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Simultaneous estimation of bi-directional causal
effects and heritable confounding from GWAS
summary statistics
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Mendelian Randomisation (MR) is an increasingly popular approach that estimates the causal

effect of risk factors on complex human traits. While it has seen several extensions that relax

its basic assumptions, most suffer from two major limitations; their under-exploitation of

genome-wide markers, and sensitivity to the presence of a heritable confounder of the

exposure-outcome relationship. To overcome these limitations, we propose a Latent Heri-

table Confounder MR (LHC-MR) method applicable to association summary statistics, which

estimates bi-directional causal effects, direct heritabilities, and confounder effects while

accounting for sample overlap. We demonstrate that LHC-MR outperforms several existing

MR methods in a wide range of simulation settings and apply it to summary statistics of 13

complex traits. Besides several concordant results with other MR methods, LHC-MR unravels

new mechanisms (how disease diagnosis might lead to improved lifestyle) and reveals new

causal effects (e.g. HDL cholesterol being protective against high systolic blood pressure),

hidden from standard MR methods due to a heritable confounder of opposite effect direction.
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The identification of frequent risk factors and the quantifi-
cation of their impact on common diseases is a principal
quest for public health policy makers. Epidemiological

studies aim to address this issue, but they are most often based on
observational data due to their abundance over the years. Despite
major methodological advances, a large majority of such studies
have inherent limitations and suffer from confounding and
reverse causation1,2. For these reasons, many of the reported
associations found in classical epidemiological studies are mere
correlates of disease risk, rather than causal factors directly
involved in disease progression. Due to this, additional evidence is
required before developing public health interventions in a bid to
reduce the future burden of diseases. While well-designed and
carefully conducted randomised control trials (RCTs) remain the
gold standard for causal inference, they are exceedingly expensive,
time-consuming, may not be feasible for ethical reasons, and have
high failure rates3,4.

Mendelian randomisation (MR), a natural genetic counterpart
to RCTs, is an instrumental variable (IV) technique used to infer
the strength of a causal relationship between a risk factor (X) and
an outcome (Y)5. To do so, it uses genetic variants (G) as
instruments and relies on three major assumptions (see Supple-
mentary Fig. 1): (1) Relevance—G is robustly associated with the
exposure. (2) Exchangeability—G is not associated with any
confounder of the exposure-outcome relationship. (3) Exclusion
restriction—G is independent of the outcome conditional on the
exposure and all confounders of the exposure-outcome relation-
ship (i.e. the only path between the instrument and the outcome
is via the exposure).

The advantage of the MR approach is that for most heritable
exposures, dozens (if not hundreds) of genetic instruments are
known to date thanks to well-powered genome-wide association
studies (GWASs). Each instrument can provide a causal effect
estimate, which can be combined with others, by using an inverse
variance-weighting (IVW) scheme (e.g. Burgess et al.6). However,
the last assumption is particularly problematic, because genetic
variants tend to be pleiotropic, i.e. exert effect on multiple traits
independently. Still, it can be shown that if the instrument
strength is independent of the direct effect on the outcome
(InSIDE assumption) and the direct effects are on average zero,
IVW-based methods will still yield consistent estimates. Methods,
such as MR-Egger7, produce consistent estimates even if direct
effects are allowed to have a non-zero offset. The third assump-
tion can be further reduced to assuming that >50% of the
instruments (or in terms of their weight) are valid (median-based

estimators8) or that zero-pleiotropy instruments are the most
frequent (mode-based estimators9).

The InSIDE assumption (i.e. horizontal pleiotropic effects
(G→ Y) are independent of the direct effect (G→ X)) is rea-
sonable if the pleiotropic path G→ Y does not branch off to X.
However, if there is such a branching off, the variable repre-
senting the split is a confounder of the X− Y relationship and we
fall back on the violation of the second assumption (exchange-
ability), making it the most problematic. Therefore, in this paper,
we extend the standard MR model to incorporate the presence of
a latent (i.e. unmeasured) heritable confounder (U) and estimate
its contribution to traits X and Y, while simultaneously estimating
the bi-directional causal effect between the two traits. Standard
MR methods are vulnerable to such heritable confounders, since
any genetic marker directly associated with the confounder may
be selected as an instrument for the exposure. However, such
instruments will have a direct effect on the outcome that is cor-
related to their instrument strength, violating the InSIDE
assumption and biasing the causal effect estimate.

In this paper, we first introduce the extended MR model and
derive the likelihood function for the observed genome-wide
summary statistics (for X and Y). We then test and compare the
method against conventional and more advanced (such as
CAUSE10 and MR-RAPS11) MR approaches through extensive
simulation settings, including several violations of the model
assumptions. Finally, the approach is applied to association
summary statistics (based on the UK Biobank and meta-analysis
studies) of 13 complex traits to re-assess all pairwise bi-
directional causal relationships between them.

Results
Overview of the method. We set up a structural equation model
(SEM) (Fig. 1) and derived how its parameters are linked to
genome-wide association summary statistics of two studied
complex traits. We then maximised the resulting likelihood
function in order to estimate bi-directional causal effects between
them (for details see Methods), in addition to inferring direct
heritabilities for X and Y, confounder effects, cross-trait and
individual trait LD-score intercepts and the polygenicity for X
and Y. All SNPs associated with the heritable confounder (U) are
indirectly associated with X and Y with effects that are propor-
tional (ratio qy/qx). SNPs that are directly associated with X (and
not with U) are also associated with Y with proportional effects
(ratio 1/αx→y). Finally, SNPs that are directly Y-associated are
also X-associated with a proportionality ratio of 1/αy→x. These
three groups of SNPs are illustrated on the βx-vs-βy scatter plot
(Supplementary Fig. 2). In simple terms, the aim of our method is
to identify the different clusters, estimate the slopes and distin-
guish which corresponds to the causal- and confounder effects. In
this paper, we focus on the properties of the maximum likelihood
estimates (MLEs) (and their variances) for the bi-directional
causal effects arising from our SEM.

Simulation results. We started off with a realistic simulation
setting of 234,000 SNPs on chromosome 10 (LD patterns used
from the UK10K panel) and 50,000 samples for both traits. Traits
X, Y and confounder U had average polygenicity (πx= 5 × 10−3,
πy= 1 × 10−2, πu= 5 × 10−2), with substantial direct heritability
for X and Y (h2x ¼ 0:25; h2y ¼ 0:2), mild confounding on X and Y

(tx= 0.16, ty= 0.11, where tx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2u � q2x

q
and ty ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2u � q2y

q
),

and a causal effect between X and Y (αx→y= 0.3, αy→x= 0). Note
that with these settings, SNPs associated with U would violate the
InSIDE assumption but might still be used by conventional MR
methods. Under this standard setting, there were no genome-

Fig. 1 Schematic representation of the extended structural equation
model (SEM). X and Y are two complex traits under scrutiny with a latent
(heritable) confounder U with causal effects qx and qy on them. G
represents genetic variants, with effects γx, γy and γu, respectively. Traits X
and Y have causal effects on each other, which are denoted by αx→y and
αy→x.
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wide significant SNPs for standard MR methods, and estimates
derived using SNPs with a p-value < 5 × 10−6 showed a down-
ward bias for all MR methods (Fig. 2a). MR-RAPS using filtered
SNPs (p-value < 5 × 10−4) was similarly downward biased
whereas MR-RAPS using the entire set of SNPs was upward
biased with the least amount of variance compared to all methods
including LHC-MR. LHC-MR in this scenario slightly over-
estimated the causal effect in comparison but had the smallest
RMSE after MR-RAPS (0.13 vs 0.06, Supplementary Data 1).

We ran all our simulation scenarios with a smaller and a larger
sample size (50,000 and 500,000) and observed that the relative
performance of the methods were in some cases sample size
specific. Smaller sample sizes often meant that standard MR
methods had little to no IVs reaching genome-wide (GW)
significance and hence we were forced to use IVs from less
stringent thresholds ( < 5 × 10−4 and < 5 × 10−6). Therefore, the
causal effects were estimated with a substantial downward bias
due to weak instrument bias (and winner’s curse). LHC-MR in
these cases was able to estimate the causal effect with less bias but
with a larger variance compared to most standard MR methods—
still outperforming them in terms of RMSE in most settings. In
the larger sample size setting, standard MR methods had IVs for
every threshold cutoff. However, a pattern also observed with
smaller sample sizes—but to a lesser extent—emerged, where the
causal estimates of some methods changed (either in mean or in
variance, most noticeably observed in weighted median and
IVW) as the threshold became more stringent. This is of
particular concern and highlights that while in this simulation
setting the 5 × 10−8 threshold may have optimally cancelled out
the different biases for IVW (downward bias due to winner’s
curse and weak instrument bias, upward bias due to genetic
confounding), its estimate remains strongly setting-dependent.
LHC-MR performed reasonably well, exhibiting lower RMSE
than most other methods, except for IVW and MR-RAPS for the
5 × 10−4 threshold (Supplementary Fig. 4a). However, we
observed that the performance of MR-RAPs is particularly setting
and threshold dependent.

