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Abstract

Biobanks with genetic and phenotypic information of hundreds of thousands of partic-
ipants offer new opportunities to study the genetic underpinning of disease aetiology.
Beyond genetics and genomics, recent advances in technologies enabled the gener-
ation of a variety of omics data at an unprecedented scale opening up the possibility
of studying the consequences of genetic variation in the mediating molecular space.

Through the lens of statistical genetics, this thesis studies the integration of omics
and disease genetics to identify putative novel disease mechanisms and further ex-
plores the role genetics can play in drug development pipelines and personalised
medicine. In the first part, large-scale omics quantitative trait loci (QTL) data are
combined with genome-wide association studies (GWAS) in a causal integrative
Mendelian randomisation framework to identify molecular mechanisms mediating
the path from genotype to phenotype. Known as ‘Nature’s clinical trial’ whereby
individuals who carry specific genetic variants may be at risk or protected against a
disease, such integrative genetics approaches also provide a basis for drug target
discovery and ultimately drug development. The second part describes the support
of human genetics among approved drugs and how diverse molecular data sources
and methodologies can contribute towards such genetic support. Not only is genet-
ics gaining increased interest in target identification but also in patient stratification.
Inter-individual variability in drug response is known to harbour a genetic compo-
nent, and understanding the underlying genetics holds promise to move from ‘one
size fits all’ to a more personalised medicine approach. In the third part, large-scale
biobanks coupled to electronic health records (EHRs) with longitudinal clinical and
prescription data are harnessed to study the pharmacogenetic efficacy of common
cardiometabolic medications. Overall, the results demonstrate the value of omics
QTL data to study disease pathways, the benefits of consulting both common and
rare genetic variants to identify drug targets, and the challenges and promises of
EHRs for drug response studies.

In conclusion, genetics serves as an anchor to establish causality and detect
molecular disease mechanisms and drug targets, while also enabling patient stratifi-
cation for more effective and personalised treatment strategies.
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Résumé

Les biobanques contenant des informations génétiques et phénotypiques de cen-
taines de milliers de participants offrent de nouvelles opportunités pour étudier l’étio-
logie génétique des maladies. Au-delà de la génétique et de la génomique, les
récents progrès technologiques ont permis la génération d’une variété de données
omiques à une échelle sans précédent, ouvrant la possibilité d’étudier les consé-
quences de la variation génétique dans l’espace moléculaire médiateur.

À travers le prisme de la génétique statistique, cette thèse étudie d’abord l’intégra-
tion de la génétique omique et de la génétique des maladies afin d’identifier de nou-
veaux mécanismes pathologiques putatifs et ensuite le rôle que la génétique peut
jouer dans le développement de médicaments et dans la médecine personnalisée.
Dans la première partie, des données omiques à grande échelle sur les loci de
caractères quantitatifs sont combinées avec des études d’association à l’échelle du
génome dans un cadre de randomisation mendélienne afin d’identifier des mécanis-
mes moléculaires médiant le lien entre le génotype au phénotype. Connue sous le
nom de ‘essai clinique de la nature’, où les individus porteurs de variants génétiques
spécifiques peuvent être exposés ou protégés contre une maladie, ces approches
génétiques intégratives fournissent également une base pour la découverte de cibles
médicamenteuses. La deuxième partie décrit le soutien de la génétique humaine
parmi les médicaments approuvés et comment diverses méthodologies et sources
de données moléculaires peuvent contribuer à un tel soutien génétique. La génétique
suscite un intérêt croissant non seulement pour l’identification des cibles, mais aussi
pour la stratification des patients. La variabilité interindividuelle de la réponse aux
médicaments comporte une composante génétique, et la comprendre promet de
passer d’une approche ‘taille unique’ à une approche de médecine plus person-
nalisée. Dans la troisième partie, des biobanques couplées à des dossiers de santé
électroniques (DSE) contenant des données cliniques et de prescription sont ex-
ploitées pour étudier la pharmacogénétique de la réponse aux médicaments car-
diométaboliques courants. Dans l’ensemble, les résultats démontrent la valeur des
données omiques pour étudier les mécanismes moléculaires, l’importance des vari-
ants génétiques communs et rares pour identifier les cibles médicamenteuses, et les
défis et promesses des DSE pour les études sur la réponse aux médicaments.

En conclusion, la génétique permet d’établir la causalité pour détecter les mécanis-
mes moléculaires et les cibles médicamenteuses, ainsi que la stratification des pa-
tients pour des traitements plus efficaces et personnalisées.
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Chapter 1

Introduction

1.1 Aims of the thesis

Since completion of the Human Genome Project in the early 2000s [1, 2], ge-
nomics has evolved into a highly multidisciplinary field. From fundamental biol-
ogy to medicine to biotechnology, genomics provides answers about evolution-
ary processes and phenotypic variability, and a basis for therapeutic solutions
and genetic engineering. Vast amounts of data generated by next-generation
sequencing (NGS) and genotyping offer unprecedented opportunities to un-
derstand the genetic basis of traits, diseases and other biological phenomena.

High-throughput technologies have given rise not only to large-scale ge-
nomics data, but to a variety of omics data that cover a wide spectrum of
molecules such as transcripts, proteins and metabolites. While genetic associ-
ations with biological traits and diseases assessed through so-called genome-
wide association studies (GWAS) provide valuable insights into human biol-
ogy, omics data can inform us about mediating molecular relationships often
through so-called omics quantitative trait loci (QTL) data. The molecular space
mediates also pharmaceutical effects of drugs and Figure 1.1 shows a sim-
ple schematic of how genetics, omics, diseases and drugs can be connected
and modelled to gain mechanistic insights into the complex interplay between
omics and diseases and understand inter-individual differences in drug re-
sponse.

Every node in the triangular illustration in Figure 1.1 representing drugs,
omics and traits, respectively, exists in a high-dimensional space, and every
node and edge represents a sub-discipline itself. As our knowledge in each
of these individual fields expands, we will be able to derive integrative models
with increased granularity. With this overall goal in mind, this thesis focuses on
three major themes: systems genetics, drug target identification and pharma-
cogenomics. The introduction is structured into three corresponding sections,
each explaining fundamental concepts and summarising current knowledge,
data and statistical tools. The systems genetics part deals with the mechanis-
tic interaction of omics and traits, the drug target identification part focuses on
the role of genetics in detecting effective drug targets and the pharmacoge-
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1.1. AIMS OF THE THESIS CHAPTER 1

nomics part covers our current understanding of the genetics underlying inter-
individual variability in drug response. The following chapters summarise our
research and results that have been published in scientific journals or are cur-
rently in preparation (Appendix A-C) and that contribute to the three themes:
i) Mediation between omics layers and complex traits (Chapter 2), ii) Gene pri-
oritisation approaches to identify drug targets (Chapter 3), and iii) Large-scale
biobanks for pharmacogenomic research (Chapter 4). In the final Chapter 5, I
will discuss limitations and challenges in complementing gaps in current drug-
omics-disease models and how this could be solved in the future.

Figure 1.1: Schematic representation of the connections between drugs,
traits/diseases, genetics and omics. Genome-wide association studies
(GWAS) inform about the genetics of traits while omics quantitative trait loci
(QTL) studies inform about the genetics of omics. Pharmacogenetics de-
scribes inter-individual drug response due to genetics and the extension to
pharmaco-omics expands the genetic dimension to the omics space.

2



CHAPTER 1 1.2. THE PATH FROM GENOTYPE TO PHENOTYPE

1.2 The path from genotype to phenotype

Each cell in the human body contains an identical copy of deoxyribonucleic
acid (DNA). Yet, cells can be very different as a result of how the genetic code
is used. Differentiated cell types distinguish themselves from different gene
expression patterns with not every gene being expressed in every cell [3]. The central

dogma of
molecular biology
governs the flow
of genetic
information.

The
central dogma of molecular biology governs the flow of genetic information -
from DNA to ribonucleic acid (RNA) to proteins where the latter largely decide
the appearance and behaviour of a cell. The central dogma consists of three
main steps of which the first one is DNA replication [4]. DNA polymers com-
posed of sequences of any of the four nucleotides A (adenine), T (thymine),
G (guanine) and C (cytosine) replicate so that each daughter cell receives an
identical DNA copy during cell division. DNA is then transcribed into RNA
by the RNA polymerase, which when coding for a protein is called messen-
ger RNA (mRNA). Lastly, ribosomes translate mRNA into peptides or proteins
composed of chains of amino acids (Figure 1.2).

Figure 1.2: The central dogma of molecular biology governs the flow of DNA in-
formation from replication to transcription to translation. Environmental factors
might influence this process or by themselves shape observed phenotypes.

From the central dogma of molecular biology follows that variations in DNA
sequences can impact phenotypes through downstream mechanisms affect-
ing gene expression and protein levels. Genetic

associations are
more puzzling in
polygenic than
monogenic
disorders.

Thus, finding genetic associations
with traits and diseases should improve our understanding of the causal gene
behind the observed phenotype. Identification of mutations in genes caus-
ing monogenic diseases, also called Mendelian diseases, has greatly eluci-
dated our understanding of rare genetic disorders. This success is reflected
in the Online Mendelian Inheritance in Man (OMIM) database initiated in the
1960s which covers all known Mendelian disorders and over 16,000 genes
(https://omim.org/, accessed July 2023). Conversely, common diseases
such as cardiovascular, neurodegenerative and auto-immune diseases are
typically polygenic, caused by multiple genetic and environmental risk factors.

3
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1.2. THE PATH FROM GENOTYPE TO PHENOTYPE CHAPTER 1

As we have entered the era of GWAS, hundreds of thousands of genetic vari-
ants have been identified to influence disease risk, with common traits involv-
ing often over 1,000 independent variants [5]. Yet, the interpretation of GWAS
results has proven to be more difficult than expected [6]. In the following, I
will expand on the evolution of GWAS and focus on how systems genetics
approaches can bridge the path from genotype to the trait of interest.

1.2.1 The GWAS era

GWAS have revolutionised the field of genetics in the past decade (Figure 1.3).
Currently, over 500,000 associations between genetic variants and human
traits have been reported in the GWAS Catalog (https://www.ebi.ac.uk/,
accessed May 2023) stemming from > 6,000 publications [7].

Figure 1.3: Illustration of genome-wide association studies (GWAS). Based on
individual-level data, a genome-wide scan is performed in which a phenotype
(Y ) is regressed on the genotype dosage (G) to yield effect sizes (�̂, corre-
sponding to the least square estimator (GTG)�1GTY when assuming a linear
model) and p-values that make up summary statistics. Summary statistics no
longer contain personally identifiable information and can be shared publicly.
A Manhattan plot shown at the bottom displays the association strength (i.e.,
negative logarithm of the p-values) of the phenotype with the genetic variants
along the genomic coordinates.

The steady increase in associations can be attributed to the decreasing
cost in genotyping microarray and sequencing technologies giving rise to large-
scale population biobanks often coupled to deep phenotyping data [8, 9, 10,
11]. While genotyping microarrays typically cover less than a million genetic
variants, imputation techniques that rely on comprehensive reference panels

4
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CHAPTER 1 1.2. THE PATH FROM GENOTYPE TO PHENOTYPE

with a diversity of sequenced genomes allow to infer genotypes for millions of
variants, thus tremendously increasing genome coverage [12]. As the tech-
nologies evolve, so do the types of genetic associations. Large-scale projects
such as the UK Biobank (UKBB) have made whole-exome sequencing (WES)
and whole-genome sequencing (WGS) data available and the GWAS Catalog
harbours now > 5,000 sequencing-based GWAS (seqGWAS) [7]. The number and

types of genetic
associations are
steadily
increasing.

Sequencing
also allows the assessment of rare variants (minor allele frequency (MAF) typ-
ically below 0.01) and rare-variant associations tests through the aggregation
of multiple variants in a gene or genomic region, so-called gene-based GWAS,
are increasingly being reported [13, 14]. Besides rare variant associations,
population-scale copy-number variation (CNV) studies have resulted in novel
associations and contribute to the diverse genetic landscape [15, 16].

GWAS unravel the genetic architecture of complex traits and diseases,
and as such have a wide applicability from quantifying genomic diversity to
disease risk prediction up to causality studies and drug discovery.

GWAS data can
have diverse
downstream
applications.

Polygenic
risk scores (PRS) have become popular in recent years to predict an individ-
ual’s genetic predisposition for a disease which allows for risk stratification and
optimised prevention strategies [17]. Other GWAS downstream applications
include the estimation of heritability [18], genetic correlations [19], identifying
causal relationships between risk factors and health outcomes [20] and inter-
preting GWAS signals in a biological context [21].

Yet, finding the causal single-nucleotide polymorphism (SNP) and biolog-
ical mechanisms underlying an observed genetic association can be far from
trivial [21]. Finding the

causal variant
and gene in
GWAS can be
challenging.

SNPs measured on a microarray may not cause the trait, but may
be in linkage desequilibrium (LD) with the causal (unmeasured) SNP. Further-
more, SNPs in a region are often inherited together, forming a so-called haplo-
type, and multiple close-by SNPs can be equally strongly associated with the
trait without being causal. LD patterns can be very complex and several statis-
tical fine-mapping methods have been developed to decipher genetic regions
and find genetic variants that are functionally disease-relevant [22]. Once a
causal variant has been identified, mapping this variant to a gene can repre-
sent an additional challenge. The gene with the closest transcription start site
(TSS) could be considered as the causal gene, however, if multiple genes are
located in the region, this strategy may fail.

The majority of GWAS signals of complex traits fall into non-protein-coding
regions of the genome further complicating the task of finding the causal gene
in gene-rich regions [23]. These non-coding signals were found to be en-
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riched for regulatory elements such as chromatin accessibility, transcription
factor binding, and histone marks associated with transcriptional regulatory
activity [24, 23, 25] suggesting that altered levels of molecular traitsGWAS signals

predominantly fall
into non-coding
regions and are

enriched for
regulatory
elements.

mediate
the path from genotype to phenotype. Omics QTL data provide new opportu-
nities to identify such mediators as genetic associations with molecular traits
including DNA methylation (DNAm), transcripts and proteins could furnish the
missing link between SNP-trait associations. In the next sections, I will cover
recent developments that led to large-scale omics QTL datasets and present
statistical methods that allow for QTL and GWAS data integration. Finding the
causal gene is at the heart of drug target identification and besides QTL-based
approaches, other techniques exist to identify gene-trait associations which will
be presented in Section 1.3.

1.2.2 Large-scale omics datasets

The aetiology of complex diseases is very intricate and a combination of dif-
ferent factors including environmental ones are likely to play a role in caus-
ing disease [26]. Insights into the underlying biological mechanisms could be
gained by assessing diverse omics data, and in recent years, advances in
high-throughput and cost-efficient omics technology contributed to the emer-
gence of large-scale omics datasets.Omics data have

the potential to
capture the

complexity of
biological
systems.

A given omics layer covers a whole
spectrum of molecules of the same type providing deep insights into biolog-
ical systems at an unprecedented scale. For instance, the protein space cov-
ers around 20,000 protein-coding molecules, of which 92% can be probed
with current proteomics technologies and 99% when including transcriptomics
(https://www.proteinatlas.org, accessed July 2023). The number of omics
entities can differ drastically from one level to another nearing a million when
considering the number of CpG sites currently measured in the DNAm space
[27]. To identify cascading genetic effects, there is a great interest in the ge-
netic basis of molecular data, or omics QTL, that summarise the genetic asso-
ciations with molecular phenotypes and are key ingredients to most integrative
genetics approaches. In recent years, studies analysing the association be-
tween genetics and omics entities have expanded both in the number of phe-
notypes probed in an omics layer and sample size (Figure 1.4).

In the following, I will briefly explain the specificities of omics technologies
used to measure DNAm, transcript, protein and metabolite levels and place
the technological progress in the context of large-scale omics datasets (Table
1.1). Genomics constitutes the base layer and compared to the other layers
does not undergo changes throughout life. It will not be listed individually as
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it is integral to QTL associations. Broadly speaking, the phenome could also
be considered as an omics layer, though genotype-phenotype associations, or
more conventionally GWAS are covered more extensively in Subsection 1.2.1.
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Figure 1.4: Evolution of major large-scale publicly available omics QTL
datasets with respect to sample size, number of assessed entities and tis-
sues. Numerical values are in Table 1.1.

DNA methylome: In animals, DNAm occurs mostly on cytosines in CpG
sites (DNA segments where a cytosine is followed by a guanine nucleotide
along the 5’ → 3’ direction) of which 60-80% are methylated throughout the
genome [41]. Most common techniques to measure DNAm are affinity enrich-
ment or bisulfite conversion based. While whole-genome bisulphite sequenc-
ing is considered the gold standard, more cost-effective methods which require
less technical expertise such as the Illumina Infinium BeadChips have become
popular in recent years. Also bisulfite conversion based, targeted CpG sites
are genotyped at single base resolution using probes on a microarray [42, 43].
Studies using the Illumina Infinium HM450 (2011) and EPIC (2016) BeadChip
measuring over 450,000 and 850,000 probes, respectively, were included in
the Genetics of DNA Methylation Consortium (GoDMC) [28].

Transcriptome: Transcriptomics technologies allow to quantify gene ex-
pression by measuring mRNAs, non-coding RNAs and small RNAs. Tech-
niques to quantify the transcriptome are hybridisation- or sequence-based.
Hybridisation-based approaches rely on high-density oligo microarrays. Al-
though high-throughput and relatively inexpensive, this technique relies on ex-
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Table 1.1: Major large-scale publicly available omics QTL datasets.

Omics Cohort/
Consortium N # Entitities Tissue Year

(published) Reference

DNA methylome GoDMC 27,750 ⇠420,000 whole blood 2021 [28]
GTEx 424 ⇠750,000 9 tissues 2023 [29]

Transcriptome GTEx 838 ⇠25,000 49 cell types
and tissues 2020 [30]

eQTLGen 31,684 ⇠20,000 whole blood 2021 [31]

eQTL Catalogue 5,714 ⇠35,000 69 cell types
and tissues 2021 [32]

Metabrain 6,523 ⇠19,000 7 brain
tissues 2023 [33]

Proteome INTERVAL 3,301 ⇠3,600 blood plasma 2018 [34]
deCODE 35,559 ⇠4,700 blood plasma 2021 [35]
UK Biobank 54,306 ⇠2,923 blood plasma 2023 [36]

Metabolome KORA/TwinsUK 7,824 ⇠480 whole blood 2014 [37]
26 cohorts 86,507 174 whole blood 2021 [38]
UK Biobank 118,461 249 whole blood 2023 [39]
CLSA 8,299 ⇠1,100 whole blood 2023 [40]

isting genome sequences, and suffers from a limited detection range due to
technical issues such as cross-hybridisation and saturation of signals [44]. On
the other hand, RNA sequencing (RNA-seq) allows for de novo assembly and
thus the discovery of new transcripts. Furthermore, background signals are
not an issue and there is no upper limit for quantification [44]. In the eQTLGen
Consortium, studies utilising both microarray (N = 25,263, 79.7%) and RNA-
seq (N = 6,422, 20.3%) methods were meta-analysed [31]. RNA-seq methods
have constantly evolved over the past decade, and new opportunities emerge
with single-cell RNA sequencing (scRNA-seq), short-read, long-read and di-
rect RNA-seq as well as spatial transcriptomics [45].

Proteome: Affinity proteomics is widely used for probing the plasma pro-
teome. Paired, nucleotide-labeled antibody probes (Olink) and single-strand
DNA aptamer reagents (SomaScan) are the main assays used in large-scale
human studies. In the Olink assay, the antibody pair which is labelled with
unique complimentary oligonucleotides (probes) is required to bind to the tar-
get protein. Upon binding, the probes hybridise due to the close proximity
and are quantified using NGS. In the SomaScan assay, aptamers bind to the
target proteins and corresponding DNA aptamer concentrations that correlate
with protein concentrations are quantified on a DNA microarray. While both
platforms allow for high-throughput profiling, they suffer from lower specifici-
ties than liquid chromatography–mass spectrometry (LC-MS)–based methods

8
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[46]. The Olink Explore 3072 platform has been used to measure ⇠3,000 pro-
teins in the UKBB [36]. The SomaScan assay v4 which targets ⇠5,000 unique
human proteins was used in the deCODE study [35].

Metabolome: Metabolites are predominantly measured through either nu-
clear magnetic resonance (NMR) or mass spectrometry (MS). NMR spectrom-
etry is highly reproducible, allows for structure elucidation and is suitable for
a great variety of (not pure) samples. However, its low sensitivity and signal
overlap can lead to ambiguous read-outs. MS, targeted or untargeted, gas
and/or liquid chromatography based, has a great selectivity and sensitivity,
and allows to analyse a wide spectrum of metabolites, although untargeted
approaches can make metabolite identification challenging [47]. In the UKBB,
Nightingale Health’s metabolic biomarker platform (NMR) was used to quantify
249 metabolic measures of which most relate to lipoprotein metabolism [39].
The Metabolon platform based on MS has been used to measure up to ⇠1,300
metabolites (untargeted) in several large-scale genomic studies covering a
broader spectrum of metabolites (amino acids, carbohydrates, cofactors and
vitamins, energy, lipids, nucleotides, peptides and xenobiotics) [37, 48, 40].

9
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1.2.3 Integrating the genetics of omics and diseases

Interpreting GWAS signals can be difficult as they often fall into non-coding re-
gions and can harbour a multitude of variants in LD that mask the causal one
(Subsection 1.2.1). Furthermore, if the region contains multiple genes it can
be hard to ascertain the gene underlying the disease association. The wealth
of omics QTL data available in the public domain provides new opportunities
to find diverse mediators of SNP-trait associations in a high-throughput, data-
driven fashion. While omics themselves, transcript or protein levels, can be
correlated to a trait of interest to identify associated genes, correlations can
suffer from confounding and reverse causality.

Genetics
provides a basis

to disentangle
omics-trait

correlations. As genetic variants remain un-
altered throughout life, SNP-trait associations should reflect a cause and not
a consequence of a disease (a SNP-trait association is not caused by the trait
itself). Based on QTL data and Mendelian randomisation (MR) (Box 1, Figure
1.7), omics-trait correlations can be disentangled into cause, consequence and
mere confounding. Through the application of MR, we have demonstrated that
observed gene expression-trait correlations are more likely to arise due to re-
verse causality (i.e., trait-induced) and others concluded the same for DNAm
[49, 28].
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Figure 1.5: Illustration of how the integration of genetic association data across
multiple omics levels can result in the identification of molecular mechanisms
underlying GWAS signals. The x-axis represents the chromosomal position for
a window typically smaller than 1Mb and the y-axis represents the association
strength with molecular and disease traits.

As illustrated in Figure 1.5, molecular disease mechanisms can be de-
tected by following genetic downstream effects from one omics layer to the
next. In Box 1, I summarise widely-used omics-disease integration methods
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mytype]1
Box 1. Statistical methods for omics-trait associations

Colocalisation (coloc)

Colocalisation assesses whether observed association signals at the same locus in two

different studies (e.g. omics QTL and GWAS region) are consistent with a shared causal

variant. A colocalisation test calculates the posterior probability for each hypothesis, of

which there are five when assuming a single causal variant (e.g. coloc method [50]):

0, no association with either trait; 1, association with trait 1, not with trait 2; 2,

association with trait 2, not with trait 1; 3, association with both traits but at separate

causal variants; 4, association with both traits at a shared causal variant [50]. A large

posterior probability for hypothesis 4 supports colocalisation. This method is Bayesian

as it sums up all possible configurations supporting a given hypothesis. Extension to

multiple causal variants are implemented in eCAVIAR [51] and coloc-Sum of Single

Effects (SuSiE) [52].

Mendelian randomisation (MR)

MR techniques calculate the causal effect of an exposure (i.e., omics trait) on an out-

come trait (i.e., GWAS trait) by instrumenting the exposure through genetic variants.

Analogously to a randomised controlled trial (RCT), where the effect of an intervention

is assessed through randomisation (i.e., all potential confounders are distributed evenly

among two or more groups), genetic variants inherited randomly at birth and strongly

associated with the risk factor of interest allow for an unbiased causal effect estimate

[20]. MR relies on strong assumptions which are outlined in Figure 1.7 and which may

not hold in practice. Thus, sensitivity analyses and the use of multiple MR methods

less sensitive to the violation of one or several assumptions are usually recommended

to assess the robustness of results [53]. The most commonly used MR method is the

inverse-variance weighted (IVW) method. Other methods suited for omics MR include

multivariable Mendelian randomisation (MVMR) accounting for nearby genes in the set-

ting of gene expression MR [54] and principal component analysis (PCA)-MR [55].

SMR-HEIDI

The summary data–based Mendelian randomisation (SMR)-heterogeneity in dependent

instruments (HEIDI) method estimates a causal effect of an exposure on an outcome

based on the Wald ratio estimate (i.e., SNP-outcome association divided by the SNP-

exposure association) of the most significant QTL. The HEIDI test statistic assesses

homogeneity in Wald ratio estimates of correlated genetic variants in the region to cor-

roborate vertical pleiotropy [56]. SMR-HEIDI falls into the category of proportional non-

Bayesian colocalisation methods [57].

Transcriptome-wide association studies (TWAS)

TWAS, e.g. PrediXcan, correlate the PRS of an omics level with an outcome trait

[58, 59]. TWAS can be considered as an ad hoc method for causal inference and is

fundamentally equivalent to MR without taking into account corresponding assumptions

(Figure 1.7) and other theoretical concepts such as weak instrument bias [60].

11
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Figure 1.6: a Possible pleiotropic scenarios for detecting significant Mendelian
randomisation (MR) and colocalisation (coloc) effects with a single genetic
variant. i) A Causal path from the omics exposure to the outcome trait; B

Genetic variant affects unrelated exposure and outcome traits independently;
C Genetic variant is in LD with distinct causal variants that affect the exposure
and outcome independently; D Effect on the exposure trait is mediated by the
outcome trait. ii) Illustrations of observed omics (green) and trait (blue) signals
that could result in significant MR or coloc effects depending on whether the
underlying causal genetic variants reach significance (horizontal dashed line)
and assuming that coloc correctly identifies the underlying causal variants. A
single compared to two check marks refers to potential power issues in detec-
tion. b Possible pleiotropic scenarios for observing significant MR and coloc
effects with two genetic variants that are not in LD. i) A Causal path from the
omics exposure to the outcome trait; B Genetic variants affect unrelated expo-
sure and outcome traits independently. ii) Although there is colocalisation at
the shared variant, there is none at the distinct variant which results in a signifi-
cant MR, but no significant coloc effect. Like MR, coloc is unable to distinguish
between scenario A and B (see also a), but unlike MR, coloc will not detect
pleiotropy in the presence of an additional variant only impacting the exposure
or outcome trait. Regional association plots represent the association strength
of variants with each omics/trait plotted against chromosomal position. Illus-
tration adapted from [57].
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that make use of GWAS and omics QTL summary data to unravel such mech-
anisms. These methods are suited for the integration of genetic associations
across datasets in cis, which typically implies a region of 0.5-1Mb, although
some of the methods can also be extended to trans/genome-wide settings.

While TWAS are comparable to MR studies, there are conceptual differ-
ences between MR and colocalisation tests. Colocalisation techniques can be
viewed as an extension of fine-mapping applied to multiple traits, and identify
shared QTL and GWAS signals. However, shared QTL and GWAS signals can
also result from reverse causality, i.e., the trait is causing differential molecu-
lar trait levels or horizontal pleiotropy, i.e., the shared variant influences two
unrelated traits.

MR and
colocalisation
tests are
conceptually
different, and
provide
complementary
information.

In Figure 1.6, several scenarios are illustrated under which
MR or coloc or both detect a significant effect between an omics and com-
plex trait. While both methods are ill-suited to distinguish vertical (scenario A)
from horizontal (scenario B) pleiotropy, especially in the case of a single ge-
netic variant, MR is better equipped to distinguish between forward (scenario
A) and reverse causality (scenario D). MR makes a distinction between the
exposure and the outcome, and by instrumenting the exposure with (usually)
multiple SNPs and making sure that IVs are stronger associated with the ex-
posure than the outcome (Steiger filter [61]), it is more likely to identify forward
causal relationships [62]. However, omics exposures can often only be instru-
mented by a single genetic variant and if this variant is in high LD with distinct
causal variants of the exposure and outcome trait a significant MR effect can
be identified even if both traits are unrelated (scenario C). Colocalisation meth-
ods are more likely to attribute such scenarios to 3 (i.e., association with both
traits but at separate causal variants). Zuber et al., compared both methods in
a comprehensive review and supported the use of colocalisation as a sensitiv-
ity analysis since MR results may suffer from higher false positive rates when
there is a limited number of instrumental variables (IVs) in a genetic region of
interest [57]. With highly-powered QTL data and multiple IVs, MR estimates
become more robust whereas highly-powered data, notably outcome GWAS,
may be of disadvantage to colocalisation methods: variants only impacting
outcome and not exposure traits do not support the colocalisation hypothesis

4 even though a genetic region may affect the assessed outcome through
multiple pathways (e.g. a coding variant not altering expression levels in addi-
tion to a regulatory variant; Figure 1.6b).

Methods mentioned so far identify a single molecular trait that mediates
genotype-to-phenotype relationships. Identifying causal chains through mul-
tiple omics layers is challenging as QTL effects weaken in each consecutive
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Figure 1.7: Graphs and assumptions of a univariable and b multivariable
Mendelian randomisation (MVMR) to estimate causal effect estimates bXY

in the presence of unobserved confounders U of the exposure (X)-outcome
(Y) relationships. For simplicity, two exposures are presented, but there can
be many more. In both graphs, the genetic variant Z represents a group of
instrumental variables (IVs) associated with (at least one of) the exposure(s).
In b no assumptions are made about the X1 and X2 relationship, however,
if X2 were the mediator, we would expect a unidirectional link from X1 to
X2. Compared to the causal effect or total causal effect estimated in a,
the direct causal effect in b represents the causal effect conditional on the
other exposures included in the model which allows to disentangle individual
contributions and mediating relationships.

Under the univariable MR assumptions, Z used as IV must be 1) strongly
associated with X (bZX 6= 0), 2) independent of any confounder of the X� Y
relationship, 3) conditionally independent of Y given X.

In the MVMR setting, the assumptions remain largely unchanged. Z used as
IV must 1’) strongly predict Xi conditional on all other included exposures, 2’)
be independent of all confounders of any of the Xi � Y relationships and 3’) be
conditionally independent of Y given all included exposures Xi [63].
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layer [64].

Fewer methods
exist that extend
to multiple
molecular
mediators.

However, increased omics sample sizes allow to overcome statisti-
cal power issues and approaches have emerged to identify multiple molecular
mediators. In the simplest case, pairwise associations are combined to infer
mechanisms of the scheme: omics trait 1 → omics trait 2 → outcome trait.
In the context of MR, this is also known as two-step MR [65]. Colocalisation
methods accommodating multiple omics layers have also been developed us-
ing a Bayesian statistical framework [66]. However, colocalisation methods do
not provide effect sizes and extensions to multiple mediators generally rely on
a single causal variant underlying multiple associations [66, 64, 67].

MVMR approaches can mitigate some of these issues. They can integrate
multiple exposures and/or mediators, and estimate the conditional contribution
of each on an outcome. MVMR

approaches can
accommodate
multiple
exposures and/or
mediators.

In a mediation analysis, the total causal effect of an
exposure on an outcome is dissected into a direct and indirect effect through
the mediators. The direct effect is estimated by the MVMR model and the in-
direct effect can be derived by multiplying the exposure-to-mediator and the
mediator-to-outcome effects. Instrumenting the exposure and mediators al-
lows for robust causal inference even in the presence of confounders [65, 63].
In Figure 1.7, MR and MVMR with their respective assumptions are visualised.

MR and MVMR methods rely on strong assumptions among which the va-
lidity of IVs. IVs should be strongly and directly (not via any confounder or
the outcome) associated with the exposure, which in practice is achieved by
selecting variants with strong genetic associations. Biased genetic

associations can
violate MR
assumptions.

Yet, biased genetic asso-
ciations can arise due to demographic factors such as population stratification
and assortative mating [68, 69] as well as parental effects causing indirect ge-
netic effects [70]. Statistical methods like family-based GWAS designs exist to
account for demographic and indirect effects and these have shown that indi-
rect genetic effects can indeed bias MR estimates, although their impact on
molecular phenotypes was found to be low [70].

In Chapter 2, I describe an MVMR framework developed during this
thesis work that integrates two molecular traits and a disease outcome
with application to DNAm, transcript levels and 50 complex traits. In
addition to detecting putative molecular mechanisms, we quantified the
role of transcript levels in mediating DNAm-to-complex trait effects.

15



1.3. GENOMICS IN DRUG DISCOVERY CHAPTER 1

1.3 Genomics in drug discovery

Studying the path from genotype to phenotype can greatly elucidate our un-
derstanding of disease mechanisms and help to pinpoint genes responsible
for disease risk. While there is a fundamental aspect to uncovering disease
mechanisms, this field has a direct application in drug discovery. Reversing
the effect of a “defect” gene could be achieved by a pharmaceutical, and find-
ing the right target or causal gene underlying the disease is key in this process.

In the following, I will briefly summarise the history of drug discovery and
then highlight the different roles genetics and statistical genetics can take on
in the drug development process and in particular in the early stages of drug
target discovery. I will end this section with a technical part on gene prioriti-
sation methods that have emerged over the past years and that complement
those presented in Subsection 1.2.3.

1.3.1 Brief history of drug discovery

Drug discovery has been around for much longer than technologies able to
probe the genome and some successful drugs still used in the clinics today
have emerged over 200 years ago.

Morphine isolated from opium in the early 1800s can be considered as the
first modern, pharmaceutical medicine as it was the first time an active phar-
macological compound has been isolated from natural sources in a pure state
[71].

Early drug
discovery relied
on nature’s rich

sources and
serendipitous

discoveries.

A series of serendipitous discoveries, or accidental discoveries, in the
19th and 20th centuries followed and led to the clinical use of chloral hydrate
as a hypnotic (1869, first synthetic drug), the use of lithium as mood disorder
treatment although initially tested for the treatment of gout (1896) and the fa-
mous discovery of penicillin by Alexander Fleming in 1928 [72]. In the early
20th century, Paul Ehrlich, considered the founder of immunology, introduced
the receptor theory according to which receptors, initially called side chains,
associated with either cells or more generally located in the bloodstream are
able to bind to distinct toxins. His “magic bullet” concept states that drugs se-
lectively target disease-causing agents while sparing healthy tissues [73].

In the mid-20th century, the drug receptor theory evolved into the receptor-
occupancy theory which was further refined to account for the intrinsic activity
of drugs (i.e., their ability to induce an effect after binding), spare receptors
(i.e., maximal drug response can be obtained with less than all receptors oc-
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cupied) and binding affinities. The distinction of the ↵ and � receptors even-
tually led to the introduction of propranolol, the first clinically useful �-receptor
blocker [74]. In the late 20th century, advances in biochemistry and molec-
ular biology such as X-ray crystallography and NMR greatly enhanced the
understanding of the structure and function of proteins and molecules [75].

Technological
advances in
biology and
chemistry
revolutionised
drug discovery.

Recombinant DNA technology played a major role in studying the pharmacol-
ogy and function of G-protein-coupled receptors (GPCRs), the largest family of
membrane-bound receptors that represents targets of a third of FDA-approved
drugs [76, 77]. These cell surface receptors can detect chemical signals in a
highly selective way and transmit the signal to generate intracellular responses.
Subsequently, GPCR or other high-throughput assays were screened for drug
interactions where the development of combinatorial libraries containing mil-
lions of potential drugs marked another major milestone in the early 1990s
[75]. Over time, drug discovery has transitioned from forward pharmacology,
or phenotypic screening, where drugs with often unknown molecular mech-
anisms of action have been selected based on their therapeutic impact, to
reverse pharmacology, or target-based screening where proteins identified to
play a role in disease are tested for interaction with small molecules or biolog-
icals such as monoclonal antibodies [78].

The Human Genome project provided the great promise of revolutionis-
ing the field and tremendously helping in identifying disease-causing genes,
and ultimately new therapeutic targets [75]. Whether biobanks of genome
sequences have entirely lived up to this promise is debatable, however, it is
undeniable that genomics has played and is likely to play an important part in
drug target discovery and beyond.

1.3.2 Genetics for effective drug development

If a genetic variation exists within a population that leaves one group at risk
and the other group protected against a disease, then the gene associated
with this variation could serve as a potential drug target. This hypothesis was
tested in a systematic way for approved drugs and their targets in 2015, and at
the time it was found that drug targets are two-fold enriched for genetic support
from GWAS which represented 8.2% of the investigated target-indication pairs
[79]. Drugs with

genetic support
are more likely to
be approved.

Genetic support increased from phase I to the approval stage suggest-
ing a substantial benefit from genetics in terms of efficacy. A replication study
on updated data confirmed these findings in 2019 [80]. As genetics becomes
integral to drug development pipelines, the statistics brought forward in these
studies are bound to change over time. Of the 50 FDA-approved drugs in 2021,
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33 (66%) target a gene that either has direct or indirect (through physical inter-
action) genetic support for its indication or closely related phenotype [81]. This
study was based on genetic evidence from the Open Targets Platform which
besides GWAS data integrates several other genetic resources [82].

High-throughput omics techniques can cover the full protein-coding tran-
scriptome and a significant fraction of the proteome space. Thus, one could
argue that finding disease-causing genes could be achieved by bypassing ge-
nomics altogether and correlating gene products with disease status.

Genetics
provides an

anchor to study
causality and

identify effective
drug targets.

However,
correlation does not imply causation, and correlations can also arise because
of reverse causation or the presence of a confounder (see Subsection 1.2.3).
As a drug should target the underlying cause of a disease to be therapeutically
effective, genetics can be helpful in providing this evidence.

