequence. This is consistent with initial observation that high-scoring co-varying 

residues were found to be located all over the structure of the protein (Figure 4.1). 
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Comparison with analysis on enzymes (MAP & UDG) and 

SNAP protein 

When one compares the heatmaps of the MIp scores of Sly1 with that of the other 

proteins analyzed in this study (Map1- Figure 4.5, UDG-Figure in Appendix-A.10, α-

SNAP – Appendix-A.23 (Appendix figures can be provided on request)) a different 

pattern can be noticed immediately. While many of the high-scoring pairs are well 

distributed in the heatmap of the Sly1 protein family, the other protein families often 

contain distinct hotspots of co-varying positions. As outlined before, their covarying 

residues are restricted to certain regions of the protein (MAP1- Figure 4.7 and UDG- 

Figure 4.10) (α-SNAP- Figure 4.19), while many of the covarying residues were 

found to be lying in different regions of Sly1. 
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Figure 4.24: Heat map of MIp scores of Sly1 data. 
The heatmap is arranged as per the residue numbers from the structure Saccharomyces cerevisiae Sly1 
(1MQS). The color code bar represents the color corresponding to the range of MIp score. The dark red, 
red, dark orange, orange, represent the high MIp scores and light green, dark green, blue, purple 
represent the low MIp scores. The structural element are marked on the top of the heatmap; d1: domain 
d1, d2a: domain d2a, d3: domain d3, d2b: domain d2b. N-terminal motif: motif that binds to the N-
peptide of the Syntaxin. The original heat map can be found in the supplements (provided on request) 
that can be enlarged to have a clear view of the residue numbers. 

Clusters of covarying residues in Sly1 protein 

Average linkage clustering was then applied on the MIp dataset. A stopping criterion 

of 2-σ and a cluster selection cut-off of 90% resulted in top four clusters being 

selected. As described in the Method section 3.6, the cut offs were selected based on 

the simulation of the Sly1 dataset. In Fig. 4.1.3-2, the selected clusters are shown in a 

heat-map that is organized according to the rank of the clusters. In the heat-map it can 
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be seen that most of the high scoring residues (shown by red) were embedded within 

the selected top 90% clusters.  

Figure 4.25: Heatmap of MIp scores from the Sly1 dataset, arranged according to the ranking of 
clusters. 
Selected clusters are marked in Black squares. 

 

Each cluster was then analyzed to check the distribution of residues within them. 
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Figure 4.26: : Residue from the top 90% clusters marked on the structure of Saccharomyces 
cerevisiae Sly1 (1MQS).  
Sly1 structure is shown in in green and Syntaxin5-N-peptide structure is shown in grey. Red residues 
represent the first cluster, blue residues represent the second cluster, orange residues represent the third 
cluster, yellow residues represent the fourth cluster. 

The residues from cluster 1 (shown in red in Figure 4.26) were located in the domain 

d3, including helix-13 and helix-14, in the domain d2 and in the Sly1 specific loop 

region. The highest scoring pair, residues 543 & 544 were lying adjacent to each other 

(Figure 4.27), in the 3D structure. Some other pairs, such as 326 & 354 were 12Å and 

354 & 579 were 34Å apart.  

In order to have a clear detail view of the cluster, I removed the low-scoring edges 

from this cluster by putting a cut off of 0.09 and visualizing only the connections 

having MIp scores above this cut off (Figure 4.28). This resulted in two major sub 

clusters and many individual pairs. One subcluster contained all the connections with 

near-by lying residues, for example, 541, 542, 543, 544, 550 & 551 (Figure 4.29). 

The other subcluster had some distantly lying residues pairs, for example, 354 & 579 

and 354 & 275 (Figure 4.30). This suggested that the distantly lying residues of 

cluster 1 were connected to each other by other low scoring pairs and thus appeared to 
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form a chain in the 3D structure.  

 
Figure 4.27: Network view of cluster1 of the Sly1 dataset. 
The color of the edge represents the strength of the covariation score. Nodes are represented by circle 
with residues number from the representative structure 1MQS. The color of the edge represents the 
strength of the covariation score, shown in the bar on the right, with red being highest and blue being 
the lowest. The color and size of the node represents the importance of the residue in terms of the 
average of the score of the edges connected to it. Enlarged view can be found in the supplementary 
data (provided on request). 

 
Figure 4.28: Network view of cluster1 of the Sly1 dataset after removing low scoring edges. 
The color codes are same as in Figure 4.31. The black box around the edge scale indicates cutoff used 
to visualize the high scoring connections. 
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Figure 4.29: Network view of first group of high scoring residues from cluster1 of Sly1 dataset. 
Only residues connected by edge weight >0.090 are shown. The group shows residues lying close to 
each other. The numbers above the edges indicate the side chain distances between the residues. The 
color code is same as in Figure 4.27.  

 
Figure 4.30: Network view of second group of high scoring residues from cluster1 of Sly1 dataset. 
Only residues connected by edge weight >0.090 are shown. The group shows residues lying close as 
well distant from each other. The numbers above the edges indicate the side chain distances between 
the residues. The residue 379 is missing is the structure and so distance value is not indicated for it. 
The color code is same as in Figure 4.27. 
 
When I mapped the residues from the two subcluster onto the structure of Sly1 

(Figure 4.34), the residues from the first subcluster were found to be located on the 

Sly1 specific loop region and the residues form the second cluster were located on the 

two hairpin helices of domain d3a and in domain 2. A recent crystal structure of 

Vps33 revealed it to be interacting with the SNARE motif of Qa-SNARE as well as 

the R-SNARE (Baker et. al. 2015). The two hairpin helices from the domain d3 
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region were found to involved in this interaction. This study suggested that SM 

proteins serve as the assembly platform for the SNARE complex formation. The 

residues from the identified second subcluster were found to be lying in the analogous 

R- and Qa-SNARE interacting region in Sly1. Different configurations of the hairpin 

helix region as observed from the different crystal structure of Munc18a (Burkhardt et 

al. 2008), Munc18b (Hackmann et. al. 2013) and Munc18c (Hu et. al. 2007) have also 

suggested that there is a conformational change in SM protein that could be involved 

in the opening of syntaxin (Baker et. al. 2015). The Sly1 specific loop consisting of 

α20 and α21 helices is known to be a Rab GTPase interaction site for Sly1. Point 

mutation (E532K) in α20 and deletion mutation of most of the loop has shown to 

suppress the requirement of Rab Ypt1 and Ypt6 (Dascher et al. 1991, Bracher & 

Weissenhorn 2002). This loop is also thought to be acting as a lid regulating the 

exposure of the R-SNARE binding site (Baker et. al. 2015). This suggested that the 

two important regions of Sly1, involved in (either simultaneous or subsequent) 

interactions with different proteins had high scoring covarying residues. However, 

low scoring and distantly lying covarying residues connected the two regions. The 

covarying residues thus appeared to form a chain within the 3D structure of Sly1 

connecting different important regions of the protein. 

 
Figure 4.31: Residue from the two subclusters marked on the structure of Saccharomyces 
cerevisiae Sly1 (1MQS).  
Sly1 structure is shown in in green and Syntaxin5-N-peptide structure is shown in grey. Red residues 
represent the first subcluster, pink residues represent the second subcluster. 

 
Similar observations where many high-scoring residue pairs that appeared to be 
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forming chains in the 3D structure and were spread within the protein were made for 

the residues from clusters 2 and cluster 4. The residues from cluster 3 were found to 

be restricted only in domain d1 and consisted of closely lying residues. Clustering 

approach thus helped to identify the groups of covarying residues occurring within the 

protein. 

 

4.5 Application of the improved analysis pipeline for inter-
protein analysis of Sly1 and Syntaxin 5 

 
To identify the networks of functionally and structurally important residues involved 

in maintaining the interaction between the SM protein Sly1 and its partner Syntaxin 5, 

MIp followed by clustering was applied on the alignments of Sly1 and Syntaxin 5. 

Sly1 and Syntaxin 5 were chosen out of all other SM-Syntaxin pairs as they occur as 

singletons in most species. First, individual alignments of Sly1 and Syntaxin5 proteins 

were generated, refined, and processed as outlined before. The two alignments were 

then concatenated in order to have the same number and order of species and 

sequences.   

Before performing the inter-protein analysis on the concatenated alignment of Sly1 

and Syntaxin 5, intra-protein analysis was also performed on the Syntaxin 5 dataset, 

Intra-protein analysis of Syntaxin 5 

Correlated mutation analysis by MIp on Syntaxin 5 dataset alone showed high scoring 

residues to be lying at the N-terminal region, Habc domain, in the linker between 

Habc and SNARE domain, SNARE domain and transmembrane region (Figure 4.32). 

Again, the high scoring pairs were found to be spread all over the protein. The highest 

scoring pair was V339-N340 that is part of the transmembrane (TM) region of 

Syntaxin 5. 

The average linkage clustering with stopping criteria of 2-σ of the MIp scores and 

cluster selection cut off of 90% resulted in five clusters with different numbers of 

residues for Syntaxin 5 (Figure 4.33). Clusters with residues lying close to each other 

as well as away from each other were found (Figure 4.34). The highest scoring pair 

residues 339 & 340 were lying adjacent to each other and were lying in the TM region 

of the protein. The cluster 1 had residues in Ha, Hb and Hc helices. Cluster 2 had 
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residues in hc helix, SNARE motif, TM region and in the linker between Habc 

domain and the SNARE motif. Cluster 3 had residues in Hc helix, SNARE motif, in 

the linker between Habc domain and the SNARE motif and one residue in the N-

terminal region. Cluster 4 had residues in SNARE motif and TM region. Cluster 5 had 

residues in Hb helix, SNARE motif and TM region. Thus the clusters had residues 

lying in different regions of proteins that appeared to form netwroks connecting these 

regions.

 

Figure 4.32: Heat map of the MIp scores of the Syntaxin 5 data. 
The heatmap is arranged as per the residue numbers from the structure Saccharomyces cerevisiae Sed5. 
The color code bar represents the color corresponding to the range of MIp score. The dark red, red, 
dark orange, orange, represent the high MIp scores and light green, dark green, blue, purple represent 
the low MIp scores. The structural element are marked on the top of the heatmap; N-ter: N-peptide of 
the Syntaxin 5, Ha: helix Ha, Hb: helix Hb Hc: helix Hc, Linker: linker between Habc and NSARE 
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domain, SNARE: SNARE domain, Tm: transmembrane domain. The original heat map can be found in 
the supplements (provided on request) that can be enlarged to have a clear view of the residue numbers. 