Furthermore, unequal sample sizes for the two traits showed an
underestimation of the causal effects for almost all MR methods,
while LHC-MR remained the most accurate in the case where nx
(50,000) was smaller than ny (500,000). However, the perfor-
mances in the reverse scenario, where nx was larger in size, were
akin to the large sample size standard setting, where only IVW
and filtered MR-RAPS (<5 × 10−4) showed superior performance
to LHC-MR both in terms of bias and variance (see Supplemen-
tary Fig. 5).

When testing scenarios in the absence of a causal or a
confounder effect (imitating the classical MR assumptions), with
a smaller causal effect (αx→y= 0.1), or with both forward- and
reverse causal effects, we note that LHC-MR outperforms the
standard MR methods as well as MR-RAPS in all these scenarios.

When there was no causal effect (αx→y= 0), LHC-MR had the
smallest bias out of all the methods in both sample sizes (0.004 in
both, Supplementary Fig. 6a and Supplementary Fig. 7a). The
variance of the LHC-MR estimates in the larger sample size was
much lower (0.0001 vs 0.01), similarly the other methods had a
smaller variance in the larger sample size and had more clearly
seen upward biased estimates. The increased upward bias of
standard MR methods is due to the fact that confounder-
associated SNPs could only be detected in the larger sample size
and those lead to positive bias (due to the concordant effect of the
confounder on the two traits). Note that the variances of standard
MR methods are low simply because, in these settings, we were
forced to lower the instrument selection threshold, hence
artificially included many (potentially invalid) instruments, which
lowers the estimator variance while increasing bias. MR-RAPS

greatly overestimates the causal effects when the sample size is
larger.

In the absence of a confounder effect, there is not much of a
difference between the two sample sizes; standard MR methods
have a large variance and are downward biased, LHC-MR is less
biased compared to them but MR-RAPS performs best with the
least bias and variance when all the SNPs are used as instruments
(Supplementary Fig. 6b and Supplementary Fig. 7b). Trying a
smaller causal effect led to an upward bias for all MR methods
including both filterings of MR-RAPS in the larger sample size.
Alternately, when nx= ny= 50, 000, the MR methods are down-
ward biased (Supplementary Figs. 6c and 7c). Lastly, when a
(negative) reverse causal effect is introduced, all MR methods and
MR-RAPS are negatively biased in their estimation of the causal
effect (see Fig. 2b). LHC-MR has a much smaller bias for the
forward causal effect estimate in this case, and a generally small
bias for the reverse causal effect in both sample sizes (0.05 for
n= 50, 000 and 0.03 for n= 500, 000, Supplementary Fig. 4b).

Increasing the indirect genetic effects, by intensifying the
contribution of the confounder to X and Y (tx= 0.41, ty= 0.27),
led to a general overestimation of the causal effects by all methods
including LHC-MR, though more drastically seen in standard MR
methods and MR-RAPS in the larger sample size, when there is
sufficient power to pick up these confounder-associated SNPs. The
causal effect estimates of standard MR methods in the smaller
sample size were much less affected by the presence of a strong
confounder compared to LHC-MR and MR-RAPS (Supplementary
Fig. 8). The reason for this is that the confounder-associated SNPs
remain undetectable at lower sample size and hence instruments
will not violate the classical MR assumptions.

Further testing the effects of the confounder trait on the causal
estimation, we tested the impact of confounders with opposite
effects on X and Y. We observe a major underestimation of the
causal effects for standard MR methods as well as MR-RAPS,
whereas LHC-MR performs better for both sample sizes
(RMSE= 0.01 and 0.1 for larger and smaller n respectively), see
Fig. 2c and Supplementary Fig. 4c.

Our LHC-MR method is influenced by the unlikely scenario of
extreme polygenicity for traits X, Y and U, and it suffers from
increased bias and variance regardless of sample size (see
Supplementary Fig. 9). Standard MR methods as well as filtered
MR-RAPS underestimated the causal effect when n= 50, 000. Some
also underestimated αx→y when n= 500, 000, with the exception of
IVW, Mode and filtered MR-RAPS, that outperformed the rest.
Decreasing the proportion of confounder-associated SNPs to 1%
only, does not seem to affect our method and shows similar results
to the standard setting (Supplementary Fig. 10).

Furthermore, we simulated summary statistics, where (contrary
to our modelling assumptions) the X− Y relationship has two
confounders, U1 and U2. When the ratio of the causal effects of
these two confounders on X and Y (qð1Þy =qð1Þx and qð2Þy =qð2Þx ,
respectively) agreed in sign, the corresponding causal effects of
standard MR methods were overestimated in the larger sample
size and, conversely, underestimated in the smaller sample size
(Supplementary Figs. 11a and 12a). LHC-MR and weighted
median performed better however in the larger sample size and
had a bias of 0.03 and 0.07, respectively. However, when the signs
were opposite (qð1Þx ¼ 0:3; qð1Þy ¼ 0:2 for U1 and qð2Þx ¼ 0:3; qð2Þy ¼
�0:2 for U2), conventional MR methods and MR-RAPS in this
case almost all underestimated the causal effect regardless of
sample size. LHC-MR outperformed them both in the larger
sample size (bias of 0.007) and in the smaller sample size (bias of
−0.003), see Supplementary Figs. 11b and 12b.

Finally, we explored how sensitive our method is to different
violations of our modelling assumptions. First, we simulated
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Fig. 2 Simulation results under various scenarios. These modified Sina-boxplots represent the distribution of parameter estimates from 50 different data
generations under various conditions. For each generation, standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the
boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker is
the largest dataset estimate smaller than 1.5×inter-quartile range above the third quartile. The lower whisker is defined analogously. The true values of
the parameters used in the data generations are represented by the blue dots/lines. a Estimation under standard settings (πx ¼ 5 ´ 10�3; πy ¼ 1 ´ 10�2;

πu ¼ 5 ´ 10�2; h2x ¼ 0:25; h2y ¼ 0:2; h2u ¼ 0:3; tx ¼ 0:16; ty ¼ 0:11). b Addition of a reverse causal effect αy→x=−0.2. c Confounder with opposite causal
effects on X and Y (tx= 0.16, ty=−0.11).
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summary statistics when the underlying non-zero effects come
from a non-Gaussian distribution. Interestingly, we observed that,
for the smaller sample size, the variance of the causal effect
estimate was dependent on the kurtosis for most MR methods.
LHC-MR estimations yielded slightly more pronounced upward
bias than IVW, while still exhibiting the lowest RMSE among all
methods (Fig. 3a). Similar results are seen in the larger sample
size with smaller variance for all methods under all degrees of
kurtosis except for IVW, which showed a better performance
than LHC-MR (Supplementary Fig. 13a). Second, we simulated
effect sizes coming from a three-component Gaussian mixture
distribution (null/small/large effects), instead of the classical
spike-and-slab assumption of our model. The smaller sample size
estimates mirror those of the standard setting with n also equal to
50,000 (see Fig. 3b). However, in the larger sample size, LHC-MR
overestimates the causal effect. This bias could be due to the
merging of true effect estimates with confounder effect leading to
an overestimation of αx→y (Supplementary Fig. 13b). MR-Egger,
IVW and filtered MR-RAPS have the smallest RMSE in this case.

Comparing CAUSE and LHC-MR. When running CAUSE on data
simulated using the LHC-MR model framework in order to esti-
mate a causal effect (γ in their notation), we investigated three
different scenarios, each with multiple data generations: one where
the underlying model has a shared factor/confounder with effect
on both exposure and outcome only, another where the underlying
model has a causal effect of 0.3 only, a third where the underlying
model has both a causal effect and a shared factor. The data
generated using the LHC-MR model was done under the standard
settings (πx= 5 × 10−3, πy= 1 × 10−2, πu= 5 × 10−2, h2x ¼ 0:25;
h2y ¼ 0:2; h2u ¼ 0:3, tx= 0.16, ty= 0.11, αx→y= 0.3, αy→x= 0, m=
234, 000, nx= ny= 50, 000). For each setting, 50 different replica-
tions were investigated.

In the case of an underlying shared effect only, CAUSE preferred
the sharing model 100% of the time, and thus there was no causal
estimation, however it underestimated both η and q. When there
was an underlying causal effect only, CAUSE preferred the causal
model only 4% of the times, where it slightly underestimated the
causal effect (bγ ¼ 0:241). Although the true values of η and q are
null in this scenario, the sharing model returned estimates for these
two parameters overestimating them both (probably driven by their
priors), as seen in Supplementary Fig. 14. In the third case, and in
the presence of both, CAUSE preferred the sharing model in 48 of
the 50 simulations, yet it underestimated η (corresponding to ty/tx
for our model) but overestimated q (t2x=ðt2x þ h2xÞ in our model)
(mean of 0.566 and 0.222, respectively, where the true values are
0.667 and 0.097) showing a similar estimation pattern to the second
case. Interestingly, for the larger sample size, CAUSE selects the
correct model 100% of the time, but still underestimates γ, as shown
in Supplementary Fig. 15.

