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Bayesian evaluation of dynamic 

signatures in operational conditions 
Linden J., Bozza S. Marquis R., Taroni F. 

Abstract 
Forensic handwriting examiners (FHE) activities are focused on comparative analysis of handwritten 

objects such as signatures. Their role is to provide and evaluate evidence for and against the 

authenticity of a questioned signature. In recent years, cases involving handwritten signatures captured 

on electronic devices have become more commonplace. These so-called ‘dynamic signatures’ (also 

known as ‘digitally captured signatures’) are much different from paper-based signatures. Not only 

does the medium of recording differ, but also the type, volume of data and features are different from 

the pattern-based evidence that makes up paper-based signatures.  

Recent developments in forensic science - including signature examination - have led to the adoption 

of evaluative probabilistic methodologies in many disciplines [see, e.g. ENFSI 1915 Guidelines].  

In the current paper, a probabilistic model to evaluate signature evidence in the form of multivariate 

data, as proposed and described in [1], is adopted. Topics like data sparsity, joint evaluation of 

multiple features and feature selection are investigated. Performed experimental studies showed an 

accuracy rate above 90% even when a limited number (5) of reference signatures was available. The 

performances of a multivariate approach are compared with those characterizing a so-called 

multiplicative approach where variables (features) are taken as independent and the Bayes’ factor (BF) 

is obtained as the product of univariate BFs associated to each selected feature. The simplicity of this 

latter approach is, however, accompanied by severe issues about the reliability of results. The use of a 

multivariate approach is therefore highly recommended. Finally, the evidential values in 

correspondence of alternative feature sets are compared. Results suggest that discriminative features 

are writer-related and necessitate a case-specific selection. 
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1. Research Context 
Dynamic signatures are handwritten signatures acquired on digitizers, which capture both temporal 

and spatial information during the acquisition. Recently, an increasing interest in dynamic signatures 

has been noted [1-3], due to many advantages linked to paperless approaches [4, 5]. Along with the 

increasing popularity of dynamic signatures, forensic document examiners have increasingly been 

faced with cases involving such signature types. The role of the forensic scientist is to assess the value 

of the measurements of signature features under competing, alternative hypotheses as to the signatures 

authorship. Forensic scientists have to provide this information in a transparent and intelligible way 

[6-8], with many authors advocating probabilistic frameworks and the use of the Bayes’ factor (BF) 

[7, 9-13].  

Recent progress in handwriting examination has been fundamental in restoring trust in a severely 

critiqued discipline [14-17]. Much progress was made through the meticulous description of 

methodology, as well as the validation of expert performance. This was achieved through population 

studies, as well as the application of computational techniques to strengthen pattern-matching 

examination [13, 18-39]. Reliability claims were supported by statistical analyses related to mock 

cases built from large datasets containing known source writing [40-44]. There have also been many 

advances in methods for validation criteria [45-47]. Further progress in feature characterization could 

be achieved through computational techniques [18, 19, 48-54]. Forensic handwriting examination has 

been able to take advantage of this research [31, 55-57], but no major methodological breakthroughs 

related to dynamic signatures have been achieved in recent years.  

Despite the existence of a solid methodological framework for handwriting examination [58, 59] and 

the availability of guidance for communicating conclusions to courts of law [7, 9, 12, 60], only few 

attempts have been devoted to the quantification of the value of dynamic signatures [61-68]. Research 

in this field is often focused on technical aspects such as features’ acquisition rather than 

methodological ones [69]. Experts have been criticized because of the lack of objectivity of their 

conclusions [14-16, 70, 71]. Probabilistic models for handwriting evidence evaluation do exist [72], 

and can be adapted to be used for the forensic examination of digitally captured signatures [73].  

In the presented research, three experiments have been performed to investigate the effect of data 

sparsity, the problem of joint evaluation of multiple features and the feature selection when dealing 

with the evaluation of signature evidence. Operational conditions often do not permit a large-scale 

collection of samples and forensic scientists face the problem of handling low volumes of data. 

Moreover, dynamic signatures offer a large choice of novel features whose correlation and 

discriminative power is still unexplored and requires investigation. 

The dataset used in the study is described in Section 2.1, while the probabilistic model is summarized 

in Section 3.2. An overview of the selected features, as well as a detailed description of the 

experimental design is presented in Section 2.3 and 2.4, respectively. Data analysis and results are 

reported in Section 4 with attention to the model’s accuracy and reproducibility faced with (i) limited 

control material (Section 3.1), (ii) alternative approaches for the joint evaluation of multiple features 

(Section 4.2), and (iii) alternative feature sets (Section 4.3). A summary of the research findings and of 

the benefits of a probabilistic model for digitally captured features evaluation is discussed in Section 4. 

