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Abstract

Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the
detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46
protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response
to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector
expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens.
This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the
vaccine candidate NYVAC-C (NYVAC-C-AA46R). The viral gene A46R is not required for virus replication in primary
chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion
by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost
immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune
responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-
C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological
role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune
responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the
improvement of poxvirus-based vaccine candidates.
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Introduction poxviruses, the highly attenuated vaccinia virus (VACV) strain
NYVAC is under intense preclinical and clinical evaluation as a
vaccine against emergent infectious diseases and cancer [2].

The NYVAC strain was derived from a plaque clone isolate

The search for a safe and effective HIV vaccine able to elicit
long-lasting protective immunity has encouraged the

development of recombinant live vaccine candidates with good
safety and immunogenicity profiles. The Thai phase Il clinical
trial (RV144) using the recombinant poxvirus vector ALVAC
and the protein gp120 in a prime-boost strategy and showing a
31.2% protection against HIV infection [1], has raised
considerable interest in the use of improved attenuated
poxvirus recombinants as HIV vaccine candidates. Among
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of the Copenhagen vaccinia virus strain (VACV-COP) by the
deletion of 18 open reading frames (ORFs) involved in
virulence, pathogenesis and host range functions [3]. In spite of
its limited replication in human and most mammalian cell types,
NYVAC provides a high level of gene expression and induces
antigen-specific immune responses when administered to
animals and humans [2,4,5,6]. However, the vector still
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contains other immunomodulatory viral genes that may
suppress host immunity, particularly genes encoding proteins
that antagonize the innate immune response mediated by Toll-
like receptor (TLR) signalling. The deletion of these
immunomodulatory genes could be a strategy to further
improve NYVAC-based vaccines with the aim to obtain
enhanced magnitude, breadth, polyfunctionality and durability
of the immune responses.

The sensing of viral pathogens and the subsequent innate
immune responses triggered are critical to produce protective
immunity. Cells of the innate immune system detect viruses
through the recognition of specific pathogen-associated
molecular patterns (PAMPs) by pattern recognition receptors
(PRRs) [7,8,9,10], among which TLRs are the best
characterized [11]. TLR3, TLR7/8 and TLR9 reside
predominantly within the endosomes where they recognize
viral nucleic acids being involved in the generation of potent
antiviral responses [12] while viral glycoprotein products have
been shown to interact with TLR2 and TLR4 expressed on the
cell surface [13,14]. The implication of TLR2 in the induction of
type | IFN in inflammatory monocytes following in vivo infection
with VACV has been reported and depletion of these cells
leads to elevated levels of VACV in ovaries of mice [15]. TLR2
signalling has also been shown to be important for clonal
expansion and memory CD8 T cells formation following VACV
infection [16] and in VACV-induced production of
proinflammatory cytokines by murine denditic cells (DCs) [17].
The best known role of TLR4 is the detection of
lipopolysaccharide (LPS) but this receptor is also involved in
the immune response to viruses. For example, TLR4 has been
reported to be protective in pulmonary VACV infection since
mice deficient for TLR4 signalling showed enhanced viral
replication, hypothermia and mortality compared to control
animals [18]. Because TLRs are expressed both on specific
nonimmune cells, such as epithelial cells at potential sites of
entry, and on a variety of immune cells including macrophages,
DCs, B cells and certain types of T cells, they play a key role in
the defence against pathogens through the induction of
proinflammatory cytokines and type | IFNs but also in shaping
pathogen-specific humoral and cellular adaptive immune
responses.

All TLRs are type | transmembrane glycoprotein receptors
comprised of an extracellular N-terminal leucine-rich repeat
(LRR) domain involved in ligand binding, a single
transmembrane domain and an intracellular C-terminal domain,
known as the Toll/IL-1 receptor (TIR) domain, which mediates
the interaction and recruitment of various adaptor proteins to
activate the downstream signalling pathway [19]. PAMP
binding induces receptor homo- or heterodimerization [20,21]
and this activated conformation of the receptor triggers the
recruitment of TIR domain-containing adaptor proteins that
connect downstream signalling molecules leading to the
activation of transcription factors such as IFN regulatory factors
(IRFs) and NF-«B and the induction of type | IFNs and
proinflammatory cytokines, respectively. Ligand recognition by
TLRs induces the recruitment of five different adaptor proteins:
Myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like
(Mal), TIR domain-containing adaptor protein-inducing IFN-B
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(TRIF), TRIF-related adaptor molecule (TRAM) and sterile a-
and armadillo-motif-containing protein (SARM) [22]. Two major
pathways can be activated by TLRs: the MyD88-dependent
pathway, used by all TLRs except TLR3 [23] and the TRIF-
dependent pathway, used by TLR3 and TLR4. TLR4 is the only
receptor being able to signal via both pathways due to the
differential use of two adaptors, TRAM and Mal. TLR4 uses
TRAM to recruit TRIF and induce a type | IFN response via the
TRIF-dependent pathway while the use of the coadaptor Mal to
recruit MyD88 via the MyD88-dependent pathway induce a
proinflammatory response [24]. Crystal structures of the TIR
domains of TLR2 [25], TLR10 [26], interleukin-1 receptor
accessory protein-like (IL-1RAPL) [27] and Mal [28,29] and
NMR structure of the TIR domain of MyD88 [30] have been
determined. These studies identified a conserved protruding
BB loop between the BB strand and the aB helix, which is
essential for functional TLR signalling [31,32,33,34,35].

Viruses have developed strategies to target TLR-mediated
signalling to manipulate and evade the host innate immune
response [36]. VACV encodes some intracellular negative
regulators of TLR signalling including A46 [37], A52 [38], N1
[39], B14 [40], K7 [41] and C6 [42]. A46 was the first virally
encoded protein identified to contain a TIR domain [37,43].
Through this domain, A46 binds directly to the TIR domain-
containing adaptors MyD88, Mal, TRIF and TRAM, disrupting
the formation of Receptor: Adaptor TIR interactions [37] and
therefore inhibiting downstream signalling to MAPKs, NF-kB
and IRF-3 and interfering with both proinflammatory and type |
IFN responses [37]. However, A46 does not interact with
SARM, which is a negative regulator of TLR signalling [37]. It
has also been shown that A46 protein contributes to virulence
since VACV A46R deletion mutant was attenuated in a murine
intranasal model [37]. An 11 amino acid peptide derived from
A46 (called VIPER) has been reported to specifically inhibit
TLR4 responses by directly targeting Mal and TRAM [44] and
that A46 binds to Mal via a Bcl-2-like a-helical dimer
subdomain [45]. The molecular basis for A46 antagonism of
TLR4 has been recently reported [46]. A46 has been shown to
impair TLR4 signalling by targeting the conserved BB loop of
TIR proteins and thereby disrupting Receptor: Adaptor TIR
interactions [46].