In the reverse situation, where data was generated using the
CAUSE framework (with parameters h1= h2= 0.25,m= 97,
450,N1=N2= 50, 000) and LHC-MR was used to estimate the
causal effect, we saw the following results (see Supplementary
Fig. 16). First, when we generated data in the absence of causal
effect (γ ¼ 0; η ¼ ffiffiffiffiffiffiffiffiffi

0:05
p

; q ¼ 0:1), CAUSE does extremely well
in estimating a null causal effect 100% of the time. Standard MR
methods yield a slight overestimation of the (null) causal
effect with varying degrees of variance, whereas LHC-MR shows
both a greater variance and an upward bias—still leading to
a causal effect compatible with zero. Second, in the absence
of a confounder combined with non-zero causal effect
(γ¼ ffiffiffiffiffiffiffiffiffi

0:05
p ¼ 0:22; η ¼ 0; q ¼ 0), CAUSE underestimates the

causal effect (bγ ¼ 0:18) compared to LHC-MR which overestimates
the causal effect: the mean of the estimates was 0.38 (over the

50 runs). Finally, in the presence of both a confounder and a causal
effect (γ ¼ ffiffiffiffiffiffiffiffiffi

0:05
p

; η ¼ ffiffiffiffiffiffiffiffiffi
0:05

p
; q ¼ 0:1), CAUSE slightly under-

estimates the causal effect (bγ ¼ 0:20), whereas LHC-MR over-
estimates the effects and shows estimates reaching the boundaries
11 out of 50 times (mean of the converged bγ ¼ 0:39 over the 39
data simulations, see Supplementary Fig. 16c)— indicating that
this setting of the CAUSE model is not compatible with the
LHC-MR model framework. Interestingly, classical MR meth-
ods outperform CAUSE in this case. Note that in the interest of
run time we used less SNPs (than usual) for parameter
estimations. The analysis of the three separate scenarios was
repeated for a larger sample size of 500, 000 (Supplementary
Fig. 17), with more favourable results for LHC-MR. In the
absence of a causal effect, we had similar results to the smaller
sample size, whereas in the absence of a shared effect, LHC-MR
estimates the causal effect accurately with a mean of 0.22,
CAUSE underestimates it and the rest of the MR methods are
less biased. In the presence of both causal and shared factor,
CAUSE recovers the causal effect. IVW, unlike the other MR
methods and CAUSE, is more affected by the presence of the
confounder, while LHC-MR exhibits upward bias with a mean
estimate of 0.27.

Application to association summary statistics of complex
traits. We applied our LHC-MR and other MR methods to
estimate all pairwise causal effects between 13 complex traits (156
causal relationships in both directions). Our results are presented
as a heatmap in Fig. 4 (and are detailed in Supplementary Data 2).
Further, we calculated the alternate set of estimated parameters
that naturally results from our model (for reference see Section
The observed association summary statistics and Supplementary
Methods 1.4). Among trait pairs for which the exposure had
sufficient heritability (>2.5%), the alternate parameters of 102
trait pairs were within the possible ranges mentioned in methods
(i.e. the confounder and the exposure are interchangeable).
However, for all of these pairs, the alternative parameter optima
lead to lower direct- than indirect heritability, which we deem
unrealistic. Therefore, we report only the primary set of estimated
optimal parameters in the main results and provide the alter-
native parameters in the Supplementary Data 3. The comparison
of the results obtained by LHC-MR and standard MR methods is
detailed below and more extensively in Supplementary Data 4–5.
In summary, LHC-MR provided reliable causal effect estimates
for 132 out of 156 exposure traits (i.e. those exposures had an
estimated total heritability greater than 2.5%). These estimates
were compared to five different MR methods. Seventy-four causal
relationships were deemed significant by LHC-MR. Furthermore,
for 117 out of those 132 comparable causal relationships, our
LHC-MR causal effect estimates were concordant (not sig-
nificantly different) with at least two out of five standard MR
methods’ estimates.

By simply comparing the significance status and the direction
of the causal effects between the methods, we see that LHC-MR
agrees in sign and significance (or the lack there of) with at least 3
MR methods 77 times. For 31 relationships, LHC-MR results lead
to different conclusions than those of standard MR methods. For
28 of those, LHC-MR identified a causal effect missed by all
standard MR methods. For the other three, we observed a
disagreement in sign: LDL has a negative effect on BMI according
to weighted mode and weighted median, whereas we show a
positive effect, HDL and LDL show a negative bi-directional
causal effect for weighted mode but a positive bi-directional effect
with LHC-MR. Despite the conflicting evidence for the causal
relationship of LDL on BMI, studies have shown that the
relationship between them is non-linear12, possibly explaining the
discrepancy between the results.
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LHC-MR agreed with most MR estimates and confirmed many
previous findings, such as increased BMI leading to elevated
blood pressure13,14, diabetes mellitus15,16 (DM), myocardial
infarction17 (MI) and coronary artery disease18 (CAD).

Furthermore, we confirmed previous results19 that diabetes
increases SBP (α̂x!y ¼ 0:39 � P ¼ 1:70 ´ 10�9).

Interestingly, it revealed that higher BMI increases smoking
intensity, concordant with other studies20,21. It also showed the

Fig. 3 Simulation results under various scenarios. These modified Sina-boxlots represent the distribution of parameter estimates from 50 different data
generations under various conditions. For each generation, standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the
boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker is
the largest dataset estimate smaller than 1.5×inter-quartile range above the third quartile. The lower whisker is defined analogously. The true values of the
parameters used in the data generations are represented by the blue dots/lines. a The different coloured boxplots represent the underlying non-normal
distribution used in the simulation of the three γx, γy, γu vectors associated to their respective traits. The Pearson distributions had the same zero mean and
skewness, however their kurtosis ranged between 2 and 10, including the kurtosis of 3, which corresponds to a normal distribution assumed by our model.
The standard MR results reported had IVs selected with a p-value threshold of 5 × 10−6. b Addition of a third component for exposure X, while decreasing
the strength of U. True parameter values are in colour, blue and red for each component (πx1 ¼ 1 ´ 10�4; πx2 ¼ 1 ´ 10�2; h2x1 ¼ 0:15; h2x2 ¼ 0:1).
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protective effect of education against a range of diseases (e.g.
CAD and diabetes22,23) and risk factors such as smoking24,25, in
agreement with previous observational and MR studies. Probably
reflecting lifestyle change recommendations by medical doctors
upon disease diagnosis, statin use is greatly increased when being
diagnosed with CAD, (systolic) hypertension, dislipidemia and
diabetes as is shown by both LHC-MR and standard MR
methods.

Furthermore, causal effects of height on CAD, DM and SBP
have been previously examined in large MR studies26,27. LHC-MR,
agreeing with these claims, did not find significant evidence to
support the effect of height on DM, but did find a significant
protective effect on CAD and SBP. However, unlike the first two,
the relationship between height and SBP also revealed the existence
of a confounder with causal effects 0.14 (P= 9.2 × 10−11) and
0.11 (P= 3.39 × 10−8) on height and SBP respectively. Another
example of a trait pair for which LHC-MR found an opposite sign
confounder effect is HDL and its protective effect on SBP. The
confounder had a positive effect ratio of ty/tx= 0.84, opposing the
negative causal effect of α̂x!y ¼ �0:13 supported by observational
studies28. This causal effect was not found by any other MR
method.

It is important to note that while the effects of parental
exposures on offspring outcomes can be seen as genetic
confounding, LHC-MR would not be able to distinguish parental
and offspring causal effects, because the LHC-MR model assumes

that there is no correlation between the genetic effects on the
exposure and the genetic effects on the confounder (which is not
the case for parental vs offspring traits). Thus, LHC-MR causal
effect estimates are just as likely to reflect parental effects as any
other MR method29. This may be the case, for example, for the
detrimental effect of increased (parental) BMI on education
(supported by longitudinal studies30), the positive effect of
(parental) height on birth weight31, or on education32. There are
also some associations identified only by LHC-MR that might
reflect parental effects: the negative causal effect of CAD on
education or on birth weight, the positive impact of HDL on birth
weight, or DM reducing height. All these pair associations
uniquely found by LHC-MR are examples of LHC-MR’s use of
whole-genome SNPs instead of GW-significant SNPs only, as our
estimates are of larger magnitude than those found by standard
MR. Interestingly, for the CAD→ birth weight relationship, LHC-
MR revealed a confounder of opposite causal effects, which could
have masked/mitigated the causal effect of standard MR methods.

A systematic comparison between IVW and LHC-MR has
shown generally good agreement between the two methods,
which is illustrated in Fig. 5. To identify discrepancies between
our causal estimates and those of the standard MR results, we
grouped the estimates into several categories, either non-
significant p-value for both or either, significant with an agreeing
sign for the causal estimate, or significant with a disagreeing sign.
The diagonal (seen in Fig. 5) representing the agreement in

Fig. 4 Heatmap representing the bi-directional causal relationship between the 13 UK Biobank traits. The causal effect estimates in coloured tiles all
have a significant p-value surviving Bonferroni multiple testing correction with a threshold of 3.2 × 10−4. We did not report an estimated causal effect for
exposures with an estimated total heritability less than 2.5%. White tiles show an absence of a significant causal effect estimate. BMI: Body Mass Index,
BWeight: Birth Weight, CAD: Coronary Artery Disease, DM: Diabetes Mellitus, Edu: Years of Education, HDL: High-Density Lipoprotein, LDL: Low-Density
Lipoprotein, MI: Myocardial Infarction, PSmoke: # of Cigarettes Previously Smoked, SBP: Systolic Blood Pressure, SHeight: Standing Height, SVstat:
Medication-Simvastatin.
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significance status and sign between the two methods, is heavily
populated. On the other hand, 34 pairs have causal links that are
significantly non-zero according to LHC-MR, but are non-
significant for IVW, while the opposite is true for seven pairs. We
believe that many of these seven pairs may be false positives, since
four of them are picked up by no other MR method, two are
confirmed by only one other method and the last one by two
methods. Further comparisons of significance between LHC-MR
estimates and the remaining standard MR methods can be found
in Supplementary Table 2.

