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Summary 24 

Chlamydiales possess a minimal but functional peptidoglycan precursor biosynthetic and 25 

remodeling pathway involved in the assembly of the division septum by an atypical cytokinetic 26 

machine and cryptic or modified peptidoglycan-like structure (PGLS). How this reduced 27 

cytokinetic machine collectively coordinates the invagination of the envelope has not yet been 28 

explored in Chlamydiales. In other Gram-negative bacteria, peptidoglycan provides anchor 29 

points that connect the outer membrane to the peptidoglycan during constriction using the Pal-30 

Tol complex. Purifying PGLS and associated proteins from the chlamydial pathogen Waddlia 31 

chondrophila, we unearthed the Pal protein as a peptidoglycan-binding protein that localizes to 32 

the chlamydial division septum along with other components of the Pal-Tol complex. Together 33 

our PGLS characterization and peptidoglycan-binding assays support the notion that 34 

diaminopimelic acid is an important determinant recruiting Pal to the division plane to coordinate 35 

the invagination of all envelope layers with the conserved Pal-Tol complex even during 36 

osmotically-protected intracellular growth. 37 
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Introduction 45 

Though cell division is universal, different proteins execute this task in the two domains of life. 46 

The set of cytokinetic proteins required for bacterial division are generally very conserved and 47 

overt sequence orthologs are encoded in most (eu)bacterial lineages. One notable exception is 48 

the Chlamydiales order, where many (but not all) conserved division proteins are absent, 49 

suggesting that Chlamydia and Chlamydia-related bacteria have evolved a minimal division 50 

machine or that functional analogs exist that do not resemble bacterial division proteins in 51 

primary structure. Division normally begins with the assembly of membrane-anchored 52 

cytokinetic platform at midcell to which enzymes and regulatory/accessory proteins are 53 

recruited. This multicomponent machine known as the divisome governs the synthesis and 54 

remodeling of the cell wall (the peptidoglycan, PG) at the division site. The main organizer of the 55 

cytokinetic platform in most prokaryotes and many eukaryotic organelles is the protein FtsZ, an 56 

homologue of tubulin (Kirkpatrick and Viollier, 2011; Miyagishima et al., 2014). FtsZ assembles 57 

in a ring-like structure (Z-ring) at the septum and recruits a multitude of proteins (Fts proteins) 58 

responsible for the new synthesis and modification of the PG layer. The cytoplasmic membrane 59 

along with the PG layer and outer membrane invaginate in a concerted fashion through the 60 

force exerted by the divisome (For review, see (Jacquier et al., 2015)). Interestingly, all 61 

Chlamydiales lack a sequence homologue of FtsZ, the usual organizer of bacterial division 62 

(Jacquier et al., 2015; Miyagishima et al., 2014). However, ancillary proteins as the bacterial 63 

actin homologue MreB and RodZ (a protein tethering MreB to the membrane) are encoded in 64 

chlamydial genomes and have been localized to the septum early in the division phase, 65 

suggesting that chlamydial division relies on an alternative division mechanism (Frandi et al., 66 

2014; Jacquier et al., 2014; Kemege et al., 2014; Miyagishima et al., 2014). 67 

Members of the Chlamydiales order are very diverse in morphology and biosynthetic capacities 68 

(Omsland et al., 2014), but they all divide by binary fission (For review, see (Jacquier et al., 69 
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2015)). These obligate intracellular bacteria present a unique biphasic developmental cycle: 70 

elementary bodies (EBs) are infectious, non proliferating and can survive outside of the host 71 

cell, and reticulate bodies (RBs) are non-infectious, proliferating and metabolically highly active. 72 

The Chlamydiales order comprises the well known family of Chlamydiaceae and the more 73 

recently discovered Chlamydia-related bacteria. Chlamydiaceae include several important 74 

human pathogens such as Chlamydia trachomatis and Chlamydia pneumoniae, which are the 75 

causative agents of trachoma, genital tract infections (C. trachomatis) and respiratory tract 76 

infections (C. pneumoniae) (Goy et al., 2009). On the other hand, some Chlamydia-related 77 

bacteria are emerging pathogens and have been found in very diverse niches ranging from 78 

amoebae to bovine placenta (Amann et al., 1997; Collingro et al., 2005; Corsaro et al., 2009; 79 

Henning et al., 2002; Kahane et al., 1995; Lienard et al., 2011; Rurangirwa et al., 1999; Thomas 80 

et al., 2006). Waddlia chondrophila, a Chlamydia-related bacterium, has been associated with 81 

abortion in mammals and miscarriage in humans (Baud et al., 2011; Baud et al., 2014; Baud et 82 

al., 2007; Dilbeck et al., 1990; Henning et al., 2002). 83 

Recently a PG-like sacculus could be purified from the Chlamydia-related bacterium 84 

Protochlamydia ameobophila (Pilhofer et al., 2013) but not from Simkania negevensis, while in 85 

Chlamydiaceae a PG-like structure (PGLS) may form at the division septum (Brown and 86 