Since VACV has been reported to be sensed by TLR2
[15,16,17], TLR4 [18], TLR2-TLR6-MyD88, MDA-5/IPS-1 and
NALP3 inflammasome [47] and A46R targets the TIR domain
of the adaptors MyD88, Mal, TRIF and TRAM [37], in the
present study we have asked to what extent A46R impacts on
the immune responses against VACV. This question was
addressed with NYCAC-C, an attenuated poxvirus vector
expressing HIV-1 Env and Gag-Pol-Nef (GPN) antigens from
clade C [48], where A46R was deleted (NYVAC-C-AA46R).
Specific innate, adaptive and memory immune responses to
HIV-1 antigens were evaluated in human macrophages and in
a BALB/c mouse model comparing the recombinant virus in the
presence or absence of A46R. Our findings provided evidence
for an immunomodulatory role of VACV A46 protein.
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Results

Generation and in vitro characterization of NYVAC-C-
AA46R deletion mutant

NYVAC-C-AA46R deletion mutant was generated as detailed
under Materials and Methods using as parental virus the
recombinant NYVAC-C that expresses the HIV-1 Env, Gag, Pol
and Nef antigens from clade C [48] and following a strategy
that allows the deletion of the gene of interest with no
fluorescent marker included in the final deletion mutant. The
correct deletion of A46R gene was confirmed by PCR using
primers annealing in A46R flanking sequences. As shown in
Figure 1A, A46R ORF was successfully deleted and no wild-
type contamination was present in NYVAC-C-AA46R
preparation. Analysis by Western-blot confirmed that the A46R
deletion mutant expresses the HIV-1 proteins gp120 and GPN
at the same level as the parental virus NYVAC-C (Figure 1B).
Moreover, analysis by immunostaining showed that all virus
plaques have immunoreactivity to anti-WR, anti-gp120 and
anti-gag p24 antibodies (data not shown), demonstrating the
stability of the antigens expressed by the A46R deletion
mutant. To determine if deletion of A46R gene affects virus
replication, we compared the growth kinetic of NYVAC-C-
AA46R deletion mutant with its parental virus NYVAC-C in CEF
cells. Figure 1C shows that the growth kinetics were similar
between parental and deletion mutant, indicating that A46R
gene is not required for virus replication in cultured cells and its
deletion does not affect virus growth kinetics.

NYVAC-C-AA46R up-regulates TNF, IL-6 and IL-8
production by human macrophages

To define whether A46R impairs the response of innate
immune cells to NYVAC-C, we measured by ELISA the
concentrations of proinflammatory cytokines and chemokines
released by human THP-1 macrophages infected for 6 hours
with 1 or 5 PFU/cell of NYVAC-WT, NYVAC-C or NYVAC-C-
AA46R. Compared to NYVAC-WT and to NYVAC-C, the A46R
deletion markedly up-regulated the production of TNF, IL-6 and
IL-8 by THP-1 cells (Figure 2). Thus, the single deletion of
A46R in the NYVAC-C genome triggers a stronger innate
immune sensing than NYVAC-C, providing evidence for
immune suppression by A46R.

Deletion of the viral gene A46R in NYVAC-C induces high,
broad and polyfunctional HIV-1-specific T cell adaptive immune
responses in BALB/c mice in heterologous prime/boost
combination

To assay in vivo the effect of A46R gene deletion on the
cellular immunogenicity against HIV-1 antigens, we analyzed
the HIV-1-specific T cell adaptive immune responses elicited in
mice by using a DNA prime/Poxvirus boost approach since it
has been extensively reported that this heterologous
immunization protocol is more immunogenic than either
component alone to activate T cell responses to HIV-1 antigens
[48,49,50].

BALB/c mice, 4 in each group, were immunized as described
in Materials and Methods and adaptive T cell immune
responses were measured 10 days after the last immunization
by polychromatic intracellular cytokine staining (ICS) assay.
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Splenocytes from immunized animals were stimulated ex vivo
for 6 hours with a panel of 464 peptides (15 mers overlapping
by 11 amino acids) grouped in three pools: Env (112 peptides),
Gag (121 peptides) and GPN (231 peptides) and stained with
specific antibodies to identify T cell lineage (CD3, CD4 and
CD8), degranulation (CD107a) and responding cells (IL-2, IFN-
y and TNF-a). The percentages of T cells producing IFN-y
and/or IL-2 and/or TNF-a established the overall CD4* T cell
responses whereas the percentages of T cells producing
CD107a and/or IFN-y and/or IL-2 and/or TNF-a determined the
overall CD8" T cell responses.

As shown in Figure 3A, in both immunization groups DNA-C/
NYVAC-C and DNA-C/NYVAC-C-AA46R the magnitudes of the
HIV-1-specific CD4 or CD8 T cell responses, determined as the
sum of the individual responses obtained for Env, Gag and
GPN peptide pools, were significantly higher than those
obtained in the control group DNA-¢/NYVAC-WT (p<0.001).
Furthermore, the magnitudes of the HIV-1-specific CD4 or CD8
T cell responses in the group immunized with NYVAC-C-
AA46R were significantly higher than those obtained in the
group DNA-C/NYVAC-C (p<0.001). In animals immunized with
the parental NYVAC-C, the CD4* T cell response was only
directed against the Env pool while in the group boosted with
the NYVAC-C-AA46R deletion mutant this response was
mainly mediated by Env pool but the response against Gag
and GPN peptide pools also contributes to the total HIV-1-
specific CD4 T cell response. On the other hand, the CD8* T
cell responses were higher in magnitude and A46R gene
deletion induced a significant enhancement in the magnitude of
the CD8* T cell responses against the Env pool (p<0.001)
whereas the anti-GPN response was maintained.
Representative functional profiles of Env-specific CD4 or CD8
T cell responses are shown in Figure 3B.