LHC-MR identified a confounder for 16 trait pairs out of the
possible 78. In order to support these findings, we used
EpiGraphDB33,34 to systematically identify those potential
confounders. EpiGraphDB could identify reliable confounders
for ten out of the 16 trait pairs. Notably, for the birth
weight–diabetes pair, the average epigraph confounder-effect
ratio (r3/r1) clearly agreed in sign with our ty/tx ratio, indicating
that the characteristics of the confounder(s) evidenced by LHC-
MR agree with those found in an exhaustive confounder search,
and are mainly obesity-related traits (Supplementary Fig. 18a).
Six other trait pairs showed mixed signs of different confounders,
indicating the possibility of having heterogeneous confounders
(Supplementary Fig. 18b-e). Finally, three trait pairs showed a
disagreement between our estimated confounder-effect ratio and
the bulk of those found by epighraphDB as seen in Supplemen-
tary Fig. 18f-j. However, at least one of the top ten potential
confounders showed effects that are in agreement with our ratio
for each of these pairs. Note that since the reported causal effects
of the confounders on X and Y reported in EpiGraphDB are not

necessarily on the same scale, we do not expect the magnitudes
to agree.

As described in the methods (Eq. (32)), genetic correlation can be
computed from our estimated model parameters. To verify that the
fitted LHC-MRmodel leads to a genetic correlation similar to the one
obtained from LD-score regression35 (LDSC), we compared whether
the two approaches produce similar genetic correlation estimates. We
did this by taking the estimated parameters obtained from the 200
block jackknife to estimate the genetic correlations between traits
(and their standard errors), and plotted them against LD-score
regression values as seen in Fig. 6. As expected, we observe an overall
good agreement between the estimates of the two methods, with only
six trait pairs differing in sign. Of these six, only 2 were nominally
significantly different between the two methods (LDL→Asthma and
LDL→DM). Further decomposition of the genetic covariance into
heritable confounder-led or causal effect-led covariance revealed that
most of the genetic covariance between traits can be attributed to bi-
directional causal effects. A reason for this could be that confounders
would need to have very strong effects to substantially contribute to
the genetic correlation (≈tx ⋅ ty) compared to the bi-directional causal
effects (�α2x!y � h2x þ α2y!x � h2y).

As for the comparison of LHC-MR against CAUSE for real
trait pairs, we ran CAUSE on all 156 trait pairs (bi-directional),
and extracted the parameter estimates that corresponded to the
methods winning model. The p-value threshold was corrected for
multiple testing and was equivalent to 0.05/156. Based on that
threshold, the p-value that compared between the causal and the
sharing model of CAUSE was used to choose one of the two.
Then the parameters estimated from the winning model, γ (only

Fig. 5 A scatter plot of the causal effect estimates between LHC-MR and IVW. To improve visibility, non-significant estimates by both methods are
placed at the origin, while significant causal estimates by both methods appear on the diagonal with 95% CI error bars. Pairs with an absolute value
difference > 0.1 are labelled.
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for causal model), η and q, were compared to their counterparts
in LHC-MR. A visual comparison of LHC-MR’s causal estimates
and those of CAUSE can be seen in Supplementary Fig. 19.

Whenever the causal effect estimates were significant both for
CAUSE and LHC-MR (30 causal relationships), they always
agreed in sign (Supplementary Table 3) with a high Pearson
correlation of 0.592. Calculating the correlation for their estimates
regardless of significance yielded a smaller value of 0.377. When
compared to the causal effect estimate from IVW, LHC-MR was
strongly correlated (0.585), whereas CAUSE had a slightly weaker
correlation (0.471) using all estimates.

Similarly, the significant confounder-effect ratio of LHC-MR
(ty/tx) can be compared to the significant confounder-effect
estimate of CAUSE (η) when a sharing model is chosen. These 12
confounding quantities by CAUSE and LHC-MR disagreed in
sign for all but one trait pair (Height→MI), with a Pearson
correlation compatible with zero (−0.357 (95% CI [−0.77,
0.27])).

Discussion
We have developed a structural equation (mixed-effects) model to
account for a latent heritable confounder (U) of an exposure
(X)–outcome (Y) relationship in order to estimate bi-directional
causal effects between the two traits (X and Y). The method,
termed LHC-MR, fits this model to association summary statistics
of genome-wide genetic markers to estimate various global
characteristics of these traits, including bi-directional causal
effects, confounder effects, direct heritabilities, polygenicities and
population stratification.

We first demonstrated through simulations that in most sce-
narios, the method produces causal effect estimates with sub-
stantially less bias and variance (in the larger sample size) than
other MR tools. The direction and magnitude of the bias of

classical MR approaches varied across scenarios and sample sizes.
This bias was mainly influenced by two often opposite forces:
downward bias resulting from winner’s curse and weak instru-
ments, and upward bias due to a positive confounder of the X− Y
relationship, evident in the larger sample size. In the scenario
lacking a confounder (thus respecting all MR assumptions), MR
methods were distinctly underestimating the causal effect, except
for LHC-MR and to a better extent MR-RAPS. However, under
standard settings with an added small heritable confounder and
no reverse causality present, all classical MR methods still slightly
underestimated the causal effect in the smaller sample size, except
for the MR-RAPS estimate which was now overestimated. For the
same standard setting scenario but in a larger sample size where
confounder effects were more detectable, IVW had an estimation
that was close to the true causal value chosen (αx→y= 0.3) due to
the opposite biases cancelling out. However, when the causal
effect was set to be smaller (αx→y= 0.1), the estimates of IVW
became biased. More substantial violations of classical MR
assumptions, such as the presence of negative-effect confounder
or a negative reverse causal effect, led to more substantial biases
that impacted all methods (including MR-RAPS) except LHC-
MR.

Interestingly, in the smaller sample size, standard MR methods
showed a slight decreasing trend in the variance of the causal
effect estimate as the kurtosis of the underlying effect size dis-
tribution went up from 2 to 10. On the other hand, LHC-MR did
not show a similar trend with growing kurtosis, and estimated the
causal effect with a smaller bias. As confounder causal effects (qx,
qy) increased, classical MR methods (except weighted ones) were
prone to produce overestimated causal effects with at least twice
the bias than that of LHC-MR, especially in the large sample size
where the confounder-associated SNPs make it to the set of GW-
significant instruments for all methods. Furthermore, mode-
based estimators were robust to the presence of two concordant
confounders, yet their bias was still 10-fold higher than LHC-
MR’s, and they did not perform as well in the presence of dis-
cordant confounders. In summary, LHC-MR was robust to a wide
range of violations of the classical MR assumptions and was less
impacted than standard MR methods. Thus it outperformed all
MR methods in virtually all tested scenarios, many of which
violated even its own modelling assumptions.

We then applied our method to summary statistics of 13
complex traits from large studies, including the UK Biobank. We
observed a general trend in our results (in agreement with epi-
demiological studies) that higher BMI and LDL are risk factors
for most diseases such as diabetes and CAD. We also note the
protective effect HDL has on these same diseases. Moreover, we
observe many disease traits increasing the intake of lipid-lowering
medication (simvastatin), reflecting the recommendation/treat-
ment of medical personnel following the diagnosis.

LHC-MR can have discordant results compared to other MR
methods for many possible reasons. The positive causal effect of
smoking on MI, diabetes on asthma, the protective impact of
higher birth weight on asthma, or higher education on smoking
intensity, all of which were missed by standard MR could reflect
the increased power of LHC-MR with its use of full-genome SNPs
as opposed to genome-wide significant SNPs of classical MR
approaches.

