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Abstract
Aim: Bats are important components of mammalian biodiversity and strong bioindi-
cators, but their fine‐scale distributions often remain less known than other taxa 
(e.g., plants, birds). Yet as highly mobile species with multiple needs in the landscape, 
bats impose serious modelling challenges, such as advanced use of neighbourhood 
analyses. The aims of this study were to test the use of a designed sampling of bats 
for biodiversity and conservation assessments, and to find appropriate modelling so-
lutions for providing nature practitioners with reliable potential bat distribution maps 
in a mountain area of high conservation interest.
Location: The western Swiss Alps of Vaud.
Methods: We conducted a one‐year field survey combining passive acoustic record-
ings supplemented by mist net catching to collect data on bats. These data were then 
used to create univariate models with focal land use/cover variables using different 
focal window sizes to detect the optimal species‐specific scale of influence for each 
variable. The large number of selected variables was then used to create ensembles 
of small models at a 100 m × 100 m resolution, and the resulting habitat suitability 
maps were transformed into species distribution maps for practitioners.
Results: We were able to collect data to model 14 different bat species representing 
66% of the Swiss bat diversity, including four red list species. In general, the most 
important variables were Euclidean distance to road or water, temperature and slope, 
but there was large variation among species both for the variable importance and for 
the optimal focal window size.
Main conclusion: Our study greatly increased the knowledge of bats in this region 
and showed that many of the red list species are nowadays disappearing from the 
intensively used lowland plains and restricted to the remaining forests along the 
slopes. Additionally, we highlighted the importance of selecting the variable scale on 
a species‐specific basis accounting for their mobility and range sizes.
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1  | INTRODUCTION

Pressures on ecosystems such as land use change, habitat fragmen-
tation and climate change are increasing (e.g., Foley et al., 2005; 
Pachauri et al., 2014; Maxwell, Fuller, Brooks, & Watson, 2016). 
Therefore, understanding the interaction between species and their 
environment is paramount to identify environmental or climatic 
factors driving the distribution of species and to provide reliable in-
formation on current and future suitable habitat to allow efficient 
conservation management (Guisan et al., 2013).

Species distribution models (SDMs, based on the quantification 
of the envelope of suitable habitats for a species; also called ecolog-
ical niche (ENMs) or habitat suitability (HSMs) models; see Guisan et 
al., 2013) are useful tools to reach this goal (Franklin, 2010; Guisan 
& Thuiller, 2005; Guisan, Thuiller, & Zimmermann, 2017; Guisan & 
Zimmermann, 2000; Peterson et al., 2011). These models rely on 
presence–absence or presence‐only (occurrence) data and a set of 
environmental variables to quantify the species–environment rela-
tionship and approximate the realized environmental niche (or part 
of it) of a species in a given area. This niche can then be projected 
in geographic space to obtain potential distribution of the species, 
possibly at different times (e.g., past, future). Nowadays, SDMs are 
applied across a large array of taxa and ecological fields (e.g., as-
sessment of the impact of land use, climate or other environmental 
changes on species’ distribution; support of conservation planning 
and reserve selection or the identification of unsurveyed sites for 
rare or elusive species; Zanini, Pellet, & Schmidt, 2009; Broennimann 
et al., 2014; Maggini et al., 2014; Guisan et al., 2017).

Bats are the second most‐diverse mammalian order with ca. 1,300 
species worldwide (Fenton & Simmons, 2015) and often account for 
an important part of a region's vertebrate diversity. Additionally, in-
sectivorous bats are also important bioindicators (Jones, Jacobs, 
Kunz, Willig, & Racey, 2009; Russo & Jones, 2015) due to their po-
sition in the food web making them particularly sensitive to habitat 
fragmentation and land use changes (Meyer, Struebig, & Willig, 2016; 
Mickleburgh, Hutson, & Racey, 2002; Russo, Bosso, & Ancillotto, 
2018; Voigt & Kingston, 2016). Despite their ecological success and 
potential as umbrella species (Lisón, Sánchez‐Fernández, & Calvo, 
2015; Roberge & Angelstam, 2004), bat ecology and distributions 
remain less known (compared to birds for instance), hampering moni-
toring and conservation efforts. This knowledge deficit is mostly due 
to bats’ nocturnal and elusive lifestyle, which makes them difficult to 
observe and identify in the field. In recent years, the development and 
widespread adoption of acoustic monitoring techniques has greatly 
improved our ability to collect data about this order, despite the lack of 
a standardized technique (Darras, Pütz, Rembold, & Tscharntke, 2016; 
MacSwiney, Cristina, Clarke, & Racey, 2008; Stahlschmidt & Brühl, 
2012) and difficulty of precise species‐level identification (Barclay, 
1999; Obrist, Boesch, & Flückiger, 2004; Russo & Voigt, 2016).