Figure 1.8: The role of gene-disease links in candidate target identification. a

In reverse pharmacology, first a target is identified that associates with dis-
ease risk. In a second step, a drug is developed that interacts with the target
through e.g. inhibition, resulting in disease treatment. b A phenome-wide
association study (pheWAS) of the drug target gene can identify potential side
effects as well as drug repositioning opportunities which manifest themselves
upon target perturbation.

In all the illustrations, a bigger green gene circle represents a fully functional
gene at normal abundance, whereas smaller circles represent gene products
with reduced function or lower abundance. Likewise, the size of the blue trait
rectangles varies to represent either increased or decreased disease risk.

Identifying robust gene-trait relationships has applications beyond the dis-
covery of efficient drug target candidates. While this could be described as
the first step in the process (i.e., screening disease genetics to find candi-
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date genes), the second step would be to expand the analysis to the whole
phenome. In so-called phenome-wide association studies (pheWAS), candi-
date genes can be assessed for associations with other traits, fulfilling two
purposes: 1) early-on identification of potential side effects warranting caution
for pursuing the target [83], 2) identification of additional conditions associated
with the target that could enlarge the drug use spectrum. In the case of drug
development, the existence of other conditions would make this target more
attractive as future drugs could be marketed for multiple indications.

pheWAS can be
predictive of side
effects and
multiple
indications.

If a drug
targeting this gene already exists, this strategy could be employed for drug
repositioning (i.e., finding a purpose for a drug other than the one it was origi-
nally indicated for) [84]. Importantly, directionality has to be taken into account
to properly distinguish between side effects and conditions that could benefit
from target perturbation (i.e., inhibiting protein A could make trait X a side ef-
fect and trait Y an additional indication, while activating protein A would reverse
the roles of X and Y).

Along the drug development process, genetics can also play a role in iden-
tifying who is most at risk of side effects and who would benefit the most from
a given medication. Pharmacogenetics deals with the study of inter-individual
variability in drug response due to genetics and in Section 1.4, I will cover
this topic and present opportunities offered by large-scale biobanks to study
drug-gene interactions.

1.3.3 Gene prioritisation methods

While the benefits of leveraging genetics for drug target discovery are obvi-
ous, prioritising genes based on genetic evidence is not as trivial. As sam-
ple sizes increase, thousands of significant GWAS hits can be identified [85].
Not only does the sheer number of associations call for prioritisation methods,
also mapping these associations to genes requires post-processing. In Box
2, I summarise major gene prioritisation methods and in Box 3, miscellaneous
methods that were derived based on multiple scores and/or rely on external
datasets such as networks.

Gene prioritisation scores resulting from methods listed in Boxes 2 and 3
can vary significantly and may even be completely independent due to the di-
verse sources used in their derivation.

Recent Gene
prioritisation
methods
integrate a variety
of features.

In recent years, more and more scores
have emerged that combine different methods and data sources [86, 87, 88,
89]. Although I classified the algorithms into broad categories, there can be
ambiguity. For instance, PoPs [88] also integrates network features in the form
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of a binary variable which indicates whether a gene is its first-degree neigh-
bour or not, and thus constitutes also a network approach. Likewise, the PI
[89] also makes use of diverse functional annotations making it a combined
approach.

mytype]2
Box 2. Major gene prioritisation methods

GWAS - Fine-mapping & (non -) functional annotations

GWAS fine-mapping approaches allow to pinpoint causal SNPs in a region through

methods such as stepwise conditional analysis (e.g. GCTA-COJO [90]) or Bayesian

fine-mapping methods that estimate the posterior probability of a vast space of possi-

ble causal configurations given the data at hand and choose the one with the highest

probability (e.g. FINEMAP [91], SuSiE [92]). The resulting credible set of SNPs can

be mapped to genes through various annotations. Non-functional annotations based

on distance include the closest TSS or gene body and functional annotations exon [93],

promoter and enhancer locations [94, 95, 96]. QTL annotations also work with this strat-

egy with colocalisation approaches (Box 1) being a special case that apply fine-mapping

to both GWAS and omics trait. The proposed combined SNP-to-gene strategy (cS2G)

weighs and integrates multiple annotations to optimise heritability coverage [86].

GWAS - Gene scoring

GWAS gene scoring methods calculate a test statistic for each gene by aggregating

GWAS summary statistics of the SNPs falling into the respective gene region. There

are various tools performing gene scoring based on summary statistics and an LD-

reference panel such as MAGMA [97] and Pascal [98] which compute a gene-based

test statistic based on the sum of squared SNP z-scores (Tsum) following a weighted �2
1

distribution. Although both methods rely on the same theoretical principle, they differ in

how the decomposition of the local genetic correlation matrix is dealt with in the compu-

tational implementation. Another method, LDAK-GBAT computes a test statistic based

on a restricted maximum likelihood model with the null distribution being approximated

via permutation [99].

QTL-GWAS integration

Methods that prioritise genes based on QTL-GWAS integration include colocalisation,

MR, SMR-HEIDI and TWAS which are described in Box 1 (Subsection 1.2.3).

Rare variant gene tests

Rare variants obtained from WES or WGS data can be collapsed into gene burden

masks which can then be tested for association with the phenotype of interest. Masks

are determined by the MAF cut-off and types of included variants (Loss-of-Function

(LoF), missense variants). Simple burden tests combine rare variants linearly, assuming

all variants are either trait-increasing or trait-lowering. Variance-component tests such

as the sequence kernel association test (SKAT) [100] and SKATO (combination of SKAT

and burden tests) [101] can account for variants with effects in opposite directions.
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mytype]3
Box 3. Miscellaneous gene prioritisation methods

Combination approaches

Several methods can be combined to yield gene scores. For instance, the Polygenic

Priority Score (PoPS) combines gene scores (computed by MAGMA [97]) and gene

features coming from gene expression data (scRNA-seq), biological pathways and pre-

dicted protein-protein interaction (PPI) networks. This method proceeds by estimating

the weights of each gene feature through regression of gene scores on the gene fea-

tures. PoPS is then the linear combination of all features passing a significance selec-

tion threshold [88].

Machine learning approaches

Machine learning (ML) approaches combine multiple gene features from different

sources with their weights determined through ML models that train on a gold stan-

dard dataset. For instance, Open Target uses an XGBoost gradient-boosting classifier

to train a ‘locus to gene’ (L2G) score based on a manually curated set of 445 gold-

standard-positive genes at GWAS loci for which there was strong prior knowledge about

the causal gene and 9,171 gold-standard-negative genes [87].

Network approaches

Network approaches leverage molecular interactions to propagate initial gene scores

either continuous or binary (in the latter case, genes with a non-zero initial value are

referred to as ‘seed genes’) to neighbouring genes. In the simplest case, the closest

genes (i.e., first-degree neighbour) can be included in the set of prioritised seed genes,

whereas more complex algorithms take into account the full graph topology to diffuse

scores through algorithms such as random walks. Examples include the priority index

(PI) where seed genes defined from GWAS and functional annotations were propagated

on a PPI network through a random walk with restart algorithm [89].

Consulting more than one gene prioritisation approach increases confi-
dence in determining disease genes, and allows one to capitalise on their re-
spective advantages and disadvantages. QTL-GWAS approaches which have
been introduced more extensively in Subsection 1.2.3 have the advantage of
providing mechanistic insights as to whether altered levels of the gene prod-
uct increase or decrease disease risk.

Complex gene
prioritisation
methods can be
more accurate,
but less
transparent.

This information is not readily available
from other gene prioritisation approaches. Methods that aggregate multiple
scores or sources were shown to be superior to individual methods in vali-
dation sets composed of drug targets [89, 87], putative causal genes defined
through fine-mapping [88] and exon/promoter information [86]. Yet, they may
lack interpretability as to the statistical significance and may not convey the
driving feature which could hide potential sources of bias.
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In Chapter 3, I will present a benchmarking study where we compared
various gene prioritisation approaches (GWAS, QTL and Exome-based
gene scores alone and in combination with network approaches) and
evaluated their ability to identify approved drug targets across thirty clin-
ical traits.
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1.4 Pharmacogenomics

While the preceding section dealt with natural genetic variation to identify drug
targets, genetic variation can also serve as predictor of drug response. Phar-
macogenomics (PGx), often used interchangeably with pharmacogenetics, is
the field that studies inter-individual variability in drug response (efficacy and/or
safety) due to genetic factors [102]. In the following, I will first explain the
notions of pharmacokinetics and pharmacodynamics and then focus on the
current state of PGx and its challenges in demonstrating evidence for drug-
gene interactions. Finally, I will introduce opportunities offered by large-scale
biobanks and present recent studies that have leveraged these immense data
resources to study PGx. Some of the elements in this section are taken from
a review article that I co-authored with Chiara Auwerx entitled “From pharma-
cogenetics to pharmaco-omics: Milestones and future directions” which was
published in Human Genetics and Genomics Advances in 2022 [103].

1.4.1 Pharmacokinetics and pharmacodynamics

PGx variants mostly reside in genes involved in pharmacokinetics and phar-
macodynamics as well as in regions related to immune response [104]. Phar-
macokinetics can be broadly defined as “what the body does to the drug” and
pharmacodynamics as “what the drug does to the body”. Pharmacokinetics
evolves around absorption, distribution, metabolism and excretion (ADME)
which influences the drug’s concentration and activity in the body over time.
On the other hand, pharmacodynamics is concerned with the variability in drug
response not related to drug concentration, but to the mechanisms of action of
drugs and how they interact with specific receptors or molecular targets (Fig-
ure 1.9).

Single variants in key pharmacokinetic genes can have a substantial im-
pact on active drug concentration in two scenarios (Figure 1.9a) [105].

Most
pharmacogenetic
variants have a
pharmacokinetic
basis.

In the
first scenario, a prodrug needs to be bioactivated to its active drug metabolite.
Variation in the responsible enzymes can lead to toxicity or lower the pharma-
cologic effect. Examples include the prodrug codeine that is biotransformed
to morphine by the CYP2D6 enzyme [106] as well as the antiplatelet drug
clopidogrel bioactivated by CYP2C19 where LoF carriers have an increased
risk of major adverse cardiovascular events (MACE) and bleeding [107]. In
the second scenario, variation in enzymes responsible for the elimination of
active drugs with a narrow therapeutic window (i.e., small margin between
therapeutic and toxic doses) can cause large PGx effects if a single pathway is
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responsible for inactivation or drug efflux. For instance, LoF genetic variants in
CYP2C9 which is responsible for the metabolic clearance of the anticoagulant
drug warfarin can increase the incidence of severe bleeding [108]. Note that
most of the clinically actionable pharmacogenetic variants described to date
have a pharmacokinetic basis [105].

Figure 1.9: Genetic variants that influence pharmacokinetics and pharmaco-
dynamics can impact drug response. a Pharmacokinetics studies how an or-
ganism affects the drug thereby modulating its concentration. Genetic vari-
ants in genes responsible for bioactivation (“prodrug scenario”) or elimina-
tion/inactivation (“active drug scenario”) can lead to toxicity due to high ac-
tive concentrations or no response in the absence of the active metabolite
(adapted from [105]). b Pharmacodynamics studies how the drug affects an
organism thereby causing molecular and physiological effects. Pharmacody-
namics is traditionally studied through drug-response curves and binding affin-
ity experiments. Understanding the molecular basis through which drugs elicit
a response can explain treatment and side effect mechanisms as well as inter-
individual drug responses due to pharmacodynamic variants.

Pharmacodynamic variants usually reside in genes implicated in disease
mechanisms and can imply the drug target gene itself (Figure 1.9b) [105].
For instance, variants in VKORC1, which is inhibited by warfarin, and which
is involved in clotting factor activation, determine the required maintenance
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dose, and can also cause warfarin resistance [109]. VKORC1 is one of the key
pharmacogenes and the variant rs9923231C>T which is estimated to account
for 15-30% of the variability is highly ancestry-specific (T allele frequency of
39%, 5% and 88% in European, African and South East Asian populations,
respectively; https://www.pharmgkb.org/, accessed August 2023).

Pharmacody-
namic variants
usually reside in
genes implicated
in disease
mechanisms.

Other
pharmacodynamic PGx mechanisms include variants in RYR1 and CACNA1S
genes that increase the risk of malignant hyperthermia upon exposure to po-
tent volatile anaesthetics [110].

The field of pharmacogenetics is adopting a standard set of definitions
to describe pharmacogenetic phenotypes [111].

Allele functional
status and
phenotypes are
used to describe
pharmacogenetic
variation.

Historically, the star allele
nomenclature is being used to designate pharmacogenetic alleles, although
efforts are being undertaken to harmonise the notation with alternative naming
conventions such as ‘rsIDs’ [112]. In the star allele nomenclature *1 describes
a fully functional/wild-type haplotype whereas any other number refers to ei-
ther a decreased or increased activity based on the presence of a single or
a combination of alternative alleles. From the diplotype, a pharmacogenetic
phenotype can be determined which in the case of drug-metabolising phar-
macokinetic enzymes will be “normal metaboliser” (corresponding to a *1/*1
diplotype or the combination of a normal and decreased function allele), “inter-
mediate metaboliser”, “poor metaboliser”, “rapid metaboliser” and “ultrarapid
metaboliser”. For transporters such as SLCO1B1, which facilitates the hepatic
uptake of statins, possible phenotypes are “increased”, “normal”, “decreased”
and “poor” function, and for pharmacodynamic genes, phenotype definitions
are “positive” if a high-risk allele is detected and “negative” otherwise [111].

1.4.2 Current state in pharmacogenomics

As of today, the Pharmacogenomics Knowledgebase (PharmGKB) reports 201
clinical guideline annotations published by the Clinical Pharmacogenetics Im-
plementation Consortium (CPIC) [113], the Dutch Pharmacogenetics Working
Group (DPWG) [114], Various working

groups provide
clinical guideline
annotations
about drug-gene
interactions.

and other professional societies including the Cana-
dian Pharmacogenomics Network for Drug Safety (CPNDS, https://cpnds.
ubc.ca) and the French National Network of Pharmacogenetics (RNPGx) [115]
(pharmgkb.org, accessed August 2023). These guidelines may have differing
levels of evidence and not all are attributed to a recommendation. Also, the
methodology used in scoring the level of evidence may differ between indi-
vidual working groups [116]. The gold standard in establishing causality be-
tween genetic variants and clinical outcomes, and demonstrating the superior-
ity of genotype-guided treatment over the standard of care remain indisputably
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RCTs. A number of large-scale RCTs have been conducted of which major
trials are summarised in Table 1.2.

Table 1.2: Major randomised control trials conducted to test the benefit of phar-
macogenetics testing to guide treatment.

Name
Year
(completion)

N Drug Gene Endpoints Aim Study result Reference

PREDICT-1 2006 1,956 abacavir HLA-B
Hypersensitivity
reaction

Assessing the
effectiveness of
prospective HLA-B*5701
screening to prevent the
hypersensitivity reaction
to abacavir in HIV
patients

HLA-B*5701
screening reduced
the risk of
hypersensitivity
reaction to abacavir

[117]

COAG 2013 1,015 warfarin CYP2C9, VKORC1
Percentage of time
the INR was in the
therapeutic range

Assessing whether
dosing algorithm that
included both clinical
variables and genotype
data was superior to one
that included clinical
variables only

Genotype-guided
dosing of warfarin
did not improve
anticoagulation control.

[118]

EU-PACT 2013 455 warfarin CYP2C9, VKORC1
Percentage of time
the INR was in the
therapeutic range

Assessing whether
genotype-guided warfarin
dosing was superior to
standard dosing

Genotype-guided
dosing was superior
than standard
dosing during the
initiation of warfarin
therapy

[119]

GUIDED 2017 1,167 antidepressants

CYP1A2, CYP2C9,
CYP2C19,
CYP3A4, CYP2B6,
CYP2D6, HTR2A,
SLC6A4

Symptom
improvement,
response and
remission of
depressive
symptoms

Assessing whether PGx
testing affects
antidepressant
medication selection and
whether such testing
leads to better clinical
outcomes in patients with
MDD

PGx testing did not
significantly
improve mean
symptoms but did
significantly
improve response
and remission rates

[120]

POPular Genetics 2019 2,488 clopidogrel CYP2C19 MACE after PCI

Assessing the clinical utility
of a genotype-
guided selection of oral
P2Y12 inhibitors after
PCI with respect to
adverse clinical events

Genotype–guided
strategy resulted in
lower incidence of
thrombotic events
and bleeding

[121]

TAILOR-PCI 2019 5,302 clopidogrel CYP2C19 MACE after PCI

Assessing the clinical utility
of a genotype-
guided selection of oral
P2Y12 inhibitors after
PCI with respect to
adverse clinical events

No statistically
significant reduction
in MACE following
genotype-guided
prescription, but
lower risk of
bleeding

[122]

U-PGx-PREPARE 2020 6,944 42 drugs

12-gene panel
CYP2B6, CYP2C9,
CYP2C19,
CYP2D6, CYP3A5,
DPYD, F5, HLA-B,
SLCO1B1, TPMT,
UGT1A1, VKORC1

Adverse reactions

Assessing the clinical
utility of a pre-emptive
genotyping strategy in a
real-world situation

PGx-guided
prescribing resulted
in a 30% reduction
of clinically relevant
ADRs

[123]

PRIME Care 2021 1,944 antidepressants

CYP1A, CYP2B6,
CYP2C19,
CYP2C9, CYP3A4,
CYP2D6, UGT1A4,
UGT2B1, SLC6A4,
HTR2A, HLA-A,
HLA-B

Proportion of
prescriptions with a
predicted drug-gene
interaction
and remission of
depressive
symptoms

Assessing whether PGx
testing affects
antidepressant
medication selection and
whether such testing
leads to better clinical
outcomes in patients with
MDD

PGx testing
reduced
prescription of
medications with
predicted drug-gene
interactions
compared with
usual care.
Remission rates
were not
significantly higher.

[124]
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While some of the trials showed a clear advantage of a pharmacogeneti-
cally adapted treatment strategy, other trials yielded conflicting outcomes. For
instance, genotype-guided warfarin dosing resulted in a significant improve-
ment in minimising the risk of bleeding as assessed by the international nor-
malized ratio (INR) in the EU-PACT, but not in the COAG trial (both com-
pleted in 2013) [119, 118]. Several trials

testing the same
or a similar PGx
interaction
reported
conflicting
results.

A later trial in 2016, demonstrated the advantage
of genotype-guided warfarin strategy using adverse drug reactions (ADRs)
as endpoints (major bleeding, INR>4, venous thromboembolism, and death)
rather than INR in 1,650 individuals [125]. Patients carrying CYP2C19*2 or *3
LoF variants were found to have an increased risk of ischemic events when
treated with antiplatelet medication clopidogrel, however, whereas a first trial
could demonstrate the benefits of genotype-guided selection of oral P2Y12 in-
hibitors after primary percutaneous coronary intervention (PCI) [121], a second
trial did not [122]. Conflicting results were also obtained in the GUIDED [120]
and PRIME care [124] trials on patients with major depressive disorder (MDD),
where the selection of antidepressant medication in the pharmacogenomic-
guided group was adapted to have a lower potential of drug-gene interactions.
The GUIDED trial found an improvement in symptoms and remission rates
whereas the PRIME care trial which was longer in duration did not. PREPARE,
a large-scale trial (N = 6,944) across seven European countries which tested
the clinical utility of a pre-emptive genotyping strategy through a pharmacoge-
netic passport across 12 genes, found a 30% reduction in clinically relevant
ADRs (in absolute numbers 152 (21%) of 725 in the study group with an ac-
tionable test result and 231 (28%) of 833 in the control group experienced an
ADR) [123].

Overall, clinical trials in PGx are a challenging undertaking due to several
reasons. First, pharmacogenetic variants often have low allele frequencies
which requires large sample sizes to test for statistical significance. However,
due to high costs and recruitment difficulties, this may not be feasible in prac-
tice. Moreover, not all of the genetic variation determining the PGx phenotype
(e.g. low metaboliser phenotype) may be known and tested.

Major challenges
in testing PGx
variants in RCTs
include their low
frequencies, cost
and transferability
across
ancestries.

The PGx phe-
notype may be more polygenic than initially assumed, thus requiring a more
comprehensive assessment of genetic variation to guide treatment. Related,
evidence of PGx interactions often stems from studies in European ancestries
and an analysis of the UKBB showed that non-European populations carry a
higher frequency of predicted deleterious variants not captured by current PGx
allele definitions [126]. It was suspected that the failure of the warfarin COAG
trial was partly due to the large proportion of African-Americans (27%) who
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have a lower frequency of the tested CYP2C9 variants, but may carry other
variants not assessed in the study that influence dosage [127]. Finally, not
only PGx variants, but many other factors can influence drug response among
which polypharmacy. In fact, the presence of a second drug that inhibits a key
enzyme can mimic the effect of a LoF variant. Although studies have been con-
ducted to investigate such drug–drug interactions, or drug-induced phenocon-
version, their scope remains limited and the real-world impact of drug-induced
phenoconversion remains largely unknown [128, 129]. In addition to comed-
ication, other factors such as sex, age, diet and comorbidities can influence
drug metabolism and cause environment-drug-gene interactions [128].

1.4.3 Large-scale biobanks for pharmacogenomic research

While RCTs remain the gold standard in providing clinical evidence, many of
the pharmacogenetic clinical guidelines have not been tested in prospective
clinical trials and updates occur regularly as new evidence emerges [116].
Large-scale biobanks can play a pivotal role in complementing PGx research
and provide new lines of evidence for drug-gene interactions. Despite being
of a retrospective nature, deep phenotypic longitudinal data from electronic
health records (EHRs) that encompass medical diagnoses, drug prescriptions
and laboratory results open up new possibilities to study PGx when coupled
with genetic data.

Biobanks provide the opportunity to verify reported drug-gene interactions
in much larger sample sizes and potentially discover novel relationships in a
more cost-effective manner [130].PGx research in

biobanks could
address issues
related to cost,
comorbidities,
polypharmacy,

restricted clinical
endpoints and
unknown PGx

variants.

Furthermore, increased sample sizes allow
for increased levels of stratification, by considering for instance concomitant
medication and co-occurring conditions that could induce PGx interactions.
Biobank-based analyses also allow for much longer follow-up times which
makes it possible to assess ’hard’ instead of surrogate endpoints [105]. For
example, two of the three warfarin trials mentioned previously used the INR
test being in the therapeutic range as endpoint (i.e., blood clotting tendency),
but harder endpoints such as major bleeding or even death could be of greater
value when deciding on clinical guidelines [105]. Importantly, genome-wide
genetic data allows for agnostic methods such as GWAS to screen for new
PGx variants that may have been missed in earlier candidate gene studies.
Large sequencing projects in biobanks, including long-read WGS in the All of
Us (AoU) biobank, open up new opportunities to assess not only common, but
also rare variants and their association with variable drug response. In Box 4,
major biobanks suitable for PGx research are listed.
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mytype]4
Box 4. Large-scale biobanks with EHRs

Several large-scale biobank projects exist that are suited for PGx anal-
yses. The Estonian Biobank (N ⇡ 200,000) contains genotype and
sequencing (for a subset of individuals) data and contains EHR data
for all its participants with detailed information about drug purchase and
disease incidences collected since 2000 [9, 131]. The UK Biobank

(N ⇡ 500,000) made available genotype and sequencing data (WES
and WGS) for all of its participants (as of Q4 2023) and links the
data to the primary care records for ⇠230,000 participants dating back
to 1990 (https://www.ukbiobank.ac.uk) [8]. A number of biobanks
are still recruiting and/or genotyping/sequencing samples. FinnGen

has nearly completed genotyping of > 500,000 participants who are
all linked to their national health registry data including the Finnish
drug purchase registry which contains all prescription drug purchases
starting from 1995 [11]. The Million Veteran Program in the US
is recruiting up to a million participants who have their medical data
recorded in the Veteran Affairs EHR [10, 132]. Similarly, the All of Us

research program is recruiting up to a million participants who have
their EHRs linked through participating healthcare provider organisa-
tions [133]. Genotyping has been completed for ⇠350,000 and short-
read and long-read WGS for ⇠250,000 and ⇠1,000 participants, re-
spectively (as of August 2023, https://www.researchallofus.org).
BioVU, Vanderbilt University Medical Center’s biobank, is constantly
growing through their “opt-out” model that started in 2007 and links indi-
viduals to de-identified EHRs [134]. The biobank collects about 500
DNA samples per week totalling over 300,000 biological samples in
2023 (https://victr.vumc.org).

Various PGx studies have been undertaken in biobanks that can be classi-
fied into three types: 1) Analysis of medication use and relationship with under-
lying disease, 2) characterisation of PGx variation in single or across genetic
ancestries, 3) association of (PGx) variants/PGx phenotypes with drug-related
phenotypes (dosage, ADRs). Studies that fall into the first category include
GWAS of self-reported medication use in the UKBB and comparison with the
underlying disease phenotypes through PRS stratification, comparison of ge-
netic architecture and MR analysis [135]. On a larger scale, GWAS on longitu-
dinal patterns of medication use for cardiometabolic conditions extracted from
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EHRs were conducted in FinnGen and meta-analysed with results from the Es-
tonian and UK biobanks [136]. As in the previous study, strong positive genetic
correlations were observed for the total number of purchases and underlying
disease as well as positive correlations between disease PRS and medica-
tion use. Interestingly, the analysis of changing or discontinuing medication
also showed a strong relationship with the underlying risk factors. Discontinu-
ation of lipid-lowering medication was associated with variants in the PCSK9,
LDLR and APOE loci, but in the opposite direction than low-density lipoprotein
cholesterol (LDL)-associated variants. This trend was corroborated by a neg-
ative correlation between LDL PRS and the proportion of individuals stopping
statin use quickly.

Atypical
medication

patterns can
reveal PGx

associations. A third study conducted in the UKBB and three Scottish
cohorts constructed a “dose-decrease” in addition to a drug discontinuation
phenotype to replicate known and identify novel drug-gene interactions [137].
While all these studies analysed drug prescriptions which by themselves do
not constitute a formal drug response phenotype, the use of a certain medica-
tion class rather than another as well as drug discontinuation and changes can
potentially proxy the presence of ADRs or sub-optimal drug responses based
on genetic variation.

The second type of analysis which deals with PGx variation in the gen-
eral population is motivated by the increased availability of sequencing data
in biobanks and a better representation of diverse genetic ancestries. PGx
star alleles and their associated phenotypes were analysed across 14 clini-
cally significant genes for all participants in the UK Biobank using genotype
and the available WES data at that time (N = 50,000). This analysis revealed
notable distinctions among African, East Asian, European, and South Asian
populations, such as differences for genes like VKORC1, which is the tar-
get of warfarin, and CYP3A5, which plays a crucial role in the metabolism of
tacrolimus — an immunosuppressive agent widely used in kidney transplanta-
tion [126].

Large-scale
sequencing data

enable the full
characterisation

of PGx variation. Analysis of WGS data of 2,240 Estonian Biobank participants iden-
tified novel LoF and missense variants in 64 very important pharmacogenes
[131]. This study additionally investigated associations between genetic vari-
ants and ADRs extracted from EHRs making it also fall within the realm of the
final category of PGx studies. Besides replicating known drug-gene-ADR rela-
tionships, the authors identified a novel association between CTNNA3 and my-
opathy among individuals taking nonsteroidal anti-inflammatory oxicams [131].

The third type of study that links phenotypic variation to drug-gene interac-
tions is most likely to identify actionable PGx variants. Whereas the previous
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study analysed drug-gene-ADR relationships on the variant level, a study in
the UKBB correlated PGx metaboliser phenotypes derived from PGx haplo-
type information with maintenance dose and ADRs extracted from EHRs to
identify known and potentially novel PGx interactions[138].

Analysis of
phenotypic and
medication data
in EHRs can
identify
actionable PGx
variants.

On a larger scale,
a study combining data from the Estonian Biobank, UKBB and BioVu, con-
ducted a GWAS on self-reported penicillin allergy — extracted from EHRs —
and uncovered an association with the HLA-B*55:01 allele and a missense
variant in the PTPN22 gene, which is associated with other autoimmune dis-
eases [139].

While biobank-scale studies have linked genetic variation to ADRs, the
integration of longitudinal phenotypic and medication data to screen for
genetic predictors of drug efficacy remains underexplored. In Chap-
ter 4, I present a study where we analysed cardiometabolic drug re-
sponse PGx using EHRs from the UKBB and AoU program. From the
records, we extracted baseline and post-treatment measures of LDL,
HbA1c, systolic blood pressure (SBP) and heart rate (HR) for statin,
metformin and antihypertensive users and conducted GWAS analyses
on the biomarker difference. By comparing drug response to baseline
genetics as well as the genetics of longitudinal biomarker change in
medication-naive individuals, we disentangled disease and medication-
specific genetic components.
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Chapter 2

Mediation between omics layers and complex

traits

In this Chapter, I will give an overview of the omics integration framework that
we published in the article “Quantifying the role of transcript levels in mediat-
ing DNA methylation effects on complex traits and diseases” in Nature Com-
munications (see Appendix A) [140]. In this work, we proposed an MVMR
framework to quantify the mediation of DNAm-to-complex trait effects through
transcripts. This framework can be generalized to other omics layers and in
addition to quantifying mediation proportions, it allows to identify causal path-
ways that could explain GWAS signals (Figure 2.1).
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Figure 2.1: Summary of the omics mediation study applied to the mediation of
DNAm-to-trait effects through transcript levels.

Mediation framework

We developed a three-sample MVMR (3S-MVMR) framework that takes as in-
put an omics exposure (here DNAm site), omics mediators (here transcripts
in cis, ± 500 kB of the DNAm site) and an output disease or complex trait.
Leveraging genetic effect sizes on each of these entities and instrumenting the
exposure and mediators by following the MR methodology, we can calculate
causal effect estimates from the exposure on the outcome through the medi-
ators. First, we calculated the total effect ✓T of the exposure on the outcome
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(complex trait) in a univariable MR analysis based on exposure-associated
SNPs only. Then, the total effect was dissected into a direct effect ✓D and indi-
rect ✓M effect in an MVMR analysis based on all valid instruments. A mediation
proportion (MP) was derived as the proportion of ✓M over ✓T , or through the
regression of ✓D on ✓T causal effects over multiple exposure-outcome pairs to
increase statistical power. In the latter case, the MP was defined as 1-�̂ where
�̂ is the regression slope. We applied this framework to 50 complex traits and
diseases by using the largest publicly available GWAS (N > 320,000). As
omics QTLs, we used mQTL data from the GoDMC consortium (N = 32,851)
[28], which contains > 170,000 whole blood DNAm sites with at least one
significant cis-mQTL (P < 1e-6) and cis-eQTL data from the eQTLGen con-
sortium (N = 31,684) [31] which includes cis-eQTLs for 19,250 transcripts.

Key results

When evaluating 2,623 DNAm-trait pairs with significant total effects (PT < 1e-
6) among the tested 50 complex traits, we observe that at least 28.3% (95%
CI: [26.9%–29.8%]) of DNAm-to-trait effects are mediated through transcripts
in the cis-region. When restricting the analysis to pairs with at least 1 causally-
associated transcript (2,069 pairs), a condition fulfilled when a significant MR
effect was detected from the DNAm site to the transcript, the dMP increased
to 37.8% (95% CI: [36.0%-39.5%]. MPs were highest for hepatic and renal
biomarkers, and lowest for adiposity-related and hormonal traits. MVMR sen-
sitivity analyses corroborated that these dMP estimates were robust and not
influenced by outlier or single strong, potentially invalid, IVs (sensitivity tests:
conditional F-statistic, heterogeneity Q-statistic, excluding the strongest instru-
mental variable). We further conducted simulation studies that indicated that
these dMPs were likely lower bounds. Low mediator sample sizes as well as
weak exposure- and mediator-associated instruments were shown to result in
underestimated dMPs.

In line with studies that showed a high fraction of positively correlated
DNAm-transcript pairs (i.e., presence of DNAm favouring gene expression),
we found that DNAm increased transcript levels for ⇠22,000 of ⇠47,000 signif-
icant DNAm- transcript pairs (46.6%). DNAm sites situated in the gene body
were particularly enriched for increasing transcription. Yet, dMPs were higher
when DNAm was decreasing transcript levels.

Besides quantifying mediation through transcript levels, our analysis also
brought forward many putative regulatory mechanisms. For instance, we found
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that methylation of the promoter probe cg10385390 (chr1:8’022’505) increases
the risk for inflammatory bowel disease by reducing PARK7 expression and
methylation of cg09070378 (chr1:161’183’762) decreases asthma risk by re-
ducing FCER1G expression a gene listed in the KEGG pathway for asthma.

A main limitation of this study was that omics data came from whole blood
which is not necessarily the most relevant tissue. Furthermore, we only con-
centrate on the strongest DNAm site in a region, ignoring nearby methylation
sites whose effects may be mediated by transcripts to a different degree. Re-
lated to this, we only conducted mediation analyses on DNAm-trait pairs with
large, detectable causal effects for which MPs may be different than for pairs
with weaker causal links.

Contribution of the author

This study was conceived and designed by Zoltán Kutalik, Eleonora Porcu and
myself. Based on omics MR analyses and scripts previously developed by
Eleonora Porcu and Kaido Lepik, I added univariable and multivariable MR
functionalities into the SMR software (https://cnsgenomics.com/software/
smr [64] written in C++) which is available at https://github.com/masadler/
smrivw and allows for fast and parallel computations. I carried out simulations,
statistical analyses on real data as well as sensitivity analyses with the help
of Eleonora Porcu and Zoltán Kutalik. Interpretation of results and manuscript
writing was done by Zoltán Kutalik, Eleonora Porcu and myself. Chiara Auwerx
contributed to the interpretation and writing of the biological mechanisms.

Related work

This framework was applied in several collaborations. I conducted mediation
analyses through transcript levels with DNAm as exposure in a study investi-
gating the genetics of cancer (“Novel discoveries and enhanced genomic pre-
diction from modelling genetic risk of cancer age-at-onset”, currently under re-
view; preprint available at [141]) as well as longevity (“Causal Epigenetic Age
Uncouples Damage and Adaptation”, currently under review; preprint available
at [142]). Furthermore, a variation of this framework with transcripts as expo-
sures and metabolites as mediators was published in the article “Exploiting the
mediating role of the metabolome to unravel transcript-to-phenotype associa-
tions” in eLife [143].

34

https://cnsgenomics.com/software/smr
https://cnsgenomics.com/software/smr
https://github.com/masadler/smrivw
https://github.com/masadler/smrivw


Chapter 3

Gene prioritization approaches to identify drug

targets

In this Chapter, I will summarise our findings on benchmarking gene prioriti-
sation methods in identifying known drug targets which was published in the
article “Multi-layered genetic approaches to identify approved drug targets” in
Cell Genomics (see Appendix B) [144]. While previous studies have reported
that drugs with a genetically informed target have a 2-fold enrichment for being
approved [79, 80], these studies solely relied on GWAS data. With the advent
of more diverse data sources such as large-scale QTL and WES data, there
are new opportunities to establish genetic support. In this study, we quantified
enrichment of disease genes determined by various methods with drug targets
across 30 clinical traits (Figure 3.1).
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Figure 3.1: Summary of the drug target identification study. Graphical abstract
from [144].

Gene prioritisation methods and study design

We considered four main gene prioritisation methods: 1) gene scores com-
puted from GWAS summary statistics through Pascal (GWAS, see Subsec-
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tion 1.3.3), 2) gene scores computed by combining tissue-wide eQTL and
GWAS data through MR (eQTL-GWAS, see Subsection 1.2.3), 3) MR combin-
ing plasma protein QTL with GWAS (pQTL-GWAS) and 4) WES burden tests
computed in the UKBB (Exome, see Subsection 1.3.3). Scores from these four
methods served as seed genes for diffusion in three different networks: 1) the
STRING PPI network, 2) an RNA-sequencing co-expression network (CoXR-
NAseq), and (3) an RNA-seq co-expression and proteomics network (FAVA).
Network diffusion was based on the Markov random walk algorithm that relies
on a restart parameter r determining diffusion strength.

All four methods and their combination with the networks (12x) were tested
for enrichment with approved drug targets. Drug targets were defined from
several databases that provide drug-indication and drug-target links (ChEMBL,
DrugBank, Ruiz et al., DGIdb and STITCH).

Key results

First, we assessed the agreement between pairs of methods and found that
genes prioritised by QTL-GWAS and GWAS had a high agreement, whereas
agreement with the Exome method was generally low.

Enrichment (OR) for drug targets was 2.17, 2.04, 1.81, and 1.31 for the
GWAS, eQTL-GWAS, Exome, and pQTL-GWAS methods, respectively. These
main enrichment results were derived based on all testable genes, a number
that can differ between methods, and consortia data when available. For in-
stance, the number of testable for the pQTL-GWAS method was ⇠1,870 so ad-
justment were made when comparing the pQTL-GWAS to the GWAS method
which could test ⇠19,000 genes. Similarly, the Exome method was restricted
to the UKBB, whereas GWAS data is available for disease-specific consortia
that provide meta-analyses with much larger case counts. Adjusting for all
these differences, we found that GWAS outperformed e/pQTL-GWAS, but not
the Exome approach.

Network diffusion relies on a restart parameter r which determines whether
the signal is propagated to nearby (high r) or more distant genes (low r). At
high r values, initial gene scores are dominant whereas at low r values the
network structure becomes more important. At the extreme, r = 0, the gene
score is solely determined by the node degree, i.e., the number of neighbours
a gene has in the network. We found that diffusion on the STRING PPI network
significantly boosted performance, to the extent where the network degree was
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the best predictor (OR = 8.7). Same results were obtained with the area under
the receiver operating characteristic curve (AUC) metric which increased from
54.3% at no diffusion to 77.6% at r = 0 for the GWAS method. Conversely, im-
provements were modest, although statistically significant, when diffusing on
the co-expression networks. For the GWAS method, AUC increased to 54.9%
and 55.9% at r = 0.6 in the CoXRNAseq and FAVA networks, respectively.