Estimates from classical MR methods could also be impacted
by sample overlap between the exposure and outcome datasets,
whereas LHC-MR takes this into account. However, when using
large sample sizes, the bias due to sample overlap is expected to be
very small, and therefore not sufficient to explain any discrepancy
in the results36. Another possible reason for the discrepancy
between our findings and those of standard MR methods is the
presence of a significant heritable confounder found by LHC-MR

Fig. 6 Scatter plot comparing the genetic correlation for each trait
obtained from LDSC against the value calculated using parameter
estimates from the LHC-MR model. LHC-MR calculated genetic
correlations from 200 parameter estimates generated during the block-
jackknife procedure, where the mean values of these 200 estimates are
shown here. A 95% CI for both method-calculation is shown for each point,
and pairs with an absolute value difference > 0.2 are labelled. Values from
both methods are reported in Supplementary Data 6.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26970-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7274 | https://doi.org/10.1038/s41467-021-26970-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


with opposite effect to the estimated causal effect between the
pair. These two opposite forces lead to association summary
statistics that may be compatible with reduced (or even null)
causal effect when the confounder is ignored. Possible examples
of this scenario can be observed when (parental) traits, e.g. dia-
betes and CAD, act on birth weight. These pairs have a con-
founder of opposite effects, possibly related to (parental) obesity.
Similarly, standard MR methods show little evidence for a causal
effect of SBP on height, while our LHC-MR estimate is −0.37
(P= 4.81 × 10−8) which most probably reflects parental (mater-
nal) effects as seen in previous studies37,38. The protective effect
of HDL on SBP is another example where a confounder of
opposite sign to that of the causal effect allows it to be uniquely
found by LHC-MR. LHC-MR assumes no genetic correlation
between the confounder and the direct effects on the exposure,
which may be violated when the confounder is the same trait as
the exposure, but in the parent. Such parental effects can mislead
most MR methods39, including ours, and hence we may observe
biased results for traits such as BMI→ education and HDL→
birth weight.

Sixteen trait pairs showed a strong confounder effect, in the form
of significant tx and ty estimates. These pairs were investigated for the
presence of confounders using EpiGraphDB, and 10 of them
returned possible confounders. The bulk of such pairs returned
confounders with both agreeing and disagreeing effect directions
on X and Y, making it difficult to pinpoint a group of concordant
and dominant confounders. However, for the birth weight-DM pair,
where LHC-MR identifies a negative reverse causal effect and a
confounder with effects tx= 0.10(P= 6.77 × 10−8) and ty= 0.15
(P= 3.13 × 10−7) on birth weight and DM respectively, EpigraphDB
confirmed several confounders related to body fat distribution and
weight that matched in sign with our estimated confounder effect
(Supplementary Fig. 18a). Note that EpiGraphDB causal estimates
are not necessarily on the scale of SD outcome difference upon 1 SD
exposure change scale, hence they are not directly comparable with
the ty/tx ratio, but are rather indicative of the sign of the causal effect
ratio of the confounder. Furthermore, if EpigraphDB does not find a
causal relationship between the trait pair in either directions, then it
does not return any possible confounders of the two, a reason why
only 10 out of 16 confounder-associated trait pairs returned any hits.

Lastly, our comparison of the genetic correlations calculated
from our estimated parameters against those calculated from LD-
score regression showed good concordance, confirming that the
detailed genetic architecture proposed by our model is compatible
with the observed genetic covariance. The major difference
between the genetic correlation obtained by LD-score regression
vs LHC-MR is that our model approximates all existing con-
founders by a single latent variable, which may be inaccurate
when multiple ones exist with highly variable ty/tx ratios. Fur-
thermore, LHC-MR decomposed the observed genetic correlation
into confounder and bi-directional causality driven components,
revealing that most genetic correlations are primarily driven by
bi-directional causal effects. Note that we have much higher
statistical power to detect situations when the confounder effects
are of opposite sign compared to the causal effects, because
opposing genetic components are more distinct.

To our knowledge only two recent papers use similar models
and genome-wide summary statistics. The LCV approach40 is a
special case of our model, where the causal effects are not
included in the model, but they estimate the confounder effect
mixed with the causal effect to estimate a quantity of genetic
causality proportion (GCP). In agreement with others10,41, we
would not interpret non-zero GCP as evidence for causal effect.
Moreover, in other simulation settings, LCV has shown very low
power to detect causal effects (by rejecting GCP= 0) (Fig S15 in
Howey et al.42). Another very recent approach, CAUSE10,

proposes a structural equation mixed effect model similar to ours.
However, there are several differences between LHC-MR and
CAUSE: (a) we allow for bi-directional causal effects and model
them simultaneously, while CAUSE is fitted twice for each
direction of causal effect; (b) they first use an adaptive shrinkage
method to integrate out the multivariable SNP effects and then go
on to estimate other model parameters, while we fit all parameters
at once; (c) CAUSE estimates the correlation parameter empiri-
cally; (d) we assume that direct effects come from a two-
component Gaussian mixture, while they allow for larger number
of components; (e) their likelihood function does not explicitly
model the shift between univariate vs multivariate effects (i.e. the
LD); (f) CAUSE adds a prior distribution for the causal/con-
founder effects and the proportion πu, while LHC-MR does not;
(g) to calculate the significance of the causal effect they estimate
the difference in the expected log point-wise posterior density and
its variance through importance sampling, whereas we use a
simple block-jackknife method. Because of point (a), the CAUSE
model can be viewed as a special case of ours when there is no
reverse causal effect. We have the advantage of fitting all para-
meters simultaneously, while they only approximate this proce-
dure. Although they allow for more than a two-component
Gaussian mixture, for most traits with realistic sample sizes we do
not have enough power to distinguish whether two or more
components fit the data better. Therefore, we believe that a two-
component Gaussian is a reasonable simplification. Due to the
more complicated approach described in points (e-g), CAUSE is
computationally more intense than LHC-MR, taking up to 1.25
CPU-hours in contrast to our 2.5 CPU-minute run time for a
single starting point optimisation (which is massively
parallelisable).

When we compared the performance of CAUSE and LHC-MR,
we found that for large sample sizes both LHC-MR and CAUSE
performed well not only when applied to data simulated by their
own model, but also by the model of the other method. For
smaller sample sizes, both methods performed poorly when
applied to data generated by the other model. However, LHC-MR
was less biased when applied to data generated by its own model
than CAUSE was on data simulated based on its own model,
where it provided rather conservative estimates. This is somewhat
expected, since the primary aim of CAUSE is model selection and
it is less geared towards parameter estimation, especially for
settings where both sharing and causal effects are present (leading
to very broad estimates). Also, CAUSE parameter estimates have
shown to be somewhat sensitive to the choice of the prior.

Finally, when applying both LHC-MR and CAUSE to 156
complex trait pairs, we observed that the causal effects are rea-
sonably well correlated (0.38 for all estimates, 0.59 for significant
estimates) and agree in sign for trait pairs deemed significantly
causal by either or both methods. In addition, LHC-MR causal
estimates were more similar to those of IVW than the estimates
provided by CAUSE. Surprisingly, when a confounding factor
was identified by both methods, the confounder effects (LHC-MR
ty/tx ratio and CAUSE η parameter) were uncorrelated. There are
two possible explanations for this: (i) CAUSE may confuse/merge
the confounder with the reverse causal effect, since it does not
explicitly model the latter one. (ii) The two models assume dif-
ferent marginal effect size distributions, hence when multiple
heterogeneous confounders exist, one method may detect one of
the confounders, while the other method picks up the other
confounder, depending on which has more similar genetic
architecture to the assumed one.

Our approach has its own limitations, which we list below. Like
any MR method, LHC-MR provides biased causal effect estimates
if the input summary statistics are flawed (e.g. not corrected for
complex population stratification, parental/dynasty effects). As
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mentioned in the Methods section, our model is strictly-speaking
unidentifiable and two distinct sets of parameters fit the data
equally well, if the alternate set of parameters fall within the
parameter ranges. As opposed to classical MR methods that give a
single (biased) causal effect estimate, ours can detect and calculate
the competing model. Due to biological considerations, from
these competing models, we chose the one which yielded larger
direct heritability than confounder-driven (indirect) heritability.
Additional pointers to decide which parameter optimum we
choose can be to pick the one with smaller magnitude of causal
effects (large causal effects are unrealistic) or pick the one that
includes causal effects that agree better with those of other MR
methods.

LHC-MR is not an optimal solution for traits whose genetic
architecture substantially deviates from a two-component Gaus-
sian mixture of effect sizes. Also, for traits with low heritability
(<2.5%), it is particularly important to compare the causal effect
estimates to those from standard MR methods as results from
LHC-MR may be less robust. In addition, trait pairs with multiple
confounders with heterogeneous effect ratios can violate the
single confounder assumption of the LHC model and can lead to
biased causal effect estimates. Finally, LHC-MR, like other
methods, is not immune to parental effects that are correlated
with offspring effects. In such cases, the parental effect is grouped
with the exposure (due to their strong genetic correlation) and
not viewed as a confounder of the exposure-outcome relationship.