Improvement in both sampling efficiency and modelling tech-
nique leads to an encouraging increase in studies using SDMs for 
bats (for a review, see Razgour, Rebelo, Febbraro, & Russo, 2016). 
However, SDM studies on bats remain scarce and often address 

disparate questions or single species such as disentangling niches 
of cryptic species (e.g., Sattler, Bontadina, Hirzel, & Arlettaz, 2007; 
Rutishauser, Bontadina, Braunisch, Ashrafi, & Arlettaz, 2012; Santos 
et al., 2014; Smeraldo et al., 2018), modelling rare species of con-
servation concern (e.g., Rebelo & Jones, 2010; Razgour, Hanmer, & 
Jones, 2011; Santos, Rodrigues, Jones, & Rebelo, 2013; Russo et al., 
2015; Silva, Vieira, Silva, & Cassia Faria, 2018) or predicting the in-
fluence of climate change (e.g., Rebelo, Tarroso, & Jones, 2010; Pio 
et al., 2014; Carstens, Morales, Field, & Pelletier, 2018). Applications 
of SDMs to multiple or all species in a region at fine spatial resolution 
are still relatively rare due to limited data availability (but see Lisón 
& Calvo, 2013), although such effort would be needed to support 
conservation planning (Vincent, 2017). In recent years, a promising 
approach to deal with limited number of occurrences (i.e., rare or 
difficult to detect species) and large sets of environmental variables 
was developed (Breiner, Guisan, Bergamini, & Nobis, 2015; Breiner, 
Nobis, Bergamini, & Guisan, 2018) opening new modelling perspec-
tives for such elusive groups (i.e., difficult to survey). This is espe-
cially useful when modelling bats as SDMs for these species should 
incorporate a large number of landscape elements, such as distance 
to resources, land structures and land cover variables (Rainho & 
Palmeirim, 2011), to capture the complexity of the ecological niche 
of these highly mobile species (Jaberg & Guisan, 2001).

Most published studies based on SDMs use gridded environ-
mental maps (e.g., climate, soil, land use) to analyse and predict the 
potential distribution of species. This might be appropriate for ses-
sile organisms (e.g., plants) but might be problematic if modelling 
highly mobile species such as bats or birds at high spatial resolu-
tions, whereas for highly mobile species, the information on avail-
able resources within home/foraging range is often ecologically 
more important than the individual value of a single cell/location 
(e.g., 100 m × 100 m; Guisan & Thuiller, 2005). The key to integrate 
this information into SDMs might be focal variables representing an 
average/overview of the surrounding cells within a predefined focal 
window (Pellet, Guisan, & Perrin, 2004). However, even with focal 
variables remains the question of the optimal spatial scales (i.e., size 
of the focal window), depending on the location of accessible habi-
tats (Eigenbrod, Hecnar, & Fahrig, 2008) and the foraging range and 
behaviour of the species (Ancillotto et al., 2018; Krauel, Ratcliffe, 
Westbrook, & McCracken, 2018; Pellet et al., 2004; Razgour et 
al., 2011; Villalobos‐Chaves, Spínola‐Parallada, Heer, Kalko, & 
Rodríguez‐Herrera, 2017; Zanini et al., 2009). Jaberg and Guisan 
(2001) aggregated several land cover and landuse classes within 
large‐enough pixel units of 2.5 km × 2.5 km to ensure capturing all 
important habitats and landscape components for bats. However, 
Bellamy, Scott, and Altringham (2013) showed that better answers 
to this scale question can be given by using a series of univariate 
models with different focal window sizes revealing highly variable 
and species‐specific responses in bats.

In this study, we took the challenge to improve our capacity to 
gather distributional data for bat species in under‐sampled regions, 
such as mountains, and use these data to build SDMs for use in im-
proved conservation planning exercises within key conservation 
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areas. We illustrate the approach in the Swiss Alps of Vaud, a key 
conservation area according to key non‐governmental conservation 
agencies (Lassen & Savoia, 2005; WWF Vaud & Pro Natura Vaud, 
2015), as well as a priority area for disciplinary and transdisciplinary 
research (see http://rechalp.unil.ch), where bats were not yet used 
in conservation planning (e.g., not included in Ramel, 2018). We 
collected field data from May to August by passive acoustic sur-
vey and mist‐netting for bats species in the Western Swiss Alps. A 
multi‐scale approach involving the test of nested focal circular win-
dows of varying radius within univariate models was then used to 
select the best scale of influence for each land cover/use variable. 
Finally, ensemble of small models (ESMs), an approach optimized to 
model the distributions of rare or under‐sampled species (Breiner 
et al., 2015), were built at a resolution of 100 m × 100 m, using the 
mixed set of topo‐climatic, distance and optimal focal land use/cover 
variables (i.e., based on the optimal radius per land use/cover class 
and per species). Our aims were more specifically to: (a) provide ro-
bustly designed data about as many of the bat species occurring in 
this area as possible, (b) test the use of distance and focal variables 
to investigate and better predict species–habitat relationships and 
(c) use these data and focal analyses to provide optimized spatially 
explicit potential distribution maps for use in conservation planning.