The quality of a T cell response can be characterized in part
by the pattern of cytokine production and by the cytotoxic
potential. On the basis of the analysis of IFN-y, IL-2 and TNF-a
secretion, as well as the study of CD107a expression on the
surface of activated T cells as an indirect marker of cytotoxicity,
8 HIV-specific CD4 T cell populations and 16 HIV-specific CD8
T cell populations were identified. Vaccine-induced CD4 T cell
responses were highly polyfunctional in both DNA-C/NYVAC-C
and DNA-C/NYVAC-C-AA46R groups, with more than 60% of
CD4 T cells exhibiting two or three functions. CD4 T cells
producing IFN-y+IL-2+TNF-a, IL-2+TNF-a or only TNF-a or
IL-2 were the most representative populations induced by the
parental NYVAC-C and the A46R deletion mutant, although the
percentages of cells producing cytokines were low (Figure 3C).
The HIV-1-specific CD8 T cell responses, higher in magnitude,
were also polyfunctional in both immunization groups, with
more than 50% of CD8* T cells exhibiting two, three or four
functions. CD8* T cells producing CD107a+ IFN-y+TNF-q,
CD107a+ TNF-a or only CD107a were the most representative
populations induced by the parental NYVAC-C and NYVAC-C-
AA46R deletion mutant (Figure 3C).

Overall, these results indicate that deletion of A46R gene
from NYVAC-C genome improved the magnitude of the HIV-1-
specific adaptive CD4 and CD8 T cell immune responses and
maintained the polyfunctional profile observed with the parental
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Figure 1. In vitro characterization of NYVAC-C-AA46R deletion mutant. (A) Confirmation of A46R gene deletion by PCR
analysis. Viral DNA was extracted from BSC-40 cells infected with NYVAC-WT or NYVAC-C-AA46R at 5 PFU/cell. Primers
LFA46R-Aat and RFA46R-Bam spanning A46R flanking sequences were used for PCR analysis of A46R locus. In parental NYVAC,
a 1342 bp-product is obtained while in deletion mutant a unique 777 bp-product is observed. (B) Expression of HIV antigens by
Western-blot. BSC-40 cells were mock-infected or infected at 5 PFU/cell with NYVAC-WT, NYVAC-C or NYVAC-C-AA46R. At 24
hours post-infection, cells were lysed in Laemmli buffer, cells extracts were fractionated by 8% SDS-PAGE and analyzed by
Western-blot using a polyclonal anti-gp120 antibody or a polyclonal anti-gag p24 serum to evaluate the expression of gp120 and
GPN proteins, respectively. (C) Analysis of virus growth of NYVAC-C-AA46R in CEF cells. Monolayers of CEF cells were infected
with NYVAC-C or NYVAC-C-AA46R at 0.01 PFU/cell. At different times post-infection (0, 24, 48 and 72 hours), cells were collected

and infectious viruses were quantified by immunostaining plaque assay in BSC-40 cells.
doi: 10.1371/journal.pone.0074831.g001
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Figure 2. Deletion of A46R gene from NYVAC-C enhances innate immune responses. Human macrophages were mock-
infected (0) or infected with NYVAC-WT, NYVAC-C or NYVAC-C-A46R (1 or 5 PFU/cell). 24 hours later, cell-free supernatants were
collected to quantify the concentrations of TNF and IL-6 by bioassay and of IL-8 by ELISA. Data are means + SD of duplicates and
are representative of three independent experiments. * p<0.05, ** p<0.005.

doi: 10.1371/journal.pone.0074831.g002

NYVAC-C. Since the contribution of DNA priming is the same
for NYVAC-C and NYVAC-C-AA46R immunization groups, the
differences observed should be attributed to the A46R deletion.

Deletion of the viral gene A46R impacts on the HIV-1-
specific CD8 T cell memory phase of the immune
response

Phenotypic analysis of memory vaccine-induced T cell
immune responses was performed by polychromatic ICS assay
53 days after the last immunization. Splenocytes from
immunized mice were stimulated ex vivo for 6 hours with the
HIV-1 peptide pools Env, Gag and GPN and stained with
specific antibodies to identify T cell lineage (CD3, CD4 and
CD8), degranulation (CD107a), responding cells (IL-2, IFN-y
and TNF-a) as well as memory stages (CD127 and CD62L).

The magnitudes of the memory HIV-1-specific CD4 or CD8 T
cell responses, determined as the sum of the individual
responses obtained for Env, Gag and GPN peptide pools, were
significantly higher in the groups boosted with the parental
NYVAC-C or with the NYVAC-C-AA46R deletion mutant than in
the control group immunized with NYVAC-WT (p<0.001)
(Figure 4A).

The magnitude of the HIV-1-specific CD4 T cell response in
the group immunized with DNA-C/NYVAC-C-AA46R was
similar to that obtained in the group DNA-C/NYVAC-C and in
both cases it was mainly directed against Env. On the other
hand, the CD8* T cell responses were higher in magnitude and
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A46R gene deletion clearly induced a significant enhancement
in the magnitude of the CD8* T cell responses against Env and
GPN (p<0.001). Representative functional profiles of Env-
induced CD8 T cell responses are shown in Figure S1.

HIV-specific CD8 T cell responses were polyfunctional in
both immunization groups with 75% of CD8 T cells exhibiting
two, three or four functions. CD8 T cells producing CD107a+
IFN-y+TNF-a, CD107a+ IFN-y+IL-2+TNF-a, CD107a+ TNF-a
or only CD107a were the most representative populations
induced (Figure 4B).

Since previous studies have shown that CD127 and CD62L
define functionally distinct populations of memory antigen-
specific T cells [51], we characterized the differentiation stages
of the responding CD8 T cells into central memory (TCM;
CD127*CD62L"), effector memory (TEM; CD127*CD62L") or
effector (TE; CD127-CD62L") populations. As shown in Figure
4C, about 60% of the HIV-specific CD8 T cells were of TEM
phenotype in the DNA-C/NYVAC-C and DNA-C/NYVAC-C-
AA46R groups.