This massive improvement in the STRING network is due to its biased
network structure. Drug targets are more extensively studied than non-drug
targets, and hence more interactions are reported for these proteins. Indeed,
an analysis of the network connectivity revealed that drug target genes were
much more likely to be hub genes (mean log-degree = 13.0 vs 12.3, Pdiff =
6.6e-284).

To conclude, this analysis demonstrated the usefulness of integrating vari-
ous data sources such as QTLs to gain mechanistic insights, sequencing data
to assess rare variants, GWAS when molecular QTL signals are absent, and
network propagation to harness gene-gene interactions.

Contribution of the author

This study was conceived and designed by Zoltán Kutalik and myself. With
the help of Chiara Auwerx, I extracted drug-indication and drug-target data.
Network data, GWAS, QTL and WES summary statistics were retrieved from
various data sources which I used to compute gene prioritisation scores and
calculate enrichments. Patrick Deelen provided guidance and Zoltán Kutalik
supervised all statistical analyses. Zoltán Kutalik and I drafted the manuscript
and all the authors contributed by providing advice on interpretation of results
and feedback on the final manuscript.

Related work

A current collaboration with the co-author Patrick Deelen is developing a new
gene prioritisation method that integrates GWAS scores with regulatory net-
works. I am contributing by testing its performance in identifying drug target
genes and comparing it to GWAS scores alone. A preprint “Linking common
and rare disease genetics through gene regulatory networks” is available at
[145].
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Drug response pharmacogenomics using EHRs

from biobanks

In this Chapter, I will summarise our results on cardiometabolic drug response
pharmacogenetics using EHRs from biobanks (manuscript in preparation, see
Appendix C). Given the richness of longitudinal data on medication prescrip-
tions and clinical measures found in the UKBB and AoU research program, we
assessed the analysis potential of these resources to find genetic predictors of
drug efficacy and compared drug response genetics to disease and disease
progression genetics in medication-naive individuals (Figure 4.1).
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Figure 4.1: Summary of the drug response pharmacogenomics study. Based
on longitudinal data from EHRs ten cardiometabolic drug response pheno-
types were defined and tested for genetic associations.

Defining drug response phenotypes from biobank data

We constructed drug response cohorts by extracting prescriptions and clinical
measures from EHRs focusing on ten cardiometabolic medication-phenotype
pairs: statin-lipids (LDL, high-density lipoprotein cholesterol (HDL), total choles-
terol (TC)), metformin-HbA1c, antihypertensive-SBP (SBP; by antihyperten-
sive class (ACEi, CCB, thiazide diuretics) and all classes combined), beta
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blocker-SBP and beta blocker-HR. Participants were part of a PGx cohort if
a phenotype measurement was available before (baseline) and after (post-
treatment) drug initiation. Several filtering steps were applied to ensure consis-
tent drug adherence throughout the study period (i.e., no treatment changes
and regular prescriptions) and to make sure that the first prescription corre-
sponded to treatment initiation.

Key results

In the discovery GWAS conducted in the UKBB, we identified 14 independent
signals to influence drug response, all of which were from the lipid response to
statin GWAS (N = 17,063-26,365). Of these 14 signals, 7 replicated in the AoU
at the Bonferroni-corrected replication threshold of 0.05/14 = 0.00357 and 10
at a nominal p-value of 0.05 (all directionally concordant). Among replicated
signals, PCSK9 was identified as a novel genetic determinant of LDL choles-
terol response to statins. No genetic variant passed genome-wide significance
level in the HbA1c response to metformin, SBP response to antihypertensives
and HR response to beta blocker GWAS, likely because of lower sample sizes
(N = 780-6,199).

We further extracted genome-wide significant signals (p-value < 5e-8) from
the literature to assess whether GWAS derived from EHRs are coherent with
those identified in RCT and observational studies of dedicated PGx cohorts.
APOE, LPA, and SORT1 reported in earlier studies to influence LDL response
to statin passed genome-wide significance in the UKBB analyses, whereas
SLCO1B1 only passed that threshold in the TC response analyses for which
sample sizes were larger (26,365 vs 17,063). We could not find evidence for
a fifth LDL-related locus ABCG2, but replicated a genome-wide significant sig-
nal at CETP which was found to influence HDL response. None of the loci re-
ported to influence HbA1c response to metformin could be replicated (p-value
> 0.05) which could be due to lower statistical power, or be a true biological
absence aligned with other GWAS studies that failed to replicate them. Over-
all, concordance with cohort-derived drug efficacy loci was very high.

Furthermore, we tried to address an open question as to whether rare vari-
ants play a bigger role in drug response phenotypes compared to common
ones. To this end, we conducted rare variant burden tests based on WES in
the UKBB and WGS data in the AoU. Only two genes, PCSK9 for LDL and
ABCA1 for HDL response to statins survived multiple-testing correction sug-
gesting that rare variants only have a modest impact on drug efficacy. In the
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AoU, both genes replicated.

Finally, we compared drug response genetics to baseline and longitudinal
change genetics in medication-naive individuals. Longitudinal change analy-
ses were conducted in individuals part of the primary care data that did not
have any drug prescription indicated for the investigated disease/surrogate
end point and who had two available measures equally spaced as baseline
and post-treatment measures. We found strong similarities between drug re-
sponse and longitudinal change genetics with 7 out of 14 signals being general
prognostic (disease-specific) and not drug-specific genetic markers. Further-
more, we demonstrated that for same baseline levels, individuals with a higher
PRS tended to have reduced treatment efficacy.

Contribution of the author

This study was conceived and designed by Zoltán Kutalik and myself. I per-
formed statistical analyses in the UK Biobank and Alexander Apostolov con-
ducted replication analyses in the All of Us research program under Russ Alt-
man’s and my supervision. Diogo Ribeiro provided guidance on analyzing
rare variants from sequencing data and Zoltán Kutalik supervised all statistical
analyses. The manuscript in its current state was drafted by Zoltán Kutalik and
myself.

Related work

This study started during my stay as a visiting researcher at Stanford Univer-
sity in Russ Altman’s research group. Prior conducting efficacy PGx analyses,
I worked on calling PGx haplotypes and metaboliser phenotypes in the AoU
biobank. This work was later taken up by Alexander Apostolov (co-author of
this study) who systematically assessed differences in PGx haplotypes across
diverse populations for 12 important pharmacogenes in the AoU. During my
stay at Stanford, I also engaged in a collaboration within the research group
where I characterized DNA methylation profiles for 10 CYP genes. This work
was published in a review article “Promises and challenges in pharmacoepi-
genetics” in Cambridge Prisms: Precision Medicine [146].
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Discussion

In this thesis, our contributions to the integrative modelling of drugs, omics,
and diseases covered three aspects: i) development of a framework for de-
tecting causal molecular chains, ii) comparison of the overlap between drug
targets and disease genes prioritised by various methods, iii) identification of
genetic predictors of drug response by leveraging EHRs. Figure 5.1 illustrates
how these themes connect to constitute the pharmacokinetics and pharmaco-
dynamics of a drug and how improved modelling of drug and disease mech-
anisms on the molecular level can improve our understanding of treatment
mechanisms and emergence of side effects. Further on, genetic variations
within each of the genes involved in these processes can potentially lead to
deviations from expected drug responses, influencing treatment efficacy, or
predisposing individuals to ADRs.

In the following sections, I will summarise limitations encountered during
this research, discuss future directions to enhance proposed models, and con-
clude with some final remarks.
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Figure 5.1: Schematic depicting a generalised view of the genetics underlying
the pharmacokinetics and pharmacodynamics of a drug. Genetic variation in
genes linked to absorption, diffusion (not shown here), metabolism of the drug
to its active ingredient and ultimate elimination can modulate the concentration
of the drug within the body and and compromise treatment efficacy and/or
lead to side effects (Chapter 4).
Once the active drug metabolite has reached the tissue of action, the most
common mechanism includes inhibition of its primary target which either
has a direct treatment effect or indirect effect on the trait through molecular
interactions (Chapter 3). A pharmaceutical can treat multiple diseases, but
also cause side effects, either on-target side effects (not shown here) or
indirect side effects through molecular interactions.
Identifying disease genes that could serve as drug targets can be done
through genetically informed methods that allow for causal inference.
Mendelian randomisation methods that instrument molecular and disease
traits with genetic variants enable the identification of disease mechanisms
across multiple omics layers (Chapter 2).

Unless explicitly specified, a gene refers to both transcript and protein gene
products.

5.1 Data as the major limitation

The major limitation we encountered during this research was the lack of
data on several levels. In the following, I will outline data limitations that
currently hinder the development of comprehensive integrative drug-omics-
disease models. The discussion will be based on the research results pre-
sented in Chapters 2-4 across the topics of systems genetics, drug target
identification and pharmacogenomics.

5.1.1 QTL data

In Chapter 2, I presented an MVMR model to integrate two omics layers with a
complex trait to find molecular mechanisms underlying diseases. Through an
overall quantification, we estimated that about 28% of DNAm-to-trait effects
are mediated through transcripts in the cis-region. This proportion leaves
many of the DNAm-trait effects unexplained by regulatory gene expression
effects, in line with an earlier study that estimated that only 11% of disease
heritability is mediated by differential gene expression levels [147]. A recent
study assessing mQTLs across tissues corroborated a lack of expression
mediation by observing that mQTL-GWAS colocalisations were often missing
a corresponding eQTL-GWAS link (i.e., 749 of 1,505 DNAm-trait pairs had
evidence of a transcript-trait colocalisation) [29]. These consistent findings
across studies suggest that while gene expression may indeed mediate ge-
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netic effects to a lesser extent than expected because of other mediators such
as protein-coding changes, splicing, chromatin state or expression levels in
trans, it is also likely that current assays do not capture the full picture of gene
expression. Steady-state

expression levels
measured in bulk
may miss the
causal cell type
and state.

In addition to technical limitations, especially for microarray-based
technologies (see Subsection 1.2.2) and limited statistical power due to low
sample sizes (see simulations in Chapter 2), steady-state expression levels
measured in bulk assayed tissues may miss the causal cell type and state
as well as other environmental contexts [148]. Indeed, expression changes
induced by stimuli such as activation, hypoxic stress and drug treatment could
capture relevant environmental factors [148]. In the future, scRNA-seq across
tissues might be able to capture causal cell types and could help in finding
context-dependent eQTLs, which would ultimately increase the proportion
of disease heritability and/or DNAm-trait effects mediated by expression.
Practically speaking, availability of post-mortem tissues from the causal organ
is likely to remain limited, and blood cell type proxies will probably continue
to be the major contributor to such studies. While the space of measuring
expression levels across cells and time points grows exponentially, mQTL
data could help in prioritising experiments. Compared to eQTL, mQTL effects
are more likely to be shared across tissues and be stable across time [29].
Thus, observing an mQTL-trait effect with a missing eQTL-trait link could call
for further transcriptomics experiments.

When comparing gene prioritisation methods, our results showed that QTL-
GWAS approaches were not as performant in identifying approved drug target
genes as the GWAS approach. Compared to GWAS alone, QTL-GWAS meth-
ods provide mechanistic insights which can be very valuable to understand
disease aetiology and guide treatment strategies in terms of activating or
inhibiting gene products. Again, context-specific QTL-data could fill the gap
and explain mechanisms behind GWAS-prioritised disease genes currently
lacking QTL evidence.

Unlike eQTL data, pQTL data are only about to take off. While sample sizes
are now reaching those of large-scale eQTL datasets, there are still technical
limitations in measuring the entire protein-coding space at scale (see Subsec-
tion 1.2.2, Figure 1.4). Besides technical issues linked to low specificities in
affinity-based methods [46], proteins are downstream of transcripts and thus
are expected to have attenuated genetic effects [64].

pQTL data are
not yet capturing
the same breadth
as eQTL data.

Polygenicity proxied by
the number of independent SNPs was found to be higher for proteins than
transcripts (Chapter 3) which points towards a stronger negative selection
on the protein than transcript level and leads to a genetic architecture closer
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to that of complex traits and common diseases where critical regions are
deprived from strong common-variant associations [149]. We attempted to
conduct mediation analyses through protein levels, however, the largest pQTL
dataset available at the time was too low in terms of sample size and number
of available entities [34].

There was no significant difference in performance between eQTL-GWAS and
pQTL-GWAS integration methods in identifying approved drug targets, pro-
vided we restricted the comparison to the testable protein space. However, far
fewer proteins than transcripts could be tested, and for the same sample size
and same set of genes (⇠4,700 genes from the SomaScan platform), more
genes have associated eQTLs than pQTLs. Collectively, this suggests that
larger sample sizes are required to detect pQTLs when compared to eQTLs
and omics-wide applications will need to wait for the technology to cover a
larger protein space.

5.1.2 Drug data

A major challenge in establishing and validating drug-omics-disease models
is obtaining a reliable and comprehensive data source for the drug-omics
dimension.

In Chapter 4, we used drug-protein target data as gold standards to bench-
mark statistical methods in their ability to identify disease genes. However,
there are many cases where drug-protein interactions are not clearly defined
and where disagreements or changes in the accepted drug target occur
over time [150]. Furthermore, drugs can bind to additional proteins that
may not be efficacy targets. These interacting proteins are generally less
well-documented, but may be of great importance when studying off-target
side effects [150].Drug mechanism

of action data is
scarce and not
always publicly

available.

An additional layer of complexity is added when considering
the drug-indication dimension. Not all drugs are disease-modifying with
some being symptom-managing drugs. Such a classification is not readily
available, but could be of immense value when studying treatment mecha-
nisms, as disease genetics may be of less importance to symptom-managing
drugs [151]. Unfortunately, drug-indication and drug-protein interaction
data often sit behind paywalls, examples being Citeline Pharmaprojects
(https://www.citeline.com) and DrugBank (https://www.drugbank.com/)
which includes a free and commercial version that additionally provides
side-effect data and neatly formatted tables (as opposed to a single XML file
that requires post-parsing steps). Fortunately, publicly available databases
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such as ChEMBL (https://www.ebi.ac.uk/chembl/) and Open Targets
(https://www.opentargets.org) are constantly expanding available informa-
tion on drugs, their targets and indications. It is important to note that current
drug targets are largely biased towards GPCR proteins [76], which may
influence the validation of putative gene-trait links with drug target data. In
the future, drug targets may become more diverse as new therapeutic agents
enter the market such as double-stranded RNA-mediated interference (RNAi)
and antisense oligonucleotides (ASOs) that can suppress gene expression
[152].

While the majority of drugs exert their therapeutic effect by inhibiting proteins,
pharmacological effects through gene expression modulation and direct RNA
binding have also been reported [153, 154]. However, systematic data of drug
regulatory effects in humans are lacking. The Connectivity Map (CMap) is a
library that contains the expression profile of 1,000 genes upon perturbation by
⇠20,000 small molecules across multiple, mostly cancer, cell lines [155]. Drug perturbation

data on
expression levels
in humans could
elucidate
pharmacological
mechanisms.

How-
ever, the quality of this data resource has been called into question, as the re-
producibility of transcriptomic signatures both between CMap and within CMap
versions was found to be very low [156]. In our research analyses, we could
not find an enrichment of disease genes for drug-perturbed genes prioritised
by CMap (data not shown) which could reflect a true absence of regulatory
pathways underlying treatment mechanisms or be the result of low signal-to-
noise ratio within the database. On the other hand, regulatory pharmacological
effects could rather be responsible for off-target effects [154]. Ideally, omics-
level data before and after drug initiation in humans would be available to relate
differential transcript and/or protein levels to disease mechanisms. Such longi-
tudinal omics data could stem from clinical trials, but also from biobanks where
large sample sizes makes it possible to stratify participants according to their
medication regimen.

5.1.3 Networks

Gene co-regulation and physical interactions between proteins can result in
concerted gene effects that can be mathematically described by networks.
In Chapter 3, we demonstrate the benefits of leveraging molecular networks
to identify drug targets as cascading pharmacological effects may mediate
treatment mechanisms. Throughout the residence time of a drug in a system,
molecular interactions govern ADME and therapeutic processes (Figure 5.1).
Drug → gene → trait or drug → gene → side effects may be direct or mediated
through network interactions.
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When modelling disease network mechanisms in Chapter 3, we consulted the
STRING PPI network and two co-expression networks. Bias in the STRING
network caused by drug targets being well-studied and having more reported
interactions artificially inflated performance. Conversely, improvement in iden-
tifying drug targets was limited when using co-expression networks stemming
from high-throughput experiments. Although derived from an unbiased data
source, such networks may be more noisy due to technical issues. Further-
more, co-expression networks do not necessarily capture physical protein in-
teractions and they may also be tissue- or cell type-specific. Given a strong
incentive to integrate networks, there is a need for high-quality, unbiased net-
works that connect molecular traits within or even across different omics layers.

Comprehensive,
unbiased

networks could
identify key

molecular
interactions in

drug and disease
mechanisms.

5.1.4 Rare variants

With the advent of large-scale sequencing data such as WES and WGS in the
UKBB and AoU program [13, 133, 157], rare-variant analyses start to gain trac-
tion. In Chapter 3 and 4, we compared the effect of common and rare variants
on drug-target and drug-response predictions, respectively. While rare-variant
burden tests on WES were equally good as gene scores from GWAS data
in predicting drug targets, this was only the case when restricting GWAS to
UKBB data to match case/control count with the WES data. Using consortia
data, GWAS achieved a higher performance. Compared to disease genetics,
the impact of rare variants in pharmacogenetics is even less studied.Sample sizes of

current
sequencing data
do not yet match

those of
genotyping

microarrays.

In Chap-
ter 4, we conducted rare-variant burden tests on drug-response phenotypes
with only two genes surviving multiple testing. In both studies, a larger sample
size would be needed to assess the full impact of rare variation. We found that
Exome-prioritised and GWAS-prioritised genes usually point towards different
drug targets, highlighting the value in consulting both data sources. Indeed,
WES burden heritability was found to be strongly concentrated in constrained
genes, in line with the paradigm that ’flattening’ due to negative selective de-
prives important genes from harbouring common variants which therefore may
be missed by GWAS [149]. Although, WES data proves promising to identify
complementary disease genes/drug targets to those identified by GWAS, a re-
cent analysis of stopped clinical trials shows that trials are more likely to stop
for safety reasons if the drug target gene is highly constrained [158]. Future
large-scale WES and WGS data will likely unlock the full potential of rare vari-
ants in drug target discovery and demonstrate their importance in PGx.
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5.1.5 Electronic health records

EHRs coupled to biobanks greatly enlarge the phenotypic space through lon-
gitudinal medication prescriptions/purchases, physical and biochemical mea-
sures and diagnosis information. However, EHRs have often been set up for
billing and not scientific research purposes which can impact reported phe-
notype codes. In Chapter 4, we analysed EHRs from the UKBB and AoU to
extract drug response phenotypes and encountered several challenges related
to data quality and quantity:

• Missing data: EHRs are only available for 45% of participants from the
UKBB, although the data exists for remaining participants and was briefly
made available for Covid-related research (plans are underway to make
the data again available for the entire cohort). In the AoU, only records
from participating EHR sites are included which means that not every
clinical and medication record figures in the EHRs.

• Data harmonisation: In the UKBB, EHRs come from four different data
providers (England (Vision), Scotland, England (TPP) and Wales) that
use different clinical and prescription codes (British National Formulary
(BNF), National Health Service (NHS) dictionary of medicines and de-
vices (DM+D), Read V2 and Clinical Terms Version 3 (CTV3)). This het-
erogeneity in reporting greatly complicates data harmonisation, and can
even be an error-prone task for researchers unfamiliar with the struc-
ture. Furthermore, not all systems provide the same level of detail
which can result in inaccurate or incomplete phenotype definitions. Since
2018, SNOMED CT, a structured clinical vocabulary, was introduced by
the NHS which may be available in future primary care data releases
(records in the current release end in 2016-2017). A harmonised sys-
tem has already been adopted in the AoU, where all participant data are
transformed into Observational Medical Outcomes Partnership (OMOP)
standard vocabulary (e.g. SNOMED for conditions and physical mea-
surements and RxNORM for drugs) which enormously facilitates pheno-
type and medication data retrieval.

• Incomplete records: Both in the UKBB and AoU, entries are often incom-
plete. For instance, a cholesterol record may miss the measured value
as well as its unit (e.g. mmol/L or mg/dL). While the unit can often be
inferred from the value, missing values are hard/impossible to impute.
Incomplete medication records can also limit analysis potential. A medi-
cation entry by itself is useful information, but even more so when the pre-
scription dosage is available, especially when considering drug response
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phenotypes. Through natural language processing, we extracted med-
ication dose from the name, and if the quantity was available (number
of pills and packages prescribed), dosage can be derived by integrating
prescription frequency. While dose and quantity information was avail-
able for > 95% of the assessed prescriptions in the UKBB, this was only
the case for ⇠70% of the prescriptions in the AoU. Related, reasons for
stopping or changing a medication are often not reported, but would be
of great value to study side effects and drug efficacy.

Missing and incomplete data resulted in a massive drop in sample size when
deriving drug response phenotypes. As an example, of the ⇠65,000 partic-
ipants with a statin prescription in the UKBB primary care data, 63% could
not be considered for the LDL-response analysis because of missing baseline
and/or post-treatment measures. Numbers were similar in the AoU biobank.
While overall massive sample sizes can compensate for these data losses,
a focus on complete longitudinal phenotyping in future biobanks could im-
mensely increase their value and analysis potential.

5.1.6 Cohort diversity

Population genetics data is largely biased towards European ancestry with
approximately 80% of the participants in the GWAS Catalog being of Euro-
pean descent, despite this group constituting only about 16% of the global
population (statistics from 2019) [159]. This lack of diversity has important
downstream implications on the research and clinical applications of genetics.
Allele frequency can largely differ between populations as do LD patterns. In-
creased natural variation could be of great benefit to identify disease genes
as biologically important genes may be missed if the frequency of associated
variants is too low in the studied population. Furthermore, differing LD pat-
terns could improve our fine-mapping abilities under the assumption that non-
causal variants have differing effect sizes across populations which can make
it easier to identify the causal SNP.

Cohort diversity
is needed to

foster genetic
discoveries and

ensure equitable
benefits from

PRS and PGx
passports in
clinical use.

Deriving PRS based on causal and not
merely correlated SNPs is a much needed step to improve their performance
and transferability across ancestries, and hence their wide-spread clinical use
[159]. As research on the clinical applicability of PGx advances, it becomes
crucial to conduct large-scale PGx studies within diverse populations and as-
sess the full spectrum of PGx variants. A study conducted in the UKBB on 14
pharmacogenes revealed that non-European populations carry a higher fre-
quency of variants predicted to be functionally deleterious than individuals of
European descent of which many are not captured by current PGx allele defini-
tions [126]. Thus, both the introduction of PRS and PGx-guided prescribing in
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the clinics could disproportionally benefit individuals of European descent and
exacerbate health disparities [159]. The AoU program is actively addressing
the issue by encouraging historically understudied populations to participate
and is becoming one of the most diverse biobank. As the data emerge, so will
most likely the methods to conduct multi-ancestry genetic studies.

5.2 Future work

While currently available data do not contain the molecular interactions neces-
sary to model the complete scope of drug effects, there remain opportunities
for improving existing models and exploring unknowns with the data at hand.

Improved gene prioritisation scores In Chapter 3, we compared gene pri-
oritisation methods in their ability to identify drug targets. One of the conclu-
sion was that the GWAS and Exome methods performed equally well while
also prioritising different drug targets. A logical next step would be to combine
scores across methods to get an optimal consensus gene score that would
result in the best performance. Furthermore, in the introductory Subsection
1.2.3, I presented different QTL-GWAS approaches that allow the computa-
tion of gene scores with MR being associated to higher false positive rates
than colocalisation methods. In our benchmarking study we only considered
MR-IVW as the QTL-GWAS method and it is possible that other QTL-GWAS
integration methods yield higher performances.

Drug repositioning Once confident gene-trait relationships have been es-
tablished, candidate drug target genes can be identified and further assessed
for potential side effects and multiple indications in a pheWAS (Figure 1.8). In
Chapter 3, we created a library of disease-related genes and compared them
to existing drug targets. These relationships could be effectively utilised for
drug repositioning by identifying diseases with which drug targets are asso-
ciated beyond their approved indications. Ideally, this analysis is conducted
phenome-wide to include a maximum of conditions and also side effects. To
evaluate drug candidates and their repurposed therapeutic effects in silico, one
could additionally consult EHRs and verify whether individuals taking these
drugs have these repurposed indications (or proxies thereof) measured and
whether they associate with improved outcomes compared to matched con-
trols [160, 161].

Regulatory drug effects Not all drugs have their molecular mechanism well
understood, which is for instance the case for metformin [162]. Large-scale
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perturbation studies like CMap have attempted to address this issue, how-
ever, concerns about their quality have been raised (see Subsection 5.1.2).
Nonetheless, drugs can exert regulatory effects, for instance as a conse-
quence of protein or RNA binding, i.e., a protein/transcript whose function is in-
hibited by a small molecule can interrupt downstream molecular pathways and
cause regulatory changes [154]. Indeed, a recent study showed that drugs
pervasively interact with the human transcriptome and suggested that RNA
off-targets may contribute to toxicity [154]. While we conducted preliminary
analyses on drug regulatory effects using CMap, more systematic analyses
are needed to assess the potential of this resource. For instance, one could
calculate the enrichment of drug-induced CMap gene signatures with network-
diffused drug target signals to test the hypothesis that drug-target binding in-
fluences abundance of interacting genes which, if affirmative, could increase
confidence in reported gene signatures. Ultimately, one could test whether
drug regulatory effects are more likely to induce side effects rather than con-
tribute to treatment mechanisms.

PGx of drug targets In Chapter 4, we screened the genome for predictors
of drug efficacy for selected drug-indication pairs. While statistical power was
certainly limiting the ability of finding all relevant genes, our study as well as
similar studies in the field, did not identify drug targets themselves as top hits.
APOE was the top signal in the LDL-response to statin GWAS whereas the
statin target HMGCR did not reach genome-wide significance (p-value > 1e-
6). An analysis of GPCR drug targets found a wide spectrum of natural vari-
ation within functional regions such as drug- and effector-binding sites [77].
However, it is less clear to what extent drug target variation influences drug
response and whether it is sensible to enrich (early-phase) RCTs with patients
carrying variants within the target region under the assumption that they are
predisposed to respond better [152]. By extracting drug response data from
EHRs similar to the study design in Chapter 4, patients could be stratified by
their target genetic variation, both on regulatory (most likely common) and cod-
ing (most likely rare) variants, to assess the effect on drug response and gain
new insights into the PGx of drug targets.

Polypharmacy A major issue in assessing the genetic basis of inter-
individual drug efficacy and safety is polypharmacy. A pooled analysis of 106
studies across the globe (59 from Europe) identified polypharmacy, defined as
the concurrent prescription of five or more drugs, to have a prevalence of 45%
in individuals aged � 65 years with polypharmacy increasing with age [163]. A
drug can have a similar effect as a LoF variant (i.e., drug-induced phenocon-
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version, see Subsection 1.4.2), and accounting for multiple drugs could reveal
drug-drug-gene interactions. Cardiometabolic drug response studies such as
the ones conducted in Chapter 4 could be further refined to account for con-
comitant medication (e.g. concomitant antidiabetic and antilipemic prescrip-
tions) to identify effects of polypharmacy on the genetics of drug response.

5.3 Conclusion

It has been an extraordinary journey uncovering the genetics of omics and
diseases for drug-target and drug-response predictions. While the vast
amount of data within biobanks and beyond holds immense potential for
drug development and personalised medicine, analysing and modelling the
data made me slowly, but surely realise that this field is profoundly complex,
and that we are still only scratching the surface of molecular mechanisms
underlying disease and therapeutic effects. While data scarcity has cer-
tainly been the limit in many perspectives, the multidisciplinary nature of this
field means that genetics may only be able to solve a small part of the problem.

The increase in success rate for drugs with a genetically informed target is
undeniable, but in terms of personalised medicine, genetics may play a modest
role in patient stratification compared to other clinical factors. Studying the role
of omics not only as a mediator of genetics, but also as a biomarker of disease
status and surrogate of environmental components such as lifestyle, diet and
concomitant medication could refine our understanding of treatment efficacy
and safety, and ultimately lead to better informed treatment strategies.
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[54] Eleonora Porcu, Sina Rüeger, Kaido Lepik, Federico A Santoni, Alexan-
dre Reymond, and Zoltán Kutalik. Mendelian randomization integrating
GWAS and eQTL data reveals genetic determinants of complex and clin-
ical traits. Nature communications, 10(1):1–12, 2019.

[55] Stephen Burgess, Verena Zuber, Elsa Valdes-Marquez, Benjamin B
Sun, and Jemma C Hopewell. Mendelian randomization with fine-
mapped genetic data: choosing from large numbers of correlated in-
strumental variables. Genetic epidemiology, 41(8):714–725, 2017.

[56] Zhihong Zhu, Futao Zhang, Han Hu, Andrew Bakshi, Matthew R Robin-
son, Joseph E Powell, Grant W Montgomery, Michael E Goddard,
Naomi R Wray, Peter M Visscher, et al. Integration of summary data
from GWAS and eQTL studies predicts complex trait gene targets. Na-
ture genetics, 48(5):481–487, 2016.

[57] Verena Zuber, Nastasiya F Grinberg, Dipender Gill, Ichcha Manipur,
Eric AW Slob, Ashish Patel, Chris Wallace, and Stephen Burgess. Com-
bining evidence from Mendelian randomization and colocalization: Re-
view and comparison of approaches. The American Journal of Human
Genetics, 2022.

59



BIBLIOGRAPHY

[58] Alexander Gusev, Arthur Ko, Huwenbo Shi, Gaurav Bhatia, Wonil
Chung, Brenda WJH Penninx, Rick Jansen, Eco JC De Geus, Dorret I
Boomsma, Fred A Wright, et al. Integrative approaches for large-scale
transcriptome-wide association studies. Nature genetics, 48(3):245–
252, 2016.

[59] Alvaro N Barbeira, Scott P Dickinson, Rodrigo Bonazzola, Jiamao
Zheng, Heather E Wheeler, Jason M Torres, Eric S Torstenson,
Kaanan P Shah, Tzintzuni Garcia, Todd L Edwards, et al. Exploring
the phenotypic consequences of tissue specific gene expression varia-
tion inferred from GWAS summary statistics. Nature communications,
9(1):1–20, 2018.

[60] Kaido Lepik. Inferring causality between transcriptome and complex
traits. Phd thesis, Institute of Computer Science, Faculty of Science
and Technology, University of Tartu, Estonia., Tartu, Estonia, May 2021.
Available at http://dspace.ut.ee/bitstream/handle/10062/71645/

lepik_kaido.pdf.

[61] Gibran Hemani, Kate Tilling, and George Davey Smith. Orienting the
causal relationship between imprecisely measured traits using GWAS
summary data. PLoS genetics, 13(11):e1007081, 2017.

[62] Stephen Burgess, Dylan S Small, and Simon G Thompson. A review of
instrumental variable estimators for Mendelian randomization. Statistical
methods in medical research, 26(5):2333–2355, 2017.

[63] Eleanor Sanderson. Multivariable Mendelian randomization and me-
diation. Cold Spring Harbor perspectives in medicine, 11(2):a038984,
2021.

[64] Yang Wu, Jian Zeng, Futao Zhang, Zhihong Zhu, Ting Qi, Zhili Zheng,
Luke R Lloyd-Jones, Riccardo E Marioni, Nicholas G Martin, Grant W
Montgomery, et al. Integrative analysis of omics summary data reveals
putative mechanisms underlying complex traits. Nature communica-
tions, 9(1):1–14, 2018.

[65] Alice R Carter, Eleanor Sanderson, Gemma Hammerton, Rebecca C
Richmond, George Davey Smith, Jon Heron, Amy E Taylor, Neil M
Davies, and Laura D Howe. Mendelian randomisation for mediation
analysis: current methods and challenges for implementation. European
journal of epidemiology, 36(5):465–478, 2021.

60

http://dspace.ut.ee/bitstream/handle/10062/71645/lepik_kaido.pdf
http://dspace.ut.ee/bitstream/handle/10062/71645/lepik_kaido.pdf


BIBLIOGRAPHY

[66] Claudia Giambartolomei, Jimmy Zhenli Liu, Wen Zhang, Mads Hauberg,
Huwenbo Shi, James Boocock, Joe Pickrell, Andrew E Jaffe, Common-
Mind Consortium, Bogdan Pasaniuc, et al. A Bayesian framework for
multiple trait colocalization from summary association statistics. Bioin-
formatics, 34(15):2538–2545, 2018.

[67] Eilis Hannon, Tyler J Gorrie-Stone, Melissa C Smart, Joe Burrage,
Amanda Hughes, Yanchun Bao, Meena Kumari, Leonard C Schalkwyk,
and Jonathan Mill. Leveraging DNA-methylation quantitative-trait loci
to characterize the relationship between methylomic variation, gene ex-
pression, and complex traits. The American Journal of Human Genetics,
103(5):654–665, 2018.

[68] John Novembre, Toby Johnson, Katarzyna Bryc, Zoltán Kutalik, Adam R
Boyko, Adam Auton, Amit Indap, Karen S King, Sven Bergmann,
Matthew R Nelson, et al. Genes mirror geography within europe. Nature,
456(7218):98–101, 2008.

[69] Matthew R Robinson, Aaron Kleinman, Mariaelisa Graff, Anna AE
Vinkhuyzen, David Couper, Michael B Miller, Wouter J Peyrot, Abdel
Abdellaoui, Brendan P Zietsch, Ilja M Nolte, et al. Genetic evidence
of assortative mating in humans. Nature Human Behaviour, 1(1):0016,
2017.

[70] Laurence J Howe, Michel G Nivard, Tim T Morris, Ailin F Hansen, Hu-
maira Rasheed, Yoonsu Cho, Geetha Chittoor, Rafael Ahlskog, Pene-
lope A Lind, Teemu Palviainen, et al. Within-sibship genome-wide as-
sociation analyses decrease bias in estimates of direct genetic effects.
Nature genetics, 54(5):581–592, 2022.

[71] Alan Wayne Jones. Early drug discovery and the rise of pharmaceutical
chemistry. Drug testing and analysis, 3(6):337–344, 2011.

[72] Thomas A Ban. The role of serendipity in drug discovery. Dialogues in
clinical neuroscience, 8(3):335–344, 2006.

[73] Klaus Strebhardt and Axel Ullrich. Paul Ehrlich’s magic bullet concept:
100 years of progress. Nature Reviews Cancer, 8(6):473–480, 2008.
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Quantifying the role of transcript levels
in mediating DNA methylation effects on
complex traits and diseases

Marie C. Sadler 1,2,3 , Chiara Auwerx 1,2,3,4, Kaido Lepik1,2,3,
Eleonora Porcu 1,2,3,4,5 & Zoltán Kutalik 1,2,3,5

High-dimensional omics datasets provide valuable resources to determine the
causal role of molecular traits in mediating the path from genotype to phe-
notype. Making use of molecular quantitative trait loci (QTL) and genome-
wide association study (GWAS) summary statistics, we propose amultivariable
Mendelian randomization (MVMR) framework to quantify the proportion of
the impact of the DNA methylome (DNAm) on complex traits that is propa-
gated through the assayed transcriptome. Evaluating 50 complex traits, we
find that on average at least 28.3% (95% CI: [26.9%–29.8%]) of DNAm-to-trait
effects are mediated through (typically multiple) transcripts in the cis-region.
Several regulatorymechanisms are hypothesized, includingmethylation of the
promoter probe cg10385390 (chr1:8’022’505) increasing the risk for inflam-
matory bowel disease by reducing PARK7 expression. The proposed inte-
grative framework can be extended to other omics layers to identify causal
molecular chains, providing a powerful tool to map and interpret GWAS
signals.

In the past decade, genome-wide association studies (GWASs) have
identified thousands of genetic variants associated with complex
traits1, however, linking these variants to molecular pathways still
remains challenging2. GWAS signals of common diseases pre-
dominantly fall into the non-coding genome3 and both their enrich-
ment in regulatory elements (e.g., quantitative trait loci (QTL)3,4), as
well as advances in omics technology5, have motivated the establish-
ment of large-scale consortia providing publicly availableQTLdatasets
for molecular phenotypes such as DNA methylation (DNAm)6,
transcript7,8, protein9–11 and metabolite12,13 levels.

Integrative statistical methods combining GWAS and omics QTL
summary data include colocalization tests14,15, summary versions of
transcriptome-wide association studies (TWAS)16,17 and Mendelian
randomization (MR) studies18,19. Colocalization methods identify
shared QTL and GWAS signals, and while this might indicate causality
between the molecular and GWAS trait, signal overlap can also arise

due to reverse causality (i.e., causal effect of the GWAS trait on the
molecular trait20) or horizontal pleiotropy (i.e., the identified shared
genetic variant drives the molecular and trait perturbation indepen-
dently). In comparison, MR studies, which are conceptually similar to
TWAS, usemultiple genetic variants as instrumental variables (IVs) and
are less prone to reverse causality and artefacts arising from LD
patterns21 - although horizontal pleiotropy can never be ruled out
entirely. In addition, MR analyses allow the quantification - direction
and magnitude - of the causal effect of the omic on the outcome trait.

With the advent of QTL datasets with increased sample sizes6,8,
opportunities to integrate GWAS data with multiple molecular traits
are no longer hampered by low statistical power. Previous efforts
integrating multiple QTL omics data either adopted colocalization
strategies22,23 or combined pairwise MR associations (two-step MR)24,25

testing only a single molecular mediator. Multivariable MR (MVMR)
approaches have been proposed to identify multiple mediators of
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exposure-outcome relationships26,27. These approaches enable the
dissection of the total causal effect of an exposure on an outcome into
a direct and indirect effectmeasured viamediators. Similar to classical
MR approaches, the use of genetic instruments allows for robust
causal inferenceandMVMRhasproven tobe anunbiased approach for
mediation analyses, even in the presence of confounders26,27. Hence, in
addition to identifying causal effects through multiple layers, MVMR
allows the quantification of mediation effects.