Methods
The underlying structural equation model. Let X and Y denote continuous
random variables representing two complex traits. Let us assume (for simplicity)
that there is one heritable confounder U of these traits. To simplify notation we
assume that E(X)= E(Y)= E(U)= 0 and Var(X)= Var(Y)= Var(U)= 1. The
genome-wide sequence data for M sequence variants is denoted by G= (G1,
G2,…,GM). The aim of our work is to dissect the effects of the heritable con-
founding factor U from the bi-directional causal effects of these two traits (X and
Y). For this we consider a model (see Fig. 1) defined by the following equations:

X ¼ qx � U þ αy!xY þ G � γx þ ex with ex � N ð0; ν2xÞ ð1Þ

Y ¼ qy � U þ αx!yX þ G � γy þ ey with ey � N ð0; ν2yÞ ð2Þ

U ¼ G � γu þ eu with eu � N ð0; ν2uÞ ð3Þ
where γx ; γy ; γu 2 RM denote the (true multivariable) direct effect of all M genetic
variants on X, Y and U, respectively. All error terms (ex, ey and eu) are assumed to
be independent of each other and normally distributed with variances ν2x ; ν

2
y and

ν2u , respectively.
Note that we do not include in the model reverse causal effects on the

confounder (X→U and Y→U). The reason for this is the following: Let sx and sy
denote those causal effect of X and Y on U. We can see that by reparameterising the
original model to α0 :¼ αx!y þ sx � qy , α0 :¼ αy!x þ sy � qx and
q0x :¼ qx=ð1� qx � sxÞ, q0y :¼ qy=ð1� qy � syÞ, the genetic effects produced by the
extended model with reverse causal effects on U and the simpler model (Fig. 1)
with the updated parameters are indistinguishable. Thus these extra parameters are
not identifiable and the reparameterisation means that αx→y and αy→x in our model
represent the total causal effects, some of which may be mediated by U.

Note that the model cannot be represented by classical directed acyclic graphs,
as the bi-directional causal effects could form a cycle. However, the equations can
be reorganised to avoid recursive formulation as follows:

X ¼ qx � U þ αy!x � qy � U þ αx!yX þ G � γy þ ey
� �

þ G � γx þ ex ð4Þ

Y ¼ qy � U þ αx!y � qx � U þ αy!xY þ G � γx þ ex
� �

þ G � γy þ ey ð5Þ

U ¼ G � γu þ eu ð6Þ
Regrouping the terms gives

ð1� αy!xαx!yÞ � X ¼ ðqx þ αy!x � qyÞ � U þ αy!xðG � γyÞ þ G � γx þ ðex þ αy!x � eyÞ
ð7Þ

ð1� αx!yαy!xÞ � Y ¼ ðqy þ αx!y � qxÞ � U þ αx!yðG � γxÞ þ G � γy þ ðey þ αx!y � exÞ ð8Þ

U ¼ G � γu þ eu ð9Þ
Substituting U into the first two equations yields

X ¼
qx þ αy!x � qy
1� αy!xαx!y

� ðG � γuÞ þ
αy!x

1� αy!xαx!y
ðG � γyÞ þ

1
1� αy!xαx!y

ðG � γxÞ þ ϵx ð10Þ

Y ¼
qy þ αx!y � qx
1� αx!yαy!x

� ðG � γuÞ þ
αx!y

1� αx!yαy!x
ðG � γxÞ þ

1
1� αx!yαy!x

ðG � γyÞ þ ϵy ð11Þ

with

ϵx :¼
ex þ αy!x � ey þ ðqx þ αy!x � qyÞ � eu

1� αy!xαx!y
� N ð0; ixÞ ð12Þ

ϵy :¼
ey þ αx!y � ex þ ðqy þ αx!y � qxÞ � eu

1� αx!yαy!x
� N ð0; iyÞ ð13Þ

where ix :¼ ðν2x þ α2y!xν
2
y þ ðqx þ αy!xqyÞν2uÞ=ð1� αy!xαx!yÞ2 and

iy :¼ ðν2y þ α2x!yν
2
x þ ðqy þ αx!yqxÞν2uÞ=ð1� αx!yαy!xÞ2. Note that ix is

equivalent to the LD-score regression intercept43.
We model the genetic architecture of these direct effects with a spike-and-slab

distribution, assuming that only 0 ≤ πx, πy, πu ≤ 1 proportion of the genome have a
direct effect on X, Y,U, respectively, and these direct effects come from a Gaussian
distribution. Namely,

γx ¼ ζx � κx with κx � N ð0; σ2x � IÞ and ζx � Bmð1; πxÞ ð14Þ

γy ¼ ζy � κy with κy � N ð0; σ2y � IÞ and ζy � Bmð1; πyÞ ð15Þ

γu ¼ ζu � κu with κu � N ð0; σ2u � IÞ and ζu � Bmð1; πuÞ ð16Þ
Here,⊙ denotes element-wise multiplication and Bmð1; qÞ the m dimensional
independent Bernoulli distribution. Further, we assume that all κx, κy, κus are
independent of each other and so are all ζx, ζy, ζus. We can refer to h2x :¼
M � πx � σ2x as the direct heritability of X, i.e. independent of the genetic basis of U
and Y. Similar notation is adapted for U (h2u :¼ M � πu � σ2u) and Y
(h2y :¼ M � πy � σ2y). Note that when qx= 0 and qy ≠ 0 (or vice versa), this means
that there is no confounder U present, but the genetic architecture of Y (or X) can
be better described by a three-component Gaussian mixture distribution.

We assume that the correlation (across markers) between the direct effects of a
genetic variant on X, Y and U is zero, i.e. cov(γx, γy)= cov(γx, γu)= cov(γu, γy)= 0.
Note that this assumption still allows for a potential correlation between the total
effect of G on X and its horizontal pleiotropic effect on Y, but only due to the
confounder U and through the reverse causal effect Y→ X. As we argued above,
this is a reasonable assumption, since the most plausible reason (apart from
outcome-dependent sampling, which is out of the scope of this paper) for the
violation of the InSIDE assumption may be one or more heritable confounder(s).

For simplicity, we also assume that the set of genetic variants with direct effects
on each trait overlap only randomly, i.e. the fraction of the genome directly
associated with both X and Y is πx ⋅ πy, etc. This assumption is in line with recent
observation that the bulk of observed pleiotropy can be explained by extreme
polygenicity with random overlap between trait loci44. Note that uncorrelated
effects (e.g. cov(γx, γy)= 0) do not ensure that the active variant sets overlap
randomly, this is a slightly stronger assumption.

The observed association summary statistics. Let us now assume that we
observe univariable association summary statistics for these two traits from two
(potentially overlapping) finite samples Nx and Ny of size nx, ny, respectively. In the
following, we will derive observed summary statistics in sample Nx and then we will
repeat the analogous exercise for sample Ny. Let the realisations of X, Y and U be
denoted by x; y and u 2 Rnx . The genome-wide genetic data are represented by
Gx 2 Rnx ´M and the genetic data for a single nucleotide polymorphism (SNP) k
tested for association is gk 2 Rnx . Note the distinction between the k-th column of
Gx, which is the k-th sequence variant, in contrast to gk , which is the k-th SNP
tested for association in the GWAS. We assume that all SNP genotypes have been
standardised to have zero mean and unit variance. The marginal effect size estimate

for SNP k of trait X can then be written as bβxk ¼ g 0k � x=nx , which is a special case of
univariable standard normal linear regression when both the outcome and the
predictor is standardised to have zero mean and unit variance43. Note that x0

denotes the transpose of the column vector x. This can be further transformed asbβxk ¼ g 0k � x=nx
¼

qx þ αy!x � qy
1� αy!xαx!y

� g 0k � Gx � γu=nx þ
αy!x

1� αy!xαx!y
� g 0k � Gx � γy=nx

þ 1
1� αy!xαx!y

� g 0k � Gx � γx=nx þ g 0k � ϵx=nx

ð17Þ

By denoting the linkage disequilibrium (LD) between variant k and all markers in
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the genome with ρk ¼ G0
x � gk=nx we get

bβxk ¼ qx þ αy!x � qy
1� αy!xαx!y

� ρ0k � γu þ
αy!x

1� αy!xαx!y
� ρ0k � γy þ

1
1� αy!xαx!y

� ρ0k � γx þ ηxk

ð18Þ
with ηxk :¼ g 0k � ϵx=nx � N ð0; ix=nxÞ. Given the above-defined genetic effect size
distribution the equation becomes

bβxk ¼ qx þ αy!x � qy
1� αy!xαy!x

� ρ0k � ðζu � κuÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
zðuÞk

þ αy!x

1� αy!xαx!y
� ρ0k � ðζy � κyÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

zðyÞk

þ 1
1� αy!xαx!y

� ρ0k � ðζx � κxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
zðxÞk

þηxk

¼
qx þ αy!x � qy
1� αy!xαx!y

� zðuÞk þ αy!x

1� αy!xαx!y
� zðyÞk þ 1

1� αy!xαx!y
zðxÞk þ ηxk

ð19Þ

Similarly, assuming that the LD structures (ρk) in the two samples are comparable,

for bβyk estimated in the other sample (Ny) we obtain

bβyk ¼ αx!y � qx þ qy
1� αx!yαy!x

� zðuÞk þ αx!y

1� αx!yαy!x
� zðxÞk þ 1

1� αx!yαy!x
zðyÞk þ ηyk ð20Þ

with ηyk � N ð0; iy=nyÞ.
Therefore, the joint effect size estimates can be written as

bβxkbβyk
 !