Overall, these results indicate that deletion of A46R gene
from NYVAC-C genome improved the magnitude of the HIV-1-
specific memory CD8 T cell immune response and maintained
the polyfunctional profile and memory differentiation pattern
observed with the parental NYVAC-C.
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Figure 3. Adaptive HIV-specific T cell immune responses elicited by A46R deletion mutant in the spleen of BALB/c mice in
heterologous prime/boost immunization protocol. (A) Magnitude of the vaccine-specific CD4 or CD8 T cell response. The HIV-
specific CD4 or CD8 T cells were measured 10 days after the last immunization by ICS assay following stimulation of splenocytes
derived from immunized animals (n=4) with the different HIV peptide pools. The total value in each group represents the sum of the
percentages of CD4* or CD8" T cells secreting IFN-y and/or IL-2 and/or TNF-a (CD4) or CD107a and/or IFN-y and/or IL-2 and/or
TNF-a (CD8) against all HIV peptide pools. All data are background-subtracted. *** p<0.001. p value indicates significantly higher
responses compared to parental group or between DNA-C/NYVAC-C-AA46R and DNA-C/NYVAC-C immunization groups. (B) Flow
cytometry profiles of vaccine-induced CD4 or CD8 T cell responses against Env pool. (C) Functional profile of the adaptive HIV-
specific CD4 or CD8 T cell response in the different immunization groups. The possible combinations of the responses are shown
on the x axis, whereas the percentages of the functionally distinct cell populations within the total CD4 or CD8 T cell population are
shown on the y axis. Combinations that did not contribute significantly to the functional profile are not shown. Responses are
grouped and colour-coded on the basis of the number of functions. The non-specific responses obtained in the control group DNA-
¢/NYVAC-WT were subtracted in all populations. ** p<0.005, *** p<0.001. p values indicate significantly higher responses compared
to DNA-C/NYVAC-C immunization group.

doi: 10.1371/journal.pone.0074831.g003
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Figure 4. Memory HIV-specific T cell immune responses elicited by A46R deletion mutant in the spleen of BALB/c mice
after prime/boost immunization. (A) Magnitude of the vaccine-specific CD4 or CD8 T cell responses. The HIV-specific CD4 or
CD8 T cells were measured 53 days after the last immunization by ICS assay following stimulation of splenocytes derived from
immunized animals (n=4) with the different HIV peptide pools. The total value in each group represents the sum of the percentages
of CD4* or CD8"* T cells secreting IFN-y and/or IL-2 and/or TNF-a (CD4) or CD107a and/or IFN-y and/or IL-2 and/or TNF-a (CD8)
against all HIV peptide pools. All data are background-subtracted. *** p<0.001. p value indicates significantly higher responses
compared to parental group or between DNA-C/NYVAC-C and DNA-C/NYVAC-C-AA46R immunization groups. (B) Functional
profile of the memory HIV-specific CD8 T cell response in the different immunization groups. The possible combinations of the
responses are shown on the x axis, whereas the percentages of the functionally distinct cell populations within the total CD8 T cell
population are shown on the y axis. Combinations that did not contribute significantly to the functional profile are not shown.
Responses are grouped and colour-coded on the basis of the number of functions. *** p<0.001. p values indicate significantly higher
responses compared to DNA-C/NYVAC-C immunization group. (C) Phenotypic profile of memory HIV-specific CD8 T cells.
Representative FACS plots showing the percentage of Env-specific CD8 T cells with central memory (TCM; CD127+*CD62L"*),
effector memory (TEM; CD127+*CD62L") or effector (TE; CD127-CD62L") phenotype.

doi: 10.1371/journal.pone.0074831.g004
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Figure 5. Memory humoral immune response elicited by the A46R deletion mutant against HIV-1 gp120 protein. Levels of
Env-specific IgG binding antibodies were measured in serum from naive and immunized mice at day 68. The values represent the

mean antibodies titer for each group. ** p<0.005.
doi: 10.1371/journal.pone.0074831.g005

Deletion of the viral gene A46R in NYVAC-C enhances
the anti-gp120 humoral response during the memory
phase

Since cells infected with NYVAC-C release monomeric
gp120 [48], we also evaluated the impact of the deletion of viral
gene A46R on the humoral response at day 68. We quantified
by ELISA the Env-specific IgG titers against the purified gp120
protein from the HIV-1 isolate CN54 (clade C). As shown in
Figure 5, the IgG titer obtained in the pool of sera of animals
immunized with NYVAC-C-AA46R is significantly higher
(p<0.005) than the titer obtained in the sera of animals
immunized with NYVAC-C indicating that deletion of the viral
gene A46R enhances the humoral response induced in mice
during the memory phase.

Deletion of the viral gene A46R impacts on the anti-
vector CD8 T cell adaptive and memory phases of the
immune response

Vaccine-induced anti-vector T cell immune response was
measured 10 and 53 days after the last immunization by
polychromatic ICS assay. Splenocytes from immunized
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animals were stimulated ex vivo for 6 hours with VACV E3
peptide, which is specific for CD8 T cells [52]. During the
adaptive phase of the immune response, the magnitude of the
E3-specific CD8 T cell response was significantly lower in the
DNA-C/NYVAC-C and DNA-C/NYVAC-C-AA46R immunized
groups than in the control group immunized with DNA-¢/
NYVAC-WT (p<0.001) (Figure 6A). No statistical differences
were observed between the DNA-C/NYVAC-C and DNA-C/
NYVAC-C-AA46R groups. E3-specific CD8 T cell responses
were polyfunctional in all the immunization groups with almost
50% of CD8* T cells exhibiting two, three or four functions. CD8
T cells producing only CD107a were the most representative
population induced (Figure 6B). During the memory phase, the
magnitude of the E3-specific CD8 T cell response in both
immunization groups DNA-C/NYVAC-C and DNA-C/NYVAC-C-
AA46R was significantly lower than that obtained in the control
group DNA-¢/NYVAC-WT (p<0.001) and the magnitude of the
E3-specific CD8 T cell response observed in the group DNA-C/
NYVAC-C-AA46R was significantly lower than that obtained in
the group DNA-C/NYVAC-C (p<0.001) (Figure 7A). E3-specific
CD8 T cell responses were polyfunctional in all the
immunization groups with almost 90% of CD8* T cells
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exhibiting two, three or four functions. CD8 T cells producing
CD107a+ IFN-y+TNF-a or CD107a+ IFN-y+IL-2+TNF-a were
the most representative populations induced (Figure 7B).
Overall, these results indicate that deletion of A46R gene from
NYVAC-C genome reduced the magnitude of the VACV E3-
specific adaptive and memory CD8 T cell immune response but
maintained the polyfunctional profile observed with the parental
NYVAC-C. Since adaptive and memory immune responses to
HIV antigens were enhanced by the A46R deletion mutant
(Figures 3 and 4), the reduced T cell immune response
induced by the E3 peptide indicates an immunodominance of
HIV antigens.