2  | METHODS

2.1 | Study area

The study area is located in the western Swiss Alps (Canton de Vaud, 
46°10 to 46°30′N; 6°50′ to 7°10′E, Figure 1) and represents both 
a priority area for interdisciplinary research at the University of 
Lausanne (http://rechalp.unil.ch; Von Daniken, Guisan, & Lane, 2014) 
and a priority area for conservation at the European level (Lassen & 
Savoia, 2005). It covers ca. 700 km2, which encompass an elevation 
gradient ranging from 372 m to 3,210 m a.s.l. However, for this study 
with bats, only the potentially forested areas up to 2,000 m were 
considered for sampling and modelling, ignoring the 40 km2 area 
above the treeline that are less occupied by bats (Ancillotto et al., 
2015; Lisón & Calvo, 2013), as only a few bat species are adapted 
to survive in high mountains (Alberdi, Aizpurua, Aihartza, & Garin, 
2014; Le Roux et al., 2017; Weier, Linden, Gaigher, White, & Taylor, 
2017). The study area and its vegetation are considerably influenced 
by the topography and human activity with the plain (Rhône valley) 
being densely populated and intensively farmed while the subalpine 
areas are essentially shaped by touristic activity and more exten-
sive agricultural exploitations constituting a mosaic of meadows, 
pastures and forest patches (for more information about this area, 
see also http://rechalp.unil.ch; Guisan, 2005; Pellissier et al., 2012; 
Pradervand, 2015).

2.2 | Species data

So far, the bats in the study area were poorly documented except 
for five field surveys from the last national red list assessment 

(Bohnenstengel et al., 2014) and a long‐term alpine bird‐ringing 
station where bat catches occur regularly. New data about bat spe-
cies were collected during a field survey from May to mid‐August 
2016. As ease of detection and identification can vary between spe-
cies depending on the method of survey (Barnhart & Gillam, 2014; 
Flaquer, Torre, & Arrizabalaga, 2007), passive acoustic sampling was 
combined with capture using mist nets (Bohnenstengel et al., 2014; 
Stahlschmidt & Brühl, 2012). Additionally, the few historical data 
available for the area were incorporated. Species with less than 15 
records in the area were not considered further, as they were not 
suitable for modelling. Furthermore, to avoid spatial autocorrela-
tion between occurrences from different data sources and detec-
tors (see below), a minimal distance of 1 km between occurrence 
points of each species was applied and other data within this radius 
were discarded. With a minimum distance of 1 km between occur-
rences, none of the bat species except the most frequently observed 
(Pipistrellus pipistrellus) showed significant spatial autocorrelation 
(Morans I > 0.05, Supporting Information Figure S1).

2.2.1 | Historical data

Historical data came from the national database (InfoFauna: Swiss 
Center for Faunal Cartography, http://www.cscf.ch). These data 

F I G U R E  1   Location of the sites sampled by passive acoustic or 
by mist nets capture from May to August 2016

http://rechalp.unil.ch
http://rechalp.unil.ch
http://rechalp.unil.ch
http://www.cscf.ch
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were obtained with various technique, including passive and active 
acoustic, mist‐netting and reporting of bats by the public. All reliable 
data with an accurate geolocation collected since 1991 between 
May and August were considered.

2.2.2 | Capture

Capturing by mist nets was done at 32 sites scattered across the 
study area with an average of 60 m of mist nets (2.4 m height, black 
M‐14 14 mm monofilament from Ecotone©, Poland) set up in places 
favourable for bat passes until 4 hr after the sunset. Every bat was 
identified to the species level, and basic morphometry was taken 
(sex, age, forearm length, weight, reproductive condition). All the 
captures were done under licensing, and all bats were quickly re-
leased on site.

2.2.3 | Acoustic

Sixty‐five sites were sampled acoustically following a regular sam-
pling stratified by three altitudinal classes (Hirzel & Guisan, 2002). 
On each site, two passive acoustic detectors (BatCorder® 3.1, 
ecoObs©, Germany) were set up within a radius of 250 m from the 
sampling site and with a minimal distance of 100 m between them. 
Whenever possible, the two detectors were placed in different habi-
tat types within a site (e.g., open grassland/forest) to account for 
habitat heterogeneity and differing preferences among bat species. 
If a species was recorded by both acoustic detectors placed per site 
one of the occurrences was discarded to prevent pseudo‐replication. 
Due to the rugged topography in the area making it difficult to access 
certain locations, some sampling points had to be slightly displaced. 
Each site was recorded during 3 to 6 continuous nights, recording 
from one hour before sunset to one hour after sunrise. On each 
site, at least three nights offered suitable condition for bat activity 
based on temperature, precipitation and wind speed over the area. 
Every file was automatically classified with SonoChiro® (Biotope©, 
France) to allow an efficient selection of sequence to check per site. 
Because low consensus has been reached, especially concerning the 
treatment of the acoustic data (Adams, Jantzen, Hamilton, & Fenton, 
2012; Russo & Voigt, 2016), we let down the quantitative approach 
and limited ourselves to a qualitative list which could be checked 
manually. Therefore, for each detector per site, a call of each species 
was manually identified (Barataud, 2015) on Batsound 4.1 (Petterson 
electronik AB, Uppsala, Sweden), confirming the presence of the 
species. The output for each detector per site is therefore a qualita-
tive list of bat species which were all confirmed by David Progin at 
the University of Lausanne or Cyril Schönbächler, an expert from 
the CCO (coordination centre for the study and conservation of bats 
in western Switzerland) for the Myotis spp. Unfortunately, Plecotus 
spp. and Myotis myotis/blythii cannot be identified to species level 
with acoustic data alone. However, as the closely related species 
seemed absent from the region, the Plecotus sequences are likely to 
be Plecotus auritus and the Myotis myotis/blythii sequences are likely 
to be Myotis myotis.