2. Materials and Methods 
In this section, the data used in the study (Section 3.1) as well as the probabilistic model for the 

evaluation of features (Section 3.2) and the type of signature features are described. Finally, 

experimental designs for studying the impact of data sparsity, joint evaluation of multiple features and 

feature’s selection are presented (Section 3.4). 
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2.1. Data collection 
All signatures were acquired in standardized conditions. Participants were sitting on an adjustable 

office chair at a desk approximately 1m high. They were allowed to adjust chair height and position 

for their comfort. They were also allowed to rotate the digitizing tablet to a comfortable angle (on a 

horizontal plane). The tablet’s inclination (vertical) was not changed during the trials; it had to remain 

flat on the table. A Wacom DTU 1141 signature tablet was used for the data acquisition. The sampling 

rate of the tablet is 200 Hz with a coordinate resolution of 2540 lpi and 1024 levels of pen pressure 

measured on the pen axis. Wacom drivers and software were used for data acquisition.  

Three distinct sets of data have been collected for this study and were classified into: 1) genuine non-

case-related signatures, 2) reference signatures (genuine case-related signatures) and 3) simulated 

signatures (known source forgeries).  

1) Non-case-related signatures 

For the non-case related signatures, participants were asked to sign their own genuine signature twenty 

times. Signatures had to be real full-length signatures, with no initials or shortened versions allowed. 

No selection based on style or complexity was performed. Twenty-three people participated in the 

collection and produced a total of 460 signatures. This set of signatures is used as background data and 

is denoted 𝒛𝑖𝑗 = (𝑧𝑖𝑗1, … , 𝑧𝑖𝑗𝑝), where 𝑖 = 1, … , 𝑚 is the writer’s identifier, 𝑗 = 1, … , 𝑛 is the number 

of signatures collected for each writer and p is the number of observed variables. This dataset is 

denoted by 𝑏𝑔. 

2)  Reference signatures 

For the reference signatures, three signers who did not participate in the acquisition of non-case-

related signatures, were asked to sign regularly during a period of 18 months, in order to capture 

natural long- and short-term variations. Signers were chosen so as to have different styles represented: 

a “text-based” (signature 1), a “stylized” (signature 2) and a “mixed” (signature 3) signature [67]. 

Their signatures were also characterized by a different graphical and dynamic complexity. These 

signatures were used to generate fictive cases. 

3) Simulated signatures 

For the simulated signatures, fifty-seven volunteers (forgers) were asked to simulate at least one of the 

three types of genuine signatures. Thirty-nine forgers simulated a single signature, eleven forgers 

simulated two signatures and seven forgers simulated all three signatures. All of the forgers 

participated in a ‘contest’ with a reward for the best forgers. This condition was meant to provide 

incentive to produce the best forgeries possible. No instructions were given regarding forgery strategy. 

All forgers chose freehand simulations, with only one exception. They were free to train on both paper 

and tablet for 15 minutes prior to starting the forgery acquisition, starting from six specimens of the 

chosen genuine signatures. They could keep the reference signatures in their sight during the forgery 

acquisition. They were asked to deliver 10 simulated signatures for each chosen reference type, with 

the possibility to discard any of the attempts according to their personal judgment. The collected data 

for the three case-related signatures is summarized in Table 1. These signatures will serve as part of 

the evidence (so as to have fictive cases where the proposition according to which the questioned 

signature is non-genuine) or as background data that is denoted 𝒔𝑖𝑗 = (𝑠𝑖𝑗1, … , 𝑠𝑖𝑗𝑝), where 𝑖 =

1, … , 𝑚 is the forger’s identifier, 𝑗 = 1, … , 𝑛 is the number of delivered attempts (forgeries) and p is 

the number of observed variables. This information is shortened to 𝑠𝑥. 

Denoted by x, the measurements on selected features characterizing one of the three genuine 

signatures were used to generate fictive cases. Denoted by y, the measurements on selected features 

characterizing a questioned signature were randomly drawn either from the genuine reference 
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signatures (a fictive case under the proposition of a genuine signature) or the simulated signatures 

(proposition of a non-genuine signature). Features describing the reference and the questioned 

signatures form the evidence 𝐸 = {𝑥, 𝑦}. A visual summary of the available databases is provided in 

Figure 1. 

 

TYPE SIGNATURE 1 SIGNATURE 2 SIGNATURE 3 
# Genuine 670 590 600 
# Forgeries 280 400 160 
# Forgers 28 40 16 

Table 1 - Summary of available case-related data. 

 

Figure 1 – Datasets used in this study (column 1) and their role in the evaluation of evidence computation (columns 2 and 3). 

Every experiment involves the generation of ‘random trials’ from known source data. For every trial, 

there are drawn a total number of 𝑞 = 𝑙 + 𝑚 questioned signatures and a total number of 𝑟 reference 

signatures. Questioned signatures are drawn (without replacement) from both simulated signatures 

(𝑙 = 100) and genuine signatures (𝑚 = 100). The drawn signatures are excluded from their 

respective populations for the rest of the single trial, so that they cannot serve as reference and 

questioned signature at the same time. Reference signatures are drawn from the remaining reference 

signatures. The simulated and non-case-related signatures that have not been selected as evidential 

material, form the background data that will be used to estimate the model parameters (see Section 

3.2). A Bayes’ factor is then calculated for each one of the q fictive cases. This process, representing 

one trial, is repeated 10’000 times per experimental condition to ensure the study of the empirical 

range of reproducibility. A visual summary is provided in Figure 2.  
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Figure 2 – Procedural description of one random trial, focusing on sampling and the parameter extraction. One random trial 

can be seen as being constituted of 𝑞 = 𝑙 + 𝑚 separate mock cases.  