Discussion

Development of non-replicating VACV vectors with enhanced
immunogenicity against foreign expressed antigens is a major
goal in the poxvirus field, aiming at the application of these
vectors as HIV/AIDS vaccines. This is in view of the restricted
immunogenicity triggered in clinical trials by the parental
vectors expressing HIV antigens, like MVA, NYVAC, canarypox
and fowlpox [53]. In fact, the reduced efficacy against HIV
infection, 31.2%, of the non-replicating canary poxvirus vector
combined with gp120 protein in the RV144 clinical trial [1],
highlighted the need of novel poxvirus vectors with improved
immunogenicity. With regard to non-replicating poxvirus
vectors, different strategies have been pursued to enhance
their potency, like the combination of heterologous vectors, use
of co-stimulatory molecules and disruption of viral genes
encoding immunosuppressive molecules [53]. The latter
strategy provides the additional advantage that the
immunomodulatory role of a viral gene can be easily quantified
in an organism.

A number of MVA deletion mutants in viral immune
modulators have been generated to date and tested in mice
[54,55,56,57,58] and macaques [59,60]. These studies have
shown that MVA recombinant viruses with a single deletion of
viral genes encoding inhibitors of type 1 IFN signalling pathway
(C6L [55]), apoptosis (F1L [56]), IL-18 binding protein (C12L
[57]) or the uracyl-DNA glycosylase gene (UDG [60]),
enhanced the overall immune responses to HIV-1 antigens.
The HIV-1-specific CD4 and CD8 T cell immune responses
were further increased by MVA vectors with deletions of two
(A41L/B16R [54]; or C6L/K7R; Garcia-Arriaza, submitted) or
four [IL-18 binding protein (MVAOQO08L; C72L), Toll/IL-1 receptor
homolog (MVA159R; A46R), CC-chemokine binding protein
(MVA153L; B7R) and secreted IL-18 receptor (MVA184R;
B16R)] immunomodulatory genes [59], while an additional fifth
deletion of the uracyl-DNA glycosylase gene (MVA101R)
decreased the responses [59]. Similarly, NYVAC vectors with
single or double deletions in VACV genes B19R and B8R
encoding type | and type Il IFN binding proteins, respectively,
increased the immune responses to HIV antigens in the mouse
model [61].

In an effort to uncover the role of VACV genes as immune
modulators and search for potential applications of these
vectors in the development of optimized vaccines, in this
investigation we showed that deletion of the viral TLR inhibitor
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A46R gene in the NYVAC-C genome has no effect on the
replication capacity of the virus in CEF cells but triggers
expression of immunoregulatory genes in infected
macrophages. NYVAC-C also enhances, though to a lesser
extent, the production of these proinflammatory cytokines and
chemokines compared to NYVAC-WT indicating that the
expression of HIV-1 antigens has an effect on innate immune
cells. The impact on antigen-presenting cells of the expression
of HIV antigens from an attenuated poxvirus vector has been
previously reported by using microarray technology in human
dendritic cells infected with an MVA-based recombinant virus
expressing gp120 and GPN from clade B [62].

Significantly, in mice immunized following a DNA prime/
NYVAC boost protocol, the deletion mutant NYVAC-C-AA46R
enhanced HIV-specific T cell immune responses. Both CD4
and CD8 T cells specific for HIV antigens were activated. In the
adaptive phase, the magnitudes of the HIV-1-specific CD4 or
CD8 T cell responses in the group immunized with NYVAC-C-
AA46R were significantly higher than those obtained in the
group  DNA-C/NYVAC-C  (p<0.001), maintaining the
polyfunctional profile observed with the parental NYVAC-C. In
the memory phase, deletion of A46R gene from NYVAC-C
genome improved again the magnitude of the HIV-1-specific
memory CD8 T cell immune response, while both the
polyfunctional profile and memory differentiation pattern
observed were similar as those obtained with the parental
NYVAC-C. The main phenotype of the memory response was
TEM, which is of immunological relevance as this phenotype
has been correlated with protection in the macaque-SIV model
[63,64].

This enhanced HIV-specific T cell immune response is in
contrast with the lack or reduced effect of A46R deletion on
VACV E3-specific T cell responses during adaptive or memory
phases of the immune response, respectively (Figures 6 and
7). The absence or decrease of immune stimulatory effect
observed when E3 was used to stimulate mouse splenocytes in
comparison with the increased responses against HIV antigens
is likely to be related to the immune dominance of the HIV
antigens versus the viral E3 peptide and such
immunodominance may be due to the effect of the priming with
a DNA encoding the HIV-1 antigens and also to the fact that
NYVAC-C expresses E3 under its natural early promoter while
the HIV antigens are expressed at early and late times from a
strong synthetic early/late promoter. Since both explanations
can be applied to NYVAC-C or NYVAC-C-AA46R-induced
immune responses, the lower E3-specific CD8 T cell adaptive
and memory immune responses elicited by NYVAC-C-AA46R
deletion mutant compared with that induced by NYVAC-C are
inversely correlated with the higher HIV-1-specific CD8 T cell
responses triggered by the A46R deletion mutant. A similar
trend for E3 response in relation to foreign expressed antigens
has been observed for other recombinant VACV vectors [65].
Therefore, a reduction of immune responses to NYVAC-C-
AA46R vector antigens has the additional vaccine advantage
that HIV antigens are favoured over viral antigens, thus
enhancing the specific immune responses to HIV.

Since humoral response against HIV antigens has been
described to be important for protection against HIV acquisition
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Figure 6. Adaptive VACV vector-specific T cell immune responses elicited by A46R deletion mutant in the spleen of
BALB/c mice after prime/boost immunization. (A) Magnitude of the VACV-specific CD8 T cell response. The VACV-specific
CD8 T cells were measured 10 days after the last immunization by ICS assay following stimulation of splenocytes derived from
immunized animals (n=4) with VACV E3 peptide. The total value in each group represents the sum of the percentages of CD8" T
cells secreting CD107a and/or IFN-y and/or IL-2 and/or TNF-a against E3 peptide. All data are background-subtracted. *** p<0.001.
p value indicates significantly higher response compared to DNA-C/NYVAC-C and DNA-C/NYVAC-C-AA46R immunization groups.
(B) Functional profile of the VACV-specific CD8 T cell response in the different immunization groups. The possible combinations of
the responses are shown on the x axis, whereas the percentages of the functionally distinct cell populations within the total CD8 T
cell population are shown on the y axis. Combinations that did not contribute significantly to the functional profile are not shown.
Responses are grouped and colour-coded on the basis of the number of functions. * p<0.05, ** p<0.005, *** p<0.001.