2.3 | Species distribution modelling

2.3.1 | Environmental data

Environmental data included two climatic variables (annual average 
temperature [°C] and annual sum of precipitation [mm]), one topo-
graphic variable (slope [°]), four Euclidean distances [m] (to closest 
forest, water, building and road), the normalized difference veg-
etation index (NDVI; Rouse, Haas, Schell, & Deering, 1974) and the 
variance of canopy height [m]. We considered nine land use/cover 
classes and measured the proportion of each in concentric neigh-
bouring windows of increasing radius of 0.1, 0.2, 0.3, 0.4, 0.5, 1, 
1.5, 2, 2.5, 3, 4 and 5 km—to assess species‐specific scales of influ-
ence of each variable. These variables were selected because they 
were not too highly correlated (spearman correlation <0.7; using the 
threshold recommended by Dormann et al., 2013) and have been 
shown to be highly influential for mobile species and bats in particu-
lar (Jaberg & Guisan, 2001). All environmental data were calculated 
at 100 m × 100 m resolution and additional details can be found in 
Table 1 and Supporting Information Appendix S1.

2.3.2 | Univariate models

For each species, the best window radius of the focal variables (the 
nine land use/cover classes and NDVI) was identified by using series 
of univariate models (Bellamy et al., 2013). Each of the 1,680 univari-
ate models (14 species × 12 windows sizes × 10 focal variables) was 
run in R 3.3 (R Core Team, 2017) with the package biomod2 (Thuiller, 
Georges, Engler, & Breiner, 2016), using maxent 3.3.3 (Phillips, 
Anderson, & Schapire, 2006). For each model, we conducted 50 
split‐sample cross‐validation runs (80% calibration/20% evaluation) 
using five different set of 5,000 pseudo‐absences (selected with a 
minimum distance of 1 km from presences and down‐weighted to 
equal the presence; i.e., prevalence of 0.5; Ferrier, Drielsma, Manion, 
& Watson, 2002). In a first step, the best spatial scale for each focal 
variable and species was selected based on the area under the curve 
(AUC) of a receiver operating‐characteristic (ROC) plot (Fielding & 
Bell, 1997). In a second step, environmental variables were checked 
for multicollinearity and highly correlated variables (Spearman cor-
relation > |0.7|; Dormann et al., 2013) were pruned by retaining the 
variable with the highest AUC (Bellamy et al., 2013).

2.3.3 | Ensemble of small models

All species distributions were predicted with an ensemble of small 
models approach (ESMs; Lomba et al., 2010; Breiner et al., 2015; 
Breiner et al., 2018) using the packages ecospat (Di Cola et al., 2017) 
and biomod2 (Thuiller et al., 2016) in R 3.3 (R Core Team, 2017). The 
ESM approach calibrates every possible bivariate combination of the 
environmental variables (i.e., n(n − 1)/2 bivariate models per species, 
with n being the number of variables) and then averages all those small 
bivariate models into an ensemble prediction. In this study, we only 
used generalized linear models (GLMs) for the calibration of bivariate 
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models, as using different modelling technique within the ESM frame-
work was shown not to improve performance significantly (Breiner et 
al., 2015, 2018). For each ESMs, we run 100 split‐samples (80% cali-
bration/20% evaluation) using ten different set of 10,000 pseudo‐ab-
sences (selected with a minimum distance of 1 km from presences and 
down‐weighted to equal the presence; i.e., prevalence of 0.5; Ferrier 
et al., 2002). Finally, an ensemble prediction was created by averaging 
the 100 runs weighted by AUC (Fielding & Bell, 1997). Weights of the 
bivariate models with an AUC lower than 0.5, hence worse than ran-
dom (counter‐predictions), were set to 0. The ensemble prediction was 
evaluated with the Continuous Boyce Index (Boyce, Vernier, Nielsen, 
& Schmiegelow, 2002; Hirzel, Lay, Helfer, Randin, & Guisan, 2006) cal-
culated with the default parameter of the ecospat.boyce function (Di 
Cola et al., 2017), one of the most reliable presence‐only evaluation 
metrics, not prone to overestimate the predictive power of models 
built on a limited number of data (for more information on the model-
ling framework see Figure S2). Similar to standard model averaging 
or multi‐model inference (Burnham & Anderson, 2002; Claeskens & 
Hjort, 2008), the contribution of each variable was assessed by cal-
culating the mean weight of all bivariate models including the variable 
of interest, rescaled by the variable with the highest weight to a range 
between 0 and 1, as commonly done (but with Akaike's weights) in 
multi‐model inference (e.g., Burnham & Anderson, 2002). These final 
ensemble models were then used to predict the potential distribution 
of our bat species in the study area up to 2,000 m (i.e., not projecting 
into the not sampled highest elevations).