 

 
Figure 4.33: Heatmap of the MIp scores of the Syntaxin 5 dataset, arranged according to the 
ranking of clusters. 
Selected clusters are marked in Black squares 
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Figure 4.34: Residue from the top 90% clusters marked on the homology model of the Sly1/Syx5 
structure. 
The structure is obtained by overlapping 1MQS of Sly1, homology modeled structure of Syntaxin 5 on 
SSO1 and 3C98 of Munc18-1 in complex with Syntaxin1. Sly1 structure is shown in green and 
Syntaxin5 structure is shown in grey. Color code same as in Figure 4.49. As certain ergions like TMR, 
are missing in the homoly modelled structure, some fo the covarying residues occuring in the missing 
regions are not shown in the figure. 
 
Correlated Mutation analysis of concatenated alignment of 

Sly1 and Syntaxin5 

In Figure 4.35, the heat map of the MIp scores for the concatenated alignment of Sly1 

and Syntaxin5 is shown. The highest scoring pair was an intra-protein residue pair, 

V339-N340 of Syntaxin5. In fact, most of the high-scoring pairs were intra-protein 

residue pairs either from Sly1 or Syntaxin5 protein. Overall, the covariation of residue 

pairs within a protein was stronger than between the two proteins. However, some 

high-scoring pairs were also found between the two proteins, for example, residue 69 

of Sly1 & 175 of Sed5, 381 of Sly1 & 171 of Sed5, 616 of Sly1 & 325 of Sed5, etc. 
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Figure 4.35: Heatmap of MIp scores of the concatenated alignment of Sly1 and Syntaxin5 
proteins.  
The heatmap is arranged as per sequence number of the concatenated alignment of Sly1 and Syntaxin5. 
The concatenated alignment had 301 sequences and 530 columns of Sly1 and 222 columns of Syntaxin 
5.The color code bar represents the color corresponding to the range of MIp score. The dark red, red, 
dark orange, orange, represent the high MIp scores and light green, dark green, blue, purple represent 
the low MIp scores. The portions of the heatmap representing the intra-protein MIp scores of each 
protein and inter-protein MIp scores are demarcated. The original heat map can be found in the 
supplements (provided on request) that can be enlarged to have a clear view of the residue numbers. 

Clusters of covarying residues within and between the Sly1 

and Syntaxin5 proteins 

To identify groups of strongly covarying residues, average linkage clustering was 

applied on the MIp dataset (figure of heatmap arranged by cluster ranking in 

Appendix A.180 (can be provided on request)). The average linkage clustering with 

stopping criteria of 2-σ of the MIp score and cluster selection cut off of 90% resulted 
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in nine clusters with different numbers of residues from Sly1 and Syntaxin 5. The 

residues from the selected clusters were mapped on the combined structure (Figure 

4.36). 54 residues of Syntaxin 5 were found to be co-varying with 69 residues of 

Sly1. . 2 residues in domain Ha, 10 in domain Hb, 9 in domain Hc, 15 in SNARE 

motif, 5 in Linker between Habc & SNARE motif, 1 in N-terminus and 8 in 

transmembrane (TM) domain of Sed5 were found covarying with Sly1. One residue 

was found in region between domain Ha and domain Hb, two residues were found in 

region between SNARE motif and TM domain and one residue was found in region 

between domain Hb and domain Hc. Similarly, 9 residues in domain d1, 9 residues in 

domain d2a, 3 in domain d2b, 48 in domain d3 domains of Sly1 were found covarying 

with residues in Sed5. However, 27 residues in domain d1 of Sly1 were found to be 

having intra-protein covariation, thus covarying with other residues in domain d1 of 

Sly1. Two-third of the identified inter-protein residues were located in regions known 

to interact with Sly1, i.e. the Habc domain and the SNARE motif of Syntaxin 5. The 

residues in the clusters were lying distant from each other and appeared to form a 

network of connected residues.  

 

The inter-protein clusters had many residues that were also identified in the clusters of 

the intra-protein analysis of Sly1 and Syntaxin5. For example, cluster 1 from intra-

protein analysis of Sly1 had many residues that were also identified in the cluster 2 of 

inter-protein analysis of Sly1 with Syntaxin5. 
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Figure 4.36: Residue from the top 90% clusters marked on the structure obtained by homology 
model of the Sly1/Syx5 structure. 
Sly1 structure is shown in green, the structure of cytoplasmic domain of Syntaxin5 is shown in grey 
and the N-peptide of Syntaxin5 is shown in orange. The cytoplasmic domain of Syntaxin5 containing 
the Habc and SNARE domain was homology modeled on the crystal structure of the Syntaxin1 from 
rat by using Phyre2 server (Mezulis et al. 2015). The resulting structure was then overlapped with 
1MQS of Sly in complex with N-peptide of Syntaxin5 and 3C98 of Munc18-1 in complex with 
Syntaxin1, using Pymol, so as to obtain an approximate position for the cytoplasmic domain of 
Syntaxin5. In the model of the Sly1/Syx5 complex, the hairpin helices of Sly1 and the Habc domain of 
Syx5 clash sterically. Red residues represent the first cluster, blue residues represent the second cluster, 
orange residues represent the third cluster, yellow residues represent the fourth cluster, magenta 
residues represent the fifth cluster, light pink represents residues form sixth cluster, light blue represent 
the sventh cluster, light brown represents the eigth cluster, dark brown represents the ninth cluster.2 
residues in domain Ha, 10 in domain Hb, 9 in domain Hc, 15 in SNARE motif, 5 in Linker between 
Habc & SNARE motif, 1 in N-terminus and 8 in transmembrane (TM) domain of Syntaxin5 were 
found covarying with Sly1. 1 residue was found in region between domain Ha and domain Hb, 2 
residues were found in region between SNARE motif and TM domain and 1 residue was found in 
region between domain Hb and domain Hc. Similarly, 9 residues in domain d1, 9 residues in domain 
d2a, 3 in domain d2b, 48 in domain d3 domains of Sly1 were found covarying with residues in 
Syntaxin5. However, 27 residues in domain d1 of Sly1 were found to be having intra-protein 
covariation, thus covarying with other residues in domain d1 of Sly1. 
 

A detailed look on the cluster 2 from the inter-protein analysis of Sly1 and Syntaxin5 

showed that many residues were lying in the two hairpin helices of domain d3a, in 

domain d2 and in the Sly1 specific loop regions of Sly1 and 4 residues were in the 

SNARE motif of Syntaxin5 (Figure 4.37). The inter-protein covarying residues in 

Syntaxin5 were lying at the N- and C-terminal region of SNARE motif (Figure 4.38). 

Most of them were lying adjacent to the conserved layered residues. Residue 258 was 

lying at the beginning of the SNARE motif. 
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Figure 4.37: Residue from the inter-protein cluster2 marked on the structure obtained by 
homology model of the Sly1/Syx5 structure. 
The structure is same as used in Figure 4.36. The covarying residues are indicated in red. 
 

 
Figure 4.38: SNARE motif of Syntaxin 5 from rat and yeast. 
The inter-protein covarying residues are marked in red boxes 
 
Mapping the 80% conserved residues on the structure showed that the covarying 

residues obtained were lying adjacent to the conserved residues (Figure 4.39). 
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Figure 4.39: Residue from the inter-protein cluster2 marked on the structure obtained by 
overlapping 1MQS (of Sly1) and homology modeled structure of Syntaxin 5 on SSO1.  
The structure is same as used in Figure 4.36. The covarying residues are indicated in red and the 80% 
conserved residues are indicated in yellow. 
 
Having a detailed look at the network view of certain high scoring connections of 

inter-protein cluster 2, again showed the occurrence of two subclusters within the 

cluster (Figure 4.40). The two subclusters were same as observed in the intra-protein 

analysis of Sly1 and also occupied the same regions within the protein (Figure 4.28, 

Figure 4.29, Figure 4.30, Figure 4.31). This again suggested that the different 

important region of Sly1 were connected by chains of covarying residues within the 

3D structure of the protein. The highest scoring inter-protein connection was between 

residues 258 of Syntaxin5 and 550 of Sly1.  However, they appeared to be lying 

distant from each other. The residue 258 of Syntaxin 5 was in the beginning of the 

SNARE motif and the residue 550 of Sly1 was lying on the end of the α21 helix of 

Sly1 specific loop (Figure 4.41). The residues 258 of Syntaxin5 was also connected to 

residues 361 of Sly1 however with a low covariation score. These appeared to be 

lying close to each other as 361 of Sly1 was on the tip of hairpin helix of domain d3. 

This suggested that the two important regions of Sly1, responsible for interaction with 

R-SNARE, Qa-SNARE and Rab GTPase were coupled with the SNARE motif of 

Syntaxin5. This indicates a possible coevolution between the two interacting proteins. 
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It is thus possible that the SM protein prepares the bound syntaxin for SNARE 

complex assembly.  

 
Figure 4.40:Network view of inter-protein cluster2 after removing low scoring edges. 
The color codes are same as in Figure 4.31. The black box around the edge scale indicated the high 
scoring connections shown. 

 

 
Figure 4.41: Residue from the inter-protein cluster2 marked on the structure obtained by 
overlapping 1MQS (of Sly1) and homology modeled structure of Syntaxin 5 on SSO1.  
The structure is same as used in Figure 4.39. The covarying residues are indicated in red. The highest 
scoring inter-protein connections are shown in black circles. 



Chapter 4. Results 

 93 

Clade-specific analysis of inter-protein covarying residues 

The aim of performing the clade specific analysis for the high scoring inter-protein 

residues within the cluster, was to see if the pattern of substitution of covarying site 

pair is congruent with the tree or not. The sites undergoing inter-protein covariation 

should show similar substitution pattern during evolutionary history of both the 

proteins. 

The weblogo representation showed the distribution of amino acid at the highest 

scoring inter-protein residue pair of cluster2, 258 of Syntaxin5 and 550 of Sly1. The 

residue 258 of Sly1 had A, T, S and E (Figure 4.42). The residues 550 of Sly1 had L, 

V and I (Figure 4.43).  

 
Figure 4.42: Weblogo of Syntaxin5 SNARE motif. 
The covarying residues are indicated by purple boxes and the highest scoring inter-protein residue, 258 
is indicated by a red arrow. 
 
 

 
Figure 4.43: Weblogo of Sly1 specific loop region. 
The covarying residues are indicated by purple boxes and the highest scoring inter-protein residue, 550 
is indicated by a red arrow. 
 
In order to see the amino acid distribution of the covarying sites in different lineages, 

the substitution pattern for the highest scoring inter-protein residue pair of cluster2 

was then mapped on the tree of Sly1 and Syntaxin5, respectively. The residue 258 of 

Syntaxin5 varied from A in all Fungi species and plants, T in all Metazoa, S in 

Stramenophiles and E in Microsporidia (Figure 4.44). The residue 550 of Sly1 varied 
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from L in all Fungi species and plants, V in all Metazoa, V/L in Stramenophiles and I 

in Microsporidia (Figure 4.45).  

The substitution pattern showed that the inter-protein covarying residues changed at 

the same corresponding branches in the two proteins during the evolution.  Similar 

substitution pattern was observed for other high scoring inter-protein covarying 

residues in other clusters. Thus, the identified inter-protein residues showed clade-

specific covariation and might be involved in maintaining the interaction and thus 

evolution of the two proteins.  