doi: 10.1371/journal.pone.0074831.g006
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Figure 7. Memory VACYV vector-specific T cell immune responses elicited by A46R deletion mutant in the spleen of BALB/c
mice after prime/boost immunization. (A) Magnitude of the VACV-specific CD8 T cell response. The VACV-specific CD8 T cells
were measured 53 days after the last immunization by ICS assay following stimulation of splenocytes derived from immunized
animals (n=4) with VACV E3 peptide. The total value in each group represents the sum of the percentages of CD8* T cells secreting
CD107a and/or IFN-y and/or IL-2 and/or TNF-a against E3 peptide. All data are background-subtracted. *** p<0.001. p values
indicate significantly higher response compared to DNA-C/NYVAC-C and DNA-C/NYVAC-C-AA46R immunization groups or
between DNA-C/NYVAC-C and DNA-C/NYVAC-C-AA46R groups. (B) Functional profile of the VACV-specific CD8 T cell response
in the different immunization groups. The possible combinations of the responses are shown on the x axis, whereas the
percentages of the functionally distinct cell populations within the total CD8 T cell population are shown on the y axis. Combinations
that did not contribute significantly to the functional profile are not shown. Responses are grouped and colour-coded on the basis of
the number of functions. ** p<0.005, *** p<0.001.

doi: 10.1371/journal.pone.0074831.g007
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[1], we also evaluated the presence of anti-gp120 antibodies in
the serum of immunized animals. This analysis showed an
enhanced anti-gp120 humoral response in the mice immunized
with NYVAC-C-AA46R deletion mutant suggesting that the
deletion of A46R gene is also able to modulate positively the
humoral response against gp120.

How deletion of A46R impacts on the immune response of
NYVAC-C? As previously described, A46 impairs TLR
signalling by targeting the TIR domain of the adaptors MyD88,
Mal, TRIF and TRAM disrupting Receptor: Adaptor TIR
interactions [37]. Hence, deleting A46R in NYVAC restores
TLR signalling upon viral infection, enhancing the expression of
proinflammatory molecules, which in turn will enhance T cell
activation. According to the intraperitoneal route used in the
present study, the effect of A46R gene deletion on
immunogenicity against HIV-1 antigens should be explained by
the effect of TLR signalling restoration in the cell types present
in the peritoneal cavity (mainly B cells, macrophages and
granulocytes and, to a lesser extent, T cells [66]). In this
context, the increased secretion of proinflammatory cytokines
and chemokines by NYVAC-C-AA46R-infected macrophages
could induce an enhanced recruitment of immature DCs and
lymphocytes, generating an appropriate environment for the
uptake and presentation of HIV-1 antigens to T cells. Immature
NYVAC-C-AA46R-infected DCs can also migrate to the lymph
nodes, maturing in route, and activate HIV-1-specific T cells
enhancing the overall immunogenicity against HIV antigens.
According to this, it has been previously reported that the total
number of cells in the lungs of mice immunized intranasally
with a VACV A46R deletion mutant was increased on day 2
post-infection compared with parental virus whereas on days 5
and 8 was reduced [37]. Since the main innate sensors of
VACV vectors are TLR2 [15,16,17], TLR2-TLR6-MyD88,
MDA-5/IPS-1 and NALP3 inflammasome [47] and A46R targets
the TIR domain of the adaptors MyD88, Mal, TRIF and TRAM
[37], our findings of enhanced production of TNF, IL-6 and IL-8
in conjunction with an increase in the magnitude of CD4 and
CD8 T cell immune responses to HIV antigens and an
enhanced gp120-specific humoral response, reveal that A46R
plays an important role as immune modulator. This
observation, in combination with the biochemical data on the
mode of action of A46, establishes the immunological role of
VACV A46R on T and B cell responses.

Materials and Methods

Ethics statement

The animal studies were approved by the Ethical Committee
of Animal Experimentation (CEEA-CNB) of Centro Nacional de
Biotecnologia (CNB-CSIC, Madrid, Spain) in accordance with
national and international guidelines and with the Royal Decree
(RD 1201/2005) (Permit numbers: 152/07 and 080030).

Cells and viruses

African green monkey kidney cells (BSC-40; American Type
Culture Collection, Manassas, VA) and primary chicken embryo
fibroblast cells (CEF; Intervet, s.a, Salamanca, Spain) were
grown in Dulbecco’s modified Eagle’s medium (DMEM)
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supplemented with 100 1U/ml of penicillin, 100 pg/ml of
streptomycin and 10% newborn calf serum (NCS) for BSC-40
cells or 10% fetal calf serum (FCS) for CEF cells. The human
monocytic THP-1 cells (American Type Culture Collection,
Manassas, VA) were cultured in RPMI 1640 medium containing
2 mM L-glutamine, 50 pM 2-mercaptoethanol, 100 IU/ml of
penicillin, 100 pg/ml of streptomycin and 10% FCS. Cells were
maintained in a humidified air 5% CO, atmosphere at 37°C.
The poxvirus strains used in this work included the genetically
attenuated vaccinia virus-based vector NYVAC-WT and the
recombinant NYVAC-C expressing gp120 as a cell-released
product and Gag-Pol-Nef as an intracellular polyprotein from
the clade C CN54 HIV-1 isolate [48], used as the parental
vector for the generation of the A46R deletion mutant. Virus
infections were performed with 2% NCS or FCS. All viruses
were grown in primary CEF cells, similarly purified through two
36% (w/v) sucrose cushions and the virus titers were
determined by immunostaining plaque assay in BSC-40 cells
as previously described [67]. The titer determinations of the
different viruses were performed at least three times.

Construction of plasmid transfer vector pGem-RG-
A46R wm

The plasmid transfer vector pGem-RG-A46R wm, used for
the construction of the recombinant virus NYVAC-C-AA46R,
with A46R ORF deleted, was obtained by the sequential
cloning of A46R recombination flanking sequences into the
plasmid pGem-Red-GFP wm, containing dsRed2 and rsGFP
genes as fluorescent markers, and previously described [68].
NYVAC genome was used as the template to amplify the left
flank of A46R gene (432 bp) with oligonucleotides LFA46R-Aat

(5'-CACGATGACGTCAGAGGAGTTAT-3") (Aatll site
underlined) and LFA46R-Xba (5'-
CGTATGTICTAGATTATTTTGCTGAG-3") (Xbal site

underlined). This left flank was digested with Aatll and Xbal
and cloned into plasmid pGem-Red-GFP wm previously
digested with the same restriction enzymes to generate pGem-
RG-LFsA46R wm (4939 bp). The repeated left flank of A46R
gene (432 bp) was amplified by PCR from NYVAC genome
with oligonucleotides LFA46R’-Eco (5-
CACGATGAATTCAGAGGAGTTAT-3") (EcoRI site underlined)
and LFA46R-Cla (5"-CGTATGATCGATT TATTTTGCTGAG-3
') (Cla | site underlined), digested with EcoRI and Cla | and
inserted into the EcoRI / Cla I-digested pGem-RG-LFsA46R
wm to generate pGem-RG-LFdA46R wm (5330 bp). The right
flank of A46R gene (360 bp) was amplified by PCR from
NYVAC genome with oligonucleotides RFA46R-Cla (5'-
CTGAGAATCGATAGGATGAATTTG-3") (Cla | site underlined)
and RFA46R-Bam (5-ATTTAAGGATCCAGAACGGCAAC-3)
(BamHI site underlined), digested with Cla | and BamHI and
inserted into the Cla | / BamHI-digested pGem-RG-LFdA46R
wm. The resulting plasmid pGem-RG-A46R wm (5660 bp;
Figure S2) was confirmed by DNA sequence analysis and
directs the deletion of A46R gene from NYVAC-C genome.