2.3.4 | Reclassification of maps

To facilitate the use of the habitat suitability maps for practition-
ers and to account for the high mobility and varying home ranges 
of the bat species, the habitat suitability predictions were thres-
holded into binary maps, then smoothened using a focal window 
and finally categorized into different habitat classes. Binary pres-
ence–absence maps were generated by applying a threshold dis-
carding the lowest 10% of training locations, hence encompassing 
90% of training presences (minimal predicted area, MPA90; 
Engler, Guisan, & Rechsteiner, 2004). To account for the high mo-
bility of bats, the binary distribution maps were then smoothed 
with a focal window of the mean home/foraging range of each 
species, giving for each target cell the proportion of presence 
cells within home range distance. The home range of each bat 
species was either provided by telemetric studies or expert‐based 
(Arthur & Lemaire, 2009; Dietz, Nill, & Helversen, 2009). The use 
of binary predictions to build these smoothened distribution 
maps, hence the proportion of presence cells within home range 
distance instead of a mean habitat suitability within home range 
distance, was preferred because of the high mobility of the bats 
and good abilities to select optimal habitat and avoid unsuitable 
one in a heterogeneously suitable environment. The smoothened 
maps were reclassified into four classes of habitat suitability (HS) 
as follows: Unsuitable: Less than 5% of presences in home range 
distance; Marginal: Between 5% and 25% of presences; Suitable: 

TA B L E  1   Environmental predictors used in the ensemble of small models (ESMs)

Category Name Description—each layer is at a 100 m resolution

Climatic temp Mean of daily minimal temperature between May and August—averaged from 1981 to 2010

preci Sum of daily precipitation between May and August—averaged from 1981 to 2010

Topographic slope Slope inferred from a digital elevation model at a 25 m resolution. Aggregate to 100 m resolution

Euclidean 
distance

roadsED Euclidian distance between the closest road and the centre of the cell

buildingsED Euclidian distance between the closest building and the centre of the cell

waterED Euclidian distance between the closest water source (stream or lake) and the centre of the cell

forestED Euclidian distance between the closest forest and the centre of the cell

Other canopy Variance of canopy height at a 100 m resolution, calculating from a 1 m resolution raster masked by forest

ndvi Normalized difference vegetation index at 100 m resolution. Aggregate from 10 m resolution

ndvi_focal Mean of normalized difference vegetation index at different focal scale

Land Cover alppast Proportion of alpine pasture at different focal scale

culti Proportion of agricultural land at different focal scale

forcon Proportion of coniferous forest (>50% of the essences) at different focal scale

forfeu Proportion of deciduous forest (>50% of the essences) at different focal scale

forest_edge Proportion of cells including a forest edge or treeline at different focal scale

habinf Proportion of habitations and infrastructures at different focal scale

lake Proportion of lake at different focal scale

naked Proportion of naked area (essentially rocks) at different focal scale

open Proportion of open area (meadows, pasture) at different focal scale

Note. For the climatic variables, we use the standard 30‐year period (1981–2010) used in the climate change reports (e.g., IPCC) to have a time period 
covering all our historic records.
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Between 25% and 50% of presences; Optimal: More than 50% 
presences. Additionally, species richness maps were built by sum-
ming up the binary presence–absence maps (as done e.g., for 
birds, see Distler, Schuetz, Velasquez‐Tibata, & Langham, 2015).

3  | RESULTS

3.1 | Data collection

The field campaign did not target specific species and allowed us 
to obtain data for 18 different species of various ecology with 14 
species having enough records for modelling (Table 2). These 14 
species represent 66% of the bat diversity native to Switzerland, in-
cluding five species on the national red list with a Vulnerable (VU), 
Endangered (EN) or critically endangered (CR) status (Barbastella 
barbastellus EN, Myotis myotis/blythii VU/CR, Eptesicus nilssonii VU, 
Eptesicus serotinus VU and Plecotus spp. VU/EN/CR). The passive 
acoustic sampling was the most efficient way to gather data, ac-
counting for two third of the final data used in the modelling process, 
while both capture with mist nests and historical data contributed 
about one sixth each. Overall, our field campaign produced more 
than 80% of the data used in the study. The four additional species 
recorded but not modelled (due to data limitation) were Myotis be‐
chsteinii VU, Myotis brandtii VU, Pipistrellus kuhlii LC and Vespertilio 
murinus VU.