 
Figure 4.44: Residue 258 of Syntaxin5 from inter-protein cluster2, mapped on the phylogenetic 
tree of Syntaxin 5. 
The colors represent the changes in distribution of the covarying inter-protein amino acids. The 
branches that have same amino acid distribution are colored in same color and the ones where the 
amino acid distribution changes are colored differently 
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Figure 4.45: Residue 550 of Sly1 from inter-protein cluster2, mapped on the phylogenetic tree of 
Sly1. 
The colors represent the changes in distribution of the covarying inter-protein amino acids. The 
branches that have same amino acid distribution are colored in same color and the ones where the 
amino acid distribution changes are colored differently.  
 
 

4.6 Intra-protein analysis of other SM protein subfamilies 

In order to analyze the other SM protein family members, alignments of each 

subfamily were generated and preprocessed as described before.  

Correlated Mutation analysis on SM Proteins 

The heatmap of the MIp scores for the Munc18/Sec1, Vps45, and Vps33 alignments 

(figure can be provided on request) revealed that most of the covarying residues lie in 

the beginning of domain d1, domain d2a, end of domain d3 and end of domain d2b.  
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Clusters of covarying residues in SM proteins 

Similar to the result of Sly1, for Munc18/Sec1 subfamily, some of the topmost 

selected clusters (above the cluster selection cut off) had residues that were spread 

over different regions of the protein and thus forming networks connecting them, 

while some clusters had residues that were confined to a certain region of the protein. 

In case of Vps33 and Vps45 subfamilies, most of the topmost selected clusters had 

residues that appeared to be confined to a certain region of the protein. However, in 

all the SM subfamilies, the covarying residues occupied similar corresponding regions. 

In all the three SM subfamilies, residues were identified in the beginning of domain 

d1, in the large cleft between domain d1 and domain d3 and in domain d3, including 

helix-13 and helix-14. The clusters identified on all three SM protein subfamilies 

again showed the occurrence of residues lying in close contact in the tertiary structure 

as well as residues that were lying further away from each other. Thus, for the 

different SM protein subfamilies a comparable pattern of highly scoring pairs within 

the 3D structure were found. This suggests that similar regions of the different 

subfamilies co-vary.  

 
Figure 4.46: Residue from the top 85% clusters marked on the structure of Rattus norvegicus 
Munc18-1 (3C98).  
Munc18-1 structure is shown in green and Syntaxin1 structure is shown in grey. Red residues represent 
the first cluster, blue residues represent the second cluster, orange residues represent the third cluster, 
yellow residues represent the fourth cluster, magenta residues represent the fifth cluster, light pink 
represents residues from sixth cluster, light blue represent the sventh cluster, light brown represents the 
eigth cluster, dark brown represents the ninth cluster, cyan represents the tenth cluster. 
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Figure 4.47: Residues from the top 90% clusters marked on the structure of Rattus norvegicus 
Vps45 homology modelled on Munc18-1 of Rattus norvegicus.  
For Vps45 no crystal structure is available so far. Instead, a structure was obtained by homology 
modeling of Rattus norvegicus Vps45 on Munc18-1 of Rattus norvegicus by using the Phyre2 server 
(Mezulis et al. 2015). Vps45 structure is shown in green. Rest of the color code are same as in Figure 
4.46. 

 
Figure 4.48: Residue from the top 85% clusters marked on the structure of Chaetomium 
thermophilum Vps33 (5BUZ).  
The structure of Chaetomium thermophilum Vps33 is shown in green, the Vam3 structure is shown in 
grey and Vps16 structure is shown in golden. Rest of the color code are same as in Figure 4.46.
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5 Discussion 

Vesicle fusion is an essential process of the eukaryotic cells by which transport 

vesicles that bud from a donor compartment fuse specifically with an acceptor 

compartment. During past decades, conserved homologous sets of protein 

machineries involved in this process have been identified. The SNARE (Soluble N-

ethylmaleimide-sensitive factor Attachment protein REceptors) proteins and the SM 

(Sec1/Munc18) proteins are considered to be the core of the vesicle fusion machinery. 

Several other conserved factors such as, Rab proteins, NSFs (N-ethylmaleimide-

Sensitive Factor), SNAPs (Soluble NSF Attachments Proteins) and tethering proteins 

belonging to the CATCHR (Complex Associated with Tethering containing Helical 

Rods) family (Jahn & Scheller 2006; Jahn & Fasshauer 2012; Sudhof & Rothman 

2009) also participate in the vesicle fusion process. Recently, it is becoming clear that 

these molecular machineries arose by duplication and diversification of a prototypic 

machine during evolution (Cai et al. 2007;Mast et al. 2014).  

A large number of cell biological, genetic, and biochemical studies have been carried 

in last decades that helped to understand the protein interaction networks in vesicular 

trafficking. However, the exact order of molecular events is still unclear and there is 

still a gap in understanding the molecular features of the key proteins. As most of the 

studies are carried out only in few organisms, it is unclear whether a particular 

characteristic represents a special adaptation of a protein or is it a common 

phenomenon. Sequence analysis can help in filling this gap as the whole set of 

sequences across all species can be investigated at a time. It can help to understand 

how the mechanism has adapted in different eukaryotic lineages and in different 

vesicle trafficking steps within the cell. Novel insights about the structural and 

functional features of the vesicle fusion machineries as well as the co-evolutionary 

patterns between interacting proteins can help to explain the molecular events and 

provide new directions for the biochemical research. 

Previously, a lot of work has been carried out in my group in analyzing the sequences 

of the various factors involved in the vesicle fusion step. A database management 

system was developed to store and analyze the sequences of various protein families 
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involved in vesicle fusion, such as SNARE proteins, Rab proteins, SNAP proteins, 

NSF family, and the SM protein family. Phylogenetic analysis was carried out for 

SNARE proteins (Kloepper et al. 2007; Kloepper et al. 2008; FKienle et al. 2009) and 

Rabs proteins (Klöpper et al. 2012) as well as for SM protein family (unpublished). 

The phylogenetic analysis of SNARE proteins and SM proteins had revealed some 

comparable patterns of duplications and diversifications between the closely 

interacting proteins. This previous work provided an opportunity to explore the 

evolutionary changes occurring in the proteins of vesicle fusion machinery across 

different eukaryotic lineages using the large sequence collection.  

The primary aim of this work was thus to extract functional and structural information 

and to explore the covariation pattern from multiple sequence alignments. Analysis of 

covarying positions in a protein family is thought to provide important information 

about the sites that have functional importance and are involved in the structural 

stability of the protein (Misura & Weis 2000; Wollenberg & Atchley 2000; Gloor et 

al. 2005; Tillier & Lui 2003; Travers & Fares 2007). The information thus gained 

would help to provide new directions for the future structural or biochemical research 

and thus provide a better understanding about the function and interactions of the 

vesicle fusion proteins. 

With this aim, I started the intra-protein covariation analysis, initially on the SM 

proteins. Generally, SM proteins interact with Qa SNAREs (also known as Syntaxins) 

and thus control and guide the vesicle fusion process. Compared to the other protein 

families of the vesicle fusion repertoire, SM proteins had only few different, but 

highly conserved subtypes. The SM protein family comprises five subtypes: 

Sec1/Munc18, Sly1, Vps33, Vps45, and scfd2 that play key roles in different 

trafficking steps within the cell. The binding mode of SM protein with their partner 

Syntaxins is still not clear and is highly debated. Various recent structural and 

biochemical studies have suggested that, in general, the SM protein and Syntaxins 

interact tightly via two spatially separated binding sites (Bracher & Weissenhorn 

2002; Khvotchev et al. 2007; Carpp et al. 2006; Furgasona et al. 2009; Aran et al. 

2009; Johnson et al. 2009; Burkhardt et al. 2008; Demircioglu et al. 2014), 

(Hackmann et al. 2013). How these two binding interactions enable the SM proteins 

to control the accessibility of the bound Syntaxin is still not clear yet. The initial 

structure of secretory SM protein, Munc18-1 revealed it to be tightly bound to major 
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portion of Syntaxin 1 in a closed conformation and thus to block SNARE assembly 

(Misura & Weis 2000). By contrast, Sly1 structure was solved where it was bound 

only to the N-peptide of Sed5 in an open conformation and thus assist in the SNARE 

complex formation (Bracher & Weissenhorn 2002). Later, it was shown that Munc18-

1 also binds to the N-peptide of Syntaxin 1 although with a lower affinity (Burkhardt 

et al. 2008). Recently, Sly1 was also shown to interact not only with N-peptide but 

also with the remainder of Sed5 confirming the requirement of a conformational 

switch between a closed and open conformation of Syntaxin for its function 

(Demircioglu et al. 2014). Thus, both the binding sites allow the SM proteins to 

interact with their partner Syntaxin and control the conformational switch of the 

bound Syntaxin. However, the reason for the occurrence of two different binding sites 

has yet not been completely understood. It has been speculated by some researchers in 

the field that probably the two binding sites are allosterically coupled to control the 

accessibility of the bound Syntaxin (Dawidowski & Cafiso 2013; Colbert et al. 2013; 

Demircioglu et al. 2014). To understand how the two binding sites communicate and 

if there is a possible conformational switch between the two binding interactions, I 

aimed at extracting novel information by looking at their sequence covariation. 

5.1 Covariation analysis by MIp and average linkage 
clustering  

 
With the aim of exploring the sequence covariation, I initially implemented different 

sequence-based statistical methods into one bioinformatics framework.  The methods 

implemented for the covariation analysis included McLachlan based Substitution 

Correlation (McBASC) (Gobel et al. 1994), Statistical Coupling Analysis (SCA) 

(Lockless & Ranganathan 1999), Positional Conservation based SCA (SCAnew) 

(Halabi et al. 2009), Mutual Information (MI) (Martin et al. 2005), Mutual 

Information Corrected (MIp) (Dunn et al. 2008), Explicit Likelihood of Subset 

Variation (ELSC) (Dekker et al. 2004), Observed Minus Expected Squared (OMES) 

(Larson et al. 2000). Of these, a rapid and widely used sequence covariation detection 

method, MIp (Dutheil 2011; Dunn et al. 2008; Liu & Bahar 2012; Buslje et al. 2009; 

Chakrabarti & Panchenko 2010; Dickson et al. 2010) was selected for an initial 

analysis in the current work, because it has been shown to identify a higher number of 

contacting residues compared to other coevolution detection methods (Tillier & Lui 
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2003; Dunn et al. 2008; Caporaso et al. 2008; Dutheil 2011). Nevertheless, the other 

methods need to be explored and compared to MIp in the future.  