Construction of NYVAC-C-AA46R deletion mutant

The deletion mutant NYVAC-C-AA46R was constructed
using dsRed2 and rsGFP as fluorescent markers. 3 x 108
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BSC-40 cells were infected with 0.01 PFU/cell of NYVAC-C
and transfected 1 hour later with 6 ug DNA of plasmid pGem-
RG-A46R wm using Lipofectamine (Invitrogen) according to the
manufacturer's recommendations. Forty-eight hours post-
infection, the cells were harvested, lysed by freeze-thaw
cycling, sonicated and used for recombinant virus screening.
Deletion mutant was selected from progeny virus by
consecutive rounds of plaque purification in BSC-40 cells
during which plaques were screened for Red2/GFP
fluorescence. In the first three passages, viruses from selected
plaques expressed both fluorescent proteins, while in the next
two passages viral progeny from selected plaques expressed
only one fluorescent marker (Red2). In the last two passages
(seven passages in total), viruses from selected plaques do not
express any marker due to the loss of the fluorescent marker
by homologous recombination within the repeated flanking
DNA sequences. The resulting NYVAC-C-AA46R virus was
expanded in BSC-40 cells and the crude preparation obtained
was used for the propagation of the virus in large cultures of
primary chicken fibroblasts (CEF) followed by virus purification
through two 36% (w/v) sucrose cushions and titrated by
immunoplaque assay in BSC-40 cells.

PCR analysis of NYVAC-C-AA46R deletion mutant

To test the identity and purity of the recombinant virus
NYVAC-C-AA46R, viral DNA was extracted from BSC-40 cells
infected at 5 PFU/cell with NYVAC-WT or NYVAC-C-AA46R.
Cell membranes were disrupted using sodium dodecyl sulphate
(SDS) followed by proteinase K treatment (0.2 mg/ml
proteinase K in 50 mM Tris-HCI pH 8, 100 mM EDTA pH 8, 100
mM NaCl and 1% SDS for 1 hour at 55°C) and phenol
extraction of viral DNA. Primers LFA46R-Aat and RFA46R-
Bam spanning A46R flanking regions were used for PCR
analysis of A46R locus. The amplification reactions were
carried out with Platinum Taq DNA polymerase (Invitrogen)
according to the manufacturer’s recommendations. The correct
sequence of deleted A46R locus was confirmed by DNA
sequence analysis.

Expression of HIV-1 proteins gp120 and GPN

To test the correct expression of HIV-1 antigens by the A46R
deletion mutant, monolayers of BSC-40 cells were mock-
infected or infected at 5 PFU/cell with NYVAC-WT, NYVAC-C
or NYVAC-C-AA46R. At 24 hours post-infection, cells were
lysed in Laemmli buffer, cells extracts fractionated by 8% SDS-
PAGE and analyzed by Western-blot using the polyclonal anti-
gp120 antibody (Centro Nacional de Biotecnologia; diluted
1:3000) or the polyclonal anti-gag p24 serum (ARP 432,
NIBSC, Centralised Facility for AIDS reagent, UK; diluted
1:1000) to evaluate the expression of gp120 and GPN proteins,
respectively. The anti-rabbit-HRPO (SIGMA; diluted 1:5000)
was used as secondary antibody. The immunocomplexes were
detected by enhanced chemiluminescence (ECL, GE
Healthcare).

Analysis of virus growth

To determine virus growth profiles, monolayers of CEF cells
grown in 12-well plates were infected in duplicate at 0.01 PFU/
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cell with NYCAC-C or NYVAC-C-AA46R deletion mutant.
Following virus adsorption for 60 min at 37°C, the inoculum
was removed. The infected cells were washed once with
DMEM without serum and incubated with fresh DMEM
containing 2% FCS at 37°C in a 5% CO, atmosphere. At
different times post-infection (0, 24, 48 and 72 hours), cells
were harvested by scraping (lysates at 5 x 10° cells/ml), freeze-
thawed three times and briefly sonicated. Virus titers in cell
lysates were determined by immunostaining plaque assay in
BSC-40 cells using rabbit polyclonal anti-vaccinia virus strain
WR (Centro Nacional de Biotecnologia; diluted 1:1000),
followed by anti-rabbit-HRPO (SIGMA; diluted 1:1000).

Measurement of cytokine production by macrophages

THP-1 cells were differentiated into macrophages by
treatment with 0.5 mM phorbol 12-myristate 13-acetate (PMA,
Sigma-Aldrich) for 24 h. The medium was changed and cells
were either mock-infected or infected with 1 or 5 PFU/cell of
NYVAC-WT, NYVAC-C or NYVAC-C-A46R. Cell-free
supernatants were collected after 6 hours to quantify the
concentrations of TNF, IL-6 and IL-8. The concentrations of
human IL-8 (BD Biosciences) in cell-culture supernatants were
measured by ELISA as previously described [47]. TNF and IL-6
concentrations were measured by bioassay as described
elsewhere [69].

DNA vectors

The two DNA constructs expressing the HIV-1 <\s.gp120
(PcDNA-  c\s49p120) and HIV-1  \sGag-Pol-Nef (GPN)
polyprotein (pcDNA- \ssGPN) have been previously reported
[48]. Plasmids were purified using Maxi-prep purification kits
(Qiagen) and diluted for injection in endotoxin-free PBS.