2.2. A probabilistic model 
In most questioned signature cases, the court’s question is to determine the source of the questioned 

signature. Often, this process boils down to the signature being genuine or simulated. We therefore 

limited the alternative proposition to simulated signatures. The following pair of “default” hypotheses 

can be used in most signature analysis cases: 

• H1: The signature on the questioned text (e.g. a contract) is a genuine signature made by a 

given source; 

• H2: The signature on the questioned text (e.g. a contract) is a simulated signature made by an 

alternative source (i.e. someone other than the given source). 

A Normal distribution is assumed for the background data 𝑍𝑖𝑗 and 𝑆𝑖𝑗, 𝑍𝑖𝑗~𝑁(𝜃𝑖, 𝑊) and 

𝑆𝑖𝑗~𝑁(𝜃𝑖, 𝑊), where 𝜃𝑖 is the mean vector and 𝑊 is the covariance matrix. A conjugate prior 

distribution is assumed for the model parameters (𝜃𝑖 , 𝑊),  that is  

𝜃𝑖|𝑊~𝑁(𝜇, 𝜅𝑊) 

𝑊~𝑊𝑖(𝑈, 𝑣), 

(see [73] for a detailed description of the model). The parameter vector (𝜃𝑖 , 𝑊) will be denoted by the 

greek letter 𝜓. The hyperparameters (𝜇, 𝜅, 𝑈, 𝑣) are denoted by the Greek letter 𝜙. A subscript 𝑏𝑔 or 𝑠𝑥 

will be added to specify whether the parameters are estimated, using the background data, related to 

non-case-related signatures 𝒛𝑖𝑗  (𝑏𝑔, 𝐻1 is true) or to simulated signatures 𝒔𝑖𝑗 (𝑠𝑥, 𝐻2 is true). 

The distributions of the measurements y and x on the questioned and reference signature are taken to 

be Normal, (y|𝜃, 𝑊) ~𝑁(𝜃, 𝑊) and (x|𝜃, 𝑊) ~𝑁(𝜃, 𝑊). 

The Bayes’ factor can be obtained as: 

𝐵𝐹 =
∫ 𝑓(𝑦|𝜓, 𝐻1)×𝑓(𝜓|𝑥, 𝜙𝑏𝑔

, 𝐻1) 𝑑𝜓
𝜓

 

∫ 𝑓(𝑦|𝜓, 𝐻2)×𝑓(𝜓|𝑥, 𝜙𝑠𝑥
, 𝐻2) 𝑑𝜓

𝜓

.  (1) 
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2.3. Features 
In biometrics, features are classified into three broad categories [74]: global features, local features 

and segment features (see Table 1). According to Richiardi et al. [74] one is faced with global features 

if ‘one feature is extracted for a whole signature, based on all sample points in the input domain’ ([74] 

at p. 1). If we paraphrase this statement, a global feature summarizes all available information from a 

signature into a single value that characterizes the entire signature, e.g. the average pressure, the pen 

velocity variance, the maximal velocity, the signature length or the signing time. A brief description of 

segment features can be found in Table 1. Local features are a chronological sequence of 

measurements and contain much more information. So, their treatment is more complex [75]. 

Segmental features are a hybrid case, which surpasses the scope of this article. 

This article focuses on global features only. There are several reasons for this choice. First, global 

features do not require any segmentation or algorithmic treatment. A global-feature-based 

methodology can be extended to any signature. Global features can be measured on dynamic, static 

[61] and paper-based signatures and are universally applicable. Second, global features complement 

pattern-matching methods currently used by forensic examiners. Forensic examiners traditionally 

focus on the visual information, such as the shape of the signature. Third, global features can be 

reproducibly measured. 

 

Table 1 - Biometric feature type classification scheme. 

A total of 60 global features were extracted from each examined signature. Table 2 contains a list of 

the 12 measured global features used in the study. Table 3 contains a list of 16 local features, which 

can be summarized into 48 global features by averaging, as well as calculating, their variance and their 

maxima (e.g., the tangential speed dt1 becomes dt1_mean, dt1_var, dt1_max). Features were grouped 

into classes based on the type of measurement they originate from (e.g. distance, time, or velocity). 

This classification is useful to explain what feature class may be prevalent for discriminative purposes 

and useful in practice.  

Features were not considered separately. The combination of features is referred to as a feature set. To 

select a list of relevant features, all possible combinations of features have been tested and their 

performance in terms of accuracy has been analyzed. Feature sets were ranked via a performance 

criterion that will be described in Section 3.4. 

 

FEATURE TYPE DATA TYPE IMPLICATION 

GLOBAL (OR 

PARAMETER) 

FEATURE 

One measurement Summarizes and reduces information from all 
measured points into an easily usable unit. 

Loss of information due to the aggregation of local 

information. 

LOCAL (OR 

FUNCTION) 

FEATURE 

List of measurements, function (often 
time functions) 

Contains data from every single data point, 
instantaneous and localized data. 

Every measurement describes one specific point in 

the signature. 