Here, weproposea three-sampleMVMR (3S-MVMR) framework to
quantify the role of cis-transcripts in mediating DNAm→ complex trait
causal relationships (Fig. 1). To do so we integrated methylation and
transcriptQTLs (mQTLs and eQTLs, respectively) withGWAS summary
data of 50 clinically relevant traits to estimate global mediation pro-
portions (MPs), i.e., the proportion of transcript-mediated causal
effect relative to the total effect ofDNAmoncomplex traits. In contrast
with previous multi-omics integration methods, each 3S-MVMR
regression analysis makes use of at least 5 near-independent instru-
mental variables (IVs) allowing for more robust causal inference and
post-hoc sensitivity analyses. We performed simulation studies to
assess biases of the 3S-MVMR estimates for MP under various para-
meter settings. In addition to quantifying the regulatory connectivity
between DNAm and transcript levels, we investigated underlying fac-
tors driving highMPs, and hypothesized severalmechanistic pathways
between DNAm, gene expression and complex traits.

Results
Overview of the methods
We performed univariable and multivariable MR to estimate total (θ̂T )
and direct (θ̂D) causal effects, respectively, with MP (mediation pro-
portion) estimates being calculated as the ratio of the indirect effect
(i.e., mediated through the molecular mediators) to the total effect of
the exposure on the outcome trait28 (Fig. 1; Eqs. (1) and (3)). If weak
genetic instruments can introduce a bias towards the null in a uni-
variable MR setting29, this bias can be in any direction for MVMR
studies30. Both sample size and choice of instruments and mediators

can introduce a bias in any direction30, leading to under- or over-
estimations of the MP. To quantify these biases and assess the sensi-
tivity of estimated dMPs, we conducted simulation studies mimicking
settings that emerge from real data applications (Methods; Supple-
mentary Fig. 4).

We then applied our framework in a genome-wide screen to
estimate θ̂T ofDNAmsites on 50outcomes and contrasted them to the
effects not mediated by transcripts in cis (θ̂D). Genetic effect sizes on
the DNAm and transcript levels came from the largest publicly avail-
able mQTL and eQTL datasets, respectively, derived from whole
blood6,8. MP estimates were then computed only for DNAm-trait pairs
with significant Bonferroni-corrected θ̂T effects, grouped by trait, trait
category and all pairs combined.WepresentMP results forDNAm-trait
pairs with at least one mediator significantly associated to the expo-
sure ("detectable mediation"), but also for pairs, including the ones
without a significant causal effect on any potential transcript ("overall
mediation"). The overall MP quantifies more accurately the role of cis-
transcripts in mediating DNAm effects, as the restriction to only
DNAm-trait pairs with a mediator could introduce a selection bias
towards higher MPs. Additionally, we performed various sensitivity
analyses on these MR results to assess the robustness of the MP esti-
mates: assessing weak instruments (through conditional F-statistics),
heterogeneity tests (throughheterogeneityQ-statistics and leaving the
strongest instrument out) and estimating bias due to by-chance signal
overlap (through simulations).

Simulation results
We performed simulation studies to assess the bias in estimated MPs
(dMP) by exploring a wide range of realistic parameter settings which
cover at least the interquartile range as observed in real data (Sup-
plementary Figs. 4-5; Supplementary Tables 1-2; Methods). Using
default settings (i.e., median values for each parameter such as 2 true
mediators Nmed and a true MP of 35%), the bias in dMP is minimal with
the mean dMP equalling 33.5% (95% CI: [32.0%–35.0%]; Supplementary
Fig. 6; Supplementary Table 2). A determining factor in accurately
estimating MPs was the available sample size to derive the mediator
QTL effects. Low sample sizes resulted in significant underestimations
of the MP, with mediator sample size of 3000 compared to 30,000
resulting in a 17% relative decrease (6% in absolute values) of the
estimateddMP (Fig. 2a). The reason for this significant underestimation
was not only weak instrument bias, but also the omission of relevant
mediators with on average only 1.17 (Nmed,sig) out of the 2 (Nmed)
relevant mediators detected at a sample size of 3000 (Fig. 2a). We
further tested the robustness of thedMP with respect to the number of
included mediators by varying the mediator selection threshold PEM.
Among a set of 20 potential mediators, those not passing the PEM as
determined by univariableMR effects of the exposure on eachof these
mediators were excluded from the MVMR model (Methods). Using a
too lenient or too stringentPEM threshold resulted indownward biased
dMPs (Fig. 2b), as the former leads to the inclusion of too many non-
mediators in themodel (giving rise to weak instrument bias), while the
latter case fails to include relevant mediators in the model. The used
mQTL and eQTL datasets provide SNP effect sizes in cis of the assessed
DNAm probe and transcript levels, respectively, and were primarily
restricted to significant mQTLs for the former. Thus, in the MVMR
analysis SNP-exposure effects for mediator instruments are often non-
significant (hence unreported) and set to zero to reduce regression
dilution bias (i.e., weak instrument bias). Our simulation studies, which
mimicked this scenario by setting non-significant effects to zero
(Methods), confirmed that this did not introduce any bias.

Furthermore, we investigated weak instrument bias of both
exposure- andmediator-associated IVs. Whenmediator-associated IVs
were weak (i.e., low directmediator heritabilities (h2

M,direct; Methods), a
high variability and significant underestimation of the dMP was
observed (Fig. 2c). In case of lowmediator heritability, the conditional

Fig. 1 | Overview of the three-sample multivariable Mendelian randomization
(3S-MVMR) design to quantify mediation of complex traits through DNA
methylation (DNAm) and transcripts.Genetic instruments (SNPs) are selected to
be directly and significantly associated (dashed arrows) with either the exposure
(DNAm, green) or any mediator k (transcript in cis, red). The total effect θT (green-
blue dotted arrow) of the exposure on the outcome (complex trait, blue) is esti-
mated in a univariable MR analysis based on exposure-associated SNPs only. The
direct effect θD (green-blue arrow) is estimated in an MVMR analysis on all valid
instruments. The mediation effect θM (green-red and red-blue arrows) results from
the difference between θT and θD, and allows to calculate themediation proportion
(MP). The genetic effect sizesβon the exposure,mediator andoutcome come from
m/eQTL and GWAS summary statistics, respectively. Transcripts were required to
be causally associated to the DNAm-exposure to be included as mediators.
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F-statistics of the exposurewas also below the critical threshold of < 10
(Methods) indicating weak instruments. Similarly, for low exposure
heritability (h2

E), underestimated dMPs were obtained, even in case of
high conditional F-statistics ( >120; Fig. 2d). Additional simulation
studies with more polygenic exposures and increased number of
relevant mediators Nmed for different exposure and mediator herit-
abilities corroborated the findings of underestimated dMPs in case of
weak instruments (Supplementary Fig. 7).

Application to 50 complex traits
We first estimated the causal effects of DNAm probes on 50 complex
traits, ranging from biomarkers indicative for diseases, such as low-
density lipoprotein (LDL) and glucose levels, to diseases such as
asthma and schizophrenia (Supplementary Data 1). DNAm-trait pairs
with a significant total causal MR effect (PT < 1e-6) were then further
assessed to examine what fraction of the DNAm→ trait causal effect is
mediatedby transcripts in cis (Fig. 3a; Supplementary Fig. 1).Mediation
analyses could be conducted for 2069 pairs, for which at least 1 tran-
script was causally associated to the DNAm exposure (detectable
mediation). First, we regressed θ̂D against θ̂T within each trait influ-
enced by at least 10 DNAm probes while accounting for regression
dilution bias31 (Eq. (6)).dMPsestimated for eachof these41 traits ranged
from 18.0 to 78.0% (mean: 36.9%, 95% CI: [13.5%–60.3%]) with the trait
with the highest dMP being grip strength and the one with the lowest
testosterone level (Fig. 3b). Regressing θ̂D against θ̂T for all pairs
combined yielded an dMP of 37.8% (95% CI: [36.0%–39.5%]) (Fig. 3c).
Grouping the traits into 10 physiological categories (Supplementary
Data 1) showed that thedMPwas highest for hepatic biomarkers (mean:
46.6%, 95%CI: [41.5%–51.7%]), followed by renal biomarkers (mean:

43.5%, 95%CI: [37.5%–49.5%]). In contrast, adiposity-related and hor-
monal traits exhibited the lowest dMP (Fig. 3b; Supplementary Fig. 8).

In addition to the 2069 DNAm-trait pairs with detectable media-
tion, there were 554 pairs testable for mediation, but with no detect-
able causally implicated transcript (Fig. 3a). Setting θ̂D to θ̂T for these
pairs and regressing θ̂D against θ̂T for all 2623 DNAm-trait pairs com-
bined reduced the dMP to 28.3% (95% CI: [26.9%–29.8%]) (Fig. 3d). We
refer to this dMP as the overalldMP, as it is a more objective measure of
the importance of the transcriptome in mediating DNAm-to-
phenotype effects. While more reflective of mediated DNAm effects,
it may also be overly conservative since the set of testable transcript
mediators (N = 19,2508) is a magnitude lower than that of the whole
transcriptome32.

The average number of mediator transcripts, potentially corre-
lated, was 3.3 per methylation-trait pair with detectable mediation,
indicating that the impact of methylation is not mediated by a single
transcript. To further explore this observation, we assessed the extent
to which DNAm→ trait effects were mediated by the single most sig-
nificantly DNAm-associated transcript ("top" transcript; Methods), as
opposed to all transcripts in cis. This resulted in an dMPtop of 26.0%
(range: [13.0%–46.8%]) averaged across the 41 traits, and an dMPtop of
26.6% (95% CI: [25.1%–28.1%]) when aggregating the 2069 DNAm-trait
pairs (Supplementary Fig. 9). This significant drop in thedMP (Pdiff < 5e-
21) corroborates our initial hypothesis that DNAm sites regulate the
expression of multiple transcripts in the cis region.

MVMR sensitivity analyses
We conducted MVMR sensitivity analyses to assess potential sources
of bias of the MP estimates such as weak instruments and pleiotropy.

Fig. 2 | Simulation results to assess thebias in estimatedmediationproportions
(dMPs) in real data settings. a Influence of the mediator sample size on the esti-
mated dMP (orange) and number of selected mediators (Nmed,sig, blue). b Influence
of the mediator selection threshold PEM. c, d Sensitivity of dMPs in settings of weak
instruments, simulated by low mediator (h2

M,direct) and exposure (h2
E ) cis-herit-

abilities, respectively. Conditional F-statistics (green) of the exposure allow to test

for weak instrument bias (critical values are defined at a threshold of F-statistic <
10). For a given parameter setting, 500 exposure-outcome pairswere simulated on
which andMP (orangepoints) and 95%CI (black error bars) were estimated. The true
MPof themodelwas0.35 (horizontal orange lines), and the true number of relevant
mediators Nmed was 2 (horizontal blue lines) among a set of 12 potential mediators
(20 in b).
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Fig. 3 | Mediation proportions (dMPs) for transcripts in cismediating DNAm-to-
trait effects. a Flowchart describing the selection of DNAm-trait pairs retained for
mediation analyses. Among the total of 2,480,677 pairs tested, 2069 pairs (orange)
with a significant total causal effect (PT) and at least 1 causally-associated transcript
were assessed for mediation (b, c). 554 pairs without any transcript causally linked
to the DNAm site (green) were included in the calculation of the overall mediation.
Pairs without any transcript in the cis region (pink) were omitted in mediation
analyses as were pairs without sufficient instrumental variables (IVs, purple). bdMPs
by trait where error bars denote the 95% CI, and the grey vertical bar shows the
meandMP across the traits (dMPs per trait were derived by regressing θ̂D against θ̂T ).

Only traits with ≥10 DNAm-trait pairs with detectable mediation are displayed (41
traits with number of evaluated pairs indicated in parentheses), colour-coded by
their physiological category as defined in the legends of c and d. c Detectable
mediation: All DNAm-trait pairs assessed in the mediation analyses (2069) with
traits being grouped into 10 physiological categories. The globaldMP in percentage
with 95%CI is shown in the plotting area and individual categorydMPs in the legend.
d Overall mediation: Same analysis as in c, but including all 2623 DNAm-trait pairs
with at least 1 transcript present in the cis region. For these additional pairs, the
direct effect was set to the total effect.
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To testwhether theMVMRestimates suffer fromweak instrument
bias, we calculated conditional F-statistics33. These statistics reflect
whether genetic variants sufficiently explain the variance in the
exposure given the presence of mediators. As demonstrated by San-
derson et al., direct effect estimates (θ̂D) of exposure-trait pairs for
which the F-statistic is ≤10 might be biased33. Among the 2069 DNAm-
trait pairs, 1061 had an F-statistic > 10 with an dMP of 35.5% (95% CI:
[33.6%–37.5%]) which was not significantly lower than the one for all
pairs combined (Pdiff=0.09). Pairs with F-statistics ≤10 (N=1008) had
significantly more mediators (4.32 vs 2.35, two-sided t-test: P=2.13e-
64), but not a significantly higher dMP (mean: 40.9%, 95% CI:
[37.8%–44.0%]; Pdiff= 0.08; Supplementary Figs. 10-11).

Pleiotropic IVs violate MR assumptions and heterogeneity tests,
suchas theCochran’sQ-statistic, can be used todetect them, assuming
that most IVs are valid34. We calculated Q-statistics for the IV sets in
both the univariable and multivariable MR analyses. Out of the 2069
DNAm-trait pairs, 1757 showed no signs of heterogeneity in the uni-
variable MR analyses (PHET > 0.01) and 1405 in neither the univariable
nor multivariable analyses. The dMP of these 1405 pairs was not sig-
nificantly different from the overall one (mean: 38.3%, 95% CI:
[36.1%–40.6%]; Pdiff=0.7; Supplementary Fig. 12).

Next, we assessed the influence of the p-value threshold PEM to
select mediators based on the exposure-to-mediator causal effect
(default PEM=0.01 for which N=2069 DNAm-trait pairs with at least 1
mediatorwere found).With amore lenient threshold (PEM=0.05),more
DNAm-trait pairswithmediators emerged (N=2189). Conversely, with a
more stringent threshold (PEM=0.001), less pairs were detected (N
=1881). No differences inMPs between the three settingswere found in
these detectable mediation analyses (Pdiff > 0.05; Supplementary
Fig. 13), butwhen calculating theoverallMP (i.e., inclusionof allDNAm-
trait pairs with potential transcript mediators in the cis-region) on a
common set of DNAm-trait pairs (N=2543, dMPoverall,P01=27.6% (95% CI:
[26.1%–29.2%])), a significantly higher MP for the more lenient
threshold (dMPoverall,P05=32.0% (95% CI: [30.4%–33.6%]); Pdiff=1.1e-4),
and significantly lower MP for the more stringent threshold were
observed (dMPoverall,P001=24.6% (95% CI: [23.2%–26.1%]); Pdiff=4.8e-3;
Supplementary Fig. 14).

Finally, we conducted sensitivity analyses to determine whether
significant MR associations were due to horizontal pleiotropy. Reg-
ulatory pathways between DNAm exposure probes and transcript
mediators were assessed in cis. As such, SNPs in LD with significant
QTLs for both quantities could give rise to an association merely
because of horizontal pleiotropy (i.e., due to random overlap
between cis-QTLs in close vicinity), an issue further exacerbated by
the fact thatmolecular omics entities generally have fewer associated
IVs than complex traits. To assess whethermediation results are only
based on a single strong genetic instrument, we repeated the med-
iation analysis excluding the top IV (i.e., exposure-associated IV with
the lowest p-value) from both the total effect θT and direct effect θD
calculations (Methods). The results show that while MR effect esti-
mates remain concordant in magnitude and effect direction, the
estimates are noisier due to the much weaker instruments (sig-
nificantly lower F-statistics; two-sided t-test: P=5.37e-11; Supplemen-
tary Fig. 15). MP estimates were also higher when the top IV was
excluded (dMP =47.3% (95% CI: [38.4%–56.2%]); Pdiff=0.023; Supple-
mentary Fig. 15), however, this was no longer the case when con-
trolling for conditional F-statistics > 10 (dMP =40.9% (95% CI:
[29.3%–52.4%]); Pdiff=0.48). Additionally, we performed simulation
analyses to assess the possibility of significant DNAm-transcript
associations caused by cis-mQTL and -eQTL signals being in LD
(Methods). The analysis shows that randomly picked eQTL-SNPs in
the region result in slightly inflated, but much weaker MR associa-
tions than using the original eQTL data (Supplementary Figs. 16-17).
The results indicate that by-chance LD between cis-mQTLs and-
eQTLs can yield false positive findings, but those signals are

substantially weaker than the ones observed in real data. In other
words, mQTL and eQTL IVs are in much higher LD than expected by
chance.

Overall, these sensitivity analyses showed that the estimated MPs
remain robustwhen removingDNAm-trait pairs thatpotentially violate
MVMRassumptions,while also suggesting that the set PEM thresholdof
0.01 may lead to underestimated MP estimates. Finally, we found
strong evidence that molecular associations mediating DNAm-trait
effects are predominantly due to vertical pleiotropy, even when only a
limited number of IVs were available.

Determining factors of mediation proportions
We explored underlying factors driving high MPs through transcript
levels (Fig. 4a).dMPtop decreased with increased distances between the
DNAm site and the gene transcription start site (TSS) of the top tran-
script (ρ = −0.076, P = 5.2e-4; Fig. 4b). This distancewas also negatively
correlated to the DNAm-to-transcript MR squared effect size, α2

EM,
(ρ = −0.13, P = 3.1e-19; Fig. 4c), which in turn was a good predictor for
highMPs (ρ =0.39, P = 2.5e-75; Fig. 4d). Themediation proportion was
the highest for DNAm sites residing in the first exon, followed by those
in the 5’UTR, within 200bp of the TSS and lowest for those within
1500 bp of the TSS and in the gene body (Supplementary Fig. 18).

DNAm inhibiting the binding of transcription factors (TFs)
thereby repressing gene expression is often alluded to as the classical
mechanism of action for DNAm35. From the 1,066,307 unique DNAm-
to-transcript causal effects assessed, 47,445 were significant at
P < 4.7e-8. Although negative effects had a larger magnitude than
positive ones (two-sided t-test: P = 0.0082) only 53.4% of DNAm→
transcript causal effects were negative. Stratifying DNAm sites with
respect to their location on the assessed transcript, we found that
DNAmsites situated in the first exon and nearby the TSSwere enriched
for negative effects (P = 2.7e-3, 1.2e-5 and 3.8e-4 for 1st exon, TSS ±
1500bp and TSS ± 200bp, respectively), whereas those in the gene
body were enriched for positive ones (P = 2.2e-10; Supplementary
Table 3). These observations are in line with previous studies that only
showed a slight trend for negative methylation-gene expression
correlations36–39. We further tested whether the MR DNAm-to-
transcript causal effects correlated with reported methylation-
transcript correlations37 and found a strong agreement (ρ =0.39,
P = 2.6e-18, 471 DNAm-transcript pairs).

Consistent with higher MPs when mediating through multiple
transcripts, we found a strong correlation between the number of
mediators and the MP (ρ = 0.39, P = 4.4e-75; Fig. 4e). Many of these
mediatorswere correlated amongst eachother, which in theory should
be accounted for by theMVMRmodel. Toensure that thiswas the case,
we repeated the mediation analysis with uncorrelated mediators
(Rmed < 0.3; Methods). The mean number of selected mediators
dropped by more than half, from 3.3 to 1.2 (Supplementary Fig. 19),
and the dMP across all DNAm-trait pairs decreased (dMPuncorrelated =
30.5% (95% CI: [28.8%–32.1%])), while remaining significantly higher
thandMPtop (Pdiff = 6.6e-4). Decreasing the Rmed threshold to 0.2 and 0.1
did not significantly decrease dMPuncorrelated (Pdiff > 0.05), which stabi-
lized at 29.2% (95% CI: [27.5%–30.8%]) for Rmed < 0.1 (Supplemen-
tary Fig. 19).

Furthermore, we investigated whetherdMPs are dependent on the
DNAm→ transcript causal effect directions following the logic of a
recent DNAm-transcript correlation study39. To this end, we stratified
DNAm-trait pairs by the αEM sign and number of mediators (Table 1). If
there was only a single mediator, dMPs were significantly higher if the
DNAm was decreasing expression (Pdiff = 3.49e-8). This is consistent
with the observation that negative effectsαEMwere larger thanpositive
ones and the positive correlation between αEM magnitudes and high
dMPs (Fig. 4d). When there were multiple mediators, most DNAm sites
had negative effects on some transcripts and positive effects on oth-
ers. These bivalent DNAm probes exhibited the highest dMPs
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(dMP= 53.9% (95% CI: [51.2%–56.5%])) - a consequence of being causally
associated to more mediators than average (5.01 vs 3.31), with Nmed

being a strong predictor for highdMPs (Fig. 4e). Combining DNAm-trait
pairs with single and multiple mediators, but with consistent negative
or positive αEM values, the observation of higherdMPswhen DNAmwas
decreasing transcript levels persisted (Pdiff = 0.020).

Putative regulatory mechanisms of action
In addition to providing insights into global patterns governing the
mediation between different intermediate phenotypic layers and
functional traits, our analyses generated plausible hypotheses
regarding specific biological pathways.We chose to follow-up putative
regulatorymechanisms of DNAm-to-complex traits through transcript

levels which showed both strong total effects (∣θ̂T ∣>0:02) and sub-
stantial mediation proportion (dMP>0:2; complete list in Supplemen-
tary Data 2).

Involvement of the anti-oxidant and anti-inflammatory protein
PARK7 in inflammatory bowel disease (IBD) has recently been brought
to light40–43. While the exact role of the protein in the disease remains
debated, reduced intestinal expression of PARK7 was observed in
patients and mouse models for IBD43. Moreover, Park7 knockout mice
were shown to have increased levels of pro-colitis bacterial species in
their microbiome42,44 and experience aggravated symptoms of
experimentally-induced colitis43. In line with these observations,
DNAm of the PARK7 promoter probe cg10385390 (chr1:8’022’505)
decreased PARK7 transcript expression (α̂EM = −0.675, P = 2.7e-4;

Fig. 4 | Exposure-to-mediator regulatory strength and number of mediators
explaining mediation proportions (MPs). a Summary of the correlations (R)
between MP (red) and DNA methylation (DNAm)-to-transcript causal MR effects
(α̂2

EM, dark green), distancebetween theDNAmsite and transcription start site (TSS,
light green) and number of mediators (Nmed, blue). b Average MP through top
transcript (dMPtop) of DNAm-trait pairs stratified according to the distance between
the DNAm site and the TSS of the top transcript. All DNAm-trait pairs with at least
one mediator were included (2069 pairs). c Average MR causal effects (α̂2

EM) of
DNAm-transcript pairs stratified according to the distance between the DNAm site
and the TSS. Unique DNAm-transcript mediator pairs across all DNAm-trait pairs
were included (4743 pairs). d Average dMPtop of DNAm-trait pairs stratified

according to DNAm-to-top transcript MR causal effect size α̂2
EM. All DNAm-trait

pairswith at least onemediatorwere included (2069pairs).eAveragedMPofDNAm-
trait pairs stratified according to the number of mediators. All DNAm-trait pairs
with at least onemediator were included (2069 pairs). The reportedp-values (P) for
the corresponding Pearson correlations (R) arise from a two-sided t-test and were
calculated between the two respective quantities on DNAm-trait/DNAm-transcript
pairs prior stratification. Bin height represents mean within each bin and the error
bars the corresponding standarddeviations (numberof evaluated pairs within each
bin is indicated in parentheses). The red slope represents the regressionfit between
the bin’s positions and heights, and serves merely for visualization purposes.
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Fig. 5a). High transcript levels decrease IBD risk (α̂MY = −0.131, P = 1.7e-
7) resulting in an overall increased IBD risk upon DNAm (θ̂T = 0.114,
P = 8.2e-9).

Despite often being associated with decreased expression35,
our data provides examples of methylation boosting expression.
For instance, DNAm of cg13428477 (chr3:122’748’086) increased
PDIA5 expression (α̂EM = 0.333, P = 7.3e-11), whose levels subse-
quently increased platelet count (α̂MY =0.062, P = 0.018), so that
DNAm resulted in significantly increased platelet count (θ̂T = 0.056,
P = 1.3e-43) (Fig. 5b). Association between the PDIA5 locus and pla-
telet count was reported through GWAS45. Platelets are small cell
fragments produced by megakaryocytes, which themselves are
derived from hematopoietic stem cells. Accordingly, PDIA5 has a
binding site for the hematopoietic stem and progenitor cell TF
MEIS146 and is overexpressed in megakaryocytes as compared to
other blood cell types47. Further studies showed that pdia5 protein
knockdown in zebrafish resulted in strongly decreased platelet
count48, matching our findings and confirming the role of PDIA5 in
thrombopoiesis.

In another example, we observed that DNAm of cg09070378
(chr1:161’183’762) decreased asthma risk (θ̂T = −0.031, P = 8.1e-11) by
reducing FCER1G expression (α̂EM = −1.0, P = 3.5e-18), a gene listed in
the KEGG pathway for asthma (hsa05310) and whose expression
associated with an increased risk for asthma (α̂MY = 0.019, P = 3e-12)
(Supplementary Fig. 21). The FCER1G promoter was found to be
hypomethylated in patients with atopic dermatitis, with DNAm levels
correlating negatively with the gene’s expression49, suggesting a
broad role of FCER1G in allergic disorders. Our data also supports and
provides a mechanistical explanation for the recent finding that
reduced IFNAR2 expression causally decreases the odds of severe
coronavirus disease 2019 (COVID-19)50,51, which was later supported
by the increased susceptibility for severe COVID-19 in individuals
with rare loss-of-function mutations in IFNAR252. Indeed, we found
that DNAm of the IFNAR2 promoter probe cg13208562
(chr21:34’603’264) decreased the gene’s expression (α̂EM = −0.446,
P = 2.4e-19) (Supplementary Fig. 22). As IFNAR2 expression protects
against hospitalization following COVID-19 infection (α̂MY = −0.090,
P = 4.2e-6), DNAm of the locus increased the risk of severe infection
(θ̂T = 0.064, P = 8.5e-13).

Discussion
We presented a framework to quantify mediation of complex trait-
impacting effects through an omics layer and demonstrated its appli-
cation to assayed blood-derived DNAm (exposure) and transcript
levels (as mediator). Evidence for mediation of DNAm-to-trait effects
through transcripts in cis was found to be at least 28.3% for the 2623
DNAm-trait pairs with significant total causal effects that could be
assessed.Whilemany robustmethods are available for univariableMR,
it is not the case forMVMR26,27. Still,we couldconfirm the robustnessof
our MVMR estimates through various sensitivity analyses (conditional
F-statistic, heterogeneity Q-statistic, excluding the strongest IV) that
could not pinpoint any factor drastically biasing our MP estimates.
Importantly, simulation studies indicated thatMPestimateswere likely
to be lower bounds. Low sample size was shown to lead to MP
underestimations, as do weak instruments, both for exposure- and
mediator-associated IVs.

Additionally, we quantified the causal connectivity and direc-
tionality between DNAm and transcript levels and its impact on MPs.
We found that 46.6% of significant DNAm-to-transcript effects were of
positive sign (i.e., DNAm increasing transcription), particularly so
when the DNAm site was situated in the gene body (PEnrichment=2.15e-
10). Interestingly, MPs were higher when DNAm was downregulating
rather than upregulating transcripts. Previous genome-wide methyla-
tion andgene expression association studies reportedhigh fractionsof
positive correlations (30–41%)36,37,39 and further investigations indi-
cated that our estimatedmethylation-to-transcript causal effects agree
strongly with the respective correlations reported by Grundberg et al.
(P=2.6e-18).While poorly understood38, severalmechanisms have been
proposed to explain the phenomenon of DNAm induced transcription:
preferential binding of some transcription factors to methylated
DNA53,54, prevention of repressor binding indirectly leading to
increased expression through looping DNA24,55, or DNAm in the gene
body promoting elongation efficiency and preventing spurious initia-
tion of transcription56. Furthermore, MP estimates indicated that
DNAm sites typically regulate multiple transcripts in cis and that
mediation through transcripts decreased the further away the TSS of
the mediator transcript was from the DNAm site. Collectively, these
results describe amore diverse picture of the transcriptionmachinery,
going beyond the classical views that DNAm solely reduces gene
expression in the TSS region.

Statistical methods to integrate GWAS with omics data have seen
a surge in recent years. Namely, colocalization methods based on a
single genetic signal or corroborated by a secondary one, as well as
methods supported by the SMR HEIDI statistic have been previously
used in the study of DNAm-to-complex trait effects6,14,24. In the most
recent publication of the GoDMC consortium, the former strategy was
applied to systematically evaluate DNAm and GWAS co-localizing sig-
nals and compare them toMR6. This revealed a relatively poor overlap
between colocalization and MR results, as both approaches have their
weaknesses in detecting causal relationships. The major weakness of
colocalization analysis is that it cannot detect directionality and does
not estimate causal effect size. Colocalization of local association sig-
nals of two traits may be due to causal effects in either direction,
common local confounder effect (e.g., shared regulatory mechanism)
or causal markers in very high LD. Lack of colocalization can happen
even if there is a true causal relationship, but there are additional
associations impacting only the outcome trait. On the other hand, the
major weakness ofMR is that it may falsely detect a causal relationship
when the causal variants for each trait are in reasonably high LD. The
comparison of these two approaches is out of the scope of this work,
but to explore the above-mentioned weakness in our study, we per-
formed simulations tailored to detect by-chance overlaps in the asso-
ciation signals for methylation and gene expression (see pleiotropy
sensitivity analyses for details). These analyses indicated that indeed
elevated false positive rates are expected forMR, but the resulting MR

Table 1 | Exposure-to-mediator effect direction and number of
mediators explaining MPs

Negative Positive Bivalent Total

Mono N = 370 (17.9%) N = 276 (13.3%) 0, by definition N = 646 (31.2%)
cMP =20.8% cMP =7.97% cMP =14.7%

(95% CI:
[17.3%–24.2%])

(95% CI:
[5.04%–10.9%])

(95% CI:
[12.3%–17.1%])

Multi N = 239 (11.6%) N = 207 (10.0%) N = 977 (47.2%) N = 1423 (68.8%)
cMP =42.8% cMP =42.8% cMP =53.9% cMP =50.3%

(95% CI:
[38.3%–47.2%],

(95% CI:
[38.3%–47.3%],

(95% CI:
[51.2%–56.5%],

(95% CI:
[48.2%–52.4%],

mean
(Nmed)=3.01)

mean
(Nmed)=2.84)

mean
(Nmed)=5.01)

mean
(Nmed)=4.35)

Total N=609 (29.4%) N =483 (23.3%) N=977 (47.2%) N=2069 (100%)
cMP =27.7% cMP =22.8% cMP =53.9% cMP =37.8%

(95% CI:
[24.8%–30.5%],

(95% CI:
[19.8%–25.8%],

(95% CI:
[51.2%–56.5%],

(95% CI:
[36.0%–39.5%],

mean
(Nmed)=1.79)

mean
(Nmed)=1.79)

mean
(Nmed)=5.01)

mean
(Nmed)=3.31)

DNAm-trait pairs were stratifiedby the number ofmediators (Nmed; “mono" ifNmed = 1 and “multi"
if Nmed > 1) and by the exposure-to-mediator αEM causal effect sign ("Negative" and “Positive" for
DNAm decreasing and increasing transcript levels, respectively, and “Bivalent" if a given DNAm
site is affecting transcript levels in both directions). For each stratum, the number of DNAm-trait
pairs (N), the estimated mediation proportion (cMP) and mean Nmed is shown.
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p-values under the null are much less significant than the ones
observed for real methylation-transcript data.

Mapping genetic variants identified by GWASs to biological pro-
cesses is notoriously difficult2. In particular, a challenge in identifying
causal chains through omics layers is the attenuation in the genetic
association strengths when moving up along layers. In a linear model,
the genetic effect on the phenotype is assumed to be the product of
causal effects between the preceding layers and it was previously
shown that the variance explained by the top associated QTL of the
first layer weakens with each successive omics layer24. In line with this
observation, the examples depicted in Fig. 5 visualize the decrease in
the genetic associations from the DNAm to the complex trait level.
While in the future our 3S-MVMR framework could be applied to fur-
ther mediating layers (e.g. proteins or metabolites), current QTL
datasets for these omics layers lack the dimensionality - both in terms
of sample size and number of assessed entities. Once larger datasets
becomeavailable, these could be used to supportmechanisticfindings
resulting from transcript data.

While our method highlights candidate pathways and provides
MP estimates, several limitations are to be considered. First, our MP
estimates are based on a selection of 2623 DNAm-trait pairs with sig-
nificant total effects (PT < 1e-6), which inherently focuses on DNAm-

trait pairs with larger (and hence detectable) effects. In theory, MPs
could depend on the magnitude of the total causal effect, thus the
reportedMPmay differ for weaker total effects. A special case of these
weaker total effects is when direct and indirect effects differ in sign,
leading to a weak total effect with an MP potentially outside the [0,1]
range. Furthermore, selected DNAm sites were those with the stron-
gest DNAm-trait signal in their region (up to 1Mb). Thus, we omit
secondary methylation signals, which may be mediated by transcripts
to a different degree. Second, as for all MR-IVW approaches, included
IVsmight be pleiotropic, i.e., violatingMR assumptions and potentially
biasing effect estimates. Although, filtering out DNAm-trait pairs with
signs of heterogeneous IV sets did not change MP estimates, the pre-
sence of invalid IVs cannot be entirely excluded and could therefore
compromise causal effect estimates57,58. In particular, since selected IVs
are in cis of the investigated molecular trait, they might be based on a
single (pleiotropic) haplotype signal. Third, we select mediators based
on their association to the exposure without taking into account their
mediator potential, i.e., whether or not the mediator is additionally
causally linked to the trait. Phrased differently, selected mediators are
simply candidates and such selection serves as a first filter to remove
non-mediators. In line with our simulations, it has been shown that an
extremely large number of such “false" mediators (88 out of 92) can

Fig. 5 | Plausible DNAm-transcript-trait regulatory mechanisms. a Mechanism
involving DNAm probe cg10385390, PARK7 and inflammatory bowel disease (IBD).
b Mechanism involving DNAm probe cg13428477, PDIA5 and platelet count. The
top row displays a schematic of the mechanism with estimated univariable (total
effect θ̂T , DNAm-to-transcript effect α̂EM and transcript-to-outcome effect α̂MY) and
multivariable (direct effect θ̂D) MR effects (displayedmediation proportions (dMPs)
are derived from θ̂D and θ̂T estimates). The three following rows show the regional
SNP associations (-log10(p-values)) with the trait (GWAS, green), transcript (eQTL,

blue) and DNAm (mQTL, brown) probe, respectively. Solid diamonds represent
DNAm-associated instruments used in the univariable (for θ̂T calculation) and
multivariable (for θ̂D calculation) MR analyses. Upwards pointing triangles are
transcript-associated SNPs thatwere additionally included in theMVMR instrument
set. Red dashed lines indicate the significance thresholds of the respective SNP
associations and the vertical black dashed line represents the DNAm probe posi-
tion. Bottom row illustrates the positions and strand direction of the genes in
the locus.
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causeMVMR regressionmodels to fail30, indicating thatour framework
is less suitable for large numbers of molecular mediators unless the
selection threshold PEM is made more stringent. Finally, while mole-
cular mechanisms ought to be tissue- or even cell type-specific, QTL
data used in this study were derived from whole blood. However, not
correcting for blood cell types when analyzing gene expression data
can introduce important artefacts59. It is also known that different
tissues expressdifferent isoforms60, withmany splicing and expression
QTLs shown to differ across tissues61. Accordingly, MPs for blood
biomarkers were generally higher than those for diseases, for which
blood might not be the most relevant tissue. Differences between
biomarker and disease MPs might also be due to the fact that indirect
pathways, through unmeasured mediators, play a greater role for the
latter trait category. Once tissue-stratified multi-omics datasets of
larger sample size become available, more accurate, and potentially
higher MPs will be obtained in trait-relevant tissues.

To conclude, by adapting existingMVMRmediation techniques to
molecular exposures and mediators, we quantified the causal con-
nectivity betweenDNAm and transcript levels, and their importance in
shaping complex traits. Overall, we found solid evidence that almost a
third of DNAm-to-complex trait effects are mediated by transcripts in
cis. Our integrative omics framework can be extended to other omics-
GWAS combinations and provide a powerful tool for mapping GWAS
signals to biological pathways and prioritizing functional follow-up
experiments.