Peptides

The HIV-1 peptide pools Gag-1, Gag-2, Env-1, Env-2,
GPN-1, GPN-2, GPN-3 and NEF were provided by the
EuroVacc Foundation and were previously described [48].
They spanned the HIV-1 Env, Gag, Pol and Nef antigens from
clade C included in the immunogens as consecutive 15-mers
overlapping by 11 amino acids. For immunological analyses we
grouped the pools as follows: Env pool (Env-1+Env-2), Gag
pool (Gag-1+Gag-2) and GPN pool
(GPN-1+GPN-2+GPN-3+NEF). The VACV E3,4.4s peptide
(VGPSNSPTF; CNB), previously described as
immunodominant epitope in BALB/c mice [52], was used to
detect the anti-vector cellular immune response.

Mouse immunization schedule

BALB/c mice (6-8 weeks old) were purchased from Harlan.
For the heterologous DNA prime/NYVAC boost immunization
protocol performed to assay the immunogenicity of NYVAC-C-
AA46R deletion mutant, groups of animals (n=8) received 100
ug of DNA-C (50 ug of pcDNA- \s5:gp120 + 50 pg of pcDNA-
onssGPN) or 100 pg of DNA-¢ (100 pg of pcDNA) by
intramuscular route (i.m.). Two weeks later, animals were
immunized with 1 x 10" PFU of NYVAC-WT, NYVAC-C or
NYVAC-C-AA46R by intraperitoneal route (i.p.). Mice
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immunized with sham DNA (DNA-¢) followed by NYVAC-WT
boost were used as control group. At 10 and 53 days after the
last immunization, 4 mice in each group were sacrificed and
spleens processed for Intracellular Cytokine Staining (ICS)
assay to measure the adaptive and memory cellular immune
responses against HIV-1 antigens, respectively. Two
independent experiments have been performed for the different
groups.

Intracellular Cytokine Staining assay (ICS)

The magnitude, polyfunctionality and phenotype of the HIV-
specific T cell responses were analyzed by ICS. After an
overnight rest, 4 x 10° splenocytes (depleted of red blood cells)
were seeded on 96-well plates and stimulated during 6 hours in
complete RPMI 1640 media supplemented with 10% FCS
containing 1 pl/ml GolgiPlug (BD Biosciences), anti-CD107a-
Alexa 488 (BD Biosciences) and 5 ug/ml of the different HIV
peptide pools. At the end of the stimulation period, cells were
washed, stained for the surface markers, fixed and
permeabilized (Cytofix/Cytoperm Kit; BD Biosciences) and
stained intracellularly using the appropriate fluorochromes.
Dead cells were excluded using the violet LIVE/DEAD stain kit
(Invitrogen).  For  functional analyses the following
fluorochrome-conjugated antibodies were used: CD3-PE-
CF594, CD4-APC-Cy7, CD8-V500, IFN-y-PE-Cy7, IL-2-APC
and TNF-a-PE (all from BD Biosciences). In addition, for
phenotypic analyses the following antibodies were used:
CD62L-Alexa 700 (BD Biosciences) and CD127-PerCP-Cy5.5
(eBioscience). Cells were acquired using a GALLIOS flow
cytometer (Beckman Coulter). Analyses of the data were
performed using the FlowJo software version 8.5.3 (Tree Star,
Ashland, OR). The number of lymphocyte-gated events ranged
between 1 x 105 and 1 x 108 After gating, Boolean
combinations of single functional gates were then created
using FlowJo software to determine the frequency of each
response based on all possible combinations of cytokine
expression or all possible combinations of differentiation
marker expression. For each population, background
responses detected in the non-stimulated control samples were
subtracted from those detected in stimulated samples for every
specific functional combination and the percentages of cells
producing cytokines obtained in the DNA-$/NYVAC-WT control
populations were also subtracted in all the groups in order to
remove the non-specific responses detected as background.
Only positive responses are represented.

Antibody measurement by ELISA

Binding antibodies to Env protein in serum were determined
by enzyme-linked immunosorbent assay (ELISA) as previously
described [48]. Serum samples from naive and immunized
mice were serially 2-fold diluted in duplicate and reacted
against 2 ug/ml of the recombinant CN54gp120 purified protein
(ARP683, HIV-1 CN54gp120 clade C; EU Programme EVA
from the Centre for AIDS Reagents). The antibody titer of Env-
specific IgG was defined as the last dilution of serum that
resulted in 3 times the mean optical density at 450 nm of the
naive control.
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Data analysis and statistics

For the statistical analysis of ICS data, we used a novel
approach that corrects measurements for the medium
response (RPMI) and allows the calculation of confidence
intervals and p values of hypothesis tests [54,70]. Only antigen
responses values significantly higher than the corresponding
RPMI are represented and the background for the different
cytokines in the unstimulated controls never exceeded 0.05%.
Analysis and presentation of distributions was performed using
SPICE version 5.1, downloaded from http://exon.niaid.nih.gov
[71]. Comparison of distributions was performed using a
Student’s T test and a partial permutation test as described
[71]. All values used for analyzing proportionate representation
of responses are background-subtracted. For the statistical
analysis of ELISA data, a 1-way ANOVA with Tukey’s honestly
significant difference criterion as post-hoc analysis was
performed.

Supporting Information

Figure S1. Profile of memory HIV-specific T cell immune
responses elicited by A46R deletion mutant in the spleen
of BALB/c mice after prime/boost immunization. Flow
cytometry profiles of vaccine-induced CD8 T cell responses
against Env pool in splenocytes from immunized animals.

(TIF)

Figure S2. Scheme of construction of the plasmid transfer
vector pGem-RG-A46R wm. The plasmid transfer vector
pGem-RG-A46R wm was obtained by the sequential cloning of
A46R recombination flanking sequences into the plasmid
pGem-Red-GFP wm, containing dsRed2 and rsGFP genes as
fluorescent markers. NYVAC genome was used as the
template to amplify the left flank of A46R gene by PCR. This
left flank was digested with Aatll and Xbal and cloned into
plasmid pGem-Red-GFP wm previously digested with the
same restriction enzymes to generate pGem-RG-LFsA46R wm
(4939 bp). The repeated left flank of A46R gene was amplified
by PCR from NYVAC genome, digested with EcoRI and Cla |
and inserted into the EcoRI / Cla I-digested pGem-RG-
LFsA46R wm to generate pGem-RG-LFdA46R wm (5330 bp).
The right flank of A46R gene was amplified by PCR from
NYVAC genome, digested with Cla | and BamHI and inserted
into the Cla | / BamHI-digested pGem-RG-LFdA46R wm. The
resulting plasmid pGem-RG-A46R wm (5660 bp) directs the
deletion of A46R gene from NYVAC-C genome.

(TIF)
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