SEGMENTAL 

FEATURE 

One measurement per defined unit The data is segmented according to a specific 
criterion. Every section has their own ‘global’ and 

‘local’ features and can be compared unit by unit. 

Two examples are strokes (pen-ups) and lines 

between stops (velocity inversions).  
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FEATURE DESCRIPTION FEATURE CLASS 

HEIGHT Height, measured vertically from minimum to maximum point Expansion Feature 

WIDTH Width, measured horizontally from left- to right-most point Expansion Feature 

WH RATIO Ratio of Width to Height Expansion Feature 

UPLENGTH Length of in-air movement trajectory  Length Feature 

DOWNLENGTH Length of on-surface movement trajectory  Length Feature 

TOTLENGTH Total length of trajectory Length Feature 

TOTALTIME Time to finish for signature Time Feature 

DOWNTIME Time pen is touching the tablet Time Feature 

UPTIME Time pen is lifted Time Feature 

DOWNTOT Ratio of Down- to Total time Time Feature 

UPTOT Ratio of Up- to Total time Time Feature 

DOWNUP Ratio of Down- to Uptime Time Feature 

Table 2 - Measured global features 

FEATURE DESCRIPTION FEATURE CLASS 

DT1 Tangential Speed Speed Feature 

DT2 Tangential Acceleration Acceleration Feature 

DT3 Tangential Jerk Jerk Feature 

DX1 Horizontal Speed Speed Feature 

DX2 Horizontal Acceleration Acceleration Feature 

DX3 Horizontal Jerk Jerk Feature 

DY1 Vertical Speed Speed Feature 

DY2 Vertical Acceleration Acceleration Feature 

DY3 Vertical Jerk Jerk Feature 

DP1 First-order derivative of pressure (time) Pressure Feature 

DP2 Second-order derivative of pressure (time) Pressure Feature 

DP3 Third-order derivative of pressure (time) Pressure Feature 

TVD Angle of velocity to the horizontal axis Directional Feature 

TAD Angle of acceleration to the horizontal axis Directional Feature 

P Pressure intensity, measured axially (pen inclination) Pressure Feature 

XY Distance to coordinate centroid Expansion Feature 

Table 3 - Measured local features.  

2.4. Experimental Setup 
Three separate experiments are performed in order to (i) investigate the effect of data sparsity, (ii) 

compare a multiplicative approach for the joint evaluation of multiple features to a multivariate 

approach, and (iii) analyze the discriminative power of different feature sets.  

Performances of the experiments can be studied through accuracy and reproducibility. Accuracy is 

expressed as the proportion of BF values correctly supporting the hypothesis known as true or, 

analogously, by the rate of misleading evidence (RME) [9]. If misleading evidence occurs, it can be 

said to favor either 𝐻1 or 𝐻2. Here, misleading evidence towards 𝐻1 signifies falsely supporting the 

proposition according to which the signature is genuine. This is denoted by 𝑅𝑀𝐸(𝐻1) and is obtained 

as the ratio between the total number of BFs greater than 1 (i.e., supporting 𝐻1) and the total number 

of fictive cases where the questioned signature is known to have been simulated (i.e., 𝐻2 is true). If 

evidence is misleading towards 𝐻2, the BF falsely supports the proposition according to which the 

signature is a simulation. This is denoted by 𝑅𝑀𝐸(𝐻2) and is obtained as the ratio between the total 

number of BFs smaller than 1 (i.e., supporting 𝐻2) and the total number of fictive cases where the 

questioned signature is known to be genuine (i.e., 𝐻1 is true). 

It can be reasonably requested that a model should have a high value of average accuracy across trials 

and a low value of the accuracy variance across trials (reproducibility). This is quantified by: 

𝑠𝐴

|𝑥̅𝐴|
, (2) 
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where 𝑠𝐴 is the standard deviation of accuracy values across trials and 𝑥̅𝐴 is the average accuracy 

across trials. The lower the value of the coefficient of variation in (2), the higher the overall 

performance of the model. 

A limitation frequently encountered in forensic casework is data sparsity. In experiment 1, the number 

of reference signatures drawn for each trial varies from a minimum of 5 signatures to a maximum of 

100 signatures. For every signature, the four-highest ranked tri-variate feature sets are retained and are 

used in 10’000 random trials per experimental condition.  

The importance of correlation among features is investigated in addition to the role of model 

dimensionality. In experiment 2, the performances of a multivariate versus a multiplicative approach 

for jointly evaluating single global features are analyzed. Scientific literature on handwriting evidence 

[34, 35] proposed to consider features as independent and to calculate the value of the evidence by 

multiplying the single evidential value assignations (BFs). In signature evidence, however, features 

appear to be strongly correlated due to movement mechanics [76, 77] and the assumption of 

independence can hardly be justified. Features showing a better performance when considered 

singularly were retained. These features were then used to calculate the BF (i) by multiplying BFs 

associated to each variable (feature), and (ii) using the multivariate approach illustrated in Section 3.2. 

Computations were performed on the same case data (questioned and reference signatures) to ensure 

comparability. The effect of adding variables in a multivariate model is also of interest. Adding 

variables increases the model dimensionality, but it is also expected to improve performance.  