¼ 1
1� αx!yαy!x

ðαy!x � qy þ qxÞ
ðαx!y � qx þ qyÞ

 !
zðuÞk þ

1

αx!y

 !
zðxÞk þ αy!x

1

� �
zðyÞk

 !
þ ηxk

ηyk

� �
ð21Þ

Following the same rational as the cross-trait LD-score regression45, the noise term
distribution is readily obtained

ηxk
ηyk

� �
� N 0

0

� �
;

ix=nx
nx\y
nx �ny � rx;y

nx\y
nx �ny � rx;y iy=ny

0@ 1A0@ 1A ð22Þ

where rx,y is the observational correlation between variables X and Y and nx∩y is the
size of the overlapping samples for X and Y. Since both nx∩y and rx,y cannot be
estimated, we simply denote ix;y :¼ rx;y �

nx\yffiffiffiffiffiffiffiffi
nx �ny

p as the only estimated parameter

and parameterise the covariance term as
ix;yffiffiffiffiffiffiffiffi
nx �ny

p . Note that ix,y is the cross-trait LD-

score regression intercept.
While the bivariate probability density function (PDF) of these summary

statistics cannot be obtained analytically, we could derive its characteristic function
(see Supplementary Methods 1.1), which is the product of some transformed

version of the characteristic functions of zðxÞk ; zðuÞk ; zðyÞk and ðηxk ; ηykÞ, yielding

φ bβxk ;bβyk� �ðv;wÞ ¼ E exp i � v � bβxk þ w � bβyk�� �h i

¼ φzðuÞk

v � ðαy!x � qy þ qxÞ þ w � ðαx!y � qx þ qyÞ
1� αx!yαy!x

 !

´ φzðxÞk

v þ αx!y � w
1� αx!yαy!x

 !
� φzðyÞk

wþ αy!x � v
1� αx!yαy!x

 !
� φ ηxk ;η

y
kð Þðv;wÞ

ð23Þ
Approximating the local correlations of SNP k (ρk) by a spike and slab distribution,
parameterised by the fraction of non-zero correlations (πk) and the variance of the
non-zero correlations (σ2k), allows the derivation of a closed form expressions of
φzðuÞk

, φzðxÞk
and φzðyÞk

.

Derivation of the likelihood function. Given that the characteristic function can
be analytically derived, we used the inversion theorem (for characteristic functions)

to obtain the joint distribution of bβxk ;bβyk� �
as

f bβxk ;bβyk� �ðx; yÞ ¼ 1
2π

� �2

�
Z 1

�1

Z 1

�1
expð�i � ðx � v þ y � wÞÞ � φ bβxk ;bβyk� �ðv;wÞ dv dw

ð24Þ
This integral can be efficiently computed by the Fast Fourier Transformation (FFT,
see ref. 46 and references within. Detailed derivation is found in Supplementary
Methods 1.2). To speed up computation, we bin SNPs according to their πk and σk
values which characterise the local LD distribution for each SNP k (10 × 10 bins
with equidistant centres - see Supplementary Methods 1.3) and for SNPs in the
same bin the PDF function is evaluated over a fine grid (27 × 27 combinations)
using the FFT.

To reduce the number of parameters we define tx:= σu ⋅ qx and ty:= σu ⋅ qy since
σu and qx are separately not identifiable, but only their product is. Extensive

simulations have shown that πu is unidentifiable, and hence is set to an arbitrary
value of 0.1. For improved interpretability, we slightly reparameterise the likelihood
function by using h2x :¼ πx �M � σ2x ; h2y :¼ πy �M � σ2y . Since different SNPs are
correlated we have to estimate the over-counting of each SNP. We choose the same
strategy as LD-score regression43 and weigh each SNP by the inverse of its
restricted LD score, i.e. wk ¼ 1=∑m0

j¼1 r
2
jk , where rjk is the correlation between

GWAS SNPs k and j. The log-likelihood function is, thus, of the form

log L θj
bβxbβy

 ! ! !
/ ∑

K

k¼1
wk � f k bβxk ;bβyk� �

ð25Þ

where f k
bβxk ;bβyk� �

is the log-likelihood function value for SNP k. Parameters

{nx, ny,m, σk=1,…,K, πk=1,…,K} are known and the other 11 parameters

θ ¼ fπx ; πy ; h2x ; h2y ; tx ; ty ; αx!y ; αy!x; ix ; iy ; ix;yg
are to be estimated from the observed association summary statistics. In order to
further speed up computation, we estimate the 11 parameters in two separate steps:
we first estimate for each trait the parameters πx, ix and πy, iy (SNP polygenicity and
LD-score intercept) and the total heritability (unlike the direct heritability obtained
by the full-model of LHC-MR) by using a simplified model with only the trait of

interest, without a second trait or confounder, e.g. we fit only πx ; h
2
x and ix using bβx

and assume that πx and ix do not change when two traits are taken into account.
Note that πx may change slightly (decreasing from the total to direct polygenicity),
but its value has little impact on the likelihood function. The estimates from the
first step are then fixed for the parameter estimation of trait pairs in the second
step. Since only πx, ix and πy, iy are fixed, the remaining parameters to estimate are
now:

θ ¼ fh2x; h2y ; tx ; ty ; αx!y ; αy!x ; ix;yg
It is key to note that our approach does not aim to estimate individual (direct or
indirect) SNP effects, as these are handled as random effects. By replacing U
with−U we swap the signs of both tx and ty, therefore these parameters are unique
only if the sign of one of them is fixed. Thus, we will have the following restrictions
on the parameter ranges: h2x ; h

2
y ; tx are in [0, 1], ty, αx→y, αy→x, ix,y are in [− 1, 1].

Likelihood maximisation and standard error calculation. Our method, termed
Latent Heritable Confounder Mendelian Randomisation (LHC-MR), maximises
this likelihood function to obtain the MLE. Due to the complexity of the likelihood
surface, we initialise the maximisation using 50 different starting points, where they
come from a uniform distribution within the parameter-specific ranges mentioned
above. We then choose parameter estimates corresponding to the highest like-
lihood of the 50 runs. Run time depends on the number of iterations during the
maximisation procedure, and is linear with respect to the number of SNPs. It takes
~0.25 CPU-minute to fit the complete model to 50,000 SNPs with a single
starting point.

Given the particular nature of the underlying directed graph, two different sets
of parameters lead to an identical fit of the data, resulting in two global optima. The
reason for this is the difficulty in distinguishing the ratio of the confounder effects
(ty/tx) from the causal effect (αx→y), as illustrated in Supplementary Fig. 2 by the
slopes belonging to different SNP-clusters. More rigorously, it can be show that if
{hx, hy, αx→y, αy→x, tx, ty} is an optimum, then so will be fh0x ; h0y ; α0x!y ; α

0
y!x ; t

0
x ; t

0
yg,

where

h0x ¼ tx þ ty � αy!x ð26Þ

h0y ¼ hy ð27Þ

α0 ¼ αx!y þ w

1þ αy!x � w ð28Þ

α0 ¼ αy!x ð29Þ

t0x ¼ hx � ð1þ αy!x � wÞ ð30Þ

t0y ¼ �hx � w ð31Þ
with w= ty/tx (for further derivations, see Supplementary Methods 1.4). This
allows us to directly obtain both optima, even if the optimisation only revealed one
of them. It happens very often that one of these parameter sets are outside of the
allowed ranges and hence can be automatically excluded. If not, we keep track of
both parameter estimates maximising the likelihood function. Note that, we call the
one for which the direct heritability is larger than the indirect one, i.e. h2x > t2x , the
primary solution. We show that for real data application this solution is far more
plausible than the alternative optimum. Finally, note that such bimodality can be
observed at different levels: (i) For one given data generation, using multiple
starting points leads to different optima; (ii) LHC-MR applied to multiple different
data generations for a fixed parameter setting can yield different optima. Both of
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these situations are signs of the same underlying phenomenon and most often co-
occur.

We implemented the block-jackknife procedure that is also used by LD-score
regression to calculate the standard errors. For this we split the genome into 200
jackknife blocks and compute MLE in a leave-one-block-out fashion yieldingbθð�iÞ

; i ¼ 1; ¼ ; 200 estimates. The variance of the full SNP MLE is then defined as

VarðbθÞ :¼ m�m�ð1=200Þ
m�ð1=200Þ � 1

200�1∑
200
i¼1 ðbθð�iÞ � bθÞ2 ¼ ∑200

i¼1 ðbθð�iÞ � bθÞ2.
Decomposition of genetic correlation. Given the starting equations for X and Y
(Eqs. (2)–(3)) we can calculate their genetic correlation as the ratio between their
genetic covariance and variance (calculated from their heritabilities) as such:

corrðδx ; δyÞ ¼
ðtx þ αy!xtyÞðty þ αx!ytxÞ þ αy!xh

2
y þ αx!yh

2
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtx þ αy!xtyÞ2 þ α2y!xh
2
y þ h2x

� �
ðtyþαx!ytxÞ2 þ α2x!yh

2
xþh2y

� �r
ð32Þ

The full details of the derivation is found in Supplementary Methods 1.5. Using our
estimated parameters, we first calculate the correlation based on Eq. (32) and then
compare them to those obtained by LD-score regression.