3.2 | Univariate models—scale selection

The univariate models, aimed at selecting the best scale (i.e., focal 
window radius) per species for each land use/cover variable, revealed 
no clear trend (Figure 2). No best scale showed up among variables 

and species, suggesting scale dependences to be species‐specific 
(Figure 2). This univariate approach therefore proved particularly 
useful for selecting the optimal scales to include, for each variable, in 
the final ESM for each species. The full results of univariate models 
per species are provided in Supporting Information Figure S3.

3.3 | Ensemble of small models—species distribution

The ESM predictions for the 14 bat species were generally good, 
with Continuous Boyce Index (CBI) ranging between 0.75 and 0.89 
(median = 0. 86; Figure 3). The resulting habitat suitability maps 
(top row of Figure 4, Supporting Information Figures S4–S6) were 
thresholded into binary maps (second row of Figure 4; Supporting 
Information Figures S4–S6), then smoothened using a focal win-
dow (third row of Figure 4, Supporting Information Figures S4–S6) 
and finally categorized into different habitat classes (bottom row of 
Figure 4, Supporting Information Figures S4–S6).

In general, the four Euclidean distance variables had the highest 
contribution across species, especially the distances to roads, water 
and forest (Figure 5). As expected in such mountain landscapes, 
slope and temperature were the most influential topo‐climatic vari-
ables and outperformed all focal land use/cover variables (whatever 
the radius of the focal window). Among the land use/cover variables 
selected by the univariate models, the ones linked with forest (for-
est edge, deciduous forest, canopy structure) were more important 
than the others. However, depending on the species, other vari-
ables mostly related to human land use/cover (alpine pastures and 
cultivated land) had a high influence on the species distribution 
(Supporting Information Figure S7). The variables expressing pro-
ductivity (i.e., primary production by NDVI at various scales) per-
formed poorly for all species.

TA B L E  2   Species records in the study area after correction for autocorrelation (minimum distance 1 km)

Scientific name Common name RLS Historic Capture Acoustic Total

Barbastella barbastellus Western Barbastelle Bat EN 1 2 14 17

Eptesicus nilssonii Northern Bat VU 10 2 28 38

Eptesicus serotinus Serotine Bat VU 4 1 20 24

Hypsugo savii Savi's Pipistrelle Bat NT 3 0 19 21

Myotis daubentonii Daubenton's Bat NT 8 8 22 35

Myotis myotis/blythii Greater/Lesser Mouse‐eared Bat VU/CR 4 4 18 24

Myotis mystacinus Whiskered Bat LC 7 17 14 34

Myotis nattereri Natterer's Bat NT 3 6 20 27

Nyctalus leisleri Leisler's Bat NT 7 1 36 43

Nyctalus noctula Noctule Bat NT 4 1 15 18

Pipistrellus nathusii Nathusius's Pipistrelle Bat LC 7 1 34 38

Pipistrellus pipistrellus Common Pipistrelle Bat LC 24 19 68 87

Pipistrellus pygmaeus Soprano Pipistrelle Bat NT 3 5 16 21

Plecotus spp. Long‐eared Bat VU/CR/EN 8 8 23 35

Note. Historical data were collected between May and August since 1991. Capture and passive acoustic were collected between May and August 2016. 
Total represents the number of occurrences used for modelling after removing duplicates. The national red list status (RLS) of each species is given as 
CR: critically endangered; EN: endangered; LC: least concern; NT: near threatened; VU: vulnerable.
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The predicted species richness was higher in the lowlands, close 
to forest and along the major streams in the area (Figure 6), with 
some areas being suitable for every species modelled. However, if 
only threatened species are considered the pattern looks different 
(Figure 6), with threatened species mostly confined to the higher less 
urbanized areas along the slopes of the main valley.

4  | DISCUSSION

This study yielded several important findings. First, it showed how 
a carefully planned field survey with a mix of recording techniques 

can dramatically increase the number of positive observations of 
cryptic species like bats in a complex mountain landscape. Second, 
it revealed the power of using focal windows accounting for vari-
ous land use/cover characteristics in the focal cell's neighbourhood, 
and using series of univariate models to test the importance of each 
window size of each land use/cover class for each species in a sys-
tematic way, an approach still very rarely performed so far but very 
powerful for mobile species. Third, it confirmed the usefulness of 
using the ensemble of small models (ESMs) approach for modelling 
species distributions with limited number of species occurrences, 
while still accounting for the main variables defining a species’ niche. 
The niche estimates, models and associated predictions derived 
from these various sampling and analytical steps bear the potential 
to provide important additional information to better understand 
the distribution and ecology of these highly mobile—and somewhat 
elusive—species as well as support future conservation planning ex-
ercises, as performed recently in Ramel (2018; including many taxa 
but not bats).