Another problem is the selection of discriminative features for the detection of simulated signatures. 

As no perfect algorithmic solution to feature selection exists, all trivariate feature combinations 

(34’220 possibilities) of the features in Table 2 and Table 3 were evaluated. The model dimensionality 

is set equal to 3 variables to keep the computational time short. The feature sets’ performances were 

evaluated through 1’000 random trials for each set. These computations were repeated for nine 

different reference set sizes, ranging from 10 to 160 reference signatures. For every experimental 

condition, the ten best performing feature sets were selected. Then, for each signature, the percentage 

of cases where a specific feature is included among the best performing sets was calculated. This 

percentage expresses how useful a specific feature is for that particular signature. 

3. Results 

3.1. Experiment 1 – The effect of data sparsity 
The four best performing feature sets were selected for each reference signature. It must be highlighted 

that they were different for every signature. The average accuracy of the selected feature sets for the 

three reference signatures is represented in Figures 3 to 5, while the accuracy variance is represented 

in Figures 6 to 8.  

Most feature sets have accuracy above 90%, with few exceptions where the reference signature’s size 

is small (see Figures 5 and 6). As the number of reference signatures increases, a higher accuracy and 

a lower variability may be observed. This is not true, however, for very large sample sizes. In some 

cases, a modest decrement in terms of mean accuracy and an increment in terms of variability have 

been observed. See for example signature 1, where the feature set including the lifted pen trajectory 

length, the horizontal speed variance and the pressure variance, shows increased accuracy variance 

when more than 40 signatures are used for training. In general, a total number of 10 to 15 signatures 

appear as sufficient material to produce reliable and reproducible results. A lower sample size may 

simply be too small to sufficiently represent the signature natural variation. 

The lower accuracy for very large sample sizes may be explained by a high variability of the reference 

signatures, that is not adequately modeled. The background data of non-case related signatures used to 

estimate model parameters under hypothesis 𝐻1 might not be sufficiently representative. In the 



Page 9 of 21 

 

presence of graphically different signatures, a viable alternative could be to divide them into 

comparable subclasses.  Moreover, it must be added that the best performing feature sets selected for 

signature 2 are mostly given by dynamic features, which may be subject to greater natural variation. 

They may also be more sensitive to writing conditions such as posture and pen-pad-interaction or the 

writer’s physical and psychological state (e.g. sickness, stress, threat, medication, narcotics, …) with 

respect to static features. Larger efforts should therefore be devoted in the collection of background 

data. 

 

Figure 3 - Average accuracy for the four best performing trivariate feature sets over the 10’000 trials per experimental 

conditions for signature 1. For more detail on the features, see tables 2 and 3. 

 

 

78

80

82

84

86

88

90

92

94

96

98

100

0 10 20 30 40 50 60 70 80 90 100 110

%
 A

vg
. A

cc
u

ra
cy

# of Reference Signatures

Average accuracy for 4 trivariate Models - Signature 1

Height-Totaltime-dt1_bar Uplength-dx1_var-dp1_var

Totaltime-dx1_max-XY_max Uplength-Totlength-Totaltime



Page 10 of 21 

 

 

Figure 4 - Average accuracy for the four best performing trivariate feature sets over the 10’000 trials per experimental 

conditions for signature 2. For more detail on the features, see tables 2 and 3. 

 

Figure 5 - Average accuracy for the four best performing trivariate feature sets over the 10’000 trials per experimental 

conditions for signature 3. For more detail on the features, see tables 2 and 3. 
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Figure 6 – Accuracy variance  for the four best performing trivariate feature sets over the 10’000 trials per experimental 

conditions for signature 1. For more detail on the features, see tables 2 and 3. 

 

Figure 7 - Accuracy variance for the four best performing trivariate feature sets over the 10’000 trials per experimental 

conditions for signature 2. For more detail on the features, see tables 2 and 3. 
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Figure 8 - Accuracy variance  for the four best performing trivariate feature sets over the 10’000 trials per experimental 

conditions for signature 3. For more detail on the features, see tables 2 and 3. 

3.2. Experiment 2 – Model dimension and combination of features 
Forensic examiners have always argued that no single element in signatures is sufficient for detection 

of simulated signatures [59], and that multiple features should be observed and combined. Intuitively, 

one may expect that using more information always yields better results. This is not always the case. A 

larger model dimension is not necessarily accompanied by performance improvements, as some 

variables may turn out to be redundant or meaningless. These increase model complexity 

unnecessarily without providing additional benefits. Moreover, the greater the number of variables, the 

larger will be the size of the background data needed for parameter estimation in a multivariate 

approach. Such datasets may not be available to the forensic examiner. 

The effect of increasing the dimensionality of the feature set can be seen in Tables 4 to 6. The 

incremental addition of features is generally accompanied by an increase in accuracy and 

reproducibility for all reference signatures. For signature 1, the average accuracy increases by about 

2% when comparing univariate versus quadrivariate feature sets, while the accuracy variance drops off 

slightly. The gain in terms of accuracy is mostly due to a decrement of the misleading evidence versus 

𝐻1,  𝑅𝑀𝐸(𝐻1). This means that fewer simulated signatures produced misleading BFs (i.e. BF > 1 

when 𝐻2 holds). A greater accuracy for models of larger dimensions is also observed for signature 2. 