MI is a Shannon entropy based method that requires calculation of individual and 

joint amino acid frequencies between the columns. It suffers from problems like noise 

from phylogenetic background and many authors have pointed out that pairs with 

high MI scores are not always the true coevolving pairs (Tillier & Lui 2003; 

Wollenberg & Atchley 2000; Buslje et al. 2009; Gouveia-Oliveira & Pedersen 2007; 

Dunn et al. 2008; Dutheil 2011; Buslje et al. 2009), . Several modifications of MI 

were subsequently developed to correct for the phylogenetic biasness Tillier & Lui 

2003; Dutheil 2011; Buslje et al. 2009; Gouveia-Oliveira & Pedersen 2007; Dunn et 

al. 2008). (Dunn et al. 2008) corrected this bias of MI by a simple multiplicative 

correction. This improved method is referred to as MIp (Dunn et al. 2008;  2012). 

Comparative studies have been carried out that showed that MIp is able to predict 

covarying positions better than other sequence based or even tree-based methods 

( Caporaso et al. 2008; Dunn et al. 2008; Dutheil 2011). To identify only closely 

contacting pairs, another method called Direct Coupling analysis (DCA) was 

proposed (Marks et al. 2011; Marks et al. 2012). This approach and its modifications 

have been used for the prediction of 3D-structure of protein complexes (Marks et al. 

2011; Liu & Bahar 2012; Marks et al. 2012; Hopf et al. 2012; Hopf et al. 2014; Hopf 

et al. 2015). Since our aim was not to predict the 3D-contact and not to find only the 

closely contacting correlated residue pairs but to identify functionally and structurally 

important covarying residues, we decided to use a widely used sequence covariation 

analysis method, MIp.   

As outlined above, several different methods to extract information about the 

covariant sites from MSAs are currently available, but have not attracted much 

attention among biologists. By contrast, methods to predict secondary structure, TMR 

regions, coiled coil regions, signal sequences, TPR repeats to name only a few, are 

regularly used by many researchers as they bring to light easy interpretable 

information about a protein. Until now, not many biologists have used the covariation 

detection methods, as it is still unclear whether co-varying positions are indeed 

important for the structure and function of a protein. Although this has been claimed 

in several studies on covariation, most of such studies were carried out only on 

enzymes or small protein families. A large landscape of proteins with different 
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functions and structures still remains unexplored for identifying the covariant sites. 

When I started the analysis on SM proteins by using the approach introduced by 

Gloor et al. in 2005; Martin et al. in 2005; Dunn et al. in 2008, I found covarying 

residues that were not always in close proximity in the 3D structure but were spread 

over different regions of the proteins. Some residues were found in groups or clusters 

of many residues that were lying distant from each other in tertiary structure. This 

result was different to what had been shown by previous studies on other proteins and 

was not easy to understand. The earlier studies mostly used enzymes and results were 

easier to interpret (e.g:(Gloor et al. 2005; Martin et al. 2005; Dunn et al. 2008; Lee et 

al. 2012; Chakrabarti & Panchenko 2010; Ackerman & Gatti 2011). They often found 

the high scoring pairs to be lying close to each other and in close proximity to the 

enzyme’s catalytic/substrate-binding site. However, in some cases (e.g.: (Liu & Bahar 

2012; Gloor et al. 2005)) they also found some networks on co-varying sites. These 

studies (Gloor et al. 2005; Liu & Bahar 2012) considered only the list of highly 

covarying residue pairs. They identified some sites as pairs and some that were 

coevolving with many other sites by inspecting the list of high-scoring residue pairs in 

a non-automated fashion. Their method wasn´t designed for analyzing covariant sites 

that form networks as they looked only at certain subset of high scoring pairs. Thus, I 

realized that although current approaches of looking just at certain pairwise sites were 

sufficient to extract meaningful information about some example proteins, but for 

proteins like SM proteins, the covariation data is more complex. So, I needed to 

modify the analysis approach in order to understand the complexity of the covariation 

happening in such proteins. I developed an automated approach based on clustering of 

the MIp dataset so as to detect residue pairs that have high scores not only with one 

partner but with several others as well. I also developed heat maps to visualize the 

entire MIp data set, as they would help to easily spot the high scoring covariant sites. 

The approach was then applied on two test examples. These test examples included 

MAP (Gloor et al. 2005) and UDG (Liu & Bahar 2012) datasets from previous studies. 

In both the test cases, I was able to confirm their analysis with some minor additions 

by using my cluster approach. My approach revealed regional patterns of covariance 

that were relatively unexplored in the earlier work carried out by focusing just on 

pairs of columns. The clusters in MAP and UDG datasets were concentrated around 

the catalytic core. I also tried the approach on a different type of protein of the vesicle 



Chapter 5. Discussion 

 104 

fusion machinery, SNAP, and again found the clusters to be confined to a particular 

region of the protein. The clusters had residues that were lying close to each other as 

well as some of the distantly lying residues.  

The MIp scores obtained on the SM protein family, SNAP protein family and on the 

enzymes (MAP, UDG) were within a comparable range (Table 5.1).  

Table 5.1: Maximum and minimum MIp scores obtained for different protein 
families/subfamilies studied.  

Protein 
families/Subfamilies 

Maximum 
MIp score 

Minimum 
MIp Score 

α-SNAP 0.138 -0.06 
γ-SNAP 0.129 -0.06 
Combined SNAP 
alignment 

0.14 -0.07 

Sly1 0.14 -0.08 
Munc18/Sec1 0.17 -0.08 
Vps45 0.14 -0.07 
Vps33 0.13 -0.06 
   
S1A protease  0.19 -0.03 
MAP1 0.16 -0.06 
UDG 0.20 -0.05 

The value of MIp scores obtained for all studies was similar. 

 

The covarying residues within the clusters identified in Sly1 were not restricted to a 

particular region, but were spread over different regions of the protein. Some of the 

residues within the clusters were lying close to each other, while some were lying 

distant from each other in the tertiary structure. The distantly lying residues appeared 

to be connected by chain or networks of other closely lying residues within the 

tertiary structure of the protein. The improved approach with clustering of MIp 

dataset thus helped to identify the networks of covarying residues occurring within 

the protein. However, it was noticed that the approach was not able to identify some 

of the paired residues that had high MIp scores. These residues mostly formed very 

small clusters, comprising of just 2, 3 or 4 residues and did not have covariation-

based connection with many other residues.  This could be an effect of the clustering 

approach because of which they were listed into small clusters. These clusters had 

very low average weighted degree score of the cluster and ranked very low and were 

thus neglected. In order to include such small clusters, one need to adapt the 

clustering criteria accordingly. 
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5.2 Application of MIp and average linkage clustering on α-
SNAP proteins identified networks of functionally and 
structurally important residues in N- and C-terminal 
regions and in TPR region. 

 
Application of the combinatorial analysis pipeline of MIp and average linkage 

clustering on the entire SNAP alignment and on the individual α-SNAP and γ-SNAP 

alignments resulted in defined groups of covarying residues that were localized and 

restricted to a particular region of the protein. This could be because the α-SNAP does 

not undergo large conformational changes during its interaction with SNARE 

complexes and NSF. This suggests that distinct regions of the protein carrying out 

certain activities do not communicate with each other, as the α-SNAP protein is 

extended and rigid these regions. 

Important residues in N-terminal region 

Of all the detected residues in the N-terminal region, residues 1-10, 12, 14-15 were 

located in the first α-helix, residue 16 is in the membrane attachment loop, while 

residues 21, 22, 24, 25 were in the short helix of the same loop and the residues 30, 31, 

35 were at beginning of the second α-helix. Residues I1, S2, D3, P4 were lying on the 

very short loop at the beginning of the first α-helix. The residue 4 has a proline in case 

of Ascomycota or glycine in case of plants and lies just at beginning of the helix. 

Proline is known to cause kinks or breaks in the helix, however, it is often seen as the 

first residue of the helix due to its structural rigidity. PDBePISA (Krissinel & Henrick 

2007) online service provided by EMBL was used to identify the solvent accessible 

residues in the structure of Sec17. Residues P4, L7, L8, E12, K14, G15, V16, S30, 

E35 were identified as the solvent accessible residues. Some of the solvent exposed 

residues also participate in polar interactions that might be important in determining 

the shape of the protein. Solvent exposed residue K14, forms a salt bridge with 

another solvent exposed residue E35 (Rice & Brunger 1999). This interaction is 

between the first and second α-helix and thus might be involved in stabilizing the end 

points of the extended loop. Residues P4 and V5, E6 and R10 were also involved in 

side chain polar interactions. The two previously mutated residues, F21 and M22 in 

Sec17 (F27 and F28 in α-SNAP), occurring in the membrane-binding loop, were also 

identified with the current approach. These residues have been shown to be required 
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for binding to the membrane, which helps in efficient binding to the membrane-

anchored SNARE complex (Winter et al. 2009).  

The N-terminal region is known for the interaction of α-SNAP with SNARE complex.  

Deletion of 28 N-terminal residues carried out by Hayashi et al. in 1995, showed a 

reduction in α-SNAP-SNARE complex binding by 75%, but did not affect NSF 

binding. Griff et al. in 1992, showed that the first 17 residues are not essential for the 

proper folding or the production of the protein. They identified a SEC17 fragment that 

complemented the sec17-1 temperature sensitive mutation. This allele had a deletion 

in the N-terminal region, including the first exon, intron and 8 codons of second exon 

of SEC17. The expressed Sec17p from this allele was truncated with first 17 amino 

acids from the first helix deleted. However, the cells carrying this plasmid 

overproduced Sec17p of a lower molecular weight than the native Sec17p. Thus, 

these first 17 residues are not required for the production and proper folding of the 

protein. DeBello in 1995 showed that injection of peptides corresponding to 1-24 and 

19-31 of squid SNAP (1-21 and 19-31 of Sec 17, including the first helix and the 

loop) and 144-163 of mammalian α-SNAP  (140-159 of Sec 17) had an inhibitory 

effect on neurotransmitter release. These peptides might have competitively interfered 

with SNAP-SNARE binding and SNAP-NSF binding.   

These observations from literature and available biochemical and structural data 

(Griff et al. 1992; Hanson et al. 1995; Hayashi et al. 1995; Barnard et al. 1997) 

suggests that some of the detected N-terminal residues from the first helix and the 

membrane attachment loop might be involved in interaction with SNARE complex or 

in SNAP-SNAP interaction, needed for SANRE binding. These residues might not be 

required for proper folding of the SNAP protein. As was shown by Griff et al. in 1992, 

that the allele with deleted N-terminal region was still able to express Sec17p 

truncated with first 17 amino acids and of lower molecular weight. Thus, the 

identified N-terminal residues might be essential for the formation of the first α-helix 

and the membrane attachment loop. Mutation of any of the identified residues could 

result in distortion of the first α-helix. These residues thus might participate in the 

correct placement of SNAP on the membrane, so that the membrane attachment loop 

can be anchored, and the binding to the SNARE complex can occur correctly. 
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Important residues in C-terminal region 

Residue 234 and 235 of cluster 5 were lying in the beginning of the C-terminal region 

but were missing in the structure. Residues 253-255, 259-262 were lying on α12-helix, 

residues 265, 267, 268 were lying on the short connecting loop between α12 and α13-

helix and residues 271, 273-276, 278-279, 282, 290-292 were lying on α13-helix. 