Methods
Univariable and multivariable Mendelian randomization
Univariable Mendelian randomization (MR) was applied to estimate
the total causal effect (θT) and multivariable MR (MVMR) to estimate
the direct causal effect (θD) of an exposure E on an outcome Y. The
mediation proportion (MP) was defined as 1 − θD/θT. Under the MR
assumptions, genetic variants G used as IVs must be i) associated with
E, ii) independent of any confounder of the E − Y relationship, iii)
conditionally independent of Y given E. We analysed exposures with at
least five LD-pruned (r2 < 0.05) IVs associated (P < 1e-6) with the
molecular exposure and located in cis ( < 1Mb). To estimate θTweused
the inverse-variance weighted (IVW) MRmethod, while accounting for
(mildly) correlated instruments19,62 as follows:

θ̂T = ðβ
0
EC

"1βE Þ
"1
β0
EC

"1βY ð1Þ

where βE and βY are vectors of genetic effect sizes obtained from
summary statistics for E and Y, respectively. C is the linkage dis-
equilibrium (LD) matrix with pairwise correlations between IVs esti-
mated from the UK10K reference panel63. Sensitivity analyses
confirmed that accounting for the LD-matrix safeguards against MR
estimates being influenced by the pruning threshold r2 (Supplemen-
tary Figs. 2-3). Since in the following MVMR model more IVs than
mediators are required, we chose a more lenient pruning threshold
(r2 < 0.05), including IVs inmild LD (Supplementary Fig. 2). Prior to the
causal effect calculations, IVswere Steiger-filtered to avoid that the IV’s
effect on Y is significantly larger than it is on E64 andwere thus required

to pass a threshold trev<
∣βEi

∣"∣βYi
∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðβEi
Þ+ varðβYi

Þ
p with trev set at −2, equivalent to

a one sided test p-value threshold of 0.02334. IVs not passing this
threshold are prone to violating the thirdMRassumptionof horizontal
pleiotropy since they are more directly linked to the outcome. As a
result, MR estimates including such IVs would potentially mix up
forward and reverse causal effects. The standard error (SE) ofθT canbe
approximated by the Delta method65:

SEðθ̂T Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ0

EC
"1βE Þ

"1
β0
EC

"1=2ΣC"1=2βE ðβ
0
EC

"1βE Þ
"1

q
ð2Þ

where Σ is a diagonalmatrixwith each diagonal element i equalling the
maximum of the regression variance s2 and var(βY i

)34.
Through the inclusion of mediators Mk and their associated cis

genetic variants (r2 < 0.05,P < 1e-6), θD canbe estimated analogously to
θT using a multivariable regression model28 as the first element of θD:

θ̂D = ðB0C"1BÞ
"1
B0C"1βY ð3Þ

whereB is amatrix with k + 1 columns containing the effect sizes of the
IVs on the exposure in the first column and on each mediator in the
subsequent columns. The remaining elements of θD represent the
direct effects of themediators on the outcome andwere referred to as
αMY,k. In the estimation of MPs, we were not interested in αMY,k values
per se, but we took these effect sizes into account for inferring
molecular mechanisms. If the number of mediator-associated instru-
ments was sufficient (≥3) to conduct a univariable MR from the
mediator to the outcome, we estimated αMY,k from this analysis
instead. In fact, the (marginal) contribution of an individual mediator
can be better disentangled in univariable analyses, whenmediators are
highly correlated.

As our MVMR model assumes a chain of causal effects from the
exposure to the mediator and then to the outcome, we conducted
several Steiger filtering steps to reduce biases due to reverse causa-
tion. Although it has been proposed that DNAm could be a con-
sequence of gene expression in the same locus66, our model
investigates the commonly assumed concept of DNAm regulating
gene expression. In addition tomeeting the Steiger criterion described
above, exposure-associated IVs were required to pass that same
threshold trev of no larger mediator than exposure effects for each of
themediatorsMk. Similarly, to mitigate reverse causal effects from the
outcome on the mediators, mediator-associated instruments with
larger Y thanM effects were removed if not passing the trev threshold.
The SE of θ̂D was derived analogously to the univariable form (Eq. (2))
as shown in19.

MVMR sensitivity analyses
Conditional F-statistic. Conditional F-statistics of the exposure were
calculated following the approach of Sanderson et al.33. This method
involves the regression of the exposure on themediators based on the
IV effect sizes on each of these quantities. The residuals of this
regression are then used to derive the conditional F-statistic. The ori-
ginal method additionally includes the phenotypic correlation matrix
between the exposure andmediators,whichweomittedbydefault due
to the lack of these data and thus used the identity matrix instead.
However, as a sensitivity analysis, we calculated conditional F-statistics
incorporating the phenotypic correlations between transcript media-
tors. Transcript correlations were calculated on RNAseq data from the
Cohorte Lausannoise (CoLaus) based on 555 samples67. Transcript
correlations could be estimated for 19,517 transcript of which 15,021
overlappedwith the eQTL dataset (Methods: Omics and trait summary
statistics)8. We then calculated conditional F-statistics that included
mediator correlations for all DNAm-trait pairs with at least 2mediators
and for which at least half of them had available correlation data.
Conditional F-statistics > 10 allow to reject the null hypothesis that the
IVs are too weak to reliably estimate the multivariable effect of the
exposure in the presence of the mediators.

Heterogeneity Q-statistic. Heterogeneity Q-statistics were computed
as implemented in the TwoSampleMRpackage (v0.5.6, IVW-method)34.
This test statistic quantifies the deviation of MR effect estimates of
each individual IV from the IVW-estimate based on all IVs68. The null
hypothesis of homogeneity within the IV set follows a chi-squared
distribution withm − 1 degrees of freedom for the univariable MR, and
m − k degrees of freedom for the MVMR, wherem is the number of IVs
and k the number of mediators.
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Mediator selection threshold PEM. For transcripts to be included as
mediators in theMVMR regressionmodel they had to be i) in cis of the
DNAm exposure probe ( ± 500kb) and ii) causally associated to the
DNAm probe. This latter condition was verified by univariable MR
analyses (Eq. (1)) of the DNAm exposure probe on each mediator
transcript k in the region estimating the effect sizes αEM,k and p-values
PEM,k. Transcripts satisfying PEM,k < PEM were included as mediators
with the default threshold equalling 0.01. To assess the sensitivity of
this threshold, we also tested milder and more stringent thresholds
(PEM=0.05 and 1e-3).

Pleiotropy sensitivity analyses. To quantify whether significant MR
estimates between the exposure and mediators were observed due to
horizontal pleiotropy, we conducted two sensitivity analyses. First, we
repeated the mediation analysis excluding the top IV (i.e., exposure-
associated IV with the lowest p-value) from both the total effect θT and
direct effect θD calculations. This analysis allowed to assess whether
mediation results are solely driven by a single strong IV. Second, we
performed simulation analyses to quantify the possibility that causal
links between DNAm probes and transcripts are driven by increased
horizontal pleiotropy stemming from potential LD between methyla-
tion and transcript instruments due to their close genomic distance.

In the following, we outline step-by-step the workflow of the
horizontal pleiotropy simulation study for which a schematic repre-
sentation is shown in Supplementary Fig. 16. First, we considered
DNAm-transcript pairs with a significant MR effect at PEM< 1e-6. For
each of these selected DNAm-transcript pairs, we first fixed the SNP-
DNAm and SNP-transcript effects as observed in the data. Then, using
near-independent significant cis-eQTLs (r2 < 0.05, P < 1e-6) with
observed marginal (univariable) effect sizes βM (a vector of size mM)
and the corresponding pair-wise local LDmatrix CM, we calculated the
multivariable SNP effects on the transcript, βmulti, as:

βmulti =C
!1
M βM ð4Þ

Using the original data, we performedDNAm-transcriptMR onmE

exposure (i.e., DNAm-associated) IVs, yielding the causal effect αEM
with corresponding p-value, PEM. We then performed simulation ana-
lyses as follows to obtain MR effects for a hypothetical transcript with
identical multivariable eQTL effect size distribution as the real tran-
script. To achieve this, for each simulation j, we randomly selectedmM

leniently pruned (r2 < 0.5) SNPs and assigned βmulti as their multi-
variable eQTL effects. Hence the marginal SNP-transcript effects for
the mE exposure-associated SNPs can be calculated as follows:

βmarginal,j =CE,Mj
βmulti ð5Þ

whereCE,Mj
is the LD-matrix between themE exposure-associated SNPs

and the mM randomly chosen SNPs (with multivariable SNP-transcript
effect βmulti). This way we assign marginal SNP-transcript effect sizes
for the mE exposure-associated instruments, while keeping the
multivariable eQTL effect size distribution identical to the one
observed for the real transcript (but they are assigned to other SNPs).
Univariable DNAm-transcript MR analyses could then be conducted
(Eq. (1)) for each hypothetical transcript j, by using βmarginal,j as the
outcome effect size vector. Thus, we generated MR estimates (αEM,j

and PEM,j) for 100,000 (Nsim) hypothetical transcripts for 100 randomly
selected DNAm-transcript pairs throughout the genome. The simula-
tion p-value was then derived as Psim = #(PEM,j < PEM)/Nsim.

DNAm-to-trait mediation analysis
A diagram of the workflowwith each of the following steps is shown in
Supplementary Fig. 1. First, univariable MRs were conducted to esti-
mate the total causal effect θ̂T of the DNAm sites on each trait. We
assessed the impact of ~ 50,000 DNAm probes with ≥ 5 near-

independent (r2 < 0.05) mQTLs after harmonization of the datasets.
DNAm probes significantly associated to the outcome (PT < 0.05/
50000=1e-6) were clumped based on the p-value of the total causal
effect θ̂T , PT (distance-pruning at 1 Mb), to be independent of
each other.

Second, MVMR analyses were performed to estimate the direct
effect θ̂D. Selected transcripts (see “Mediator selection threshold PEM")
were included as mediators as well as their associated SNPs as addi-
tional instruments. Steiger filtering on mediator-associated IVs was
applied using the same trev threshold as for exposure-associated IVs.
Remaining IVswere then clumpedbasedon a rank scoredetermined as
follows: 1) for each mediator, IVs were ranked according to their
association p-value to the mediator and assigned an integer score, 2)
for each IV, a final score was calculated as the sum of its individual
mediator scores. Following the establishment of the B effect size
matrix, θ̂D was calculated, as well as θ̂D,top which was estimated from a
MVMRmodel that includes the transcript with the lowest PEM,k as sole
mediator. If no transcript causally associated with the DNAm probe,
mediation is not detectable, and hence θ̂D was set to θ̂T for that probe
(inclusion of such probes in MP calculation was termed “overall med-
iation proportion"). As the Steiger filter removed exposure-associated
instruments with larger mediator than exposure effects (see “Univari-
able and multivariable Mendelian randomization"), the number of
initial exposure-associated instruments (mE ≥ 5) could decrease.
Therefore, to avoid scenarios of reverse causality where the mediator
exerts an effect on the outcome through the exposure, we required ≥ 3
exposure-associated IVs.

We additionally conducted mediation analyses on independent
mediators. To this end, selected mediators (those that passed PEM)
were clumped at various correlation thresholds Rmed (default
Rmed < 0.3, with 0.2 and 0.1 being tested as well). Correlations among
mediators were calculated based on QTL effect sizes of independent
exposure andmediator IVs and priority was given to themediatorwith
the lowest PEM,k.

Estimating and comparing mediation proportions
Mediation proportions (MPs) were estimated on sets of DNAm-trait
pairs with significant total causal effects θ̂T , either grouped by trait (if
therewere at least 10 suchpairs within a given trait), trait category (e.g.
hepatic traits, inflammatory traits/diseases) or combining all pairs
together. MPs were then calculated by regressing θ̂D on θ̂T (without
intercept) to estimate for the unmediated proportion, γ̂, which after
correcting for regression dilution bias31 (Eq. (6)):

γ̂cor =
γ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1!
P

SE2ðθ̂T ÞP
θ̂
2
T

s
ð6Þ

yielded dMP = 1! γ̂cor for a defined set of DNAm-trait pairs,
together with a standard error. For individual DNAm-trait pairs, we
report the dMP as 1! θ̂D=θ̂T , without providing its variance estimate
since this would require individual-level data26. Note that dMP is an
estimator of the true underlying MP and values outside the expected
[0-1] range can be observed, especially if θ̂D and θ̂T estimates are of
opposite sign. Such situations are expected to be rare in our analysis,
as the total effect would be expected to be small and hence non-
detectable.

In our approach, indirect effects θM are estimated by subtracting
direct effects from total effects, which is also referred to as the dif-
ference in coefficients method26. Alternatively, the indirect effect can
be estimated by the product of coefficients method26, where univari-
able MR estimates from the exposure on the mediator are multiplied
with the direct effects of the mediator on the outcome (Eq. (3)) and
summed across mediators. Direct effects of the exposure on the out-
come can then be obtained by the difference between the total and
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indirect effect. As demonstrated earlier26, the two approaches yield
highly concordant results (Supplementary Fig. 20).

To test the statistical significance betweendMPs estimated on two
different sets of exposure-trait pairs (e.g. dMP of a given physiological
category vs all categories combined) or on the same exposure-trait
pairs, but with different parameter settings (e.g. changing PEM), we
made use of γ̂ and its corresponding standard error seðγ̂Þ obtained
from regressing θ̂D on θ̂T (bothofwhichbeing corrected for regression
dilution bias (Eq. (6))) to yield γ̂cor and seðγ̂Þ. We then performed a two-
sided z-test based on the following test statistic:

γ̂ð1Þcor # γ̂ð2Þcorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se γ̂ð1Þcor
" #2

+ se γ̂ð2Þcor

" #2
r ∼N ð0,1Þ ð7Þ

Significant difference betweendMPs was defined by a two-sided p-
value ≤ 0.05. Of note, this z-test assumes independence between γ̂ð1Þ

and γ̂ð2Þ which is not always guaranteed (i.e., when comparing PEM
thresholds), hence the resulting p-values may be lenient.

Omics and trait summary statistics
We used mQTL data from the GoDMC consortium (n=32,851)6, which
contains > 170,000 whole blood DNAm sites with at least one sig-
nificant cis-mQTL (P < 1e-6, < 1Mb from the DNAm site, n > 5000). Cis-
eQTL data were taken from the eQTLGen consortium (n = 31,684)8

which includes cis-eQTLs (< 1Mb from gene center, 2-cohort filter) for
19,250 transcripts (16,934 with at least one significant cis-eQTL at
FDR <0.05 corresponding to P < 1.8e-05).

GWAS summary statistics for outcome traits came from the lar-
gest (naverage > 320,000), predominantly European-descent, publicly
available studies, as listed in SupplementaryData 1. Thirty-seven out of
the 50 traits were continuous biomarkers or continuous physical
measures with the GWAS conducted on the UK Biobank69 (http://www.
nealelab.is/uk-biobank). Remaining GWAS data came mostly from
case/control studies made available by the consortium of the respec-
tive disease. For binary outcome traits, log-odds ratios were used as
effect sizes and results should be interpreted on the liability scale.

Prior to each mediation analysis, exposure and mediator omics,
GWAS and the referencepanel datawereharmonized. The analysis was
conducted on autosomal chromosomes, and palindromic single
nucleotide variants (SNPs), as well as SNPs with an allele frequency
difference >0.05 between any pairs of datasets were removed. If allele
frequencies were not reported by the GWAS summary statistics, allele
frequencies from the UK Biobank were used. Z-scores of summary
statistics (molecular and outcome GWAS) were standardized by the
square root of the sample size to be on the same SD scale.

DNAm-to-transcript MR analysis
As follow-up analyses, we calculated MR causal effects between all
available DNAm sites and transcripts in cis ( ± 500 kb) following the
same procedure as in the univariable MR to obtain total effects θ̂T .
First, near-independent (r2 < 0.05) and significant (P < 1e-6) exposure
IVs were selected and IVs not passing the aforementioned Steiger filter
were discarded. MR causal effects were then computed based on Eq.
(1) for pairs with ≥3 exposure IVs.

Pearson correlation coefficient with previously reported DNAm-
transcript correlations37 was calculated on common DNAm-transcript
pairs to explore agreement. DNAm probe annotations with respect to
the assessed transcript were from the IlluminaHumanMethyla-
tion450kanno.ilmn12.hg19 R package (v0.6.1)70.

Simulation studies
We conducted simulation studies to assess the robustness of our
model and to identify sources of bias in the estimated MP. Simulation

settings were set up post-hoc to replicate mediation results obtained
for real data (Supplementary Figs. 4-5; Supplementary Table 1).

We considered an exposure with heritability h2
E and mE indepen-

dent IVs. Effect sizes βE
i for mE IVs were drawn from a normal dis-

tribution βE
i ∼N ð0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
E=mE

q
Þ and rescaled to total h2

E . Nmed,pot

potential mediators were simulated, among which Nmed were con-
tributing to the indirect effect θM. Eachmediator k associated withmM

IVs with direct effects βMk
direct,i ∼N ð0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
M,direct,k=mM

q
Þ rescaled to

h2
M,direct,k , the direct heritability of themediator that does not take into

account the additional heritability coming through the exposure.
Causal effects of the exposure on the mediator (αEM,k) and of the
mediator on the outcome (αMY,k) for Nmedmediators were drawn from
a bivariate normal distribution αEM,k ,αMY,k ∼N ð0,ΣÞ with Σ the covar-
iance matrix:

Σ =
varðαEMÞ ρ $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðαEMÞ $ varðαMY Þ

p

ρ $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðαEMÞ $ varðαMY Þ

p
varðαMY Þ

" #

where ρ is the correlation between αEM,k and αMY,k. For the remaining
Nmed,pot - Nmed mediators, αEM,k and αMY,k causal effects were set to
zero. The vector of effect sizes βMk of size mE + Nmed ⋅mM for each
mediator kwas constructed to have effect sizes equalling βE

i $ αEM,k for
mE exposure SNPs and effect sizes equalling βMk

direct,i for mM mediator-
associated SNPs. The effect sizes of remaining IVs associated to
mediators i ≠ k were set to zero. Likewise, effect sizes of the Nmed ⋅mM

IVs on the exposure in the βE vector were set to zero.
The indirect effect θM, direct effect θD and total effect θT were

calculated as:

θM =
X

k

αEM,k $ αMY,k ; θD = θM
1

MP
# 1

$ %
; θT = θD +θM

These quantities allowed to generate the outcome effect size
vector βY:

βY =θD $ βE +
X

k

αMY,k $ β
Mk

For each scenario, we simulated 500 data sets to each time get βE,
βMk and βY. Normally distributed noise, as a function of the sample size
N, ϵEi ∼N ð0,1=NE Þ, ϵMi ∼N ð0,1=NM Þ and ϵYi ∼N ð0,1=NY Þ was added to
each simulated vector. To approximate our real data, exposure effect
sizes of SNPs serving as mediator instruments were set to zero again.
We then estimated for each model θ̂T and θ̂D by including mediators
that satisfied PEM (p-value of the causal effect from the exposure on the
mediator) denoted Nmed,sig. Causal effects θ̂D were regressed on θ̂T to
estimate the coefficient γ̂ which after accounting for regression dilu-
tion (Eq. (6)) allowed to obtain the estimated dMP.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Methylation QTLs used in this study are from the GoDMCmQTLmeta-
analysis and are available on the GoDMC Consortium website (http://
mqtldb.godmc.org.uk/downloads). Expression QTLs are from the
eQTLGen eQTL meta-analysis and are available on the eQTLGen Con-
sortium website (https://www.eqtlgen.org/cis-eqtls.html). The list of
GWAS summary statistics used in this study is in SupplementaryData 1,
all of which are publicly available. UK10K individual-level data are
available upon request (https://www.uk10k.org/data_access.
html). Source data are provided with this paper.
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Code availability
Software to conduct univariable MR-IVW (molecular trait→outcome,
molecular trait 1→molecular trait 2) and multivariable MR-IVW
(molecular trait 1→molecular trait 2→ outcome) is available at
https://github.com/masadler/smrivw(https://doi.org/10.5281/zenodo.
732470971). Source code (C++, released under GPL v2 license) and
executable file (for Linux platforms, released under MIT license) are
provided which rely on functionalities and the data management
architecture of the SMR software v1.03 (https://cnsgenomics.com/
software/smr24). The provided documentation hosted on the GitHub
repository guides users in reproducing the mediation results and
conducting univariable and multivariable MR on their own combina-
tions of QTL and GWAS datasets.
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Supplementary Figures 
 
3S-MVMR Workflow 
 

  
 
Supplementary Figure 1. 3S-MVMR workflow. DNAm-to-trait mediation analysis workflow.  



MR parameter sensitivity analyses 
 

 
Supplementary Figure 2. Sensitivity analyses to assess the influence of the LD-matrix. The analyses 
were performed on the 3,015 DNAm-trait pairs for which there was a significant causal effect 
(Supplementary Fig. 1). Effect sizes and corresponding p-values were derived from IVW-MR estimates, 
once accounting for correlation between instruments (i.e. inclusion of LD-matrix) and once setting the 
LD-matrix to the identity matrix I (i.e. standard IVW estimates). The first row shows the results when 
setting the pruning threshold r2 to 0.05 and the second row to 0.01. The analyses show that MR effect 
estimates are not affected by the LD-matrix, but if the LD-matrix was omitted p-values of causal effects 
were deviating towards lower values at r2 = 0.05, while this was no longer the case at r2 = 0.01. This 
indicates that at r2 = 0.01, independence between IVs can be confidently claimed, while at r2 > 0.01, 
the LD-matrix should be included to avoid false positives. Each dot represents a DNAm-trait pair 
colour-coded by the physiological category of the trait as defined in Supplementary Fig. 8. The slope 
is indicated in black with numerical values shown in the plotting area and the identity line in blue. The 
reported p-values (P) for the corresponding Pearson correlations (R) arise from a two-sided t-test and 
are shown in the plotting area. 



 
 
Supplementary Figure 3. Sensitivity analyses to assess the influence of the pruning threshold r2. 
Again, the analyses were performed on the 3,015 DNAm-trait pairs for which there was a significant 
causal effect (Supplementary Fig. 1). Effect sizes and corresponding p-values were derived from IVW-
MR estimates at different pruning thresholds. The first row shows the results when including the LD-
matrix and the second row when setting it to the identity matrix I. The analyses show that MR effect 
estimates are not affected by the different pruning thresholds. However, the significance levels (p-
values) can differ between both thresholds, although no overall significant difference was found as 
shown by the slope (provided the LD-matrix is included). When omitting the LD-matrix, lower p-values 
were found at r2 = 0.05, a threshold at which, however, neglecting correlation between IVs was 
demonstrated to be an invalid approach (Supplementary Fig. 2). Each dot represents a DNAm-trait 
pair colour-coded by the physiological category of the trait as defined in Supplementary Fig. 8. The 
slope is indicated in black with numerical values shown in the plotting area and the identity line in 
blue. The reported p-values (P) for the corresponding Pearson correlations (R) arise from a two-sided 
t-test and are shown in the plotting area. 
 



Simulation studies 
 
 
 

 
 
Supplementary Figure 4. Model used in the simulation settings to estimate the total, direct and 
indirect causal effects (!!, !"	and !#,	respectively). Genetic variants (SNPs) are either directly 
associated (dashed arrow) with the exposure E or mediators Mk (1 to Nmed), or indirectly (dotted arrow) 
with Mk through E. The genetic effect sizes are denoted by β, where β$  are direct effects to E, β%!  
total effects to Mk made of the direct effects β&'()*+

%!  to Mk and the indirect effects through E, and 
β,are total effects to the outcome Y through either E or M. Causal effects from E to Mk are denoted 
by α$%,. and causal effects from M to Y by α%,,.. 
 



 
 Supplementary Figure 5. Distribution of the simulation parameters as observed in real data. 
Numerical values (interquartile ranges, mean) are shown in Supplementary Table 1 and parameter 
choices of the different simulation settings to explore the full range of realistic parameter estimates 
are summarized in Supplementary Table 2. a Distribution of the number of exposure-associated (mE) 

and mediator-associated (mM) independent instrumental variables (IVs) calculated on 1,836 DNAm-
trait pairs. Boxes bound the 25th, 50th (median, centre), and the 75th quantile. Whiskers range from 
minima (Q1 – 1.5*IQR) to maxima (Q3 + 1.5*IQR) with points above or below representing potential 



outliers.  b Distribution of the number of selected mediators (Nmed,sig) and of the total number of 
potential mediators in the region (Nmed,pot with Nmed,pot ≥ Nmed,sig). The Pearson correlation coefficient 
(Corr) is shown with the stars (***) indicating that the corresponding p-value (two-sided test-statistic) 
was below 2.2e-16 (exact p-value equalled 4.14e-64). c Distribution of the exposure heritability (ℎ$/ ) 
in relationship with the number of exposure-associated IVs (mE). Same Pearson correlation calculation 
as in b (exact p-value equalled 3.12e-93). d Distribution of the direct heritability of each mediator k 
(ℎ%,&'()*+,./ ) - ignoring the heritability coming through the exposure - in relationship with the number 
of mediator-associated IVs (mM). Same Pearson correlation calculation as in b (exact p-value equalled 
5.08e-176).  e Distribution of the variance (across all mediators) of the exposure-to-mediator causal 
effects (var(α$%,.)) and mediator-to-outcome effects (var(α%,,.)) as estimated by ⍺(./  – se(α(.)2.  f 
Distribution of the correlation (ρ) between α$%,. and α%,,.. Estimation was done by considering 
DNAm-trait pairs with at least 3 mediators and calculating for each pair the correlation between α$%,. 
and α%,,. that were estimated for each mediator. 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Figure 6. Simulation results with the parameter default settings as indicated in 
Supplementary Table 2. 500 exposure-outcome pairs were simulated and for each a direct and total 
effect was estimated. The estimated mediation proportion (%) together with the 95% CI are displayed 
in the plot area (resulting from the regression of *+D  against *+ T) with the corresponding slope plotted 
in black (blue line represents the identity line). Mediators were selected based on a p-value threshold 
PEM and the distribution of the selected number of mediators (among a set of 12 potential mediators) 
is shown in the histogram. The true number of relevant mediators was 2 and the true MP was 35% 
(Supplementary Table 2). 
 
 
 



 
 
Supplementary Figure 7. Simulation results varying mE and Nmed (Supplementary Table 2). a The 
number of exposure-associated instrumental variables (IVs) mE was changed for different exposure 
heritabilities ℎ$/ . The estimated mediation proportions were more dependent on ℎ$/  than on the 
polygenicity of the exposure. b Dependence of the estimated mediation proportion on the number of 
true mediators Nmed (i.e., mediators contributing to the indirect effect) stratified by ℎ%,&'()*+/ . 
Underestimations were observed for fewer mediators (1-2) and when the direct mediator heritability 
was low (first quartile). With fewer true mediators Nmed, missing a relevant mediator has a greater 
impact on the estimated mediation proportion than if multiple Nmed are contributing towards the 
mediated effect. Error bars represent 95% CI calculated on 500 simulated exposure-outcome pairs. 
 
 

  



Mediation proportions by physiological and structural categories 
 
 

 
 
Supplementary Figure 8. Mediation proportion of traits grouped by physiological (left) and 
structural (right) categories. Further information about trait classification are shown in 
Supplementary Data 1. The vertical dotted lines denote the mean mediation proportion across all 
DNAm-trait pairs. 95% confidence intervals are represented by the error bars. MP. s per category were 
derived by regressing *+D  against *+T. The number of DNAm-trait pairs falling into each category and 
on which the regression was performed is indicated in parentheses. 
 
  



Mediation through the top transcript mediator 
 

 
 
Supplementary Figure 9. Mediation through the top mediator.  When restricting the mediation 
through the top transcript, i.e., the transcript most significantly associated to the DNAm site, the mean 
mediation proportion drops from 37.8% to 26.6% (evaluated are the 2,069 pairs with at least 1 causally 
associated transcript in cis). Plotted is the direct effect against the total effect together with the slope 
(black line). Each dot represents a DNAm-trait pair colour-coded by the physiological category of the 
trait as defined in Supplementary Fig. 8. The identity line is plotted in blue.  
 
 
 
  



MVMR sensitivity analyses 
 

 
 
Supplementary Figure 10. MVMR sensitivity analysis to stratify DNAm-trait pairs by their 
conditional F-statistic. At an F-statistic below 10, the mediation analysis might suffer from weak 
instrument bias which can result in unreliable direct effect estimates. Among the 2,069 DNAm-trait 
pairs, 1,061 had an F-statistic above 10 and 1,008 below. DNAm-trait pairs are colour-coded by the 
physiological category of the trait as defined in Supplementary Fig. 8. The slope is plotted in black 
(numerical values shown in plotting area resulting from the regression of *+D  against *+T)  and the 
identity line in blue. 
 
 

 
 
Supplementary Figure 11. Conditional F-statistics with and without the  correlation matrix between 
mediators. Conditional F-statistics with transcript-transcript correlations were calculated for all 
DNAm-trait pairs with at least 2 mediators and for which at least half of them had available correlation 
data. In total, 1,208 pair were assessed with the mean F-statistics being 13.55 with the correlation 
matrix and 12.85 without. The slope is plotted in black and the identity line in blue. 
 



 
 

 
Supplementary Figure 12. MVMR sensitivity analysis to test for heterogeneity within the IV set. In 
the left figure, the 2,069 were filtered for those that showed no signs of heterogeneity in the 
univariable MR analyses (Q-heterogeneity p-value > 0.01; 1,757 pairs). In the right figure, the filtering 
was applied on the p-values of the Q-statistics of both the univariable and multivariable MR analyses 
(1,405 pairs). DNAm-trait pairs are colour-coded by the physiological category of the trait as defined 
in Supplementary Fig. 8. The slope is plotted in black (numerical values shown in plotting area resulting 
from the regression of *+D  against *+T) and the identity line in blue. 
 
 

 
 
Supplementary Figure 13. MVMR sensitivity analysis to assess the influence of the PEM thresholds 
to select mediators in case of “detectable mediation” analyses. Shown are the results for three 
thresholds (0.01, 0.05 and 0.001 from left to right). The calculation of the MP is done on DNAm-trait 
pairs (N pairs) with at least 1 transcript in the cis region causally associated to the DNAm site. DNAm-
trait pairs are colour-coded by the physiological category of the trait as defined in Supplemetary Fig. 
8. The slope is plotted in black (numerical values shown in plotting area resulting from the regression 
of *+D  against *+ T) and the identity line in blue. 
 
 



 
 
Supplementary Figure 14. MVMR sensitivity analysis to assess the influence of the PEM thresholds 
to select mediators in case of the overall MP. Shown are the results for three thresholds (0.01, 0.05 
and 0.001 from left to right). The overall MP is calculated on all DNAm-trait pairs (N pairs) with least 
1 transcript in the cis region (not necessarily causally associated to the exposure) and for which a 
mediation analysis could be performed in all three settings (the number of IVs being the limiting 
factor). DNAm-trait pairs are colour-coded by the physiological category of the trait as defined in 
Supplementary Fig. 8. The slope is plotted in black (numerical values shown in plotting area resulting 
from the regression of *+D  against *+T) and the identity line in blue. 



 
Supplementary Figure 15. MVMR sensitivity analysis excluding the top instrumental variable 
(pleiotropy sensitivity analysis). Mediation analyses were conducted for all DNAm-trait pairs with at 
least 3 exposure-associated IVs after excluding the top IV (i.e., exposure-associated IV with the lowest 
p-value; 1,590 DNAm-trait pairs). a MP.  and 95% CI calculated on these pairs excluding the top IV in 
both the total and direct effect calculation. The slope is shown by the black line and the identity line 
by the blue line. b Corresponding MPs of traits grouped by physiological categories. The vertical dotted 
line corresponds to the mean MP across all DNAm-trait pairs and error bars represent the 95% CI. MP. s 
per category were derived by regressing *+D  against *+T. c, d Same analysis as in a and b, respectively, 
but without excluding the top IV (same 1,590 pairs). e DNAm-to-transcript MR effects (⍺EM) of the 
exposure-mediator pairs included in the mediation analyses of the 1,590 DNAm-trait pairs are shown 
before and after the exclusion of the top IV. f Conditional F-statistics calculated on the 1,590 DNAm-



trait pairs before and after the exclusion of the top IV. Conditional F-statistics were on average 7.36 

higher before excluding the top IV (two-sided t-test p-value = 5.37e-11) pointing out that weak 

instrument bias was more present in the analyses where the top IV was missing.  

Overall, the analyses show that excluding the top IV results in noisier MR estimates as a consequence 

of weaker instruments. While the top IV is crucial in getting robust molecular MR estimates, the 

analyses show that the remaining IVs support same effect size magnitudes and directionalities as the 

top IV. 

Specifically, excluding the top IV significantly increased the MP estimated over all the DNAm-trait pairs 

(panel a vs c, Pdiff = 0.0228). This difference is likely due to weak instrument bias as it was not present 

for pairs with F>10 (845/1,590 pairs, MP = 40.9%, 95% CI: [29.3%, 52.4%] – top IV excluded; Pdiff = 

0.48). The estimated MP did not depend on the conditional F-statistic when all IVs were considered 

(Supplementary Fig. 10). 

  



 
 
Supplementary Figure 16. Schematic illustrating the horizontal pleiotropy simulation analysis to 
assess the possibility of DNAm-to-transcript associations because of horizontal pleiotropy as a result 
of LD between mQTLs and eQTLs. First DNAm-transcript pairs with a significant MR effect at PEM < 1e-
6 are selected. Then, multivariable SNP effects on the transcript are calculated based on independent 
cis-eQTLs (step 1). In each of the following simulations, mM random SNPs are selected for which 
marginal SNP-transcript effects are calculated. Note that these hypothetical transcript effect sizes 
have identical multivariable eQTL effect size distribution as the real transcript (step 2). Next, a 
univariable MR analysis on this hypothetical transcript yields PEM,j (step 3). Steps 2-3 are repeated Nsim 
times (step 4) which allows to calculate the simulation p-value Psim (step 5). 
 
 



 
 
Supplementary Figure 17. Simulation analysis to assess the possibility of DNAm-to-transcript 
associations due to horizontal pleiotropy. For a significant DNAm-to-transcript MR association (PEM, 
herein called PTrue), we performed simulation tests (Nsim = 100,000) by randomly selecting eQTL-SNPs 
with identical multivariable eQTL effects in the region (Supplementary Fig. 16). Each simulated 
marginal eQTL effect estimate resulted in a random DNAm-to-transcript MR estimate (PEM,j) from 
which we could derive the simulation p-value (Psim = #(PEM,j < PTrue )/Nsim). a Comparison (normal QQ-
plot) of the true (PTrue) and random (PEM,j) p-values from 100 DNAm-transcript MR estimates (the 
transcript outcome being the true and hypothetical transcript j from each simulation run, 
respectively). b Normal QQ-plot of the simulation p-values Psim. 
The analysis shows that while MR p-values from hypothetical transcript effects are inflated, they are 
much less significant than the true p-values ensuring that horizontal pleiotropy is not at the root of 
observed methylation-expression causal effects.  
 
 
 
 



Stratification by DNAm annotations 
 
 

 
 
Supplementary Figure 18. Mediation proportion stratified by DNAm site location. Boxplots 
representing the top mediation proportion (MPtop) stratified by DNAm site location with respect to 
the top mediator and by the causal effect direction of the DNAm on the transcript level. The 
annotation groups are shown in decreasing order with respect to the mediation proportion (negative 
and positive DNAm-to-transcript effect pairs combined). Number of DNAm-trait pairs within each 
boxplot are as follows: 1stExon (negative: 3, positive: 2), 5’UTR (negative: 60, positive: 26), TSS200 
(negative: 33, positive: 15), 3’UTR (negative: 14, positive: 12), TSS1500 (negative: 68, positive: 66), 
Body (negative: 172, positive: 104). Boxes bound the 25th, 50th (median, centre), and the 75th 
quantile. Whiskers range from minima (Q1 – 1.5*IQR) to maxima (Q3 + 1.5*IQR) with points above or 
below representing potential outliers. Note that annotations were not available for all DNAm sites 
and DNAm sites mapping to multiple annotations were omitted.  
  



Mediation analyses with uncorrelated mediators 
 

 
Supplementary Figure 19. Mediation analysis with uncorrelated mediators. Mediation analyses 
conducted with uncorrelated mediators at different Rmed thresholds (0.3, 0.2, and 0.1 from left to right) 
for all 2,069 DNAm-trait pairs (colour-coded by the physiological category of the trait as defined in 
Supplementary Fig. 8). Rmed is the maximum correlation between the mediators for a given exposure-
outcome pair. As this threshold decreases, the average number of selected mediators (Nmed,sig) 
decreases. The slope (black line) and the mediation proportion together with the 95% CI are displayed 
in the plot area (blue line represents the identity line). 
 

 

 
 
Supplementary Figure 20. Agreement between the product of coefficients and difference in 
coefficients methods to estimate direct and indirect effects. In the left panel, the agreement 
between direct effects estimated from the multivariable Mendelian randomization regression 
(MVMR, difference in coefficients methods) and direct effects from the product approach is shown. 
In the product approach, exposure-to-mediator effects are multiplied with mediator-to-outcome 
direct effects and summed up across mediators to get the indirect effect. The direct effect is then 
calculated by subtracting this indirect effect from the total effect. The right panel shows the 
agreement between total effects obtained from the univariable MR regression and total effects 
reconstructed by summing the direct and indirect effects derived from the MVMR regressions. In the 
latter, the direct effect refers to the “Direct effect – MVMR” from the left panel and the indirect effect 



to the one obtained in the product approach. The R coefficient displayed in the plot area is the Pearson 
correlation coefficient (identity line is plotted in blue). Results are shown for all 2,069 DNAm-trait pairs 
colour-coded by the physiological category of the trait as defined in Supplementary Fig. 8.  
 
  



Multi-omics mechanisms of action 
 

 
 

Supplementary Figure 21. Plausible DNAm-transcript-trait regulatory mechanism for asthma 
disease at the FCERG1 locus. The top row displays a schematic of the mechanism with the calculated 
univariable and multivariable MR effects. The three following rows show the regional SNP associations 
(-log10(p-values)) with the trait (green), transcript (blue) and DNAm probe (brown), respectively. Red 
dashed lines indicate the significance thresholds of the respective SNP associations and the vertical 
black dashed line represents the DNAm probe position. The bottom row shows the positions of the 
genes in the locus with their respective strand direction. 
 



 

 
Supplementary Figure 22. Plausible DNAm-transcript-trait regulatory mechanism for Covid-19 
(hospitalized vs population) at the IFNAR2 locus. Same figure composition as Supplementary Fig. 21. 
  



Supplementary Tables 
 
 
Supplementary Table 1. Means and interquartile ranges of the simulation parameters as observed 
in real data. The full distribution of each parameter is shown in Supplementary Fig. 5.  
 