For feature sets of at least three variables, almost no genuine signatures produced misleading evidence 

(i.e. no BFs smaller than 1 have been observed when 𝐻1 holds). An increasing variability is however 

observed for trivariate feature sets. For signature 3, the expected increment in terms of average 

accuracy and decrement in terms of variability is confirmed. Moreover, no simulated signature 

produced misleading evidence. 
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 Univariate Bivariate Trivariate Quadrivariate 

Feature set Totaltime Totaltime, P_var Totaltime, 

dp3_max, 

XY_max 

Totaltime, dt1_var, 

TAD_var, XY_max 

Accuracy [%] 95.26 95.88 96.03 97.42 

Acc. Variance [%] 0.96 0.80 0.69 0.50 

RME(H1) [%] 8.80 7.59 7.65 4.35 

RME(H2) [%] 0.49 0.5 0.12 0.72 

Table 4 - Signature 1: model performances with feature sets of increasing dimension. Accuracy is the complement to the 

weighted average of RME. 

  

 Univariate Bivariate Trivariate Quadrivariate 

Feature set dt1_bar P_bar, dy1_var Totaltime, 

dx3_var, dt2_var 

Totaltime, dx2_var, 

dx3_var, TAD_max 

Accuracy [%] 88.39 91.97 95.43 96.63 

Acc. Variance [%] 1.42 1.44 4.09 2.20 

RME(H1) [%] 12.76 7.38 6.75 4.86 

RME(H2) [%] 9.68 9.12 0.89 0.86 

Table 5 - Signature 2: model performances with feature sets of increasing dimension. Accuracy is the complement to the 

weighted average of RME. 

  

 Univariate Bivariate Trivariate Quadrivariate 

Feature set Uptime Uptime, XY_max Uptime, dt3_var, 

XY_max 

Totaltime, dx1_bar, 

dy1_max, XY_max 

Accuracy [%] 98.75 99.88 99.90 99.99 

Acc. Variance [%] 0.44 0.06 0.04 0.00 

RME(H1) [%] 0.00 0.00 0.00 0.00 

RME(H2) [%] 1.93 0.19 0.15 0.01 

Table 6 - Signature 3: model performances with feature sets of increasing dimension. Accuracy is the complement to the 

weighted average of RME. 

 

The model performances reported in Tables 4 to 6 are related to experimental studies where the BF has 

been calculated as in (1) using the multivariate statistical model (see Section 3.2). However, there are 

far more naïve and faster ways to calculate the BF for each fictive case. If variables (features) are 

assumed to be independent, the BF can be obtained by multiplying the BFs calculated in 

correspondence of each feature treated singularly. The performances of the two best performing 

features for each signature are reported in Tables 7 to 9. Features are considered singularly (rows 1 

and 2) or jointly (rows 3 and 4), using a multivariate approach (row 3) or a multiplicative approach 

(row 4). Instead of improving the accuracy, naïvely combining features may even decrease it. The only 

exception is the multiplicative approach for signature 3. The loss in terms of accuracy can be 

explained by the shared information content between features. In fact, it is better to combine features 

that are ‘worse’ individually but contain ‘different’ information, rather than combining ‘good’ but 

‘similar’ features. This can be seen in Table 6, where adding a second variable in the multivariate 

setting actually improves accuracy. Feature selection should be based on features providing 

complementary information, which is apparent from Tables 4 to 6. The best performing feature sets 

generally include a time-related, a graphical and one or several dynamic features. Two different timing 

features (such as time spent with the pen lifted and time spend with the pen writing) convey highly 

related information. The decrease in value is an expected result because of the high covariance 

between the combined features, which impacts the BF. It should be noted that multiplication models 

are simply dominated by the extreme elements and do not allow for such diagnostics.  
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The model dimension and the method used to evaluate jointly multiple variables, also affect the 

magnitude of the Bayes’ factor values. Consider a feature set of size equal to 2. When comparing the 

multivariate with the multiplicative approach, the BFs obtained with the latter tend to be more extreme 

than those obtained with their multivariate counterparts that are more tempered (this has been 

observed in 94.5% of cases). This means having higher values when 𝐻1 is supported and, vice versa, 

lower values when 𝐻2 is supported. Clearly, such an extreme BF is not indicative of high rate of 

reliability. 

  

 Accuracy [%] RME(H1) [%] RME(H2) [%] 

Univariate | Totaltime 91.01 8.92 0.08 

Univariate | Uptime 86.99 12.49 0.53 

Multivariate 88.75 10.41 0.84 

Multiplication 88.82 11.03 0.16 

Table 7 – Signature 1. Accuracy and rate of misleading evidence obtained with a univariate, multivariate and multiplicative 

approach for the two best performing singularly evaluated  features (i.e., totaltime and uptime). 