Residue K271 and T275, I274 and N278 have side chain polar interaction. Analysis 

by PDBePISA (Krissinel & Henrick 2007) identified only 255, 259, 262, 265 as the 

solvent accessible residues, while rest were inaccessible to the solvent. Residue D290 

of cluster 3 forms a part of the negatively charged group (in mammals) involved in 

interaction with N-terminal domain of NSF (Zhao et al. 2015). Residue D229, N231, 

D234 and S235 of cluster 5 were missing in the structure and were a part of the loop 

end or the turn position of TPR5. Residue L291 of cluster 6, also missing in structure, 

corresponds to L294 of α-SNAP, mutation of which (L294A) was responsible for the 

inactivity of α-SNAP to simulate NSF ATPase (Barnard et al. 1997). The penultimate 

C-terminal residue, L304 (L311 in human γ-SNAP) of γ-SNAP was also identified. 

The penultimate leucine and 89 C-terminal residues have been shown to be required 

for the interaction with NSF and Gaf-1/Rip11 (Tani et al. 2003).  

The C-terminal residues of SNAP are also known to be important for NSF interaction 

and stimulation of NSF ATPase activity. Barnard et al. in 1997 performed deletion of 

10 residues from the extreme C-terminal that resulted in marked decrease in the 

ability of the mutant to simulate the ATPase activity of NSF. However, all mutants 

were able to bind to NSF. They demonstrated that the NSF binding sites are present in 

both N- and C-terminal regions of α-SNAP but only extreme C-terminal region 

interaction leads to NSF ATPase activation. Many residues with known functional 

importance were identified in this region. Cryo-EM structure of the 20S complex, 

developed by Zhao et al. in 2015 showed two distinct N-domain binding sites on the 

surface of the C-terminal region of α-SNAP, mutations of which impaired the kinetics 

of SNARE complex disassembly. Thus the residues identified in the C-terminal 

region of SNAP protein might have functional importance and might be participating 

in the interaction of SNAP with NSF, which effects the ATPase activation.  

Important residues in TPR region 

Most of the residues identified in this region were located at the beginning or end of 
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the helices of the TPRs. The residues at the turn position between the two helices of a 

single TPR and between two TPRs have more structural importance (D’Andrea & 

Regan, 2003). Between adjacent TPRs, residues have roles with both structural and 

functional implications (D’Andrea & Regan, 2003). Residues 48 and 50 were lying at 

the end of the first helix of TPR1 and 53 was at the beginning of the second helix of 

TPR1. Residues E73, D74 were lying at the turn position between TPR1 and TPR2, 

H109, R110, Q112, R114, R115 were lying at the turn end of TPR2, D151 and Q152 

at the turn end of TPR3, L156 at the turn position between TPR 3 and TPR4, S194 at 

the turn end of TPR4.  

Residue D74 has a side chain polar interaction with residues Q112 and R110. 

Identified residues R48, Q112, N118 were shown by previous mutation studies to 

have reduced binding to the SNARE complex (Marz et al. 2003). PDBePISA 

(Krissinel & Henrick 2007) analysis identified residues 48, 53, 74, 84, 85, 102, 118, 

123, 147, 151, 153, 155, 156, 161, 194 as the solvent accessible residues. Of these, 

residues 48, 50, 53, 84, 85, 123, were lying on the concave surface of Sec17, which is 

assumed to be region of interaction with SNARE complex. As up to four molecules of 

α-SNAPs are assumed to be present in the minimal 20S disassembly super complex, 

the other solvent accessible residues on the convex surface of the protein might be 

involved in SNAP: SNAP interaction. The residues identified in the TPR region, thus, 

appeared to be structurally important residues and might also be involved in proper 

folding of the protein.  

 

5.3 Application of MIp and average linkage clustering on 
SM protein identified networks of covarying residues. 

 
As explained already, SM proteins are one of the essential factors of the vesicle fusion 

machinery that genetically and biochemically interact with the core SNARE fusion 

machinery, specifically with the Syntaxins of that particular membrane fusion step 

(Jahn & Fasshauer 2012). Generally, SM proteins seem to interact with their cognate 

Syntaxin via two different binding surfaces, the “closed” conformation in which the 

SNARE (H3) domain folds back onto the Habc domain, such that it is inaccessible for 

SNARE complex formation and the very N-terminal region of syntaxin, called the ‘N-

peptide’. Recent biochemical and structural studies on different SM/Syntaxin pairs 
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have shown that SM proteins generally bind to their respective Syntaxin using both 

modes of interaction, however with different relative binding affinities. Previously my 

groups had collected the sequences of SM proteins along with several other proteins 

of the vesicle fusion repertoire and had also analyzed the evolutionary history for 

these proteins. Comparable patterns of duplications and diversifications between the 

closely interacting proteins were revealed by the previous phylogenetic analysis. With 

the aim to extract novel structural and functional features of SM proteins from the 

large sequence collection, I performed intra-protein covariation analysis, initially on 

the SM proteins. SM proteins were chosen as compared to other proteins of the 

vesicle fusion machinery, they had a manageable number of subtypes (only five).  

Initially, intra-protein covariation analysis was performed on the Sly1 protein using 

MIp and selecting the pairs that scored above the Z-score of 4.0. This resulted in 

residues that were spread all over the structure of the protein with some lying close to 

each other and others lying distant to each other. They formed groups that appeared to 

form networks within the protein. To investigate this result in more detail, I developed 

an improved analysis pipeline, where average linkage clustering was carried out on 

the MIp dataset.  

Before re-analyzing the SM protein with the improved analysis approach, I first 

applied it on some different test examples. These test examples included MAP (Gloor 

et al. 2005) and UDG (Liu & Bahar 2012) datasets from previous studies. I also tried 

the approach on a different type of protein of the vesicle trafficking factor SNAP, so 

as to appraise better the occurrence of chains of more distantly lying covarying 

residues. In all the test examples, I detected clusters of covarying residues that were 

restricted to a particular region of the protein. However, applying the analysis on Sly1 

showed a different result. The residues within the clusters appeared to form a network 

hinting at the possible conformational changes and allosteric coupling within the SM 

proteins. The improved approach with clustering of MIp dataset thus helped to 

identify the networks of covarying residues occurring within the protein, which might 

be involved in the communication between the two interacting sites of Sly1 with 

Syntaxin. 

When the analysis was applied on other SM protein subfamilies, a comparable pattern 

of highly scoring pairs within the 3D structure was observed. In all SM proteins, some 

residues were found to be lying close to each other, while many were found lying 
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distant from each other in the tertiary structure. They appeared to form a network of 

residues connecting the two binding sites. Some of the residues were lying in the 

beginning of domain d1 at the region that is interacting with domain Hc of Syntaxin. 

Some residues were found to be located on the flexible helix-13 and helix-14 that 

have been shown to be important by various mutagenesis, biochemical and structural 

studies (Boyd et al. 2008; Hashizume et al. 2009; Bracher & Weissenhorn 2001; 

Misura & Weis 2000; Burkhardt et al. 2008; Baker et al. 2013). Some residues were 

found lying at the direct interacting region with Syntaxin, for example, at the loop 

between helix-13 and helix-14. Many residues were lying at the domain d2, which 

appeared to have structural importance in maintaining the arch shape of the protein. 

This suggests that similar regions of the different subfamilies co-vary.  

Many residues with known functional importance were also identified. In Munc18-1, 

residue R39 was identified. R39 is a surface residue that forms salt bridge with E234 

of H3 domain of Syntaxin1, was previously mutated and shown to reduce the 

Syntaxin1-binding capabilities of Munc18-1 (Jorgacevski et al. 2011). Mutation of 

this residue has also been shown to be a disease related point mutation in Munc18-2 

(Hackmann et al. 2013). This mutation was also believed to partially lose binding to 

the closed conformation of Syntaxin-1 (Johnson et al. 2009). Another residue that 

caused a disease related point mutation in Munc18-2, T345 was identified. T345M 

mutation resulted in loss of hydrogen bond to residue 341 (Hackmann et al. 2013). 

Residue P242 of Munc18-1, which is known for interaction with Mint protein, was 

also identified. Its mutation P242S was shown to have increased the fusion pore 

dwell-time (Jorgacevski et al. 2011). Residue K46 of Munc18-1 was identified that 

specifically contacts residues D231 and R232 in the H3 helix of synaxin-1. Mutation 

of K46 to 46E was shown to reduce the binding to Syntaxin1 (Han et al. 2009).  A 

double mutant of another identified residues M38 of Munc18-1 with D34 was shown 

to bind poorly to Syntain-1 (Han et al. 2009). Residues M330, L331, K332, K333, 

M334, Q336, Q338, K339 of Munc18-1 that lay on the loop between helix-13 and 

helix-14 which interacts with H3 domain of Syntaxin-1, were also identified.  

Many residues with known functional importance were also identified in Vps33. 

Many residue having intermolecular contact with VPS16 as identified by Baker et al. 

in 2013, were also identified in this study. These include R85, R114, T116, L117, 

F118, and A212. The tip of domain d3 has been shown to be interacting with Qa 
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SNARE (Baker et al. 2013). Many residues were identified in this region of d3 

domain, which includes 316, 321, 347, 358, 368, 370 and 371. Recently the SNARE 

motif of R-SNARE Nyv1 has also been shown to be binding to the antiparallel α-

helices of the domain 3a helical hairpin (Baker et al. 2015). Residues G321 and S368, 

identified in the current study lie in the Nyv1 binding groove. Single residues 

substitution mutation of these residues has been shown to reduce the binding to Nyv1 

(Baker et al. 2015). Some of the missense mutations that have been identified as 

causing phenotypic defects in Vps33 or other SM proteins have also been identified in 

this study. These include E82 (D88 in yeast Vps33), mutation of which have shown 

defects in content mixing and fusion and S525 (T553 in yeast Vps33) corresponding 

to T531 of yeast Sly1, mutation of which was a suppressor of lethality of Ypt1 

(Lobingier & Merz 2012; Pieren et al. 2010; Y. Li et al. 2007).  