Our study illustrates how a carefully planned and system-
atic field survey, including elements of randomness needed in any 
prospective sampling (Albert et al., 2010; Edwards, Cutler, Geiser, 
Alegria, & McKenzie, 2004; Guisan et al., 2006; Le Lay, Engler, Franc, 
& Guisan, 2010) contributed to increase the number of existing 
records in this area five times, highlighting the need for more ex-
haustive data collection in addition to the usually insufficient and 
biased data in natural history collections and national databases 
(e.g., InfoFauna in Switzerland, http://www.infofauna.ch). Different 
bat species usually have a heterogeneous detectability, mostly de-
pending on the technique of monitoring, flight behaviour of the bats 
and their echolocation calls (including range of detection and ease of 
identification). Therefore, the mix of techniques used was optimized 
to detect the different bats species potentially inhabiting the study 
area (Bohnenstengel et al., 2014). However, a few more additional 
species appeared to be rare residents of the area, such as Myotis 
bechsteinii, M. brandtii, Pipistrellus kuhlii or Vespertilio murinus but 

F I G U R E  2   The optimal distance of each focal variable determined by univariate models (a) and the associated AUC value of the 
univariate model (b) overlaid for all 14 bat species. The blue polygons indicate optimal distance [km, 0 to 5] and the red polygons indicate 
AUC values of the univariate model [0.45 to 0.85]. alppast: alpine pastures; culti: agricultural area; forcon: coniferous forest; forest_edge: 
forest edge; forfeu: deciduous forest; habinf: urbanized infrastructure; lake: lake and large water bodies; naked: bare ground; ndvi: NDVI; 
open: open habitat

F I G U R E  3   Evaluation scores of the ESMs assessed by the 
Continuous Boyce Index calculated for each run. The red dot is the 
model fit of the final ensemble, the boxes indicate the 25, 50 and 
75 percentile and the whiskers span 2 SD

http://www.infofauna.ch
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were not detected sufficiently to fit models. Following one season 
of sampling, the results presented here thus change the status of 
the study area from a poorly surveyed to a well‐surveyed area for 
bats in Switzerland, and our models and distribution maps will be 
able to serve as useful tools for conservation in future biodiversity 
assessments.

Our study further contributed to improve our knowledge and 
understanding of bat species ecology and distribution, especially 
compared to the two previous bat modelling studies in Switzerland 
(Jaberg & Guisan, 2001; Sattler et al., 2007), both conducted at 
the national scale and at much coarser resolution and lower spa-
tial and environmental variability than the present study, which 
was conducted at high resolution and encompassed elevation 
from the lowlands (ca. 375 m) up to the highest elevations for 
bats (around 2,000 m). This study also innovated compared to 
previous studies by following a systematic screening and assess-
ment of the most important scales of influence of the different 
land use/cover classes important for each species: The approach 
proposed here combines focal window analyses of various radii 
then tested within series of univariate models (here using GLMs), 
with—for each land use/cover class—the radii yielding the highest 

explained deviance being used in the final model. The big advan-
tage of this approach is that it allows keeping a fine resolution 
(here 100 m) for environmental variables acting at very local scale 
(e.g., topography, micro‐climate) while being able to account for 
neighbouring influence of the landscape up to several kilometres, 
which allows capturing the influence of multiple components of 
the landscape acting at larger scale that are key for bat presence 
(Bellamy et al., 2013). This was previously often accounted simply 
by using larger cell sizes (e.g., 2.5 km × 2.5 km in Jaberg & Guisan, 
2001) that therefore include these many landscape components 
but at the cost of losing the fine resolution. The importance of this 
approach is especially shown by our finding that different radius 
are selected for different land use/cover classes and that these 
are species‐specific, allowing each model to capture the unique 
combination of environmental variables important to define the 
species’ environmental niche (see Guisan et al., 2017).

As expected, the projected species richness was highest at 
lower elevations associated with favourable climatic conditions 
for most species. In general, most bat species were highly asso-
ciated with structural features of the landscape, such as roads, 
waterways and forest edges (Kerbiriou et al., 2018; Lisón, Palazón, 

F I G U R E  4   Predicted species 
distributions for four bat species. The 
top row shows the habitat suitability, 
the second row the binary maps after 
thresholding (MPA 90%), the third row 
the smoothed predictions indicating 
the percentage of suitable habitat (i.e., 
presences) within a focal window of the 
home range size and the last row shows 
the reclassification of the third row into 
four habitat categories
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& Calvo, 2013; Lisón & Sánchez‐Fernández, 2017). Roads may act 
as an important commuting or foraging habitat, especially in for-
ested area (Bellamy et al., 2013; Willcox, Giuliano, Watine, Mills, 
& Andreu, 2017). Furthermore, when lit, roads also attract in-
sects and therefore favour those species not disturbed by lights, 
such as Pipistrellus, Nyctalus and Eptesicus spp. (Rowse, Lewanzik, 
Stone, Harris, & Jones, 2016; Rydell, 2006; Spoelstra et al., 2017). 
Additionally, the endangered species B. barbastellus was strongly 
associated with hedges and broadleaf forests confirming studies 
about habitat preference obtained from radio tracking individual 
females (Kühnert, Schönbächler, Arlettaz, & Christe, 2016; Zeale, 
Davidson‐Watts, & Jones, 2012). Most bat species were associated 
with water ways, but this was especially prominent for P. pygmaeus 
known to be associated with lake shores and wide rivers in the 