  

 Accuracy [%] RME(H1) [%] RME(H2) [%] 

Univariate | dt1_bar 87.64 11.79 0.57 

Univariate | dx1_var 90.16 7.16 2.69 

Multivariate 86.49 11.89 1.63 

Multiplication 88.66 10.75 0.60 

Table 8 - Signature 2. Accuracy and rate of misleading evidence obtained with a univariate, multivariate and multiplicative 

approach for the two best performing singularly evaluated  features (i.e., mean of  tangential speed and variance of 

horizontal speed ). 

  

 Accuracy [%] RME(H1) [%] RME(H2) [%] 

Univariate | Uptime 99.83 0.00 0.17 

Univariate | dx1_bar 98.94 1.04 0.03 

Multivariate 99.68 0.00 0.32 

Multiplication 99.95 0.00 0.06 

Table 9 - Signature 3. Accuracy and rate of misleading evidence obtained with a univariate, multivariate and multiplicative 

approach for the two best performing singularly evaluated  features (i.e., uptime and mean of horizontal speed).  

On average, the “multiplied” BF values for signature 1 are 17 and 2.75 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 times higher (for BFs 

supporting genuine and simulated propositions, respectively) than their multivariate counterparts. An 

interesting way to study these effects further may be to investigate their mutual information content. 

As such, features providing various pieces of information about the time of execution are highly 

correlated and the multiplicative approach yields BFs of increased magnitudes with respect to a 

multivariate approach where the dependence structure is taken into account (e.g, for signature 1, the 

total time of execution, Total time, and the time spent with lifted pen, Uptime, see Table 7). Similar 

observations are valid for all signatures. For signature 2, the best performing features resulted to be the 

average tangential speed (dt1_bar) and the horizontal speed variance (dx1_bar).  The multiplied BF 

values are 2.9 and 3.6 times higher (for BF supporting genuine and simulated propositions, 

respectively) than their multivariate counterparts. Finally, the best performing features for signature 3 

resulted to be the time spent with lifted pen (Uptime) and the average horizontal speed (dx1_bar). The 

multiplied BF values are 5 and 3.4 times higher (for BF supporting genuine and simulated 

propositions, respectively) than their multivariate counterparts. These results confirm the expected 

overestimation of evidential value that can be made when correlated variables are treated as 

independent.  
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Overall, the multivariate approach is a more coherent way to quantify the value of correlated signature 

features [9]. The so-called multiplicative strategy is not a good choice for signature evidence, as it 

tends to deliver an unrealistic assessment of the evidential value. In some cases, such as with 

handwriting evidence, this effect may be small enough to be neglected.  

4.3. Experiment 3 – Feature Selection and Discriminative Features 

Following the previous discussion about joint evaluation of multiple features, the objective of 

experiment 3 was to search for the best performing feature types and feature sets useful for 

discriminative purposes in presence of questioned signatures. For well-performing feature sets, the 

idea was to determine the single feature’s contribution, as an indirect measure of discriminative power. 

Features were classified on the basis of the type of measurement. The contribution of features was 

measured by calculating the percentage of cases where the single feature is included in one of the 10 

top ranked feature sets for every experimental condition (Table 10). The size of the control material 

varied from a minimum of 10 signatures to a maximum of 160 signatures. The overall performance 

was measured in terms of accuracy and reproducibility, as detailed in Section 3.4. This approach has, 

however, some limits, as it cannot express the ‘importance’ of the contribution, nor directly express 

the complementarity of the features.  

FEATURE TYPE  SIGNATURE TYPE  

 Mixed Style 
Medium complexity  

(signature 1) 

Stylized 
Low complexity 

(signature 2) 

Text-based 
High complexity 

(signature 3) 
TIME FEATURES 100,00% 72,00% 46,22% 

LENGTH FEATURES 0,00% 24,00% 0,00% 
EXPANSION FEATURES 20,44% 35,11% 98,22% 

DIRECTIONAL FEATURES 2,67% 16,00% 0,00% 
PRESSURE FEATURES 87,56% 60,89% 63,11% 

SPEED FEATURES 16,89% 40,44% 4,89% 
ACCELERATION FEATURES 12,44% 13,78% 24,00% 

JERK FEATURES 5,78% 9,78% 36,44% 

Table 10 - Summary of feature type contributions to the best performing feature sets. Percentages express in how many of the 

best performing feature sets a specific feature type was included. 

The contribution of feature types varied with the reference signature and its complexity. If time-based 

features showed a high contribution in either signature 1 and 3, in signature 2 the best performing 

feature sets tend to privilege dynamic information (such as pressure, speed, acceleration, jerk). 

Although the set of genuine signatures is not sufficiently big to establish a direct relationship between 

signature complexity, type and discriminative features, results do suggest patterns. The performed 

exploratory analysis would suggest that for short, stylized and rapidly executed signatures using 

dynamic data may be of interest. Signatures 1 and 3, which are longer, slower and more legible have 

feature sets that rely more heavily on time-related information.  

Best performing feature sets are peculiar for each signature: no feature set appeared in the top list for 

more than one signature. Unfortunately, there does not exist an optimal feature set independently from 

the feature type. This appears clearly in Tables 11 and 12, where the experimental results obtained for 

the three reference signatures on a same set of features is reported. The feature sets were chosen 

because they performed well and were common to the three signatures in the top 100 features sets.  