In Sly1 subfamily, only one residue was identified in the N-peptide binding pocket. In 

Vps45, three residues were identified in the same region. While in Vps33, many 

residues were identified in the N-peptide binding region. Vps33 is an outlier in terms 

of position and orientation of domain 1 (Baker et al. 2013) and also does not bind to 

closed Qa SNAREs. In Munc18/Sec1 subfamily also many residues were identified in 

in the N-peptide binding region. A detailed look (Figure 5.1 and Table 4.1 )at these 

residues showed that these residues did not covary in Unc18, Munc18 proteins, nor in 

the vertebrate duplications, Munc18-1, Munc18-2, Mucn18-3 proteins . They did not 

covary within the plants as well. However, these residues did covary in Sec-1 proteins 

from fungi, which do not bind to the N-peptide of its partner Syntaxin Sso1 as Sso1 

lacks the N-peptide sequence equivalent to the one found in Syntaxin1. As mentioned 

in Baker et al. in 2013 and shown by Lobingier & Merz in 2012, the SM proteins can 

be divided into two groups; proteins that bind to the Qa SNARE N-peptide, which 

includes Munc18, Sly1 and Vps45 and the other group of proteins that do not bind to 

Qa SNARE N-peptide, which includes Vps33 and Sec1. The results from the current 

study also appear to show the difference in the proteins that bind to the Qa SNARE 

N-peptide and those that do not for the residues from the N-peptide binding region.  
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Figure 5.1: Sequence logo of residues from Munc18/Sec1 alignment lying near or within the N-
peptide binding region.  
The AlignPos are the position from the alignment of Munc18/Sec1 and the SeqPos are the positions 
from the Rat Munc18-1. These residues do not covary in Mucn18-1, Mucn18-2 and Mucn18-3 (the 
duplications in Vertebrates) but do so in Sec-1 proteins.  
 
 
Table 5.2 : Distribution of covarying residues identified in the N-peptide binding region in 
different lineages 

 
   Residue in the N-peptide binding region 

Residues 82 101 108 110 111 112 114 115 121 122 
Metazoa K A D/E C P D/E L F S K 

Viridiplantae E K S I/V/L S K/R L V/L/I D L 

Chlorophyta 
 

R/Q/N R/K/S/T S/N L/A/P S/Q/P/A R/P V/L L 
S/Q/N/

C/A V/L 
Ascomycota H K/R S/T L D/E P L/M/I.V R S/N A/V/L/I 

 Y/F G G S/Q P S/T/Q/N Q/S/T S/Q I/L/A T/Q 

 N N/S D I/A/V/M H D/E R 
A/I/V/

M F K 
Basidiomycota Q S D/E L D/E D/E L F S/N D/E 

Basal fungi E/D A S/N L S/N D L F S/N S 

Protozoa E/D S S/N L/V/I P/G D/E L/I/V/A L/M/V 
S/T/N/

Q L/V 
 R R/K  S/T S/Q G H F C K 
 S   R/K E/D     G 

The number represents the residue position and the letters represent the amino acids. The residues were 
conserved in Metazoa and Viridiplantae but were covarying in Fungi. 
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5.4 Application of MIp and average linkage clustering for 
inter-protein analysis on Sly1 and Syntaxin 5 proteins 
identified complex network of functionally and 
structurally important inter- and intra-protein residues. 

 
Combinatorial analysis pipeline of MIp and average linkage clustering on 

concatenated alignment of Sly1 and Syntaxin 5 resulted in clusters with inter and 

intra-protein residues from both the proteins as well as with cluster of only intra-

protein residues from Sly1. The intra-protein clusters of Sly1 appeared to be localized 

to a certain region of the protein. The intra-protein residues 30, 31, 48, 49, 55, 57, 61 

65, 68, 69, 74 and 78 of Sly1 were solvent accessible residues as per PDBePISA 

(Krissinel & Henrick 2007) analysis. They appeared to be involved in the interaction 

with Hc or SNARE domain of Sed5.  

Examining residues from the clusters on the structure revealed that some of the 

identified residues in both Sly1 and Sed5 were lying in the interacting regions while 

some were found in regions away from the interaction sites. Some of the identified 

residues were lying close to each other while many were lying distant from each other. 

Many of the identified inter- & intra-protein residues in Sly1 were detected in the 

region corresponding to the closed conformation of Munc18a-Syntaxin1 interaction. 

This is line with the recent biochemical results shown for Sly1 that it interacts not 

only with N-peptide but also with the remainder of Sed5, making use of both the 

binding modes (Demircioglu et al. 2014). Some residues were detected on helix-13 

and helix-14 and in the region between domain d3 and domain d2. Some of the 

detected residues were of known functional importance such as; Q155 in Sly1 was 

identified which is in known to stabilize the binding site by forming H-bonds.  S541, 

L542, I543, S544 of Sly1 flank α20 and α21 helices in Sly1. α20 contains the Sly1-20 

mutation that resulted in GTPase suppressor activity. Another identified residue K4 of 

Sed5 is known to have side chain contact with D158 of Sly1.  K274 in Sly1 is known 

to form H-bond with S275. Most of the covarying residues were found to be lying in 

distant regions in the tertiary structure and thus, might be potentially involved in 

allosteric communication within the proteins. 

Most of the detected inter- & intra-protein covarying residues in Sed5 were found in 

the domain Habc, SNARE motif and the N-terminal regions, which were known to be 
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involved in interaction with SM proteins. Some residues from TM region were found 

to be covarying with residues from TM, SNARE and the Linker region. The residues 

from TM domain might play role in proper localization of Sed5 for its interaction 

with Sly1 and thus might be functionally important.  

All of the detected inter and intra protein residues appeared to form a chain of 

interconnected residues. It is possible that these residues are participating in some sort 

of communication, possibly allosteric communication within the protein and between 

the two sites of interaction with Syntaxin. It has long been debated and questioned as 

to why the SM proteins have two spatially separated binding sites for interaction with 

Syntaxin. The reason for the occurrence of two different binding sites has yet not been 

completely understood. It has been speculated by some researchers in the field that 

probably the two binding sites are allosterically coupled to control the accessibility of 

the bound Syntaxin (Dawidowski & Cafiso 2013; Colbert et al. 2013; Demircioglu et 

al. 2014).  

In my results, I identify inter- and intra- protein residues that were lying close as well 

as distant to each other. These residues appeared to be connected and form networks 

across the different regions of the protein. Burger & van Nimwegen in 2010 have also 

shown the existence of chains of statistically dependent residues. They explained that 

indirect interactions occur through the chains of directly interacting residue pairs that 

run through the protein and thus connect the distal pairs. Some other studies (e.g: 

(Lockless & Ranganathan 1999; Süel et al. 2002; Halabi et al. 2009; Baussand & 

Carbone 2009)) have also shown the existences of such thermodynamically coupled 

residues. These residues create physically connected networks linking the distant 

positions in the tertiary structure of protein and are thus involved in allosteric 

communication. This seems to be the case in the results of the current study as well. 

The current findings suggest a possible communication between the two binding sites 

involving a network of covarying amino acids along the structure of the SM and 

Syntaxin complex. The residues identified in the current study appeared to form chain 

of coupled residues, however it remains a speculation if they are allosterically coupled 

or indicate a large conformational change. It is possible that the interaction with the 

N-peptide region of Syntaxin acts as an anchor point to push the SM proteins towards 

the membrane fusion site and establish the right conformation and location of 

Syntaxin to assemble into the complex. At this stage, the SM-Syntaxin complex can 
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undergo conformational changes, which can also be induced by some docking factors. 

Then the SM protein can release the SNARE motif of Syntaxin making it available 

for the SNARE-complex formation. The residues identified by the current approach 

lie across the structure of protein, appearing to connect the two binding sites. Even 

though some of the individual pairs lie distant from each other, when the complete 

ensemble of identified residues is considered they appear to form a network of 

dependent residues thus establishing a connection between the two spatially distinct 

binding sites. However, these possibilities need to be confirmed by mutational and 

biochemical studies to be carried out in future.  
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6 Conclusions & Perspective 

Proteins of the SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment 

protein REceptors) and SM (Sec1/Munc18) families are essential components of the 

vesicle fusion machinery. Different sets of SNARE proteins drive the fusion of 

transport vesicles with an acceptor compartment by zippering into a tight four-helix 

bundle complex. In each trafficking step, SM proteins interact with the particular 

SNARE set, specifically with the Qa-SNARE (also called Syntaxins). SM proteins are 

thus believed to control and regulate the fusion process (Jahn & Fasshauer 2012) . 

Various other conserved factors such as Rab proteins, NSF (N-ethylmaleimide-

Sensitive Factor), SNAP proteins (Soluble NSF Attachments Proteins), and tethering 

proteins belonging to the CATCHR (Complex Associated with Tethering containing 

Helical Rods) family are also part of the vesicle fusion machinery and are thought to 

facilitate the vesicle docking and fusion process. Although several structures of key 

factors of the vesicle fusion machinery have been elucidated during the last decades, 

the order of events and their exact interaction is not fully understood yet. In particular, 

it is unclear whether a particular molecular feature represents a special adaptation of 

the protein machinery or whether it is a shared trait. Previously, my groups had 

developed a database management system to collect and analyze the sequences of 

various protein families of the vesicle fusion machinery. The analysis of the 

evolutionary history of several protein families, e.g. SNARE proteins (Kloepper et al. 

2007; Kloepper et al. 2008; Kienle et al. 2009) Rab proteins (Klöpper et al. 2012) 

(Klöpper et. al. 2012), and SM proteins had shown that these factors arose by 

duplication and diversification of a prototypic fusion machinery during evolution. 

Moreover, the analysis of SNAREs and SM proteins revealed some comparable 

patterns of duplication and diversification between these closely interacting proteins. 

This previous work lay the foundation for exploring the evolutionary changes within 

the vesicle fusion machinery across different eukaryotic lineages. Here, I explored 

their covariation pattern using multiple sequence alignments in order to extract novel 

insights into structural and functional features. 

Initially, I performed intra-protein covariation analysis on the SM protein family, 

which consists of five distinct subtypes Sec1/Munc18, Sly1, Vps33, Vps45, and Scfd2. 
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It has been shown that they interact in general via two spatially separate binding sites 

with their cognate syntaxin binding partner. So far, it is not understood how this 

binding mode enables SM proteins to control the accessibility of the bound Syntaxin. 

Some recent studies indicate that the two binding sites might be allosterically coupled 

(Dawidowski & Cafiso 2013; Shu-Hong Hu et al. 2011; Colbert et al. 2013; 

Demircioglu et al. 2014).  