warmer regions of Switzerland (Sattler et al., 2007). However, both 
model predictions and field records indicate that P. pygmaeus is ex-
panding its range into valley's side slopes up to 900 m (Figure 4). 
In contrast to most species associated with warmer lowland con-
ditions, E. nilssonii is limited to the higher parts of the area and 
avoids the lowlands (Figure 4). E. nilssonii seems to occur widely in 
the Prealps and was detected in every site above 900 m in eleva-
tion, although the few calls per site suggest low densities. It was 
the only species with a negative response to higher temperatures, 
suggesting that this species could probably be the most directly im-
pacted by global warming as its suitable habitats would be reduced 
as its range shifts upslope. The colder conditions of higher eleva-
tion areas in mountainous areas are an important limiting factor for 
other species such as P. pygmaeus, H. savii or E. serotinus and their 
predicted upward shift is expected to increase competitive pres-
sure on E. nilssonii (Haupt, 2005; Rebelo et al., 2010). While most 
bat species occupy most of their suitable climatic space, some spe-
cies seem to fill only a small part of their climatic niche (Figure 4), 
such as Plecotus spp. that is most likely restricted due to habitat 
fragmentation making it especially vulnerable to land use change 
(Bohnenstengel et al., 2014). Indeed, our results suggest that most 
red list bat species found in the area are excluded from the now-
adays intensively modified valley floors (to which they might orig-
inally have belonged) and confined to the last remaining forest 
patches or the largely forested and unexploited slopes along the 
valley, as similarly observed for some bird species (e.g., Fournier & 
Arlettaz, 2001). The major issue for bats resulting from the anthro-
pogenic development is a loss of connectivity, hampering species 
richness (Frey‐Ehrenbold, Bontadina, Arlettaz, & Obrist, 2013). 
Different species seem to perform differently under anthropo-
genic pressure, with some species which could benefit and some 
which seem to be hampered by human's influence on the landscape 
(Russo & Ancillotto, 2015).

4.1 | Study limitations and future perspectives

It is important to keep in mind the heterogeneity of the occur-
rence data used in this study. For all three data sources (pas-
sive acoustics, capture and historic data), it is impossible to 
determine whether the occurrence represents a breeding site, 

F I G U R E  5   Boxplot of the variable contribution of each 
environmental variable averaged across the 14 species. The 
percentage represents the proportion of the ensemble explained 
by the variable of interest. For variable explanation see Table 1. 
The colours indicate the type of variable: red: Euclidean Distance; 
orange: topographic; blue: climatic; violet: focal; green: productivity

F I G U R E  6   Species richness based on the sum of the binary predictions of each species (bS‐SDM). On the left for all 14 species, in the 
middle for the nine species listed as LC or NT and on the right the five species listed as VU or EN in the national red list
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a foraging place or simply a migration corridor. We therefore 
can only model the probability to detect a certain species (Kery, 
Gardner, & Monnerat, 2010). We tried to account for this problem 
by smoothing our predictions with the individual home ranges of 
the different species, this way providing a smoother view of the 
species’ range. However, future modelling efforts should prefer-
ably use occupancy models specifically developed to account for 
detectability (Kery et al., 2010), for instance using Bayesian ap-
proaches (Kery & Royle, 2015). As there is a large number of envi-
ronmental and landscape factors potentially affecting the chance 
to detect a certain species, we decided to use ensemble of small 
models (ESM; Lomba et al., 2010; Breiner et al., 2015). The big 
advantage of ESMs is that even with a limited number of occur-
rences, a large number of predictors could be used (Breiner et al., 
2015, 2018), but as to date, we do not know any development 
of occupancy modelling within an ESM context, which we see as 
a promising future development. Nevertheless, the models pre-
sented here still improved our understanding of the use of large 
and complex habitats by bats and could be used in future studies 
to predict the consequences of climate change and more direct 
anthropogenic alterations of the landscape, such as urbanization, 
roads construction, touristic activities, agricultural modifica-
tions or forest and water management, all included in a proper 
conservation planning prioritization scheme (see Tulloch et al., 
2016). Additionally, our models and spatial predictions could help 
in identifying biodiversity hotspots, selecting the most valuable 
areas for protection and optimization conservation efforts of the 
most threatened places and species (e.g., Struebig, Christy, Pio, & 
Meijaard, 2010; Guisan et al., 2013; Pio et al., 2014), or be used 
to set up spatial monitoring programs for bats (Honrado, Pereira, 
& Guisan, 2016).
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