 Quartile 1 Median Mean Quartile 3 
Nmed,pot 7 12 14.7 21 

Nmed,sig 1 2 3.3 4 

mE 3 4 5.09 6 

mM 1 3 5.65 8 

h2
E 0.179 0.319 0.403 0.539 

h2
M,direct 4.75E-03 0.0148 0.0418 0.047 

var(/EM) 5.48E-03 0.0196 0.0789 0.0751 

var(/MY) 1.18E-04 7.37E-04 9.52E-03 3.78E-03 

ρ -0.39 -0.0216 -0.0112 0.361 
 
 
Supplementary Table 2. Values used in the different simulation settings to mimic mediation of 
DNAm-to-trait effects through transcript levels. Results of the default model are shown in 
Supplementary Fig. 6, results of varying the sample size NM, the mediator selection threshold PEM, and 
heritabilities h2

M,direct and h2
E in Fig. 2, and the remaining simulation settings in Supplementary Fig. 7. 

Median parameter values are used in the default model and values comprising the interquartile range 
when varying the respective parameter. 
 

 Default model 
(median values) 

Varying 
NM 

Varying 
PEM 

Varying 
h2

M,direct 
Varying 

h2
E 

Varying 
mE 

Varying 
Nmed,sig 

Nmed 12 20 12 20 

Nmed,sig 2 [1 - 10] 

mE 4 [3 - 12] 4 

mM 3 

h2
E 0.319 [0.05 - 1] 

0.1, 
0.3, 0.5 

0.319 

h2
M,direct 0.0148 

[3E-04 - 
0.64] 

0.0148 
4.75E-03, 
0.0148, 
0.047 

ρ -0.02 

PEM 0.01 [1E-06 - 1] 0.01 

NM 30,000 
[100-

100,000] 
30,000 

NE 30,000 

NY 300,000 



var(/EM) 0.02 

var(/MY) 1.00E-03 
MP 0.35 

 
 
 
Supplementary Table 3. Enrichment analysis of negative DNAm-to-transcript causal effects within 
each annotation group. The first two columns show the number of distinct DNAm-transcript pairs 
with negative and positive causal effects, respectively. An enrichment analysis for negative causal 
effects was conducted as a two-sided Fisher's test where each annotation group was tested against 
the remaining other groups combined. Annotation groups significantly enriched or deprived for 
negative causal effects (after correcting for multiple testing at P < 0.05/6) are highlighted in bold. 
 
 
Annotation 
group 

DNAm ➝ 
Transcript 
negative effect 

DNAm ➝ 
Transcript 
positive effect 

Proportion of 
negative effects 

OR  
(negative effect 
enrichment) 

P-value 
(negative effect 
enrichment) 

1stExon 291 188 0.608 1.33 2.67E-03 

3'UTR 863 828 0.510 0.89 1.63E-02 

5'UTR 1773 1429 0.554 1.07 8.03E-02 

Body 9675 8824 0.523 0.87 2.15E-10 

TSS1500 4380 3433 0.561 1.12 1.24E-05 

TSS200 1702 1284 0.570 1.15 3.81E-04 
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Multi-layered genetic approaches to identify

approved drug targets

This article (Sadler et al., 2023, Cell Genomics) is presented in Chapter 3.
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SUMMARY

Drugs targeting genes linked to disease via evidence from human genetics have increased odds of approval.
Approaches to prioritize such genes include genome-wide association studies (GWASs), rare variant burden
tests in exome sequencing studies (Exome), or integration of a GWAS with expression/protein quantitative
trait loci (eQTL/pQTL-GWAS). Here, we compare gene-prioritization approaches on 30 clinically relevant
traits and benchmark their ability to recover drug targets. Across traits, prioritized genes were enriched for
drug targets with odds ratios (ORs) of 2.17, 2.04, 1.81, and 1.31 for the GWAS, eQTL-GWAS, Exome, and
pQTL-GWAS methods, respectively. Adjusting for differences in testable genes and sample sizes, GWAS
outperforms e/pQTL-GWAS, but not the Exome approach. Furthermore, performance increased through
gene network diffusion, although the node degree, being the best predictor (OR = 8.7), revealed strong
bias in literature-curated networks. In conclusion, we systematically assessed strategies to prioritize drug
target genes, highlighting the promises and pitfalls of current approaches.

INTRODUCTION

Drugs whose targets have genetic support were found to be
more likely to succeed in clinical trials.1,2 Although multiple
methods have been proposed to establish such genetic support,
leveraging genetic data to find disease genes, and ultimately
drug targets, has proven to be challenging.3–6 The most straight-
forward approach maps genome-wide association study
(GWAS) signals to the closest genes, with more sophisticated
methods incorporating linkage disequilibrium (LD) structure
and gene annotation information to compute gene scores.7–9

Over the past decade, large-scale molecular quantitative trait
loci (mQTL) datasets facilitated the discovery of disease mecha-
nisms and the identification of potential new drug targets.10–15

Several methods, including Mendelian randomization studies,
transcriptome-wide association studies, and colocalization
methods have integrated expression and protein QTL data with
GWASs to pinpoint likely causal genes for complex traits and
diseases.16–22 More recently, the availability of high-throughput
sequencing data enabled the discovery and analysis of rare var-
iants and their aggregated effects to reveal gene-disease asso-
ciations.23,24Whole-exome sequencing (WES) in theUKBiobank
(UKBB) showed that genes prioritized this way are 3.6 times
more likely to be targets of drugs approved by the US Food
and Drug Administration (US FDA).25

Genes prioritized by GWASs, mQTL-GWAS integration
methods, and WES burden tests may not be drug targets them-
selves, but may be up- or downstream of those in pharmacolog-
ical pathways. Propagating gene prioritization scores on net-
works has proven to be a promising approach to identify
known drug target genes.26–30 Starting from seed genes (i.e.,
prioritized disease-associated genes), network connectivity
can identify neighboring genes that strongly interact with disease
genes, but lack direct genetic evidence that explains their thera-
peutic effect. Gene networks can be derived from literature or
high-throughput experiments and thus are prone to yielding
very different results when used for (seed) gene score diffusion.31

Here, we took a comprehensive approach to examine the
contribution of each method component to the success of
drug target prioritization. First, we focused on four different ap-
proaches to prioritize (seed) genes: (1) LD-aware gene score
computation from the largest GWASs with full publicly available
summary statistics (Pascal9); (2) Mendelian randomization (MR)
combining tissue-wide expression QTLs and GWASs (eQTL-
GWAS); (3) MR combining plasma protein QTL with GWAS
(pQTL-GWAS); and (4) UKBB WES burden tests (Exome). We
then used three different networks to diffuse the seed gene
scores: (1) the STRING protein-protein interaction (PPI)
network32; (2) an RNA-sequencing (RNA-seq) coexpression
network33; and (3) the FAVA network.34 All 12 combinations of
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Figure 1. Overview of the analysis workflow
(A) Three different gene prioritization methods were tested in this study. The first one uses GWAS summary statistics as input (GWAS). The second combines

molecular QTL and GWAS summary statistics (QTL-GWAS): either expression QTL (eQTL) or protein QTL (pQTL) data. The third leverages individual-level whole-

exome sequencing (WES) data (Exome). In the GWAS method, gene p values are based on the sum of squared SNP Z scores (Tsum) that follows a weighted c2
1

distribution. The QTL-GWAS method integrates QTL and GWAS summary statistics through Mendelian randomization (MR). MR causal effect sizes (bMR) are

calculated from GWAS and mQTL effect sizes (GWAS b and mQTL b, respectively) and gene scores are the corresponding p values. The Exome method ag-

gregates rare variants from WES data. Putative loss-of-function and missense variants with minor allele frequencies (MAF) below 1% are collapsed in burden

tests, which results in gene p values. The different approaches were benchmarked for their ability to prioritize drug target genes.

(legend continued on next page)
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the four seed-generating methods and the three networks were
applied to 30 traits (Figure 1) using five different reference sets of
target genes (DrugBank,35 Ruiz et al.,36 ChEMBL,37 DGIdb,38

and STITCH39). Overall, we provide an in-depth comparison of
all combinations of these approaches, identifying their respec-
tive strengths and caveats.

RESULTS

Overview of the analysis
In this study, we calculated gene prioritization scores and tested
their ability to identify drug targets across 30 traits (Figure 1). We
focused on three types of method, termed GWAS, QTL-GWAS,
and Exome, that allow the computation of gene scores provided
genetic association data (Figure 1A).
The GWAS method takes as input GWAS summary statistics

together with a matching LD reference panel. Gene p values
are calculated based on the sum of squared test statistics for
SNPs falling into the gene region.9 The QTL-GWAS methods
integrate GWAS summary statistics with mQTL data for the
gene of interest. We calculated gene scores using (1) eQTL-
GWAS data from the largest available whole-blood eQTL study
(eQTLGen study, n = 31,684)13 as well as tissue-wide eQTL
data from the GTEx Consortium v.8 (n = 65–573 for 48 tissue
types)40 and (2) pQTL-GWAS data from the largest available
plasma pQTL study (deCODE study, n = 35,559).14 Integration
was done by performing MR analyses using either the protein
or the transcript as exposure and the GWAS trait as outcome.
If not specified otherwise, the eQTL-GWAS method refers to
the tissue-wide analysis in which the eQTLGen and GTEx data
are combined by considering the tissue for which the MR effect
was the most significant (STAR Methods). While the GWAS and
QTL-GWAS methods focus on common genetic variants, the
Exome method considers only rare variants from WES data
with minor allele frequencies (MAFs) below 1%. Gene scores
were based on gene burden tests that aggregate putative loss-
of-function and missense variants, and we used the resulting p
values from the WES analysis in the UKBB.25 To allow for a fair
comparison with the Exome method while also exploiting dis-
ease-specific consortium GWAS summary statistics with maxi-
mized case counts, we calculated gene prioritization scores for
the GWAS and QTL-GWAS methods using both consortium
GWAS and UKBB GWAS data that matched Exome sample
sizes (Tables S1 and S2; STAR Methods).
Disease genes may not coincide with drug target genes, but

they may be in close proximity in terms of molecular interaction
(Figure 1B). Through diffusion based on randomwalks, we lever-
aged network connectivity to prioritize neighbors of disease
genes, which may be drug targets. We tested this hypothesis
on three different network types: the STRINGPPI network, which
relies on literature interactions, among other data types32; a gene

coexpression network based on 31,499 RNA-seq samples
(CoXRNAseq)33; and a gene coexpression network based on
single-cell RNA-seq and proteomics data (FAVA).34 Gene priori-
tization scores were obtained following diffusion at six different
restart parameter values (r = 0, 0.2, 0.4, 0.6, 0.8, 1) (STAR
Methods).
Disease drug target genes were defined using public data-

bases. Specifically, drug-disease indications were retrieved
from DrugBank,35 Ruiz et al.,36 and ChEMBL,37 while
drug-drug target pairs originated from DGIdb,38 STITCH,39 and
ChEMBL.37 Drug target enrichment analyses were calculated
for the following five database combinations: DrugBank/
DGIdb, DrugBank/STITCH, Ruiz/DGIdb, Ruiz/STITCH, and
ChEMBL/ChEMBL.
Finally, prioritized disease genes, defined as the top 1% of

genes identified through the 12 combinations of gene prioritiza-
tion and network diffusion methods (5% for combinations
involving the pQTL-GWAS method to account for the smaller
set of testable genes), were then tested for enrichment with the
five drug target genes using Fisher’s exact test (Figure 1C).
Background genes were defined as all genes that could be
tested by the respective method, and sensitivity analyses were
performed on background genes testable for all methods. Sec-
ond, we calculated the area under the receiver operating charac-
teristic curve (AUC) values, which has the advantage of not
requiring any thresholds. To compute a combined enrichment
score per method, we aggregated results across traits and
drug databases termed overall odds ratios (ORs) or overall
AUC values (STAR Methods).

Concordance of prioritized genes among gene scoring
methods
We first analyzed whether genes prioritized by the GWAS, QTL-
GWAS, and Exome methods were concordant (Figure 2). For
each of the 30 traits, we calculated gene scores for the
testable autosomal protein-coding genes (GWAS, !19,150;
eQTL-GWAS, !12,550 (blood) and !16,250 (tissue-wide); pQTL-
GWAS, !1,870; Exome, !18,800). In the tissue-wide eQTL-
GWAS method, the tissue with the most significant MR p value
was selected. In Figure S1, we show the proportion of genesmap-
ped to a particular tissue category. The contributions of glandular-
endocrine, neural central nervous system (CNS), andwhole-blood
(eQTLGen) tissue categories were the highest (respective means
of 15.3%, 12.8%, and 12.6% across the 30 traits; Tables S3 and
S4). Although each trait had genes mapped to nearly all tissues,
a few distinctive patterns could be observed: cardiac muscle tis-
sues contributed themost to atrial fibrillation (16.4%); vascular tis-
sues themost to coronary artery disease (16.5%), followedbydia-
stolic (11.1%) and systolic (9.9%) blood pressure; and the neural
CNS the most to schizophrenia (16.9%) and bipolar dis-
ease (16.6%).

(B) The effects of network diffusion using three different network types and different diffusion strengths (i.e., restart parameter r) were evaluated. Drug target

genes may be prioritized only following signal propagation from neighboring disease genes.

(C) Diseases were linked to target genes through public drug databases: first, we used drug-indication information to connect the 30 traits to drugs and then

leveraged drug target information to link the drugs to genes. Prioritized disease genes and corresponding diffusion scores (obtained via strategies described in A

and B) were then tested for overlap with drug target genes through Fisher’s exact test, resulting in odds ratios (ORs), and through area under the receiver

operating characteristic curve (AUC) values.
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The concordance of prioritized genes among pairs of methods
is summarized in Figure 2. For each trait, we calculated Fisher’s
exact tests between the top prioritized genes at thresholds
ranging in the top 0.1%–10% (STAR Methods). The overlap
was the highest between the GWAS and the eQTL-GWAS
methods (Figure 2A). At 1%, the median OR was 212.2, which
dropped to 51.0 and 22.1 at 5% and 10%, respectively. The
overlap of prioritized genes was the lowest with the Exome
method. The top 1% GWAS vs. Exome and eQTL-GWAS vs.
Exome overlaps (based only on UKBB GWAS summary statis-
tics), yielded median ORs of 1.7 and 1.9, respectively, which
dropped to 1.0 at 10% for both methods (Figures 2B and 2C).

Median ORs between eQTL-GWAS (whole blood) and pQTL-
GWAS (blood plasma) were 8.5 and 4.6 at the top 5% and
10%, respectively (Figure 2D).

Enrichment of prioritized genes for drug targets
Next, we assessed the extent to which prioritized genes overlap-
ped with drug target genes. For each trait, we conducted enrich-
ment analyses for the GWAS, eQTL-GWAS, pQTL-GWAS, and
Exome methods using our five definitions of drug target genes.
In Figure 3A, we show the resulting ORs for the DrugBank/

DGIdb database combination. Across methods, genetic support
for drug targets was the highest for low-density lipoprotein (LDL)

A B

C D

Figure 2. Evaluating the concordance of prioritized genes among gene scoring methods
(A–D) The top prioritized genes between pairs of methods were compared at different thresholds for each of the 30 traits/drug indications. The logarithm of odds

ratios (log-OR) was calculated from Fisher’s exact tests. Log-ORs are plotted only for percentiles at which common genes between pairs of methods were found.

Comparisons were conducted on the same background genes and same data origins (i.e., on UK Biobank GWASs for comparisons with the Exome method).

Tissue-wide eQTL-GWAS gene prioritizations were considered for the comparison with the GWAS and Exome methods and the blood-only eQTL-GWAS gene

prioritization method for the comparison with the pQTL-GWAS method.

4 Cell Genomics 3, 100341, July 12, 2023

Article
ll

OPEN ACCESS



A B

C

D

Figure 3. Enrichment of prioritized genes for drug targets
(A) Left: bar plot with odds ratios (ORs) calculated from Fisher’s exact tests between drug target genes and the top 1% (5% for pQTL-GWAS) prioritized genes for

the four tested methods and 30 traits, classified according to trait category. Drug target genes were defined by DrugBank/DGIdb, and only drug target genes that

could be tested by the respective method were considered. The number on the right of each bar indicates the number of identified drug target genes. Right:

overlap of identified drug target genes between pairs of methods quantified through the Jaccard index. The blood-only eQTL-GWAS gene prioritization method

was used for the comparison with the pQTL-GWAS method. Plots using UKBB GWASs only are shown in Figure S3.

(B) ORs at different top prioritized gene percentiles for the four methods. The plotted dots correspond to the median OR across the 30 traits, and the shaded area

bounds the 10% and 90% percentiles.

(C) Boxplots showing the area under the receiver operating characteristic curve (AUC) values. AUC values were calculated for each trait as indicated by the points

(legend in Figure 2) and using the same background genes and drug target definitions as in (A).

(D) ORs calculated for the five drug target definitions and for all four methods (legend in B). The OR was set to 1 for traits with no identified drug target genes. In

(C) and (D), the boxplots bound the 25th, 50th (median, center), and 75th quantiles. Whiskers range fromminima (Q1 ! (1.53 IQR)) to maxima (Q3 + (1.53 IQR))

with points outside representing potential outliers.
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and total cholesterol (average ORs of 5.99 and 6.12, respec-
tively). Lowest enrichment ratios were obtained for neuropsychi-
atric traits (average OR of 1.56) and glaucoma (average OR of
1.14). The average OR across traits was 2.48, 2.68, 1.65, and
1.26 for the GWAS, eQTL-GWAS, Exome, and pQTL-GWAS
methods, respectively. We explored a range of top disease
gene percentiles (0.1%–5%), and the corresponding ORs are
shown in Figure 3B. Restricting disease genes to the top 0.1%
for all methods increased the average ORs without changing
the method ranking, with average ORs of 3.68, 4.02, 2.40, and
1.44 for the GWAS, eQTL-GWAS, Exome, and pQTL-GWAS
methods, respectively. We further analyzed whether identified
drug targets were the same across methods and found that
prioritized drug target genes were similar between GWAS and
eQTL-GWAS methods (average Jaccard index of 0.39), were
less so between eQTL-GWAS and pQTL-GWASmethods (blood
tissues; average Jaccard index of 0.15), and were very different
from Exome identified targets (average Jaccard index of 0.06 be-
tween GWAS and Exome and between eQTL-GWAS and Exome
methods). Average AUC values across traits were 53.4%,
51.9%, 50.5%, and 49.9% for the GWAS, eQTL-GWAS, Exome,
and pQTL-GWAS methods (Figure 3C).

While the number of drugs reported per indication was similar
across databases (average of 43.9, 41.8, and 40.4 for Ruiz et al.,
ChEMBL, and DrugBank, respectively), the average number of re-
ported drug targets wasmuch higher for Ruiz/STITCH (285), Ruiz/
DGIdb (274.8), DrugBank/DGIdb (263.4), and DrugBank/STITCH
(244.2) than for ChEMBL/ChEMBL (24.8; Table S6). We repeated
drug targetenrichmentcalculations forall drugdatabasecombina-
tions (Figures 3D and S2). The average ORs for the GWAS/eQTL-
GWAS methods were 2.48/2.68, 2.80/2.53, 2.18/2.12, 1.78/1.61,
and 1.78/1.51 for DrugBank/DGIdb, ChEMBL/ChEMBL, Ruiz/
DGIdb, Ruiz/STITCH, and DrugBank/STITCH, respectively. Over-
all, the variability in ORs across traits was the highest in the
ChEMBL database (Figures 3D and S2), likely due to the low
average number of reported drug targets, which leads to very
high ORs when drug targets figured among the prioritized genes
(e.g., for LDL and total cholesterol), but for many traits drug target
genes were not among the prioritized genes (e.g., for type 1 dia-
betes, atopic dermatitis, and inflammatory bowel disease).

Since enrichment results can differ widely across traits and
reference databases, we calculated overall enrichment and
AUC values across traits and drug databases, including sensi-
tivity analyses on UKBB data only, to match Exome sample sizes
and common background genes (Table S8 and Figure S4; STAR
Methods). The overall ORs were 2.17 (UKBB, 1.72), 2.04 (UKBB,
1.67), and 1.81 and 1.31 (UKBB, 1.30) for the GWAS, eQTL-
GWAS, and Exome and pQTL-GWAS methods, respectively.
There were no significant differences between these four
methods in terms of enrichment OR (pdiff > 0.05, including in
the sensitivity analyses). Overall AUCs were 54.3% (UKBB,
52.8%), 52.8% (UKBB, 51.4%), and 51.7% and 51.3% (UKBB,
50.6%) for the GWAS, eQTL-GWAS, and Exome and pQTL-
GWAS methods, respectively. Judging by the AUC values,
GWAS performed significantly better than eQTL-GWAS (pdiff =
3.1e!5) and also when considering only testable eQTL genes
(pdiff = 2.9e!4). When excluding eQTLGen from the tissue-
wide eQTL-GWAS, the performance of eQTL-GWAS dropped

slightly (AUC of 52.2% compared with 52.8%; pdiff = 0.019).
Significantly higher AUC values were obtained for GWAS
comparedwith Exome on consortium data (pdiff = 2.2e!4), which
was no longer the case on UKBB data (pdiff = 0.06). The differ-
ence between eQTL-GWAS and Exome was not significant on
either dataset (pdiff = 0.12 and 0.77 on consortium and UKBB
data, respectively). The number of testable genes was much
lower for the pQTL-GWAS method ("1,870 genes). With this
set of background genes, GWAS still scored a higher overall
AUC (55.1%, pdiff = 2.1e!3). No difference was observed be-
tween the pQTL-GWAS and the tissue-wide or whole blood
eQTL-GWAS methods (pdiff = 0.66 and 0.87, respectively).

Examples of drug target prioritization ranks
In Figure 4, we highlight drug targets and their gene prioritization
ranks for a few examples (complete list in Table S9). Major anti-
hypercholesterolemic drug targets PCSK9 (evolocumab, aliro-
cumab), HMGCR (statins), and NPC1L1 (ezetimibe) were top
ranked by all methods (except for no pQTLs being available for
HMGCR andNPC1L1; Figure 4A). HCN4, the target of the antiar-
rhythmic drug dronedarone, was prioritized as a disease gene for
atrial fibrillation only through the GWASmethod. Although highly
expressed in the atrial appendage and left ventricle of the heart,
no eQTL was reported for this gene (Figure 4B). Several antiep-
ileptic drugs target SCN1A, which was highly prioritized by the
GWAS and eQTL-GWAS methods, with the strongest MR effect
found in the nucleus accumbens (basal ganglia) of the brain (Fig-
ure 4C). The antiplatelet drug dipyrimadole used in the preven-
tion and treatment of vascular diseases such as stroke and cor-
onary artery disease is listed to target 23 genes of the PDE
superfamily in ChEMBL. Of these, four (PDE4D, PDE3A,
PDE3B, PDE6B) were ranked in the top 1% by the exome
method for stroke (Figure 4D). None of the other methods prior-
itized any of these 23 genes. For coronary artery disease,
another superfamily member (PDE5A) had a low ranking (<2%)
by the GWAS and QTL-GWAS methods, supported by solid
GWAS and e/pQTL colocalization (Figure 4E).

Heritability of drug target transcripts and proteins
Previous drug target enrichment analyses have shown that drug
target genes are more likely to have lower residual variance intol-
erance scores (RVISs), i.e., are less tolerant to change.1 Further-
more, limited overlap between eQTL and GWAS hits has been
found, and it has been suggested that GWAS and eQTL genes
are under different selective constraints.41 Hence, under the
assumption that drug target genes are more likely to be key
(core) GWAS genes, we expected that drug target genes are
less likely to harbor QTLs. To test this hypothesis, we assessed
whether drug target transcript or protein levels are less amenable
to regulation by common genomic variations, which could explain
the lower than expected performance ofQTL-GWASapproaches.
To this end, we compared the cis heritability of drug target

genes vs. non-drug target genes that were measured in the
respective studies (i.e., also those with no reported e/pQTLs;
STAR Methods), where lower heritability would point toward a
negative selection.42 We conducted the analysis per trait and
for each of the five drug target gene definitions; however, we
could not observe a clear difference between cis heritabilities
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of drug target and non-drug target genes (Figure S5). While this
means that we cannot explain why the QTL-GWAS approach
does not perform better, it may also imply that drug target genes
are not necessarily typical GWAS genes or so-called core genes.

Network diffusion to prioritize drug target genes
Finally, we assessed whether network diffusion can identify drug
target genes for which there is no direct genetic evidence. Gene
scores from prioritization methods defined the initial distribution

A

B

C

D

E

Figure 4. Examples illustrating drug target genes and their prioritization ranks
(A) Three drug target genes (PCSK9 [evolocumab, alirocumab], HMGCR [statins], and NPC1L1 [ezetimibe] shown in purple) for LDL cholesterol (blue box) and

their prioritization ranks (top percentiles shown in parentheses) of each of the four methods (GWAS in green, eQTL-GWAS in yellow, Exome in blue, and pQTL-

GWAS in red). Genes that were not testable by a givenmethod are reported as NA (no e/pQTLmeans that the genewasmeasured, but had noQTL), and a range of

ranks (i.e., 1–52) indicates tied p values.

(B) Top plot shows the prioritization ranks of HCN4, the target of the antiarrhythmic drug dronedarone. Bottom plot shows the gene expression profile of HCN4

across GTEx tissues (TPM, transcripts per million) with ‘‘testis,’’ ‘‘heart-atrial appendage,’’ and ‘‘heart-left ventricle’’ dominating.

(C) Top plot shows the prioritization ranks ofSCN1A (sodium voltage-gated channel alpha subunit 1), a drug target gene of several antiepileptic drugs. Bottomplot

shows Mendelian randomization (MR) effects (red dots) with 95% CI (black bars) across tissues in which there was a significant eQTL.

(D) Antiplatelet drug dipyrimadole and gene prioritization ranks of its multiple drug targets (a non-exhaustive selection) of the phosphodiesterase (PDE) superfamily.

(E) Top plot shows the gene prioritization ranks of PDE5A, another reported target for dipyrimadole. Bottom plot shows the regional SNP associations (!log10(p))

with coronary artery disease (CAD; GWAS, green), PDE5A protein (pQTL, red), and PDE5A transcript (eQTL, yellow) (red dashed lines indicate the significance

thresholds of the respective SNP association, and gray shading marks the position of PDE5A). Bottom row illustrates the position and strand direction of the

genes in the locus.
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p0 of the diffusion process. This process is regulated by a restart
parameter r, whereby lower values result in a stronger diffusion
(i.e., genes can be prioritized even when distant from initial dis-
ease genes; STAR Methods). The stationary distribution was
calculated for six different restart parameters, ranging from no
diffusion (r = 1) to complete diffusion (r = 0), and for each of the
three networks: the STRING PPI network,32 an RNA-seq coex-
pression network (CoXRNAseq),33 and a coexpression and pro-
teomics network (FAVA).34 Since the set of testable proteins
(!1,870) is enriched for drug target genes (two-sided binomial
test: p = 1.3e"47 for DrugBank/DGIdb; complete results in
Table S15; STAR Methods), the AUC values were artificially in-
flated upon projecting the gene scores onto the network, and
pQTL-GWAS results are hence not discussed.

Applying diffusion using the STRING network massively
boosted the overlap between the diffused prioritized genes
and the drug target genes (Figures 5A, 5B, S6, and S7). At no
diffusion, overall AUC values across the 30 traits were 54.3%,
52.8%, and 51.7% for the GWAS, eQTL-GWAS, and Exome
methods, respectively, which increased to 68.9%, 67.7%, and
66.9% at a diffusion parameter of r = 0.6, and further increased
to 73.5%, 72.9%, and 72.3% at stronger diffusion (r = 0.4;
Figures 5A and S6 and Table S11). A stronger enrichment of
prioritized genes for drug targets upon diffusion was also
observed when enrichment scores for the top 1% genes were
calculated, with overall ORs of 4.63, 5.21, and 5.07 at r = 0.4
(Figures 5B and S7 and Table S11). On the other hand, improve-
ments were modest when considering coexpression networks.
At r = 0.6, overall AUC values increased to 54.9%, 54.7%, and
53.5% in the case of the CoXRNAseq network for the GWAS,
eQTL-GWAS, and Exome methods, respectively. Although
small, the difference was significant compared with no diffusion
(pdiff of 5.11e"3, 4.12e"14, and 4.83e"5, respectively). In the
same scenario, overall ORs at r = 0.6 were 2.28, 2.04, and
1.91, which were not significantly different (pdiff > 0.05)
compared with no diffusion. Likewise, in the FAVA network,
overall AUC values at r = 0.6 were 55.9%, 54.2%, and 53.6%
(pdiff compared with no diffusion of 2.23e"5, 3.08e"3, and
7.3e"6), and ORs were 2.38, 2.02, and 1.77 (pdiff > 0.05), for
GWAS, eQTL-GWAS, and Exome methods, respectively
(Figures S6 and S7; Tables S11 and S12).

We further assessed which method’s AUC values benefited
the most from network diffusion. To allow fair comparison with
the Exome methods, we used UKBB GWAS data for the
GWAS and eQTL-GWAS methods. Across all diffusion parame-
ters r, overall AUC values were significantly higher for GWAS
compared with eQTL-GWAS in the STRING and FAVA network
(pdiff < 4.45e"4), but not any different in the RNA-seq coexpres-
sion (CoXRNAseq) network (pdiff > 0.05). A nominally significant
difference in favor of GWAS compared with Exome was
observed only in the STRING network at r values of 0.4, 0.6,
and 0.8 (pdiff of 0.0262, 7.36e"3, and 0.0146, respectively). No
statistical differences were observed between the eQTL-
GWAS and the Exome method except for a nominally significant
difference in favor of eQTL-GWAS at r = 0.2 in the CoXRNAseq
network (pdiff = 0.0113).

When investigating the network connectivity, we observed that
drug target genes were significantly more likely to be hub genes,

i.e., to have more connections in the network in comparison with
other genes (Figures 5C and S8). This observationwas particularly
strong in the STRING network (mean log-degree = 13.0 vs. 12.3,
pdiff = 6.6e"284 for DrugBank/DGIdb), but also present in the co-
expression networks (D log-degree = 0.064, pdiff = 0.011 for
CoXRNAseq; D log-degree = 0.3, pdiff = 6.6e"11 for FAVA). As
a consequence, the network’s node degree (a gene’s number of
connections to other genes adjusted by the edge weight) was
found to be a good predictor of drug targets, and the best perfor-
mance was found for the network degree in STRING (overall
AUC = 77.6%, overall OR = 8.71). Given this bias, we generated
random initial disease gene scores and determined towhat extent
genetically informed p0 distributions performed better compared
with random p0 distributions. Although the GWAS, eQTL-GWAS,
and Exome methods had significantly higher AUC values
compared with random score distributions for any given r value
in the STRING network (pdiff < 1.62e"7; Table S12), the perfor-
mance of a mildly diffused (r = 0:8) random score (which is un-
aware of the target disease) performed significantly better than
any disease gene prioritization method without diffusion (pdiff of
4.18e"6, 3.58e"10, and 2.10e"12 compared with GWAS,
eQTL-GWAS, and Exome, respectively). In line with this observa-
tion, the network degreewas still significantly better than gene pri-
oritization methods at a stronger diffusion of r = 0.2 (pdiff of
8.98e"6, 9.87e"13, and 1.89e"11 compared with GWAS,
eQTL-GWAS, and Exome, respectively).

Examples of prioritized genes through network diffusion
In the following, we describe several examples for which drug
targets figured among the top 1% genes only after network
diffusion (complete list in Table S13). Amyloid-beta precursor
protein (APP) targeted by the monoclonal antibody aducanu-
mab in the treatment of Alzheimer’s disease (AD) was ranked
506 (top 2.7%) prior to and 152 (top 0.8%) after diffusion on
the STRING network (r = 0.6; Figure 6A) based on the eQTL-
GWAS method. Prioritization was largely influenced by its in-
teracting neighbor apolipoprotein E (APOE), which was the
top 5 ranked gene for AD by the eQTL-GWAS method and
among the top 6 genes (tied p values) by the GWAS method.
Although rare mutations in APP are a known cause of AD,43

the Exome method did not highly prioritize this gene (>top
10%), likely because of low statistical power due to the
younger and healthier nature of the UKBB cohort. Indeed,
APP was among the top 1% for the GWAS method, leveraging
the AD consortium data, but did not reach the top 10% when
restricting the analysis to the UKBB. Tumor necrosis factor
(TNF), a drug target in the treatment of inflammatory diseases
such as psoriasis, was ranked 1,558th (top 8%; Exome-psori-
asis) prior to and 182nd (top 0.98%; r = 0.6) post-propagation
in the STRING network (Figure 6B). While initially the drug
target F2 (coagulation factor II, thrombin) for venous thrombo-
embolism (VTE) ranked only in the top 2%, it moved up to the
top 1% regardless of the network used for diffusion at r = 0.6
(top 0.9%, 0.6%, and 0.7% for STRING, CoXRNAseq, and
FAVA, respectively). In the STRING and CoXRNAseq net-
works, this boost could largely be attributed to the interacting
fibrinogen genes (FGA, FGB, and FGG) that ranked in the top
0.06% (Figure 6C).
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A

B

C

Figure 5. Effect of network diffusion to prioritize drug target genes
(A) Boxplots showing the area under the receiver operating characteristic curve (AUC) values for each network type (STRING, CoXRNAseq, and FAVA) and

method at different restart parameter values r. AUC values were calculated for each of the 30 traits, and drug target genes were defined by DrugBank/DGIdb. At

an r value of 1 (no network diffusion), the analysis corresponds to the results in Figure 3B, and at an r value of 0, the gene prioritization rank is based simply on the

degree of the network nodes. At r < 1, the background genes are the genes reported in the respective network. The star next to the pQTL-GWASmethod signals

that the set of testable genes for this method is enriched for drug target genes, and therefore, higher AUC values were obtained when adding background genes

with zero-valued initial scores.

(B) Odds ratios (ORs) between prioritized genes (top 1%) and drug target genes for each network type and method at different r values across the 30 traits (same

drug target and background genes as in A). The OR was set to 1 for traits with no identified drug target genes.

(C) Histograms showing the degree distribution of drug target genes and non-drug target genes in each network. The difference in log-degree (D) and the p values

from two-sided t tests are shown at the top. In (A) and (B), the boxplots bound the 25th, 50th (median, center), and 75th quantile. Whiskers range from minima

(Q1 ! (1.5 3 IQR)) to maxima (Q3 + (1.5 3 IQR)) with points above or below representing potential outliers.
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DISCUSSION

Summary of findings
We conducted a comprehensive benchmarking between
different genetically informed approaches (GWAS, QTL-GWAS,
and Exome) combined with network diffusion to prioritize drug
target genes. The strength of our analysis lies in the side-by-
side comparison of gene prioritization methods that individually

have proven to be successful in identifying drug targets. In line
with previous reports, we find a 1.3- to 2.2-fold enrichment for
drug targets among (the top 1%) prioritized genes.1,2 Recently,
methods have emerged that combinemultiple genetic predictors
to derive an aggregate score, often usingmachine-learning tech-
niques.27,44,45 These scores have demonstrated high enrichment
for drug targets but reveal little about underlying molecular
mechanisms. Our aim was to disentangle the importance of

A B

C

Figure 6. Examples illustrating prioritized drug target genes through network diffusion
(A) Top 10 network neighbors of drug target APP (brown circle) and their prioritization values (i.e., normalized node probabilities) by the eQTL-GWAS method for

Alzheimer’s disease are shown before (r = 1) and after diffusion (r = 0:6) on the STRING network.

(B) Same representation as in (A) showing Exome prioritization values for psoriasis and tumor necrosis factor (TNF) drug target.

(C) Top 10 network neighbors of drug target F2 (coagulation factor II, thrombin) in the STRING, CoXRNAseq, and FAVA networks. GWAS prioritization values for

venous thromboembolism (VTE) are shown before (r = 1) and after diffusion (r = 0:6) on each network. In each network example (A–C), the drug target gene was

among the top 1% prioritized genes only after diffusion at r = 0:6.
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the choice of the ground truth (i.e., drug target genes) and the
input data (such as mQTLs, WES) in combination with different
molecular networks to highlight added benefits while also
exposing weaknesses compared with using GWAS data alone.

Comparison of gene prioritization methods
Adjusting for differences in background genes and data origins,
GWAS yielded higher AUC than eQTL- and pQTL-GWAS, but no
significant difference was found with Exome. Genes prioritized
by the Exome method were different from those identified by
the GWAS and QTL-GWAS methods, which was also reflected
in the identified drug targets. While this could imply that rare
and common variant genetic architectures are complementary,
differences could also be due to power issues. Possibly, with
increased sample size, the implicated genes will converge, but
the extent to which they can be perturbed by regulatory vs.
rare coding variants might remain different. Considering ORs,
we lacked the statistical power to claim significant differences
between methods, since the number of drug targets among
the top 1% prioritized genes can be very low. Overall enrichment
ORs for drug targets were 2.17, 2.04, 1.81, and 1.31 for the
GWAS, eQTL-GWAS, Exome, and pQTL-GWAS methods,
respectively. Although ORs for the pQTL-GWAS method may
seem lower, it should be noted that testable proteins (i.e., pro-
teins with pQTLs) accounted for !10% of GWAS-testable
genes. On the same background genes, ORs for the tissue-
wide and blood-only eQTL-GWAS methods were 1.38 and
1.22, respectively. For the AUC metric, no significant difference
between eQTL-GWAS and pQTL-GWAS was found. In the
method comparisons, we considered multiple drug target gene
definitions. The number of targets per drug drastically differed
between ChEMBL and the DGIdb or STITCH database due to
differences in their construct. Drug target genes in the
ChEMBL database are manually curated and should not contain
false positives, but it remains debatable whether one should
consider only primary or also secondary target genes. For
instance, ChEMBL lists only HMGCR as a drug target for statins,
whereas the DGIdb database also includes APOA5, APOB, and
APOE, among others. For this reason, we considered different
databases and present enrichment results for both broad and
narrow drug target definitions, as well as aggregates.