When I applied the co-variation method, MIp on the SM protein Sly1, I found a 

significant portion of highly scoring co-variant residues to be scattered across the 3D-

structure of the protein, while it had been reported in earlier studies that such residues 

were often in close vicinity and located in close proximity to the enzyme’s catalytic 

site. I also realized that many of the co-variant residues in Sly1 scored highly with 

more than one other residue as if they were forming a co-variation network. Similar 

findings had been reported before (e.g : (Gloor et al. 2005; Liu & Bahar 2012)), but 

usually these covarying networks were confined to a certain area of the inspected 

protein. To further explore this initial observation, I developed an automated analysis 

pipeline that allowed me to perform, among other things, average linkage clustering 

on the MIp dataset. This analysis pipeline was first tested on test cases, such as MAP 

(Gloor et al. 2005) and UDG (Liu & Bahar 2012). This corroborated and extended 

earlier observations on their co-variation pattern. Using the improved approach, I 

investigated next another vesicular trafficking protein, the SNAP protein family. The 

SNAP family was chosen, because they are structurally and functionally very 

different from SM proteins. For SNAP proteins, I found several groups of co-varying 

residues that are restricted to a particular region. Most of the residues within the 

clusters were lying close to each other, while some more distantly lying residues 

appeared to be connected to each other by some near-by residues. Several residues 

with known structural and functional importance were identified using MIp 

When I applied the improved analysis pipeline on the SM protein Sly1, I found that 

the networks of co-varying residues were not restricted to a particular region as 

observed for the other examples, but were much more spread, possibly connecting 

different regions of the protein. This suggests that certain regions that are not in direct 

contact within the 3D structure are somehow coupled in Sly1. Whether this occurs via  

a conformational change or “allosteric coupling” remains speculative, however. 

Exploring each cluster further revealed that many known structurally and functionally 
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important residues were identified within these clusters. Similar pattern of covarying 

residues was observed for all the subfamilies of the SM proteins, suggesting that my 

analysis uncovered a common feature within this essential protein family. Possibly, 

this indicates that SM proteins share a common mode of interaction with Qa SNAREs 

involving two interaction surfaces. Further clade specific analysis of these residues 

revealed that the covariation pattern for the paired sites was changing in different 

branches of the tree. They were changing within the clades as well as between the 

clades. The detected residues thus might be co-evolving in different eukaryotic 

lineages.  

To further explore the interaction of SM proteins and Syntaxin, I performed an inter-

protein analysis for a concatenated alignment of Sly1 and its partner Syntaxin 5. Sly1 

and Syntaxin 5 were chosen out of all other SM-Syntaxin pairs as they occur as 

singletons in most species. Most of the co-varying residues were already detected 

when the individual proteins were investigated, but some residues were found to be 

co-varying between both the proteins. Most of the inter-protein covarying residues 

were not in direct contact with each other in the tertiary structure. They appeared to 

form a chain of interconnected residues along with the intra-protein covarying 

residues. Further clade specific analysis of the high scoring inter-protein residues 

revealed that the covariation pattern for the paired sites was changing at the same 

corresponding branches in the two proteins during their evolution. This suggested that 

the detected inter-protein covarying sites might be involved in maintaining the 

interaction and the evolution of the two proteins.  

Together, my results suggest a possible communication between the two binding sites 

involving a network of co-varying residues along the structure of SM/Syntaxin 

complexes. However, it is difficult to arrive at a conclusion regarding the importance 

and allosteric nature of the identified covarying sites unless mutational and 

biochemical evidences are being carried out. Thus the next steps would be to 

selectively mutate the detected covarying sites, best by starting with the highest 

scoring pairs in order to establish whether the covarying sites are indeed functionally 

important. When designing such experiments one also needs to take into account the 

co-variation pattern of the larger networks detected. The mutations would need to be 

tested in the interaction studies using purified proteins, but also using in-vivo 

approaches. This could provide interesting insights for one of the long-standing 
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questions in the field regarding the controversial function and interaction of the SM 

proteins with Syntaxins. Similar, studies can be carried out for the detected covarying 

residues of SNAP proteins to see if they affect the function and interaction of the 

protein with either the membrane, SNARE complexes or NSF. For example, the 

residues identified in the N-terminal region of the SNAP protein might be important 

for the formation or orientation of the first α-helix and the adjacent membrane 

attachment loop.  

Very probably, the study identified novel structural and functional information for 

SM and SNAP proteins, which can be used for functional studies. Interestingly, co-

variation analyses of these two structurally very different factors of the vesicle fusion 

machinery yielded in very different co-variation patterns. It should thus be explored 

whether co-variation analysis of even other protein types leads to even other co-

variation patterns. As a first step, the novel analysis pipeline should be used for the 

sequences of other conserved factors of the vesicle fusion machinery that have been 

collected already in the laboratory. 
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A    Appendix: Application note  

Alifea– Alignment Feature analysis tool 
An integrated tool for alignment feature extraction and visualization was developed 

which was called alifea. It is a standalone application written in JavaScript. The GUI 

is developed using the Netbeans platform. This tool can be used to predict structurally 

and functionally important residues in a protein, which can be putative candidates for 

mutational studies. The tool would hopefully facilitate and ease the sequence analysis. 

The tool can be made available on request as a standalone application. 

The basic input for alifea is a MSA. The input alignment, if required, can be 

processed to remove sequences and sites containing too many gaps by specifying gap 

threshold or using the default parameters provided. The alignment can be visualized 

with the help of integrated Jalview alignment viewer (Waterhouse et al. 2009). 

Jalview functionality can be used for editing and visualizing the MSAs. 

The tool allows the user to extract information such as fully conserved positions, 

conserved positions within a subtype, and coevolving positions from sequence 

alignments. Sequence Logo method has been implemented to visualize and identify 

the fully conserved positions. To detect subtype specific positions, Hannenhalli & 

Russell’s in 2000 methods is implemented. This method identifies these positions, by 

comparing the distribution of intra and inter-group residue entropy for every possible 

branch in the phylogenetic tree of the protein family. The methods implemented for 

the coevolutionary analysis include McLachlan based Substitution Correlation, 

Statistical Coupling Analysis (SCA) (Lockless & Ranganathan 1999), Positional 

Conservation based SCA (SCAnew) (Halabi et al. 2009), Mutual Information (MI) 

(Martin et al. 2005), Mutual Information Corrected (MIp) (Dunn et al. 2008), 

Explicit Likelihood of Subset Variation (ELSC) (Dekker et al. 2004), Observed 

Minus Expected Squared (OMES) (Larson et al. 2000). Details of implementations 

of the algorithms are explained further in this section.  

Another major advantage of this tool is the possibility to combine the results of the 

coevolutionary analysis with a network analysis to be able to highlight the important 

residues within a protein family. The results of the co-evolutionary analysis can be 
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interpreted as a network with the positions as nodes and the co-evolutionary scores as 

edges. The tool includes the visualization of this network. The user can modify the 

network by interactively choosing the cut off for the coevolutionary results based on 

Z-score. The nodes and edges can be moved around, renamed, selected and searched. 

Clustering methods can be utilized to extract positions with high scores. The tool 

contains average, single, and complete linkage hierarchical clustering methods to 

analyze the network. The clusters can be ranked based on the average coevolutionary 

score among them to identify the important residues. The clusters can be visualized as 

hierarchy or tree and as heat maps.  

The results can be mapped directly on the 3D structure, if available, using the 

integrated Jmol (Jmol 2001) viewer. There is possibility to add more than one 

structure for different proteins in the MSA. The user can choose to map these 

positions on the structure along with conserved (conservations degree as chosen by 

the user) position. The program can also automatically mark these positions on the 

MSA and show them as a sequence logo.  

This the first time that different methods for detecting conserved, subtype specific and 

coevolving residues have been integrated along with easy to comprehend 

visualizations. Previously, these operations were done manually or by using different 

softwares, but there was no single package to integrate them. Thus, this tool can be 

useful and practical for studies involving extraction of information from MSA. 

The details of the methods and algorithms implemented in the tool are given below. 

A.1    Alignment Preprocessing 

The user has a choice to filter columns or sequences containing too many gaps by 

specifying the gap threshold or using the default parameters provided. The user also 

has a choice to treat the gaps as noise or signals during the covariation analysis. If 

gaps are treated as noise, the gapped positions will not be considered during any 

calculations. If gaps are treated as signal, the gaps are counted as the 21st amino acid 

during all calculations. A conservation filter is also implemented in the tool. This 

allows users to choose different values of conservation of columns. Any column 

having the chosen conservation will not be considered during the covariation analysis. 
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A.2    Sequence Analysis 

Sequence Logo for conserved positions 

The implementation of sequence logo for protein sequences is based on Schneidery & 

Stephens from 1990. It is a presentation of alignments, where characters representing 

the sequences are stacked over each other for each position in the alignment. It gives 

information about relative frequency of residues at each position, conserved residue at 

each position and conserved sites. The most conserved positions can be easily spotted 

from this representation; however, even variation at each site and distribution of 

amino acids at those sites can be inferred. The importance of a particular position is 

given by the information measured in bits. This information is calculated using the 

Shannon entropy as  

𝐻 𝑙 = 𝑓 𝑏, 𝑙 log! 𝑓(𝑏, 𝑙)  
!

!!!

 

, where H(l) is the uncertainty at the position l, b is one of the 20 amino acids, and 

𝑓(𝑏, 𝑙) is the frequency of amino acid b at position l. The total information at the 

position is given by the decrease in the uncertainty 

𝑅!"#$"%&" 𝑙 = 𝑙𝑜𝑔!(20)− (𝐻 𝑙 + 𝑒 𝑛 ) 

in bits per position, where 𝑅!"#$"!"# 𝑙 , is the amount of information present at 

position l, 20 is the maximum uncertainty for amino acids at any given position, n is 

the number of sequences in the alignment and 𝑒 𝑛  is the error correction factor for 

small n and is approximated as in Schneider et al. in 1986, 

𝑒(𝑛)   =    (𝑠 − 1)  /  (2   ∗   𝑙𝑛2   ∗   𝑛) 

The set of 𝑅!"#$"%&" 𝑙  for the full alignment forms a curve representing the 

importance of each position. The height of each amino acids at each position gives the 

frequency of that amino acids at that position and is given as:  

ℎ𝑒𝑖𝑔ℎ𝑡  𝑜𝑓  𝑎𝑚𝑖𝑛𝑜  𝑎𝑐𝑖𝑑  𝑎𝑡  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑙 =   𝑓(𝑏, 𝑙)   ∗   𝑅!"#$"%&" 𝑙    
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A.3    Subtype Specific analysis 
 
The subtype specific analysis method implemented in the tool is the one given by 

Hannenhalli & Russell in 2000. The relative entropy of a position i for subtype s with 

respect to the entropy of that position for the subtype 𝑠 (union of all the subtype 

excluding s), is calculated as: 

𝑅𝐸!! = 𝑃!,!!

!"#  !""  !  

log
𝑃!,!!

𝑃!,!!
 

where 𝑃!,!!  is the profile value for amino acid x at position i of subtype s, and 𝑃!,!!  is 

the profile value for amino acid x at position i of subtype 𝑠. RE ≥ 0 and is exactly 0 

when two distributions are identical. The profiles were build by the hmmbuild 

program of HMMER (Eddy 1999) in the original implementation. Cumulative relative 

entropies are then calculated to estimate the role of a position i in determining the 

subtypes as: 

𝐶𝑅𝐸! =    𝑅𝐸!!

!"#  !""  !"#!!"#$%  !

 

The cumulative relative entropy is converted to Z-score : 

𝑍! =
𝐶𝑅𝐸! − 𝜇

𝜎  

where 𝜇 is the mean and 𝜎 is the standard deviation.  