Information on the chosen features (time, pressure, speed, direction) is available on most dynamic 

signature hardware. 
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Although the results in Table 11 may seem to suggest that these feature sets work well, they are not 

optimal. The rates of misleading evidence vary a lot. A signature-specific feature selection is needed. 

As an example, Signature 3 had trivariate feature sets with 99.9% accuracy. These results are not 

reproducible by using the same feature set on other signatures. 

Optimal performance is only achieved through a signature-specific feature selection. However, some 

feature sets appear as good compromises between applicability and performance results. Experiments 

confirm that some feature types may be privileged for short and fast signatures, while others are better 

suited to legible and long signatures. Dynamic features, such as pressure and speed may be more 

informative for short signatures and time-related features for longer signatures. Additionally, for left-

handed writers, incorporating direction-related features, in particular trajectory direction may be of 

interest. Clearly, a more extensive study on a large panel of genuine signatures with different 

complexities and of different styles should be conducted in order to investigate further the robustness 

of observations and remarks.  

 Accuracy [%] RME(H1) [%] RME(H2) [%] 

Signature 1 91.05 8.67 9.23 

Signature 2 93.54 9.57 1.13 

Signature 3 92.07 0 12.22 

Table 11 – Performances of feature set including Totaltime, dt1_bar, TVD_bar. The accuracy is the opposite of the weighted 

average of the RMEs. This is a result as the number of samples between H1 and H2 was different. 

 Accuracy [%] RME(H1) [%] RME(H2) [%] 

Signature 1 95.86 7.51 0.60 

Signature 2 83.78 25.80 0 

Signature 3 97.98 0 3.12 

Table 12 – Performances of feature set including Totaltime, P_var, dp3_max. The accuracy is the opposite of the weighted 

average of the RMEs. This is a result as the number of samples between H1 and H2 was different. 

4. Conclusion 
The study explored evidence evaluation in dynamic signature examination under operational 

conditions. Three specific aspects were addressed: data sparsity, feature combination and feature 

discriminative power. A Bayesian parametric model was used to calculate Bayes’ factors expressing 

evidential value on signature authenticity. Experimental results obtained using global features showed 

that roughly 15 signatures are sufficient to obtain accurate and reproducible results. However, 

performances are still good even in the presence of lower sample sizes. The joint evaluation of 

multiple features represents another important issue. A multiplicative approach where variables are 

assumed independent tends to produce more extreme (and unjustified) evidential value statements. 

Features characterizing dynamic signatures show, however, a non-negligible correlation, and a 

multivariate approach is to be preferred. As far as the feature selection, it has been observed that the 

best performing feature sets are signature specific. 

When interpreting the results of this study, one must keep in mind that the number of forgers involved 

is modest. The same can be said for the case-related signature number. Only three signatures of 

different styles were examined in detail. Although results cannot be generalized due to the absence of 

a database of similar styled signatures, the in-depth analysis of the three samples has at least 

exploratory value. These three signatures illustrate that different signature complexity and type may 

play a role for feature selection. Stylized signatures may perform better with dynamic features, while 

longer signature types may show to perform better with time-related features. For a left-handed 

individual, directional features such as the velocity and acceleration direction appear to be more 

discriminative. It cannot be excluded that generalization may be possible for signature classes based 

on styles or graphical elements. The results suggest that feature selection should be case-specific. 
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Some feature types seem to be inherently better suited to different signatures. Further studies should 

be implemented to study features’ discriminative power with respect to signature complexity and type, 

as well as the signer’s handedness.  

The feature sets tested were exclusively made of global features. These feature sets contain limited 

information on the signature’s dynamics. The available raw data contains local features, such as the 

speed and pressure profile of the signature. Summarizing these features into global features produces a 

loss of information. Another point that is worth mentioning is that dimensionality plays an important 

role in multivariate statistics [78]; the higher the model dimensionality, the more data is needed to 

assess feature variability and estimate model parameters. Realistically speaking, forensic scientists 

rarely dispose of large background data. Alternatively, a score-based approach might be implemented. 

This would allow one to shrink the model dimensions and it may turn out to be a viable alternative to 

dealing with local features. 

An additional consideration should be devoted to the temporal proximity between the questioned and 

the reference signatures. In the current study, however, the contemporaneity of the evidence material 

was not taken into account. 

Finally, the proposed Bayesian model has shown good accuracy under operational conditions. The 

model provides a methodologically sound way to assess dynamic signatures through the use of 

empirical data and statistical techniques. It can also be easily implemented for handling features 

measured on static or paper-based signatures. Criticism of forensic science includes the lack of 

validated statistical models and of adequate empirical data to justify conclusions given by examiners. 

The model meets recent recommendations for communicating evidence and it adheres to the important 

principle of transparency [6]. The model is versatile and applicable under operational conditions, and 

it may represent a valuable contribution to practice in handwriting examination. It may help the 

forensic handwriting examiner in providing - through the Bayes’ factor - a quantified support in favor 

of or against a set of hypotheses about the origin of questioned documents. This numerical value 

guarantees that examiner’s conclusions are sound because they are supported by strong scientific 

principles. 
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