Benefits and pitfalls of network diffusion
Network diffusion was beneficial for prioritizing drug target genes
withweaker genetic support. A remarkable increase in drug target
identification was achieved when using the STRING PPI network.
However, this improvement may be due to a circularity in the data
generation process, whereby drug target genes are more re-
searched and hence have more chance to be found to interact
with other proteins, i.e., they tend to look more hub-like. Although
genetically informed gene sets performed better than random
ones, the genes prioritized by their node degree in the STRING
network resulted in the highest AUC values overall. Thus, care
has to be taken when relying on literature-derived gene-gene in-
teractions, as aggressive diffusion will point to the same drug
target genes, irrespective of the disease, due to the intrinsic
bias stemming from under- and overstudied proteins. While the
STRING network resource remains of immense value to identify

interacting proteins, non-randommissing of network edges leads
to a biased network structure, which makes this resource less
suitable as input for discovering new drug targets. The improve-
ments made with coexpression networks, which do not suffer
from publication/curation biases, were minor in comparison.
Although significant with the AUC metric, ORs were not signifi-
cantly increased with a diffusion of r = 0.6 compared with no diffu-
sion for any of the methods.

Limitations of the study
Several limitations should be considered. First, we do not take
into account the directionality of therapeutic and genetic effects,
i.e., whether the drug is an agonist or antagonist. Although found
to be less performant than GWAS, QTL-GWAS methods have
the advantage of specifying directionality, as opposed to gene
scores from the GWAS approach, which ignores SNP effect di-
rections. Second, the mQTL datasets used cover only a small
fraction of possible intermediate traits through which SNPs exert
their disease-inducing effects.46 Third, we focus only on com-
mon genetic variants when associating transcript and protein
levels. With the advent of coupled rare variant-protein level
data, either from populations enriched for rare variants or
sequencing data,14,47 more powerful QTL-GWAS methods are
likely to emerge that combine mechanistic insights gained from
QTL approaches while capturing rare variant associations previ-
ously missed. Fourth, drug target data are sparse, which limits
the statistical power in benchmarking analyses. Given the
required resources to test a drug target in clinical settings,
focusing on top ranking genes is of most interest. This scenario
is best described with a threshold that defines highly prioritized
genes for enrichment analyses. However, ROC curves that
quantify the performance at all prioritization thresholds (i.e.,
use all data at hand) were better powered to detect subtle differ-
ences betweenmethods. Resulting AUC values are relatively low
(51%–54%), whichmay be because ranks of geneswith non-sig-
nificant p values are likely unreliable, but these dominate most of
the ROC curve. Related to this, even for low false positive rates,
there is room for improvement of the gene prioritizationmethods.
Combining prioritization methods could increase AUC values, as
suggested by the distinct drug target sets identified by GWAS
and Exome methods, as could the integration of additional func-
tional genomic annotations.27,44 Finally, our analysis compares
methods using historical drug discovery data as the ground
truth. These data are highly biased, with G-protein-coupled re-
ceptors being targets of a third of FDA-approved drugs.48

Many other genes may be effective targets, but have never
been tested in clinical trials. Thus, our results may not reflect
how well the tested genetic approaches uncover true disease
genes, but rather how well they identify targets that were histor-
ically prioritized in drug development processes. Since the emer-
gence of robust GWASs, more and more clinical trials are moti-
vated by genetically informed targets. Thus, drug target
databases will tend to overlap better with GWAS-inspired genes,
leading to artificially higher overlap.

Conclusion
To conclude, we systematically evaluated major gene prioritiza-
tion approaches for their ability to identify approved drug target
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genes. Our analyses highlight the power of harnessing multiple
data sources by capitalizing on QTLs for mechanistic insights,
sequencing data for rare variant associations, GWASs when
mQTL signals are missing, and network propagation to leverage
gene-gene interactions.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Zoltán Kutalik (zoltan.
kutalik@unil.ch).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. Accession numbers for the datasets are listed in the key resources table.
d Drug target genes and prioritized ranks are included in the supplemental material of this paper.
d All original code has been deposited at Github (https://github.com/masadler/DrugTargetMethodComparison) and archived at

Zenodo (https://doi.org/10.5281/zenodo.7857973 ).56

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UK Biobank UK Biobank https://www.ukbiobank.ac.uk/

UK Biobank GWAS summary statistics UK Biobank http://www.nealelab.is/uk-biobank

UK Biobank GWAS summary statistics UK Biobank https://pan.ukbb.broadinstitute.org

FinnGen GWAS summary statistics FinnGen https://www.finngen.fi/en/access_results

Consortia GWAS summary statistics Various sources Table S1

Multiple sclerosis GWAS summary statistics IMSGC https://imsgc.net/?page_id=31

Whole blood expression QTLs eQTLGen https://www.eqtlgen.org/cis-eqtls.html

Tissue-wide expression QTLs GTEx project https://gtexportal.org/home/datasets

Plasma protein QTLs deCODE study https://www.decode.com/summarydata/

Whole exome gene burden tests GWAS Catalog accession IDs are in Table S2

UK10K data UK10K https://www.uk10k.org/data_access.html

DrugBank database DrugBank https://go.drugbank.com

ChEMBL database ChEMBL https://www.ebi.ac.uk/chembl/

DGIdb database DGIdb https://www.dgidb.org

STITCH database STITCH http://stitch.embl.de

Ruiz et al. Drug-disease links 36 https://doi.org/10.1038/s41467-021-21770-8

STRING network STRING https://string-db.org

Co-expression network 33 https://github.com/molgenis/

systemsgenetics/wiki/Downstreamer

FAVA network 34 https://doi.org/10.5281/zenodo.6803472

Software and algorithms

Main pipeline and analysis code This paper https://doi.org/10.5281/zenodo.7857973

PascalX 49 https://github.com/BergmannLab/PascalX,

SMR-IVW 50 https://github.com/masadler/smrivw,

METAL 51 https://github.com/statgen/METAL

R package igraph v1.3.5 52 https://igraph.org

R package pROC v1.15.3 53 https://doi.org/10.1186/1471-2105-12-77

biomaRt v2.50.3 54 https://doi.org/10.18129/B9.bioc.biomaRt

LDAK software v5.2 55 https://dougspeed.com
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METHOD DETAILS

GWAS data
We used the largest (to-date), publicly available GWAS summary statistics for each analyzed condition (Table S1). GWAS data came
mostly from consortia specific to the respective disease, and were often a meta-analysis comprising the UKBB. Twenty-four out of
the 30 conditions were case/control studies, the remaining 6 being continuous traits: diastolic and systolic blood pressure (DBP and
SBP, respectively57), low-density lipoprotein and total cholesterol (LDL and TC, respectively58), estimated glomerular filtration rate
(eGFR59) and heel bone mineral density (58) proxying chronic kidney disease (CKD) and osteoporosis, respectively. For four traits
with low case count in the UK Biobank (< 20,000; chronic obstructive pulmonary disease (COPD), endometriosis, pneumonia and
psoriasis) and no large-scale GWAS meta-analysis available, we performed a meta-analysis between the UK Biobank58 and
FinnGen60 using METAL.51

GWAS gene scores
Weused PascalX9,49 to compute gene scores based onGWAS summary statistics. The software takes as input GWASp values, gene
annotations and LD structure. SNPs are assigned to genes and their squared z-scores are summed. This sum, under the null, was
shown to follow aweighted chi-square distribution with weights being defined by the local LD structure fromwhich gene p values can
be derived.9 We applied PascalX with default parameters (gene ± 50 kB) on protein-coding genes using the Ensembl identifiers and
annotations (Ensembl GRCh37.p13 version) and the UK10K reference panel.61 Across traits,!19,150 protein-coding genes could be
tested which were ranked by their PascalX p value.

Molecular QTL-GWAS gene scores
We integrated molecular quantitative trait loci (QTL) and GWAS summary statistics using Mendelian randomization (MR) imple-
mented in the smr-ivw software.22,62,50 The exposure (transcript or protein levels) and outcome disease were instrumented with in-
dependent genetic variants, also called instrumental variables (IVs; r2 < 0:01) and used to calculate putative causal effect estimates of
the exposure on the outcome (bMR). IVs were required to be strongly associated to the exposure (PQTL < 1e-6) and had to pass the
Steiger filter ensuring no significantly stronger effect on the outcome than on the exposure.63We used expression QTLs (eQTLs) from
the eQTLGen consortium13 (whole blood; n = 31,684) and tissue-specific QTLs from the GTEx v8 release40 (European ancestry;
n = 65–573 for 48 tissue types; Table S3) to estimate causal transcript-trait effects. In the eQTLGen dataset there were! 12,550 pro-
tein-coding genes with at least 1 IV which increased to !16,250 when integrating the GTEx dataset. MR results from both datasets
(whole blood from eQTLGen and 49 tissues fromGTEx) were aggregated by considering theMR causal effect with the lowest p value
across tissues (Tables S3 and S4). Protein QTLs (pQTLs) from the deCODE study14 (whole blood; n = 35,559) were used to estimate
protein-trait causal effects with!1,870 proteins having at least 1 IV. Prior to the analysis, e/pQTL and GWAS data were harmonized,
palindromic SNPs were removed as well as SNPs with an allele frequency difference > 0.05 between datasets. All transcripts and
proteins were mapped to Ensembl identifiers as provided by eQTLGen, GTEx and deCODE.

Exome gene scores
We used gene burden test results computed on WES data from the UK Biobank.25 We extracted gene-trait associations based on
putative loss of function (pLOF) and deleterious missense variants with MAF < 1% (M3.1 nomenclature in original publication) with
phenotypes matching the investigated conditions as indicated in Table S2. Associations were provided for !18,800 genes which
were ranked by the association p value and retrieved by the provided Ensembl identifier.

Drug target genes
We extracted drug target genes from public resources by combining drug-indication and drug-target links from various databases. A
given disease/indication was linked to a drug if the drug was indicated to be prescribed for the selected indication and subsequently,
the target genes of these drugs were extracted. For drug-indication pairs we consulted DrugBank, Ruiz et al. and ChEMBL:

d DrugBank 5.035 (download: May 2022): DrugBank indications are manually curated from drug labels and underwent an expert
review process. Drug indications have their own DrugBank condition numbers and drugs their DrugBank identifiers.

d Ruiz et al.36: A drug-disease dataset was created by querying multiple sources such as the Drug Repurposing Database, the
Drug Repurposing Hub, and the Drug Indication Database and extracting information from drug labels, DrugBank and the
American Association of Clinical Trials Database. Drug–disease pairs were filtered for FDA-approved treatment relationships.
This dataset uses NLM UMLS CUIDS identifiers (National Library of Medicine - Unified Medical Language System Controlled
Unique Identifier) for diseases and DrugBank identifiers for drugs.

d ChEMBL37 (download: May 2022): ChEMBL drug indications are extracted from multiple sources including DailyMed package
inserts, Anatomical Therapeutic Chemical (ATC) classification and ClinicalTrials.gov. Mapping of disease terms to Medical
Subject Headings (MeSH) vocabulary and the Experimental Factor Ontology (EFO) is done through a combination of text-min-
ing, automated mapping and manual curation/validation. Drugs are reported with ChEMBL identifiers.
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The mapping of GWAS traits to the drug indication identifiers of the respective database is shown in Table S5.
Drug target genes were extracted from the DGIdb, STITCH and ChEMBL databases:

d Drug Gene Interaction database (DGIdb) 4.038 (release: January 2021): Aggregated drug-gene interactions frommultiple sour-
ces including DrugBank, Drug Target Commons, the Therapeutic Target Database and Guide to Pharmacology. Genes were
matched to Ensembl identifiers using the provided gene vocabulary file. Drugs were reported through DrugBank or ChEMBL
identifiers, and mapping from ChEMBL to DrugBank identifiers was done with UniChem,64 using PubChem IDs as intermedi-
ates..

d Search Tool for Interacting CHemicals (STITCH) 5.039: Aggregated drug-protein interaction data from high-throughput exper-
iments data, manually curated datasets and prediction methods. Only high confidence drug-protein relationships (confidence
score R 700) of the type ‘‘inhibition" and ‘‘activation" were considered. STITCH uses PubChem Chemical Identifiers (CID) for
drugs and mapping to DrugBank IDs was done through the chemical sources file provided by STITCH. Protein Ensembl iden-
tifiers were mapped to gene Ensembl identifiers using biomaRt (GRCh37, v2.50.3)54.

d ChEMBL37 (download: May 2022): ChEMBL provides drug targets which have been manually curated from literature. Drug tar-
gets are identified by ChEMBL IDs with mapping to UniProt Accessions provided by ChEMBL. UniProt identifiers were then
mapped to gene Ensembl identifiers through the UniProt REST API65.

In this analysis we considered drug target genes resulting from the following combinations: DrugBank/DGIdb, DrugBank/STITCH,
Ruiz/DGIdb, Ruiz/STITCH, and ChEMBL/ChEMBL. The number of drugs and drug target genes per indication is shown in Table S6.

Transcript and protein level heritabilities
Transcript and protein level cis-heritabilities were estimated from QTL effects using a restricted maximum likelihood method (reml)
with the LDAK-thin heritability model. The LDAK heritability model assumes that the expected heritability contributed by each SNP
depends on its MAF and LD. The analysis was conducted with the LDAK software (v5.2; reml method55) based on all SNPs in prox-
imity of the transcript/protein (± 500 kB) and the UK10K reference panel.61 We set the –power to!0.25 and the –ignore-weights flag
to YES to specify the LDAK-thin heritability model. The analysis was restricted to high-quality SNPswhichwere defined as being non-
ambiguous, having a sample size > 5,000 and a MAF R 0.01.
Protein heritabilities were based on the deCODE plasma protein dataset14 and transcript heritabilities for whole blood on the eQTL-

Gen dataset.13 Of the 14,022 protein-coding transcripts in eQTLGen, reml converged for 12,218. Likewise, 3,716 of the 4,502 auto-
somal proteins in deCODE converged (estimated cis-heritabilities are in Table S10). Genes not converging were omitted in cis-her-
itability downstream analyses.
To calculate the difference in heritabilities between drug target and non-drug target genes, we considered all transcripts and pro-

teins measured in the respective study which were classified accordingly. Per trait, the difference in heritability was then calculated
through a two-sided t-test. Heritability tests were only performed for traits with at least three drug targets within the respective set of
measured transcripts/proteins.

Networks
To calculate network diffusion scores, we used the following three networks:

d Search Tool for Retrieval of Interacting Genes/Proteins (STRING) v1132: The protein-protein (PPI) interaction network results
from predictions based on genomic context information, coexpression, text-mining, experimental biochemical/genetic data
and curated databases (curated pathways and protein-complex knowledge). Protein Ensembl identifiers were mapped to
gene Ensembl identifiers using biomaRt (GRCh37, v2.50.3).54 We use interaction confidence scores as edge weights.

d CoXRNAseq33: This network was constructed by first performing a principal component analysis on the gene coexpression
correlation matrix of 31,499 RNA-seq samples. Reliable principal components were retained from which the final network
was constructed via Pearson correlations. We filtered pairwise interactions to only retain those with z-scores above 4. Genes
were reported with Ensembl identifiers and z-scores were used as edge weights.

d Functional Associations using Variational Autoencoders (FAVA)34: This network is based on single cell RNA-seq read-count
data from the Human Protein Atlas and proteomics data from the PRoteomics IDEntifications (PRIDE) database. First, the
high-dimensional expression data was reduced into a latent space using variational autoencoders. From this latent space,
the network was derived via pairwise Pearson correlations. Each reported interaction has a score which we use as edge weight
(final network reports interactions with scores above 0.15). Protein Ensembl identifiers were mapped to gene Ensembl identi-
fiers using biomaRt.

A summary of network properties is given in Table S14. In all analyses, we use weighted networks, and we refer to weighted node
degrees (i.e., sum of edge weights linking the node of interest to adjacent nodes) as node degrees.
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Network diffusion
We calculated network diffusion scores based on Markov random walks. Starting from an initial node distribution p0, a stationary
distribution is calculated based on network connectivity. This diffusion process depends on a restart parameter r which determines
how often the random walker returns to the initial values. Analytically, the stationary distribution (pN) is given by:

pN = ðI " ð1 " rÞ$WÞ" 1$p0 (Equation 1)

whereW is the column-normalized weighted adjacencymatrix and I the identitymatrix of the same dimension asW66. The initial node
distribution p0 was determined by the squared z-scores derived from the gene p values (normalized to sum up to 1). Genes that could
not be tested by a givenmethod had their initial value set to 0. Additionally, we tested the performance of network diffusion on random
initial distributions p0. For each trait, a random distribution was generated which all were different, but consistent across analyses.
Resulting network diffusion scores pN were ranked for AUC calculations, and the top 1% scored genes were used in the enrichment
analyses.

Network manipulations, visualization and degree calculations were performed with the R igraph package v1.3.5.52

QUANTIFICATION AND STATISTICAL ANALYSIS

Concordance of gene scoring methods
We tested whether prioritized genes were similar or dissimilar between pairs of methods. First, only genes (based on Ensembl iden-
tifiers) that were common between the two tested methods were selected into the gene background. Then, prioritized genes were
defined at different top percentile cut-offs (0.1%, 0.2%, 0.5%, 1%, 2%, 3%, 5%, 7.5%, 10%). The enrichment of prioritized genes
between methods was quantified by a Fisher’s exact test using common genes as background genes. When calculating median
ORs, ORs of traits for which no prioritized genes overlapped at a given percentile were set to 1. Results of this analysis are presented
in the result section ‘‘concordance of prioritized genes among gene scoring methods".

Drug target enrichment and AUC calculations
Enrichment for drug target genes was calculated through two-sided Fisher’s exact tests. A contingency table was constructed based
on testable genes (i.e., background genes), with genes categorized into prioritized (top 1% or 5% for the pQTL-GWAS) and drug
target genes. In rare instances (i.e., pQTL-GWAS background genes and ChEMBL/ChEMBL drug targets) where diagonal values
were 0, these were changed to 1. If no prioritized gene coincided with a drug target gene, the resulting OR was set to 1 (for visual-
ization purposes this was not done in barplots where each trait was shown individually). AUC values and standard errors were calcu-
lated using the R package pROC v1.15.3.53

Log-OR and AUC values (both are denoted bi herein) were aggregated across traits and drug databases (m = 30$5 = 150 obser-
vations per method) as follows:

b =
1

m

Xm

i

bi (Equation 2)

with corresponding variance:

varðbÞ = 10 $S $R $S$1
!
m2 (Equation 3)

where S is a diagonal matrix of sizemxm containing standard errors of bi andR is the correlation matrix between drug databases and
traits. This matrix was derived from the Kronecker product of the drug database correlation matrix and phenotypic trait correlation
matrix (Tables S6 and S7). The drug database correlation matrix was derived on the gene level (i.e., 1 if the gene was a drug target for
any of the 30 traits, 0 if not) and the phenotypic trait correlation on individual-level data from the UKBB (codes in Table S1B). b was
referred to as the overall AUC/ log-OR (overall OR after an exponential transformation).

To calculate the statistical difference of b1 and b2 for method 1 and 2, respectively, we derived the variance of the difference as
follows:

varðb1 " b2Þ = varðb1Þ + varðb2Þ " 2$covðb1;b2Þ (Equation 4)

with covðb1;b2Þzr3 ð10 $S1 $R $S2 $1 =m2Þ, where r is the empirical correlation between b1 and b2. From the resulting z-score, a two-
sided p value was calculated and significance was defined at a p value below 0.05. Results of these analyses are presented in the
result sections ‘‘enrichment of prioritized genes for drug targets" and ‘‘network diffusion to prioritize drug target genes".
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Enrichment of proteins for drug targets
We conducted binomial tests to verify whether the set of testable (i.e., at least 1 pQTL) and measured proteins (!1,870 and! 4,450,
respectively) were enriched for drug target genes. We performed the analysis on each of the five drug target definitions and pro-
ceeded as follows: 1) we extracted the number of testable/measured proteins that are drug targets (‘‘number of successes"), 2)
considering all protein-coding autosomal genes (19,430), we extracted those that are drug targets (‘‘number of trials"), 3) we deter-
mined the proportion of testable/measured proteins among all protein-coding genes (‘‘expected probability of success"). From these
numbers, we conducted two-sided exact binomial tests (Table S15).
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Figure S1. Gene-tissue mapping proportions.  
Proportion of genes mapped to a particular tissue category in the tissue-wide expression quantitative 
trait locus (eQTL)-genome-wide association analysis (GWAS) analysis. For each gene, the tissue with 
the lowest Mendelian randomization (MR) p-value was selected. Tissue category belonging are shown 
in Table S4 and numerical proportion values in Table S5. This figure is related to the eQTL-GWAS 
method in Figures 2,3 and 5. 
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Figure S2. Enrichment for drug target genes across drug databases.  
Barplots with odds ratios (ORs) calculated from Fisher’s exact tests between drug target genes and 
prioritized genes for the four tested methods and thirty traits. Prioritized genes were defined as the 
top 1% percentile of the GWAS, eQTL-GWAS and Exome methods, and 5% of the pQTL-GWAS method. 
Drug target genes were defined by the drug database combinations (drug-indication and drug-target 
links) shown in the title of each barplot. Only drug target genes that could be tested by the respective 
method were considered. The number on the right of each bar indicates the number of identified drug 
target genes. In the barplot corresponding to the ChEMBL/ChEMBL database, the x-axis is log-
transformed and therefore ORs of 0 (i.e., no identified drug target) were set to 1. This figure is related 
to Figure 3A which shows enrichment for the DrugBank /DGIdb combination. 
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Figure S3. Comparing consortia and UK Biobank GWAS data in drug target enrichment analyses.  
(A) Enrichment analysis using consortia GWAS summary statistics in the GWAS, eQTL-GWAS and pQTL-
GWAS methods.  
(B) Enrichment analysis using UKBB GWAS summary statistics in the GWAS, eQTL-GWAS and pQTL-
GWAS methods. The Exome analysis is only performed on UK Biobank data. Left: Barplot with odds 
ratios (ORs) calculated from Fisher’s exact tests between drug target genes and prioritized genes for 
the four tested methods and thirty traits. Prioritized genes were defined as the top 1% percentile of 
the GWAS, eQTL-GWAS and Exome methods, and 5% of the pQTL-GWAS method. Drug target genes 
were defined from the DrugBank and DGIdb databases, and only drug target genes that could be 
tested by the respective method were considered. The number on the right of each bar indicates the 
number of identified drug target genes. Right: Overlap of identified drug target genes between pairs 
of methods quantified through the Jaccard index. The blood-only eQTL-GWAS gene prioritization 
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method was used for the comparison with the pQTL-GWAS method. This figure is related to Figure 3A 
which shows enrichment for drug targets using consortia GWAS. 
  



 

 
Figure S4. Enrichment for drug target genes using the same background genes.  
(A) Enrichment analysis was performed by subsetting the gene universe of the GWAS and eQTL-GWAS 
(tissue-wide and whole blood only) methods to the genes available in the deCODE study (i.e., proteins 
used in the pQTL-GWAS analysis).  
(B) Enrichment analysis was performed by subsetting the gene universe of the GWAS method to the 
genes available in the tissue-wide eQTL-GWAS analysis. Both plots show barplots with odds ratios 
(ORs) calculated from Fisher’s exact tests between drug target genes and prioritized genes for the four 
tested methods and thirty traits. Drug target genes were defined from the DrugBank and DGIdb 
databases, and only drug target genes that could be tested by the respective method were considered. 
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The number on the right of each bar indicates the number of identified drug target genes. This figure 
is related to Figure 3A in which background genes were different among methods. 
  



 
 

 
 
Figure S5. Heritability of drug target genes. 
Difference in cis-heritability of drug target compared to non-drug target measured transcript and 
protein levels. For each trait, the difference in heritability was calculated through a two-sided t-test. 
When the difference was negative (i.e., drug target genes were less heritable), the -log10(p-value) is 
plotted in blue, otherwise in red. Traits for which the difference was nominally significant (p-value < 
0.05), are indicated with a star. If less than three drug target genes could be tested for a trait, a grey 
box is plotted. This figure is related to the result section “Heritability of drug target transcripts and 
proteins”. 
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Figure S6. Effect of network diffusion to prioritize drug target genes across drug databases (AUC 
values).  
Boxplots showing the area under the receiver operating characteristic curve (AUC) values for each 
network type (STRING, CoXRNAseq and FAVA) and method at different restart parameter values r. 
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AUC values were calculated for each of the thirty traits, and drug target genes were defined by the 
respective drug database combination (drug-indication and drug-target links, (A)-(E). The boxplots 
bound the 25th, 50th (median, centre), and the 75th quantile. Whiskers range from minima (Q1 – 1.5 
• IQR) to maxima (Q3 + 1.5 • IQR) with points above or below representing potential outliers. This 
figure is related to Figure 5A which shows AUC values for the DrugBank /DGIdb combination. 
 
 



 
 
Figure S7. Effect of network diffusion to prioritize drug target genes across drug databases (ORs).  
Odds ratios (ORs) between prioritized genes (top 1%) and drug target genes for each network type 
(STRING, CoXRNAseq and FAVA) and method at different restart parameter values r. Drug target genes 
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were defined by the respective drug database combination (drug-indication and drug-target links, (A)-
(E)). The OR was set to 1 for traits with no identified drug target genes. The boxplots bound the 25th, 
50th (median, centre), and the 75th quantile. Whiskers range from minima (Q1 – 1.5 • IQR) to maxima 
(Q3 + 1.5 • IQR) with points above or below representing potential outliers. This figure is related to 
Figure 5B which shows ORs for the DrugBank /DGIdb combination. 
 
  



 
 
Figure S8. Network degree distribution of drug target genes. 
Histograms showing the degree distribution of drug target genes and non-drug target genes in each 
network across drug databases (drug-indication and drug-target links, (A)-(E)). The difference in log-
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degree and the p-values from two-sided t-tests are shown in the title. This figure is related to Figure 
5C which shows network degree distributions for the DrugBank /DGIdb combination. 
  



Supplemental Tables 
 
Table S14 . Network properties. 
Network properties of the weighted networks that were analysed in this study (STRING: protein-

protein interaction network, FAVA: co-expression network including proteomics, CoXRNAseq: co-

expression network); related to STAR Methods section “Networks”. 

 

Nodes: number of nodes (genes) in the network. 

Edges: number of total edges in the network. 

Median degree: median degree in the network (i.e., weighted node degree) 

Average log-degree: mean log-degree in the network 

sd log-degree: standard deviation of the log-degree in the network 

 

Network STRING FAVA CoXRNAseq 
Nodes 18573 15829 18695 
Edges 11136598 951878 1119670 
Median degree 257968.00 10672.79 356.44 
Average log-degree 12.35 9.12 5.93 
sd log-degree 0.96 1.73 1.02 

 
 
Supplementary Table 15: Enrichment of testable and measured proteins for drug target genes. 
Two-sided binomial test results to determine the enrichment of testable (~1,870, proteins that had 

at least 1 pQTL) and measured (~4,450) proteins for drug target genes among all protein-coding 

genes; related to STAR Methods section “Enrichment of proteins for drug targets”. 

 

Drug database 
Observed 
proportion 

Expected 
proportion Pval Set 

Ruiz/DGIdb 0.2057 0.0964 2.05E-49 Testable 
Ruiz/STITCH 0.2172 0.0964 2.49E-51 Testable 
DrugBank/DGIdb 0.2164 0.0964 1.30E-47 Testable 
DrugBank/STITCH 0.2246 0.0964 3.20E-50 Testable 
ChEMBL/ChEMBL 0.1324 0.0964 5.04E-02 Testable 
Ruiz/DGIdb 0.4045 0.2291 1.80E-69 Measured 
Ruiz/STITCH 0.4689 0.2291 3.88E-108 Measured 
DrugBank/DGIdb 0.4171 0.2291 1.15E-64 Measured 
DrugBank/STITCH 0.4820 0.2291 3.76E-105 Measured 
ChEMBL/ChEMBL 0.3015 0.2291 5.98E-03 Measured 

 



Appendix C

Cardiometabolic drug response pharmacoge-

netics using EHRs from biobanks

This article is presented in Chapter 4.
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Abstract

DNA variants are known to contribute to inter-individual variability in drug response. Yet, despite the

success of genome-wide association studies (GWAS) to unravel disease genetics, the genetic architec-

ture of pharmacogenetic efficacy remains poorly understood. Here, we extract clinical and medication

prescription data from electronic health records (EHRs) and conduct GWAS and rare variant burden

test in the UK Biobank (discovery) and the All of Us program (replication) on ten cardiometabolic drug

response outcomes including lipid response to statins, HbA1c response to metformin and blood pres-

sure response to antihypertensives (N = 780-26,365). At genome-wide significance level, we replicate

previously reported findings while also identifying PCSK9 as a novel genetic determinant of LDL choles-

terol response to statins (N = 17,063). We compare drug response genetics to disease and disease

progression genetics in medication-naive individuals and find strong concordance, with 7 out of 14 sig-

nals being general prognostic and not drug-specific genetic markers. Furthermore, we demonstrate

that individuals whose baseline condition is worse than expected based on their respective polygenic

risk scores (PRS) are expected to have improved treatment efficacy. In summary, we highlight the value

of using EHRs to study drug response and to identify clinically relevant genetic and environmental pre-

dictors that enable optimized treatment strategies.
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Introduction1

Genetic factors can contribute to inter-individual variability in drug response. However, despite the im-2

mense progress of genome-wide association studies (GWAS) for complex traits and diseases, progress3

in pharmacogenetics (PGx) to find genetic predictors of drug response is much slower. PGx GWAS4

represent less than 10% of all entries in the GWAS Catalog with median sample sizes of 1,220 for PGx5

GWAS published between 2016 and 2020 [1]. As a result of low sample size and lack of cohorts suit-6

able for pharmacogenomic studies, relatively few robust PGx associations have been identified to date7

[1, 2, 3].8

9

Several PGx GWAS consortia have formed over the years to study the genetics of drug efficacy in10

larger sample sizes. For instance, the Genomic Investigation of Statin Therapy (GIST) consortium has11

identified variants in the LPA, APOE, SORT1/CELSR2/PSRC1 and SLCO1B1 regions as modulators of12

low-density lipoprotein cholesterol (LDL-C) response to statins by combining randomized controlled trials13

(RCTs) and observational studies [4]. Similarly, the Metformin Genetics (MetGen) consortium has iden-14

tified SLC2A2 as influencing hemoglobin A1c (HbA1c) response to metformin [5], and more recently15

a meta-GWAS on HbA1c response to GLP-1 receptor agonists found variants in ARRB1 to influence16

drug efficacy [6]. Furthermore, the International Consortium for Antihypertensive Pharmacogenomics17

Studies (ICAPS) has published multiple GWAS investigating blood pressure response to several antihy-18

pertensive drug classes (beta blockers, calcium channel blockers (CCBs), thiazide/thiazide-like diuretics,19

ACE-inhibitors (ACEi)/angiotensin receptor blockers (ARB)) [7, 8, 9].20

21

Biobanks coupled with electronic health records (EHRs) that comprise medication data provide new22

opportunities to discover PGx associations [1, 10]. These massive datasets have already contributed23

to the replication of known PGx interactions as well as the discovery of new putative associations in24

national biobanks such as the Estonian [11] and UK Biobank (UKBB) [12, 13]. More recently, GWAS25

on longitudinal medication pattern extracted from the Finnish nationwide drug purchase registry in the26

FinnGen study identified tens of cardiometabolic risk loci specific to medication use and not associ-27

3



ated with the underlying indication [14]. Yet, PGx biobank studies so far have either focused on known28

pharmacogenes and their associations with adverse drug reactions, drug dosage and drug prescribing29

behavior or analyzed the genetics of temporal medication use in isolation of disease phenotypes. What30

remains largely unexplored is the integration of longitudinal medication and phenotypic data to screen31

for genetic determinants of drug efficacy at a biobank scale.32

33

Here, we extracted clinical and medication prescription data from EHRs and conducted PGx asso-34

ciation analyses on the change in biomarkers following cardiometabolic drug therapy (Figure 1a). We35

assessed associations with both common and rare variants by performing GWAS and rare variant bur-36

den tests on sequencing data. Discovery analyses were conducted in the UK Biobank (UKBB) [15] and37

replication analyses in the All of Us (AoU) research program [16] (Figure 1b). In follow-up analyses,38

we compared drug response genetics to the genetics of baseline and longitudinal biomarker changes39

in medication-naive individuals to dissect medication- and disease-specific components (Figure 1c). Fi-40

nally, we performed stratification analyses based on the polygenic risk scores (PRS) of the underlying41

disease and demonstrate their value in predicting drug response. In summary, we present a compre-42

hensive resource of the genetic architecture of cardiometabolic drug response and showcase the value43

and challenges in analyzing EHR-coupled biobanks to study inter-individual variability in drug response.44
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Figure 1: Study design. a Drug response study design using electronic health records (EHRs) from
the UK and All of Us biobanks. Baseline and post-treatment phenotypes were extracted from EHRs or
biobank assessment visits before and after the first recorded prescription, respectively. Different timings
relative to the first prescription were tested as well as the use of single and average values over multiple
baseline and post-treatment measures if available. Drug response phenotypes defined by the difference
in post-treatment and baseline measures were tested for ten cardiometabolic medication-phenotype
pairs. b Discovery genetic association analyses were conducted in the UK Biobank and replicated in
the All of Us research program on common variants (GWAS analysis) and rare variants through burden
tests. c Follow-up analyses compared the genetics of baseline, longitudinal change and drug response
genetics.
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Results45

Overview of the analysis46

In the drug response discovery analyses, we extracted longitudinal prescription and phenotypic data47

from the UKBB primary care data which we combined with phenotypic data from the assessment visits.48

We then constructed EHR-derived drug response cohorts for the following medication-phenotype pairs:49

statin-lipids (LDL-C, high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC)), metformin-50

HbA1c, antihypertensive-systolic blood pressure (SBP; by antihypertensive class (ACEi, CCB, thiazide51

diuretics) and all classes combined), beta blocker-SBP and beta blocker-heart rate (HR). Individuals52

were only part of a drug response cohort, if a phenotype measurement was available before and after53

treatment initiation in addition to passing several other quality control (QC) steps (Method section: Study54

design and phenotype definitions, Figure S1, Table S3). For each drug response phenotype, we consid-55

ered two filtering scenarios, a stringent and a lenient one. While more stringent QC should result in a56

cleaner phenotype definition, this comes at the cost of reduced sample size and thus statistical power.57

Given the sharp drop in sample size with more stringent criteria, the lenient filtering strategy constitutes58

the default setting throughout this study. In both stringent and lenient scenarios, we tested single and59

average baseline and post-treatment values over multiple measures with average values being the de-60

fault (Figure 1).61

62

In each drug response cohort, we first conducted GWAS to discover common genetic predictors63

(minor allele frequency (MAF) � 0.01) of drug efficacy. In a second step, we performed genome-wide64

burden tests using whole exome sequencing (WES) data to assess associations with rare variants (MAF65

< 0.01). Replication analyses of identified PGx variants in the discovery analyses and across the litera-66

ture were conducted in ⇠250,000 participants of the AoU research program with available whole genome67

sequencing data (WGS). Following genetic association studies, we compared drug response and un-68

derlying disease genetics, assessed baseline trait PRS as predictor of drug response and investigated69

the regression-to-the-mean phenomenon, whereby individuals converge to their genetically predicted70

biomarker level over time.71

6



Drug response GWAS using EHRs from the UKBB72

In the LDL-C response to statin GWAS, four loci were identified with the strongest signal being in the73

APOE region on chromosome 19 (rs7412 T>C, beta = -0.35, p-value = 1.53e-80), followed by the74

SLC22A3/LPA locus on chromosome 6 (rs10455872 G>A, beta = 0.15, p-value = 1.1e-21), SORT1/75

CELSR2/PSRC1 (rs7528419 G>A, beta = -0.086, p-value = 3.03e-15) and PCSK9 locus (rs1159114776

T>G, beta = -0.27, p-value = 2.2e-12) on chromosome 1 with the SLC22A3/LPA and APOE harbouring77

secondary signals (Table 1; Figure 2a; lenient filtering with average values if available, N = 17,063). TC78

response to statins, for which we had a larger sample size (more TC than LDL-C measures are available79

in the primary care data, N = 26,365) confirmed the identified loci at PCSK9, SLC22A3/LPA, and APOE.80

Two additional loci were found, CETP on chromosome 16 (rs12149545 A>G, beta = 0.05, p-value =81

3.6e-10) and rs4149056 C>T in the SLCO1B1 locus, also known as Val174Ala or SLCO1B1*5, on chro-82

mosome 12 (beta = 0.059, p-value = 2.1e-9). This SNP has previously been associated with LDL-C83

statin response [17] as well as clinical myopathy [18]. HDL-C response to statin GWAS identified CETP84

as single genome-wide significant locus (rs11076175 G>A, beta = -0.04, p-value = 5.4e-11) with the85

HDL-C component likely being responsible for this same signal in the TC response GWAS. No genome-86

wide significant hits were found in the HbA1c response to metformin GWAS (N = 4,124; Figure S7), SBP87

response to antihypertensives (N = 1,236-6,199; Figure S9) and HR/SBP response to beta blockers (N88