Simulation settings. First, we tested LHC-MR using realistic parameter settings
with a mild violation of the classical MR assumptions. These standard parameter
settings consisted of simulating m= 234,000 SNPs for two non-overlapping cohorts
of equal size (for simplicity) of nx= ny= 50,000 for each trait. X, Y and U were
simulated with moderate polygenicity (πx= 5 × 10−3, πy= 1 × 10−2, πu= 5 × 10−2),
and considerable direct heritability (h2x ¼ 0:25; h2y ¼ 0:2; h2u ¼ 0:3). U had a con-
founding effect on the two traits as such, qx= 0.3, qy= 0.2 (resulting in tx= 0.16,
ty= 0.11), and X had a direct causal effect on Y (αx→y= 0.3), while the reverse
causal effect from Y to X was set to null. Note that in this setting the total heritability
of each of these traits is principally driven by direct effects and less than 10% of the
total heritability is through a confounder and in case of Y less than an additional 8%
of its total heritability is through X.It is important to note that for each tested
parameter setting, we generated 50 different datasets, and each data generation
underwent a likelihood maximisation of Eq. (25) using 50 starting points, and
produced estimated parameters corresponding to the highest likelihood (simplified
schema in Supplementary Fig. 3).

In the following simulations, we changed various parameters of these standard
settings to test the robustness of the method. We explored how increased sample
size (nx= ny= 500, 000) or differences in sample sizes
((nx, ny)= (50, 000, 500, 000) and (nx, ny)= (500, 000, 50, 000)) influence causal
effect estimates of LHC-MR and other MR methods. We also simulated data with
no causal effect (or with no confounder) and then examined how LHC-MR
estimates those parameters. Next, we varied our causal effects between the two
traits by lowering αx→y to 0.1, and in another setting by introducing a reverse
causal effect (αy→x=−0.1). In addition, we tried to create extremely unfavourable
conditions for all MR analyses by varying the confounding effects. We did this in
several ways: (i) increasing qx and qy (qx= 0.75, qy= 0.50), (ii) having a confounder
with causal effects of opposite signs on X and Y (qx= 0.3, qy=−0.2). We also
drastically increased the proportion of SNPs with non-zero effect on traits X, Y and
U (πx, πy and πu = 0.1, 0.15, 0.2 respectively). We also simulated data whereby the
confounder has lower (πu= 0.01) polygenicity than the two focal traits.

Finally, we explored various violations of the assumptions of our model (see
Methods Section). First, we introduced two confounders in the simulated data,
once with causal effects on X and Y that were concordant
(tð1Þx ¼ 0:16; tð1Þy ¼ 0:11; tð2Þx ¼ 0:22; tð2Þy ¼ 0:16) in sign, and another with

discordant effects (tð1Þx ¼ 0:16; tð1Þy ¼ 0:11; tð2Þx ¼ 0:22; tð2Þy ¼ �0:16), while still
fitting the model with only one U. Second, we breached the assumption that the
non-zero effects come from a Gaussian distribution. By design, the first three
moments of the direct effects are fixed: they have zero mean, their variance is
defined by the direct heritabilities and they must have zero skewness because the
effect size distribution has to be symmetrical. Therefore, to violate the normality
assumption, we varied the kurtosis (2, 3, 5 and 10) of the distribution drawn from
the Pearson’s distribution family. Third, we tested the assumption of the direct
effects on our traits coming from a two-component Gaussian mixture by
introducing a third component and observing how the estimates were effected.
In this simulation scenario we introduced a large effect third component for X
while decreasing the polygenicity of U (πx1 ¼ 1 ´ 10�4; πx2 ¼ 1 ´ 10�2; h2x1 ¼ 0:15;
h2x2 ¼ 0:1; πu ¼ 1 ´ 10�2).

Application to real summary statistics. Once we demonstrated favourable per-
formance of our method on simulated data, we went on to apply LHC-MR to
summary statics obtained from the UK Biobank and other meta-analytic studies
(Supplementary Table 1) in order to estimate pairwise bi-directional causal effect
between 13 complex traits. The traits varied between conventional risk factors
(such as low education, high body mass index (BMI), dislipidemia) and diseases
(including diabetes and coronary artery disease among others). SNPs with impu-
tation quality greater than 0.99, and minor allele frequency (MAF) greater than

0.5% were selected. Moreover, SNPs found within the human leukocyte antigen
(HLA) region on chromosome 6 were removed due to the abundance of SNPs
associated with autoimmune and infectious diseases as well as the complicated LD
structure present in that region. For traits with total heritability below 2.5%, the
outgoing causal effect estimates were ignored since instrumenting such barely
heritable traits is questionable.

In order to perform LHC-MR between trait pairs, a set of overlapping SNPs was
used as input for each pair. The effects of these overlapping SNPs were then aligned
to the same effect allele in both traits. To decrease computation time further (while
only minimally reducing power), we selected every 10th QC-filtered SNP as input
for the analysis. We calculated regression weights using the UK10K panel, which
may be sub-optimal for summary statistics not coming from the UK Biobank, but
we have previously shown47 that estimating LD in a ten-times larger dataset
(UK10K) outweighs the benefit of using smaller, but possibly better-matched
European panel (1000 Genomes48).

We also ran IVW for each trait pair in both directions to estimate bi-directional
causal effects as well as LD-score regression to get the cross-trait intercept term.
We then added uniformly distributed (~U(−0.1, 0.1)) noise to these pre-estimated
parameters to generate starting points for the second step of the likelihood
optimisation. These closer-to-target starting points did not change the optimisation
results, simply sped up the likelihood maximisation and increased the chances to
converge to the same (primary) optimum. The LHC-MR procedure was run for
each pair of traits 100 times, each using a different set of randomly generated
starting points within the ranges of their respective parameters. For the
optimisation of the likelihood function (Eq. (25)), we used the R function ‘optim’
from the ‘stats’ R package49. Once we fitted this complete model estimating 11
parameters in two steps fix ; iy ; πx ; πy ; h2x ; h2y ; tx ; ty ; αx!y ; αy!x; ixyg, we then ran
block jackknife to obtain the SE of the parameters estimated in the second step:
fh2x ; h2y ; tx ; ty ; αx!y ; αy!x ; ixyg.

To support the existence of the confounders identified by LHC-MR, we used
EpiGraphDB33,34 to systematically identify those potential confounders. The
database provided for each potential confounder of a causal relationship, a causal
effect on trait X and Y (r1, and r3 in their notation), the sign of the ratio of which
(sign(r3/r1)) was compared to the sign of the LHC-MR estimated ty/tx values
representing the strength of the confounder acting on the two traits. We restricted
our comparison to the sign only, since the r1, r3 values reported in EpiGraphDB
are not necessarily on the same scale.

Comparison against conventional MR methods and CAUSE. We compared the
causal parameter estimates of the LHC-MR method to those of five conventional
MR approaches (MR-Egger, weighted median, IVW, mode MR and weighted mode
MR) using a Z-test50. The ‘TwoSampleMR’ R package51 was used to get the causal
estimates for all the pairwise traits as well as their standard errors from the above-
mentioned MR methods. The same set of genome-wide SNPs that were used by
LHC-MR, were used as input for the package. SNPs associated with the exposure
were selected to various degrees (for simulation we selected SNPs over a range of
thresholds: absolute p-value < 5 × 10−4 to < 5 × 10−8), and SNPs more strongly
associated with the outcome than with the exposure (p-value < 0.05 in one-sided t-
test) were removed. The default package settings for the clumping of SNPs
(r2= 0.001) were used and the analysis was run with no further changes. We tested
the agreement between the significance and direction of our estimates and that of
standard MR methods, with the focus being on finding differences in statistical
conclusions regarding causal effect sizes.

We compared our causal estimates from all our simulation settings to the causal
estimates obtained by running MR-RAPS11 also using the ‘TwoSampleMR’ R
package, once by using the entire set of SNPs, and another by filtering for SNPs
with a significance threshold of <5 × 10−4. We also compared both our simulation
as well as real data results against those of CAUSE10. We first generated simulated
data under the LHC model and used them as input to estimate the causal effect
using CAUSE. We then generated simulated data using the CAUSE framework and
inputted them into LHC-MR (as well as standard MR methods) to estimate the
causal parameters. Lastly, we compared causal estimates obtained for the 78 trait
pairs (156 bi-directional causal effects) from LHC-MR to those obtained when
running CAUSE.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The origin of the summary statistics data used is referenced in Supplementary Table 1.
The UK Biobank summary statistics data used in this study came from the Neale Lab52,
and can be downloaded from http://www.nealelab.is/uk-biobank. Data on coronary
artery disease53 have been contributed by the CARDIoGRAMplusC4D and UK Biobank
CardioMetabolic Consortium CHD working group who used the UK Biobank Resource
(application number 9922). Data have been downloaded from http://
www.cardiogramplusc4d.org/data-downloads/. The computed local LD scores described
in Supplementary Methods 1.3 can be downloaded from https://wp.unil.ch/sgg/lhc-mr/.
We also used EpiGraphDB, an analytical platform and database to support data mining
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in epidemiology, to preform Phenome-wide MR search. Access to EpigraphDB is free
and may be done through their web application https://epigraphdb.org or their R package
https://github.com/MRCIEU/epigraphdb-r.

Code availability
The source code54 for this work can be found on https://github.com/LizaDarrous/LHC-
MR_v2/(https://doi.org/10.5281/zenodo.5534639), it has also been developed into an R
package that can be downloaded from https://github.com/LizaDarrous/lhcMR.
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