In alifea, the HMMER package is not used. The probability profile score is generated 

directly using the implemented Dirichlet priors such that 𝑃!,!!!"#  !""  !   = 1, for each 

alignment position i. There are two choices of the mixture, Sjolander_1996 and 

Sjolander_2011. 

A.4    Covariation Analysis  

McLachlan based Substitution Correlation 
 
The implementation of this method is based on Gobel et al. in 1994. An NxN matrix 

is generated, for each column i in the alignment, where N is the number of sequences 
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in the alignment. The values in the matrix are filled from a substitution matrix that 

assigns a high score if there is an conserved substitution for a pair of residues in 

sequence k, l at column i and a low score if there is non-conserved substitution (s!"# ). 

Following Olmea et al. in 1999, McLachlan substitution matrix was used (available at 

GenomeNet database (MCLA710101) (McLachlan1971).  The correlation score 

between two columns i and j is calculated as:  

𝑟!" =
1
𝑁!

𝑤!"    𝑠!"# −    𝑠!    𝑠!"# −    𝑠!   
𝜎!   𝜎!!"

 

where, 𝑠!  is the mean of 𝑠!"#   and 𝜎𝑖 is the standard deviation of 𝑠!"#.  

The tool provides computation of Pearson correlation from the raw values as well as 

by Spearman correlation by rank values. 

Statistical Coupling Analysis (SCA)  
 
In this method, statistical coupling between the two sites of the MSA is calculated by 

computing the energy changes on perturbation. The perturbation is caused by making 

sub-alignments with a certain residue. The statistical coupling energy is calculated as: 

∆∆𝐺!,!!"#" = 𝑘𝑇∗ ln
𝑃!|!"!

𝑃!"#|!"
! − ln

𝑃!!

𝑃!"#!

!

!

 

where, 𝑘𝑇∗ is an arbitrary energy unit, 𝑃!! is binomial probability of an amino acid 𝑥 

at site i in the alignment and 𝑃!|!"!   is the binomial probability of an amino acid 𝑥 at site 

i in the sub-alignment, representing the perturbation of amino acid frequencies at site j. 

The SCA implementation in the alifea tool, considers the most conserved residue in 

each column as the perturbation for creating the sub alignments.  

The implementation is based SCA version 1.5 (Lockless & Ranganathan 1999). The 

value of kT constant, the non-normalization of Px
MSA, and the acceptance criteria for 

sequence alignments are taken from the Gerstein coevolution tool (as described in 

their SCA note). The original SCA algorithm has been reworked (de Juan et al. 2013) 

and changed to SCAnew described below. 
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SCAnew / Positional Conservation based SCA 
 
The implementation of Positional Conservation based SCA is based on the most 

recent version of SCA (Halabi et al. 2009). The correlations between the positions are 

weighted according to their conservation. The SCA correlation matrix is reduced by 

spectral decomposition. The principal components obtained represent the groups of 

coevolving positions. These coevolving groups are referred to as “protein sectors” 

that are nearly statistically independent. They are physically connected in the tertiary 

structure and have distinct functional role and constitute an independent mode of 

divergence in the protein family. 

In alifea tool, only the calculation of SCA correlation matrix is implemented (based 

on the supplementary material of Halabi et al. in 2009 and the web supplement of 

SCA at http://systems.swmed.edu/rr_lab/Note109_files/Note109_v3.html). The 

structurally distinct protein sectors are detected by using clustering from network 

theory on the coevolutionary matrix. 

Mutual Information (MI) 
 
Mutual information (MI) is a method based on Shannon’s entropy that indicates the 

dependencies of the two columns. It is a measure of reduction of uncertainty. The MI 

between two columns of a MSA reflects the degree to which the knowledge of the 

amino acid at one position helps to predict the identity of the amino acids at the other 

position. A high MI values indicates correlation between the two positions. The 

implementation of MI is based on Martin et al. in 2005. 

MI between two positions of MSA is calculated by: 

𝑀𝐼 𝑥,𝑦 = 𝐻 𝑥 + 𝐻 𝑦 − 𝐻(𝑥,𝑦) 

where, 𝐻 𝑥   and 𝐻 𝑦  are entropy of columns x and y, calculated as, 

𝐻 𝑥 = − 𝑝 𝑥!

!

!!!

log! 𝑝 𝑥!  

where 𝑝 𝑥!  is probability of amino acid i in column x, k=20 (for 20 amino acids). 

The logarithm base b=20. The value of 𝐻 𝑥 varies from 0, in case of complete 



Appendix: Application note  

 127 

conservation to 1, when all 20 amino acids are equally distributed.  𝐻(𝑥,𝑦)Is the joint 

entropy, which is defined as: 

𝐻 𝑥,𝑦 = − 𝑝 𝑥! ,𝑦! log! 𝑝 𝑥! ,𝑦!

!

!!!

!

!!!

   

where  𝑝 𝑥! ,𝑦! is joint probability of amino acid i in column x and amino acid j in 

column y, k=l=20 for amino acids, and b is logarithm base, here set to 20. The joint 

entropy can range from 0 to 2. 

MI score ranges between 1 and 0 with high MI value reflecting a higher 

interdependence between the two positions of a MSA.  

The initial formulations of MI were affected by high variability positions in MSAs 

and by the effect of phylogenetic background (de Juan et al. 2013) and thus many 

subsequent version of this approach were developed. One of them is described next. 

Mutual Information Corrected (MIp) 
 
The mutual information approach was corrected to suppress the phylogenetic bias by 

normalizing the observed covariance of a pair of column by the background 

covariance of the columns. The background covariance is the average covariance 

score of the column with all the other columns (Dunn et al. 2008). Thus, 

𝑀𝐼𝑝 𝑎, 𝑏 = 𝑀𝐼 𝑎. 𝑏 − 𝐴𝑃𝐶(𝑎, 𝑏) 

where APC(a,b) is the average product correction of the background scores, 

calculated as: 

𝐴𝑃𝐶 𝑎, 𝑏 =
𝑀𝐼 𝑎, 𝑥 𝑀𝐼 𝑏, 𝑥

𝑀𝐼
 

where 𝑀𝐼 𝑎, 𝑥  is mean mutual information of column a, defined as: 

𝑀𝐼 𝑎, 𝑥 =
1
𝑚∑𝑀𝐼(𝑎, 𝑥) 

where n is the number of columns in MSA, and m=n-1, and summation is over x=1 to 

n, x≠a, and 𝑀𝐼  denotes the overall mean mutual information,  
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𝑀𝐼 =
2
𝑚𝑛∑𝑀𝐼(𝑥,𝑦) 

where indices run from x=1 to m, y=x+1 to n. 

This correction on MI, provided a substantial improvement compared to other 

previously published methods for predicting covarying positions (Dunn et al. 2008;  

de Juan et al. 2013). 

Explicit Likelihood of Subset Variation (ELSC) 
 
Like SCA, ELSC is a perturbation-based algorithm. It compares the characteristics of 

a full MSA with that of a subset of the MSA (Dekker et al. 2004).  The 

implementation follows Dekker et al. in 2004. In this method, a subset of the MSA is 

created by constraining the identity of the amino acid in a column i of the MSA. Then, 

𝑁!,!   and 𝑛!,! is calculated.  𝑁!,!   is the number of residues of type r at position j in the 

full MSA and 𝑛!,!   is the  number of residue type r at position j in the constrained 

subset.  

The probability of drawing a random subset of size 𝑛!"!#$from the MSA gives the 

observed amino acid composition at position j in the constrained subset. This is given 

by  

𝐿!
! =

!!,!
!!,!!

!!"!#$
!!"!#$

 

𝑁!"!#$is the number of sequence in full MSA and 𝑛!"!#$is the number of sequences in 

the subset MSA. The  𝐿!
!  is normalized as 

𝐿!,!"#
! =

!!,!
!!,!!

!!"!#$
!!"!#$

 

For the normalization, an ideal representative subset 𝑚!,! is constructed such that 

𝑚!,! ≈ 𝑁!,! 𝑁!"!#$ .𝑛!"!#$ 

The covariance score between the two positions is calculated by computing the 

normalized ratio, 
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Λ!!!! =
𝐿!!!!

𝐿!,!"#
!!! =

𝑁!,!
𝑛!,!
𝑁!,!
𝑚!,!

!

 

Observed Minus Expected Squared (OMES) 
 

This method is based on chi-square statistics. The correlation between the positions is 

calculated by comparing the expected probability of the two residues occurring 

together in any one sequence to the frequency with which they actually do appear 

together (Larson et al. 2000). The correlation between residues r and s, appearing at 

positions i and j, is defined as:  

𝜒! =   
𝑝 !,! − 𝑝 ! 𝑝 !

!

𝑝 ! 𝑝 !
!!!,!
!!!,!  

 

 

where 𝑝! 𝑟   is the frequency of amino acid r occurring at position i  and 

𝑝! 𝑟 = 1− 𝑝! 𝑟 ,  the total frequency of all other residues, and 𝑝!,! 𝑟, 𝑠 , is the 

frequency of r at position i and s at position j in the same sequence.  

A.5    Network Analysis Algorithm  
 
Hierarchical clustering methods arrange data into a hierarchy based on the distance or 

similarity. While using covariation data as a network, the covariation score is used as 

the distance between the two nodes or the residues. The higher the covariation score, 

the shorter is the distance between the residues and vice-versa. Alifea provides three 

hierarchical clustering methods. 

Single Linkage Clustering 

In single linkage clustering, the two clusters are fused together if the minimum 

distance (maximum covariation score) between the members of the two clusters is 

more than the average covariation score. 

Complete Linkage Clustering 

In complete linkage clustering the two clusters are fused together if the maximum 

distance (minimum covariation score) between the members of the two clusters is 

more than the average covariation score.  
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Average Linkage Clustering 

In average linkage clustering the two clusters are merged if the average distance (or 

the average covariation score) between the members of the two clusters is more than 

the total average covariation score. A stopping criterion was used for the average 

linkage clustering such that only residue pairs that have the covariation score above 

the stopping criteria were considered for clustering. This stopping criterion can be 

varied in different statistical steps of the distribution of the edge weights (such as 1-σ, 

2- σ, 3- σ and 4- σ from the mean-µ of the weights.  

A.6    Scoring and ranking the clusters 
Clusters can be scored either based on the average weighted degree of the cluster or 

based on the average weight of the cluster and then ranked in the decreasing order of 

the score. The details are described in the Method section. 

A.7    Visualizations  
Different visualizations including alignment/sequence view, heat map view of 

covariation data, network view of the clusters identified on the covariation data, 

hierarchy/tree view for visualizing the phylogenetic tree as well as the generated 

clusters and a structure view to map the results directly on a 3D structure, if available, 

were also implemented in the tool. The detail of all the different visualizations is 

provided in the Method section.  
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