= 764-2,173; Figure S7).89

90

The impact of single vs average baseline/post-treatment measures was minimal, and a difference91

was only observed for TC response to statin, with SLCO1B1 reaching genome-wide significance only92

with average values (Figure S5; Table S5). The difference between stringent and lenient filtering was93

more pronounced, as sample sizes almost doubled with more lenient settings. For statins, this rise was94

largely due to the extended baseline period. For metformin and antihypertensives, we excluded individ-95

uals taking any related medication in the stringent filtering setting, whereas in the lenient setting, sample96

size largely increased by allowing metformin and antihypertensives to act as add-on therapy to sulfony-97

lureas and other antihypertensives, respectively, if consistently taken during pre- and post-treatment98

7



periods of the studied medication (Figure S2-3). As a consequence of lower statistical power, only 999

out of the 14 signals found in the lipid-statin GWAS were detected in the stringent filtering scenarios100

(Figures S4-5; Table S5).101

Replication analysis in the All of Us research program102

We conducted replication analyses in the AoU program (v7; N ⇡ 250,000 with available short-read WGS103

data). As in the UKBB, longitudinal prescription and phenotypic data were extracted from EHRs and104

used to construct drug response cohorts by following the same methodology as in the UKBB (Methods,105

Table S6). Cohort characteristics were similar as in the UKBB (Table S6, Figure S10). Mean statin106

starting age was 58 years compared to 61 years in the UKBB and as in the UKBB post-treatment lipid107

levels were on average measured a year after the first prescription. The main difference was observed108

in the regularity of statin prescriptions. Whereas in the UKBB, participants had on average a prescription109

every two months 87% of the time, this number dropped to 42% in the AoU. There were slightly less statin110

users as in the UKBB, but similar to the UKBB, the main reasons for being excluded in the PGx cohort111

were missing baseline and/or post-treatment measures in the considered time windows leaving 9,944,112

6,713 and 11,120 individuals in the LDL-C, TC and HDL-C response to statins, respectively. Among the113

14 signals, 7 replicated at the Bonferroni-corrected replication threshold of 0.05/14 = 0.00357 and 10114

at a nominal p-value of 0.05 (all directionally concordant). Signals not replicating nominally include the115

secondary signal at the SLC22A3/LPA locus in the LDL-response to statin GWAS, and the SLCO1B1,116

CETP and secondary APOE (PVR/CEACAM19/IGSF23 locus) in the TC response to statin GWAS,117

likely owing to the much lower sample size of TC in the AoU compared to the UKBB (N = 6,713 vs118

26,365).119
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EHR- compare to cohort-derived PGx GWAS120

From the literature we extracted genetic predictors reported for the assessed cardiometabolic medication-121

biomarker pairs. We adopted the criteria from Nelson et al., 2016 [2] that provide a curated list up to July122

2015 by querying the GWAS catalog [19]. Briefly, genetic variants were required to pass the genome-123

wide significance threshold of 5e-8 and show evidence of independent replication. Reported GWAS124

stem either from randomized controlled trials or observational studies often meta-analyzed together.125

126

Five independent loci were reported for LDL-C response to statins of which three (APOE, LPA, and127

SORT1) and two (APOE and SORT1) passed genome-wide significance in the discovery (UKBB) and128

replication (AoU) cohort, respectively (Table 2). SLCO1B1 locus was nominally significant in the UKBB129

(p-value = 1.21e-03) although genome-wide significant with TC as the assessed biomarker for which130

sample size was larger (p-value = 2.13e-09). ABCG2 associated with LDL-C reduction following rosu-131

vastatin therapy in the JUPITER trial [20] was found to be insignificant in the UKBB and AoU (p-values132

of > 0.05) and did also not reach genome-wide significance in a later, larger GWAS meta-analysis of all133

statins combined [4]. HDL-C response GWAS to statins identified CETP as single genome-wide signifi-134

cant locus, in line with the UKBB-derived GWAS [21]. Overall, EHR-derived PGx signals on lipids agree135

well with those reported in cohort studies, with PCSK9 found to be novel among the signals robustly136

replicating in the AoU.137

138

GWAS of HbA1c-response to metformin identified ATM [22], SLC2A2 [5] and PRPF31 [23], none of139

which replicated in the EHR PGx GWAS (p-values > 0.05). While this could be a power issue given the140

lower sample sizes (4,124 and 4,676 in the UKBB and AoU, respectively), it should also be noted that141

none of the studies have reported the same locus twice and the ATM and SLC2A2 loci were insignificant142

in the ACCORD clinical trial GWAS that was conducted later (p-value > 0.1) [23]. Although several loci143

have been found to influence blood pressure response to anti-hypertensives at a suggestive p-value144

threshold, no genome-wide significant hits have been reported [24].145
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Rare variants have a modest impact146

While common genetic variants have been assessed as predictors of drug response phenotypes in147

multiple studies, the impact of rare variation is less well known. Making use of sequencing data (WES148

and WGS in the UKBB and AoU, respectively), we conducted rare variant burden tests for all ten drug149

response phenotypes (Figure 1). We included missense and putative loss-of-function (LoF) variants150

with MAF < 1% in optimal kernel association tests (SKATO) [25]. Two genes survived multiple testing151

correction (p-value < 0.05/18,983 = 2.63e-06), namely PCSK9 for LDL-C response (p-value = 7.55e-152

08) and ABCA1 (p-value = 2.30e-07) for HDL-C response to statin. Given the genome-wide significant153

association of rs11591147 within the PCSK9 locus, we conducted a sensitivity analysis to ascertain that154

the signal is not driven by rare variants in LD with this SNP. Conditioning on rs11591147, the association155

with PCSK9 remained significant (p-value = 3.89e-08) meaning that common and rare variants have156

an independent effect on LDL-C response in this gene region. ABCA1 is known to be responsible for157

cellular cholesterol efflux and mutations in this gene have been shown to cause familial HDL deficiency158

and Tangier disease, a rare and severe form of HDL deficiency [26]. Both gene associations replicated159

in the AoU at a p-value < 0.05/2 = 0.025 (p-values of 1.21e-05 and 0.0243 for PCSK9-LDL-C and160

ABCA1-HDL-C, respectively).161

Baseline, longitudinal change and drug response genetics are similar162

As most of the identified genetic loci can also be identified in GWAS of the underlying disease, we tested163

whether drug response variability is primarily due to drug-gene interactions or liability to disease. First,164

we repeated the GWAS analysis by including the respective lipid biomarker PRS as covariate. In the165

LDL-C response to statin GWAS, the SORT1/CELSR2/PSRC1 locus no longer reached genome-wide166

significance, and neither did the CETP locus in the TC and HDL-C response GWAS (Figure 2a, Table167

S5). In addition, effect sizes of the APOE locus were attenuated in the LDL-C and TC response GWAS.168

Disappearance and attenuation of GWAS loci suggests that drug response signals may be due to the169

underlying disease liability and not the treatment itself while also suggesting that disease PRS can serve170

as predictors of drug response (see next section).171
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172

We further conducted a control GWAS, or disease progression GWAS, where instead of before and173

after measures relative to medication start, we used two measures with an equivalent time interval174

between them in medication-naı̈ve individuals (Methods). The SORT1/CELSR2/PSRC1, CETP and175

APOE loci (Figure S10, Table S6) all reached genome-wide significance, evidencing that these loci are176

not or only partly specific to the treatment intervention. The same trend held for the two rare-variant177

associations that were detected in statin-users. Although not surviving multiple testing correction, the178

burden of rare coding variants in both PCSK9 and ABCA1 were strongly associated with LDL-C (3.43e-179

06) and HDL-C (p-value = 3.91e-06) longitudinal change, respectively. Genetic associations mirrored in180

drug response and disease progression analyses are likely to arise due to the regression-to-the-mean181

effect, i.e., the convergence to genetically predicted levels to which these loci strongly contribute. When182

calculating the genetic correlations between the biomarker levels vs their change upon medication use,183

we observed indeed a strong concordance across drug-response phenotypes ranging from rg of 0.20 to184

0.80 (Figure 2b, Table S7). Genetic correlations between drug response and disease progression (rg of185

0.27 to 0.69), as well as between disease progression and baseline biomarker levels (rg > 0.73) were186

also found to be very high (Table S7).187
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Figure 2: PGx GWAS results and genetic correlation with baseline traits. a Manhattan plots of lipid
response to statins derived from EHRs of the UKBB (lenient filtering with average values over multiple
measures). GWAS association results of the bottom row are adjusted for the polygenic risk scores (PRS)
of the assessed lipid trait. Loci significant in either the adjusted or unadjusted setting are highlighted
in red and annotated with the closest gene. The horizontal line denotes genome-wide significance (p-
value < 5e-8). b Genetic correlations (rg) between PGx drug response and underlying baseline trait for
cardiometabolic medication-phenotype pairs. Error bars correspond to the standard error.

In Figure 3a-d, we depict the comparison between disease, disease progression and drug response188

genetics at the SNP-level. The signal at the APOE locus was strongest for baseline LDL-C (bbase =189

0.60, p-value < 1e-300), remains for LDL-C longitudinal change (b0 = 0.20, p-value = 1.80e-108), but190

with a significantly weaker effect than for the drug response (bdrug = 0.30, p-value = 1.60e-24; pdiff =191

0.0074; simvastatin 40mg users who represent the largest starting statin type-dose group; Figure 3a).192

Conversely, the SORT1 signal was significant in all three scenarios, but with no difference in effect193
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sizes between longitudinal change and drug response LDL-C (pdiff = 0.11; Figure 3b). SLCO1B1 is the194

only locus associated to neither TC baseline (p-value = 0.12) nor longitudinal change (p-value = 0.92),195

evidencing its sole implication in pharmacokinetics (Figure 3c). Similarly to SORT1, the role of CETP196

in drug response is merely driven by the regression-to-the-mean phenomenon (pdiff = 0.29; Figure197

3d). Assessing all 14 genome-wide significant signals, we found that 7 were driven by disease liability198

(pdiff > 0.05; Table S9). While comparison with disease progression in controls allows to disentangle199

which loci are disease- and which are medication-specific, it also shows that PRS-adjustment in200

drug-response GWAS can already hint the difference to some extent (PCSK9 remained significant after201

PRS adjustment, although analysis on the SNP-level could not find a difference between drug response202

and longitudinal change).203

204

Furthermore, we disentangled whether high PRS contribute to better or worse drug response outcomes.205

While lipid PRS clearly determine baseline levels, they also affect lipid evolution (Figure 3e-f). Nonethe-206

less, the effect of LDL-C PRS on drug response (bdrug = 0.134, p-value = 7.42e-39) was slightly stronger207

than on longitudinal change (b0 = 0.131, p-value = 1.68e-257; pdiff = 5.5e-26) suggesting that a high PRS208

has an independent deteriorating effect on treatment efficacy. This effect was reversed for individuals209

with a high HDL-C PRS: Upon statin treatment, increase in HDL-C was not as high as for statin-free210

controls (pdiff = 0.044).211
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Figure 3: Comparison of baseline, longitudinal change and drug response genetics stratified by PGx
variants (a-d) and lipid PRS (e-f). The baseline panel (t0) groups statin-free controls and statin users
(simvastatin 40mg corresponding to the largest starting statin type-dose group), and shows their sex
and age adjusted, centered baseline level stratified by genotype/PRS. The following two panels (t1)
show for each group their follow-up measure (either second or post-treatment measure) stratified by
genotype/PRS. The follow-up measure is adjusted for sex, age and baseline with adjustment performed
prior statin-status stratification. Genotype/PRS association slopes with lipid levels at baseline (bbase),
second time point in statin-free controls (b0) and statin users (bdrug) were derived through regression of
the standardized phenotypes (baseline/second/post-treatment measure, respectively) on the genotype
dosage/PRS adjusted for sex, age and baseline (for t1 measures). The p-value (p) shows the difference
in slope between statin and non-statin users and corresponds to the significance level of the genotype
dosage/PRS and drug status interaction term. Low, middle and high PRS stratified groups were defined
by the lowest and highest decile cut-offs, respectively, however, in all regression analyses the continuous
PRS distribution was evaluated. Dots correspond to the mean of the adjusted baseline and second/post-
treatment measure in each stratified group and error bars to the standard deviation. Numeric values and
number of individuals within each stratum are shown in Table S10.
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Polygenic risk scores as predictors of drug response212

The strong associations between drug response and PRS, as well as the high genetic correlations213

between drug response and underlying traits, indicates the potential of PRS for drug response prediction214

and patient stratification. Although PRS can serve as a predictor of drug response, starting baseline215

levels remain the best predictor of post-treatment levels (Figure 4a). Focusing on LDL-C response to216

statin, HbA1c response to metformin and SBP response to antihypertensives, we found that baseline217

levels explained 23.9%, 10.4%, and 12.8% of the variation, respectively. Explained variance increased218

to 25.8%, 10.6%, and 12.84% when integrating corresponding LDL-C, type 2 diabetes (T2D) and219

hypertension (HT) PRS with the p-values of the PRS, conditional on baseline, being 2.61e-93, 0.011220

and 0.041, respectively. When additionally including all cohort-specific covariates (Table S3 with the221

exception of principal components), the explained variance of drug response increased to 30.0%,222

17.2%, and 14.8%. Strong associations between drug response and PRS were also observed for the223

remaining medication-phenotype pairs (Table S11).224

225

In Figure 4b, we highlight how additional stratification by drug response genetic signals can improve226

prediction accuracy for post-treatment LDL-C levels following statin initiation. Additional stratification by227

the APOE genotype, the top signal in the LDL-C response GWAS, increased the explained variance to228

26.2% compared to 25.8% for baseline and LDL-C PRS predictors alone. It is important to note that229

the effect of PRS on both baseline levels and drug efficacy can lead to differing interpretation as to230

whether high PRS increases treatment benefits or leads to worse outcomes. LDL-C reduction is biggest231

for individuals with high LDL-C PRS (1SD increase in PRS leads to 0.075 mmol/L increased reduction,232

p-value = 2.81e-28), however, once accounting for baseline levels, LDL-C reduction is smaller in these233

individuals (1SD increase in PRS leads to 0.11 mmol/L less reduction, p-value = 2.61e-93; Table S11).234

Thus, for same starting levels a higher genetic burden decreases drug efficacy.235
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Figure 4: Drug response measures stratified by baseline and PRS. a Individuals stratified by 1) baseline
levels (LDL-C, HbA1c and SBP, respectively) and 2) PRS (LDL-C, T2D and hypertension (HT), respec-
tively) quintiles with each tile displaying the average post-treatment value (LDL-C, HbA1c and SBP,
respectively). Number of individuals for statin-LDL, metformin-HbA1c and antihypertensives-SBP are
17,044, 4,136 and 6,226, respectively. b Individuals taking statins stratified by 1) LDL-C baseline levels,
2) LDL-C PRS and 3) rs7412 genotype (individuals with the TT genotype are omitted as their sample
size was too low). Boxes bound the 25th, 50th (median, centre), and the 75th quantile. Whiskers range
from minima (Q1 – 1.5*IQR) to maxima (Q3 + 1.5*IQR) with points above or below representing potential
outliers. Numerical values and number of individuals within each stratum are shown in Table S12.

Discussion236

In this study, we demonstrate the value of biobanks coupled to EHRs to study the genetics of car-237

diometabolic disease medications. We conducted discovery in the UKBB and replication analyses in238

the AoU, and assessed the impact of common and rare variations on drug efficacy. We show that239

signals from EHR-derived PGx GWAS are concordant with those observed in the literature and dissect240

medication- and disease-specific components.241

242

Overall, we found only a few genetic variants to influence cardiometabolic drug response in line with243

18



other studies that often identified only a few or even no genome-wide significant signals [6, 8, 27].244

A review on drug efficacy GWAS reported that only 15% of drugs exhibit robust gene-treatment245

interactions [2]. While we could identify a novel PGx lipid locus, samples sizes remain too low to have246

a definite answer on whether low numbers of genetic predictors are a consequence of limited statistical247

power or a lack of genetic influence on drug response which would be corroborated by low and often248

insignificant heritability estimates (Table S8). We could not find evidence for rare variants to play a major249

role in drug response variability and the associations we found are likely driven by disease susceptibility.250

251

Merely assessing drug response variability in treated individuals can make it challenging to distinguish252

between prognostic (related to disease progression) and treatment-specific genetic markers. While253

RCT data with a control arm remain the gold standard to differentiate between the two, large biobank254

data also allow to construct (non-randomized) control groups. In several comparative analyses we show255

the similarity between baseline, drug response and disease progression genetics and highlight which256

loci exhibit pure prognostic effects. We also demonstrate that integrating PRS of the underlying disease257

as covariate in GWAS can at least partially correct for disease- while sparing drug-specific effects.258

259

Even though disease liability is not treatment-specific, the predictive value of disease PRS for drug260

response can be clinically relevant and we found that high PRS led to lower biomarker reductions when261

accounting for baseline levels. Previously, several studies showed significant associations between262

disease PRS and drug response, although as highlighted before, the effect of PRS on both baseline and263

drug efficacy, and adjustments thereof, can result in opposing findings or interpretations as to whether264

high PRS increases treatment benefits or risk for treatment resistance. A recent study showed that265

sulfonylureas therapy was more effective in participants with higher T2D PRS with findings replicated in266

a separate cohort [28]. On the other hand, high schizophrenia PRS were found to reduce antipsychotic267

efficacy [29] and similarly high LDL-C and SBP PRS were associated with uncontrolled hypercholes-268

terolaemia and hypertension, respectively [30]. Using RCT data, high coronary heart disease (CHD)269

genetic risk was found to associate with increased CHD risk, although the comparison between controls270
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and treated participants revealed that relative risk reductions were higher among individuals with a high271

PRS, suggesting that this group benefited the most from lipid-lowering therapy [31, 32, 33, 34]. Taken272

together, our results and these studies seem concordant with the paradigm that a genetic burden leads273

to worse outcomes overall, however, treatment potential being higher in high-risk patients (i.e., higher274

baselines), we can observe larger relative treatment benefits in individuals with increased genetic risk.275

The reason for these opposing forces, we believe, is that higher baseline levels for non-genetic reasons276

can be easier alleviated by medication, while those with unfavourable biomarker levels due to genetic277

reasons are less amenable to correction via medication. An alternative explanation (which can also278

be an argument for simple longitudinal change, i.e., non-drug-specific change) is that individuals with279

temporally increased biomarker level at baseline are bound to regress back to their lifecourse mean,280

and even more so if their genetic risk is low.281

282

Our study has several limitations. First, we rely on data from EHRs to derive before and after treatment283

biomarker levels, and thus cannot exclude the possibility that individuals were already on medication284

prior the first recorded prescription. Second, despite a large fraction of individuals with medication285

records in the biobanks, final PGx cohort sample sizes are limited by the number participants on a286

certain medication and further reduced due to incomplete or missing data. Of the ⇠65,000 participants287

with a statin prescription in the UKBB, 63% could not be considered for the LDL-C response analysis288

because of missing baseline and/or post-treatment measures. Third, polypharmacy has only been taken289

into account within and not across medication groups. Even within, especially for antihypertensives290

where frequent changes in medication regimen occur, it can be difficult to determine appropriate filtering291

and covariate strategies to study individual drug classes as sample sizes are too low when restricting292

the analysis to individuals taking antihypertensives from a single class (i.e., stringent filtering strategy).293

Forth, our analysis focuses on continuous biomarkers and not clinical events. LDL-C, SBP, HR and294

HBA1c merely serve as surrogate end points of CHD and T2D events, and the genetic interplay with295

drug efficacy may be different when assessing hard clinical endpoints. Finally, we rely on observational296

data to draw conclusions about drug efficacy. Although, we contrast the results with control analyses297
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on longitudinal biomarker change, control and medication groups were not defined randomly and by298

definition have markedly different disease profiles.299

300

To conclude, we show that EHRs enable new opportunities to study drug response and reveal the301

complex contribution of genetic and environmental components to drug efficacy. While we find that the302

influence of common and rare genetic variants on drug response is relatively low, larger sample sizes303

will be needed to capture the full extent.304
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Methods305

Study population306

The UK Biobank is a prospective study of ⇠500,000 participants of whom 45% (N ⇡ 230,000) are307

linked to the primary care data of the United Kingdom’s National Health System [15]. The primary care308

resource contains longitudinal data of GP prescription records (datafield #42039) and GP clinical event309

records (datafield #42040) encoded through British National Formulary (BNF), National Health Service310

(NHS) dictionary of medicines and devices (DM+D), Read V2 and Clinical Terms Version 3 (CTV3)311

codes and are available up to 2016 or 2017 (depending on the data supplier). Analyses were conducted312

on individuals of white British ancestry, with no excessive number of relatives and differing reported and313

inferred gender, excluding participants who have withdrawn their consent (UKBB Sample-QC #531; N314

⇡ 200,000).315

Study design and drug response phenotypes316

We derived drug response phenotypes for the following cardiometabolic medication-phenotype pairs:317

statin-lipids (LDL-C, HDL-C, TC), metformin-HbA1c, antihypertensive-SBP (by antihypertensive class318

and all classes combined), beta blocker-SBP and beta blocker-HR. For each drug response phenotype,319

we considered stringent and lenient filtering scenarios which differed by regularity in prescription320

pattern, pre-treatment and post-treatment time windows as well as handling of treatment changes (e.g.321

dose change) and concomitant medication (e.g. add-on therapy). In Figure S1 and Table S3, we outline322

the different QC filters applied to each scenario. To further increase the number of available clinical323

measures, we added measures from the initial and repeated assessment visits with their respective324

time stamps to the pool of longitudinal data (LDL-C: #30780, HDL-C: #30760, TC: #30690, HbA1c:325

#30750, SBP: #4080, HR: #102). Read V2 and CTV3 codes encoding these variables in the primary326

care data are listed in Table S1 (see Note S1 for HbA1c unit conversion). Baseline measures were taken327

three months (stringent filtering) or up to a year (lenient filtering) before treatment initiation and 7 days328

after, either as the closest measure to treatment start or an average of all available measures during329

the pre-treatment period. Post-treatment period was defined as 6 months after medication start (4330
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months for SBP and HR as the effects of antihypertensives and beta blockers are expected to be more331

immediate than for statins and metformin) up to 1.5 (stringent) and 2 (lenient) years after, and either the332

closest measure to treatment start or an average of all available measures during the post-treatment333

period were taken. Consequently, we derived drug response phenotypes for four scenarios: stringent334

filtering-single measure, stringent filtering-average measures, lenient filtering-single measure, lenient335

filtering-average measures.336

337

To determine medication regimens (medication start, treatment changes, prescription regularity), we338

first extracted all available prescriptions for each broader medication class (lipid-regulating, antidiabetic339

including insulin, and antihypertensives; BNF and Read V2 codes in Table S2). We then selected340

individuals with entries of the medication of interest (primary medication) and omitted individuals taking341

medications other than the primary medication of the same class within a year of initiating the primary342

medication. In the lenient filtering scenarios, we considered exceptions to this rule such as metformin343

being an add-on therapy to sulfonylureas, with sulfonylureas treatment being a covariate. Allowed344

scenarios for add-on therapy for antihypertensive are shown in Figure S2. Individuals taking primary345

medications in combination with a medication of the same class (e.g. statins in combination with346

ezetemibe) were filtered out (see Note S2). If multiple drugs corresponded to a medication class (e.g.347

different statin types), we included all drugs taken by at least 20 individuals. When BNF codes were348

truncated to miss the drug ingredient, we extracted them by matching drug names and brand names349

in the drug description. Likewise, dosage information was retrieved from the description using regular350

expressions [12].351

352

In Table S4, we show the study characteristics of the individuals in each drug response phenotype353

cohort. Furthermore, flow diagrams in Figure S3 show the number of individuals after each QC step. The354

different QC steps were as follows: i) available baseline and post-treatment measures, ii) presence of a355

primary care record other than baseline/primary medication within the two years preceding medication356

start to avoid falsely considering a change to a new health care provider as a first prescription, iii)357
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presence of a prescription part of the broader medication class after post-treatment measure, iv) drug358

change between medication start and post-treatment measure, v) regular prescriptions proxying drug359

adherence and vi) minimum baseline level (e.g. LDL-C � 2.6 mmol/L). We only considered cohorts with360

more than 500 individuals for GWAS analyses.361

GWAS362

In the genetic association analyses, we define the drug response phenotype as the post-treatment363

measure adjusted for baseline measure and study-specific covariates including sex, age at the time364

of medication start, time between medication start and post-treatment measure, drug type and dose if365

applicable (Table S3) as follows:366

post-treatment phenotype = Gi + Baseline phenotype + covariates + PC1-20 + ✏ (1)

where Gi is the genotype under assessment and PC1-20 are the first 20 principal components.367

Using post-treatment measures adjusted for baseline levels results in the same analysis as using the368

difference between post-treatment and baseline measures adjusted for baseline levels [35] .369

370

GWAS analyses were conducted using REGENIE (v3.2.6) which accounts for sample relatedness [36].371

REGENIE first fits a whole-genome regression model (step 1) before testing each SNP in a leave-372

one-chromosome-out (LOCO) scheme (step 2). In step 1, genotyped SNPs were filtered as follows373

using PLINK2 [37]: minor allele frequency (MAF) � 0.01, Hardy-Weinberg equilibrium p-value � 1e-15,374

genotyping rate � 0.99, not present in high linkage disequilibrium (LD) regions [38], not involved in inter-375

chromosomal LD [36] and passing LD pruning at r2 < 0.9 with a window size of 1,000 markers and a376

step size of 100 markers which resulted in 424,544 SNPs included in step 1. In step 2, variants imputed377

by the Haplotype Reference Consortium panel with a MAF � 0.01 were tested (up to 7.5 million markers378

depending on phenotype sample size). Individuals with missing genetic data and/or not passing genetic379

QC were excluded from the analysis. Independent signals were defined as r2 < 0.001 and clumping380

was performed using PLINK.381
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Rare variant analysis382

Rare variant analyses were conducted using REGENIE (v3.2.9). Phenotype definitions and step 1383

whole genome regression were the same way as in the GWAS analyses. In step 2, we performed384

rare variant burden tests using optimal kernel association tests (SKATO) [25]. Masks were constructed385

from rare variants (MAF < 0.01) including missense and putative LoF variants. Variant annotations and386

gene set definitions were derived following the original quality functionally equivalent (OQFE) protocol387

and provided on the UK Biobank DNAnexus research analysis platform [39]. Burden tests were then388

conducted on OQFE WES data [39].389

Replication in the All of Us biobank390

The All of Us research program is a prospective cohort recruiting up to 1 million participants [16].391

Replication analyses were conducted in the current release (v7) in which genotype data were available392

for ⇠310,000 and WGS data for ⇠250,000 individuals. In the AoU database, the Observational Medical393

Outcomes Partnership (OMOP) Common Data Model (CDM) is used for standardized vocabularies394

and harmonized data representations. Medication records were retrieved based on concept id codes395

from the RxNorm vocabulary and phenotypes from the SNOMED vocabulary. Replication analyses396

were restricted to lipid response to statins and HbA1c response to metformin for which genome-wide397

significant signals were obtained either in the UKBB analyses or reported in the literature.398

399

Similarly to the UKBB, we extract medication records by starting from the broader medication class400

(lipid modifying agents (concept id 21601853) and blood glucose lowering drugs (concept id 21600744))401

which were then classified into primary medications (statins (concept id 21601855) and metformin (con-402

cept id 1503297)), combination therapies (lipid modifying agents, combinations (concept id 21601898),403

blood glucose lowering drugs, combination (concept id 21600765) and sulfonylureas (concept id404

21600749)) and related medication from the same class. Dose information were extracted from the405

drug concept entries using regular expression or imputed by the median dose of the drug in question406

when not available. Phenotypes were extracted based on the following ancestor concept ids: LDL-C407
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(3028437), HDL-C (3007070), TC (3027114) and HbA1c (3004410). Only measures with available units408

and values in the plausible range were retained (Table S1). While lipid measures were recorded as409

mmol/L and primarily as mmol/mol for HbA1c in the UKBB (Note S1), units were mg/dL and % for lipids410

and HbA1c, respectively, which we left unconverted. Following extraction of longitudinal medication411

and phenotype measures, we followed the same QC steps as in the UKBB by applying the lenient412

filtering strategy with average baseline and post-treatment measures (Figure S1). Drug prescription413

regularity was found to be lower in the AoU, likely because drug prescriptions are only recorded from414

participating EHR sites. As a consequence, we lowered the drug regularity QC parameter and required415

a single prescription between medication start and post-treatment measures (QC9, Figure S1). Cohort416

characteristics and reason for removal are reported in Table S6 and Figure S10, respectively.417

418

GWAS: GWAS analyses were conducted using REGENIE (v3.2.4). For step 1, we used genotyped419

SNPs and filtered them as follows using PLINK2: autosomal SNPs, MAF � 0.01, Hardy-Weinberg420

equilibrium p-value � 1e-15, genotyping rate � 0.99, not present in high linkage disequilibrium (LD)421

regions [38] and passing LD pruning at r2 < 0.9 with a window size of 1,000 markers and a step size422

of 100 markers which resulted in 238,888 SNPs. The first 20 PCs were computed on the same set of423

SNPs using the FastPCA algorithm implemented in PLINK2 [40]. In step 2, we used WGS data from424

the Allele Count/Allele Frequency (ACAF) threshold callset to test associations between the genotypes425

of interest and drug response phenotypes.426

427

Rare variant analysis: We conducted SKATO analyses on rare variants from the exon regions using428

REGENIE (v3.2.4) with step 1 being the same as in the GWAS. Variant annotations and gene set defi-429

nitions were extracted from the Variant Annotation Table (VAT) provided by the AoU. Missense variants430

and putative LoF variants defined as stop gained, frameshift, splice donor and splice acceptor with MAF431

< 0.01 were included in the burden tests.432
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PRS and genetic correlations433

We extracted PRS from the UKBB that were derived from external GWAS data only (“the Standard434

PRS set” [41]) for the following phenotypes: LDL-C: #26250, HDL-C: #26242, HbA1c: #26238, T2D:435

#26285, HT: #26244. We then calculated the association between PRS and the change in biomarker436

level (baseline - post-treatment phenotype) either adjusted or unadjusted for baseline levels.437

438

We calculated genetic correlations between traits using the GenomicSEM R package (v0.0.5c) [42]. Trait439

GWAS summary statistics were obtained from the following consortia: LDL-C, HDL-C and TC from the440

Global Lipids Genetics Consortium [43] (N up to 1,320,016; European ancestry), HbA1c from the UKBB441

(#30750, N = 344,182), SBP from a meta-analysis of the UKBB and the International Consortium of442

Blood Pressure [44] (N up to 757,601) and HR from the UKBB (#102, N = 340,162).443

Longitudinal biomarker change GWAS444

We conducted biomarker change GWAS in individuals part of the primary care data that did not have445

any drug prescription indicated for the investigated disease/surrogate end point (i.e., broad medication446

class, Table S2). All participants in this set with two available measures spaced between 6 months and447

3 years which corresponds to the maximum allowed time interval between baseline and post-treatment448

measures were included. GWAS analyses were conducted analogous to the drug response GWAS,449

replacing baseline with first and post-treatment with second phenotype measure. We used the same450

covariates as in the corresponding drug response cohorts omitting drug-specific variables (Table S3).451

Data availability452

Genetic and phenotypic data from the UK Biobank and All of Us Resource are available to approved453

researchers.454

455

All GWAS and rare variant burden test summary statistics will be available at the GWAS Catalog upon456

publication.457
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Supplementary Materials for 
 

 
 

Cardiometabolic drug response pharmacogenetics 
using EHRs from biobanks  



Supplementary Note 1.  
 
HbA1c values were either DCCT (Diabetes Control and Complications Trial) aligned (codes: 

42W4. And XaERp; percentage unit) or IFCC (International Federation of Clinical Chemistry 

and Laboratory Medicine) aligned (42W5. And XaPbt; mmol/mol unit). For consistency, we 

used mmol/mol units and converted DCCT units using the NGSP/IFCC equation recommended 

by the National Glycohemoglobin Standardization Program (NGSP) network 

(https://ngsp.org/ifcc.asp): NGSP = [0.09148 * IFCC] + 2.152. 

 

Supplementary Note 2. 
 
Medication codes can correspond to multiple active ingredients taken in combination, among 

which the primary medication of interest. Since we cannot disentangle the effect of the 

primary medication compared to a second ingredient taken in combination, we filter out 

individuals with prescriptions corresponding to combination therapies during the study 

period. For statins we eliminate combination therapies with ezetimibe and fenofibrate, for 

metformin, combination therapies with sitagliptin, linagliptin, saxagliptin, alogliptin, 

dapagliflozin, canagliflozin, empagliflozin, rosiglitazone, pioglitazone, vildagliptin and for beta 

blockers, combination therapies with diuretics and aspirin. 

 

Note that this step is specific to drugs with a combined formulation and is different from the 

QC step where individuals taking a drug from the same medication class, but with a separate 

prescription code, are filtered out. 



QC 1: Prior EHR record

EHR record (other than investigated conditions) up to two years before medication start. 

QC 4: Post-measure

Minimum 120-180 and maximum 550/730 days after medication start.  

QC 2: Baseline measure
100/365 days before and 7 days after 
medication start  

QC 5: Prior related medication 

Removal of individuals having taken medication from the same broad medication class 
(lipid-lowering, antidiabetic, antihypertensive) within the year preceding the primary 
medication start. Primary medication can also act as add-on therapy in certain cases. 
This was the case for sulfonylureas in conjunction with metformin, antilipemic agents 
other than statins (e.g. fenofibrates) in conjunction with statins, and beta blockers, loop 
diuretics, and a single first-line antihypertensive in conjunction with antihypertensives*.
.

QC 6: Prescription after post-measure
Removal of individuals with no prescription from the same broad medication class after post-measure.

QC 7: Treatment change
Removal of individuals for which there is an additional drugs from the same broad
medication class prescribed between medication start and post-measure (either
medication switch or add-on). 

QC 8: Dose change
Removal of individuals with dose change between medication start and post-measure.
The average dose is taken when multiple doses are present. 

QC 9: Regular prescriptions
Removal of individuals with no regular prescriptions between medication start and 
post-measure. Regular prescriptions are defined as completenss above 60%/30%
where a completeness of 100% means a prescription at least every two months
for the duration.  

QC 3: Minimum baseline level
Removal individuals with a baseline level below 
a required minimum.  
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Figure S1. Flow diagram of quality control steps. After selecting individuals taking the 
primary medication of interest, individuals with missing clinical measures (i.e., drug response 
phenotype), medication therapy changes prior posttreatment measures, irregular 
prescriptions, or not enrolled in the health care system prior medication start. Stringent 
filtering criteria are highlighted in red and lenient ones in blue. Medication/phenotype-
specific criteria are highlighted in brown. 
 
 
 

 
 
Figure S2. Add-on therapy definition. For antihypertensives, primary medication (ACEi, CCB 
and thiazide diuretics) could also act as add-on therapy to beta blockers, loop diuretics and a 
single other antihypertensive. However, medication prescribed prior primary medication 
start was required to be prescribed afterwards (at least until posttreatment measurement 
time). If the start of a concomitant medication was after the prescription start of the primary 
medication, this would count as “treatment change” and the individual would be removed. 
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Figure S3. Number of individuals in each UK Biobank drug response cohort and reasons for 
removal (stacked barplot). The height of the bar represents the number of individuals having 
at least one prescription of the investigated drug. The bottom grey bar represents the number 
of individuals after QC steps. Note some filtering reasons are not mutually exclusive. For 
instance, baseline-medication time filtering was done after checking for prior related 
medication. Therefore, for metformin-HbA1c, it seems that more individuals were filtered out 
because of baseline-medication time than in the stringent scenario. However, given that 
individuals with previous sulfonylureas use were excluded in the stringent, but included in the 
lenient filtering setting, there is a larger pool of individuals for whom baseline measures are 
potentially missing. The same reasoning holds for antihypertensives where individuals with 
prior antihypertensive prescriptions were included in certain scenarios (see Figure S2 )  in the 
lenient filtering setting. 
 

 
 
Figure S4. Lipid response to statin GWAS results in the stringent filtering scenario. Plots on 
the left use single baseline and posttreatment measures and plots on the right average values 
if available. The horizontal line denotes genome-wide significance (p-value < 5e-8). 
 



 
 
Figure S5. Lipid response to statin GWAS results in the lenient filtering scenario. Plots on the 
left use single baseline and posttreatment measures and plots on the right average values if 
available. The horizontal line denotes genome-wide significance (p-value < 5e-8). 
 



 
 
Figure S6. HbA1c response to metformin and SBP response to beta blocker GWAS results in 
the stringent filtering scenario. Plots on the left use single baseline and posttreatment 
measures and plots on the right average values if available. The horizontal line denotes 
genome-wide significance (p-value < 5e-8). 
 
 



 
 
Figure S7. HbA1c response to metformin and SBP response to beta blocker GWAS results in 
the lenient filtering scenario. Plots on the left use single baseline and posttreatment 
measures and plots on the right average values if available. The horizontal line denotes 
genome-wide significance (p-value < 5e-8). 
 



 
 
Figure S8. SBP response to antihypertensives GWAS results in the stringent filtering 
scenario. Plots on the left use single baseline and posttreatment measures and plots on the 
right average values if available. The horizontal line denotes genome-wide significance (p-
value < 5e-8). 
 



 
 
Figure S9. SBP response to antihypertensives GWAS results in the lenient filtering scenario. 
Plots on the left use single baseline and posttreatment measures and plots on the right 
average values if available. The horizontal line denotes genome-wide significance (p-value < 
5e-8). 
 
 



 
Figure S10. Number of individuals in each All of Us drug response cohort and reasons for 
removal (stacked barplot). The height of the bar represents the number of individuals 
having at least one prescription of the investigated drug. The bottom grey bar represents 
the number of individuals after QC steps. Note some filtering reasons are not mutually 
exclusive. 
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Figure S11. Longitudinal biomarker change GWAS in medication-naïve individuals. Genome-
wide significant loci are annotated with the closest gene. The horizontal line denotes genome-
wide significance (p-value < 5e-8). 
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