Rockey, 2000; Liechti et al., 2013). In earlier studies we could show that biosynthesis of PG 87 

precursors is required for proper localization of the septal proteins RodZ and NlpD in W. 88 

chondrophila (Frandi et al., 2014; Jacquier et al., 2014), although it was not tested if W. 89 

chondrophila produces a septal PGLS. 90 

All chlamydia are diderm bacteria, necessitating a mechanism to draw in the outer membrane 91 

along with the invaginating inner envelope layers. PG-binding lipoproteins such as Pal are 92 

dedicated to this and a Pal-like protein is encoded in the same locus as the coding sequences 93 

for the components of the Tol system in Chlamydiales (Jacquier et al., 2015; Sturgis, 2001). The 94 
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Tol-Pal complex is necessary for proper invagination of the outer membrane during division 95 

(Gerding et al., 2007). Pal of E. coli possesses a N-terminal cleavable signal sequence, for 96 

export into the periplasm followed by a cysteine. This cysteine is lipidated and thus serves to 97 

anchor the protein to the inner leaflet of the outer membrane (Cascales and Lloubes, 2004), 98 

reviewed in (Godlewska et al., 2009). TolB is located in the periplasm, interacts with Pal and 99 

seems to regulate the association of Pal with PG (Bouveret et al., 1999). The other members of 100 

the Tol-Pal complex are the inner membrane proteins TolA, TolQ and TolR, which interact 101 

through their transmembrane domains (Cascales et al., 2001). These two subcomplexes (Pal-102 

TolB and TolAQR) are connected through an interaction between TolA and TolB (Walburger et 103 

al., 2002). 104 

Reasoning that the Tol-Pal complex may play an important role in division, envelope integrity 105 

and, thus, pathogenesis in Chlamydiales, we set out to investigate the septal localization and 106 

PG-binding properties of chlamydial Pal-Tol. By purifying PGLS from W. chondrophila, and 107 

recovering Pal with it, we found that Pal can bind PG from other bacteria and that W. 108 

chondrophila PGLS is required to recruit Pal to the division septum. As homologues of other 109 

members of the Tol-Pal complex are also recruited at the division septum, the function and 110 

properties of the Tol-Pal complex seem to be maintained across evolution including obligate 111 

intracellular bacteria of the chlamydial phylum. 112 
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118 

Results: 119 

Isolation and characterization of PGLS of W. chondrophila. As PGLS could recently be 120 

isolated from the Chlamydia-related bacterium Protochlamydia amoebophila, but not from 121 

Simkania negevensis (Pilhofer et al., 2013), we wanted to investigate the existence of a PGLS 122 

in W. chondrophila, another Chlamydia-related bacterium. In order to detect PG components 123 

extracted from dividing W. chondrophila cells, we performed high performance liquid 124 

chromatography (HPLC) following treatment with cell wall hydrolytic enzymes, including those 125 

that act on peptide crosslinks. Cell walls were extracted from Vero cell infected with W. 126 

chondrophila 28h post-infection (p.i.) as described, treated or not with MltA, CwlT or 127 

mutanolysin and fractionated by HPLC (at Anasyn, Tuebingen, Germany). While treatment of 128 

cell walls by digestion with mutanolysin, a muramidase, did not liberate muropeptide fragments 129 

(Fig. 1A), treatment with MltA, a lytic transglycosylase (Lommatzsch et al., 1997) (Fig. 1B), or 130 

CwlT, a bifunctional N-acetyl-muramidase and DL-endopeptidase (Fukushima et al., 2008) (Fig. 131 

1C) provided evidence for the presence of PGLS. To confirm this notion, we repeated these cell 132 

wall extraction experiments with W. chondrophila that had been exposed to the PG synthesis 133 

inhibitors phosphomycin or penicillin for 4 hours. The HPLC analysis revealed a reduction in 134 

several peaks (a to f) normalized to the total of all the peaks of the sample (Figs. 1D and 1E), 135 

confirming that liberation of these fragments depends on the PG precursor biosynthesis (lipid II, 136 

that is executed by MurA) and/or PG-like transpeptidation (executed by PBPs) that can be 137 

inhibited by phosphomycin and penicillin, respectively. 138 

As muropetides can be detected by human Nod receptors, we tested if the material extracted 139 

from W. chondrophila can induce the hNod1/2 reporter system in HEK-Blue cells expressing the 140 

hNod1 or hNod2 receptors, as described in Extended Experimental Procedures. We could show 141 
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using this test that W. chondrophila PGLS is recognized at comparable rates as E. coli PG 142 

(Figs.2A and B). 143 

Co-purification of PG-binding proteins. We next sought to identify chlamydial PG-binding 144 

proteins by co-purification with W. chondrophila PGLS. Such proteins might provide important 145 

insight into PG biosynthesis regulation, in the anchoring of PG to inner and outer membranes 146 

and in division regulation. For this purpose, a similar PG isolation as above was again 147 

performed, but this time without proteolysis. The resulting material was then either directly 148 

resuspended in SDS-PAGE loading buffer or first washed with increasing concentrations of SDS 149 

to remove contaminating proteins not strongly bound to PG. SDS-PAGE followed by 150 

immunoblotting revealed that one known PG associated protein (AmiA) was indeed present in 151 

these preparations (Fig. 3A). Tandem mass spectrometry (MS/MS) was then used to identify 152 

other PG-associated proteins in these various samples (Tables S1 and S2). We did not further 153 

investigate PG binding of candidates that lack a secretion signal or are not conserved among 154 

Chlamydiales. We assume that these proteins are either contaminants of the PG preparation or 155 

that their PGLS binding has no physiological significance since they do not usually localize in 156 

the periplasm and might bind to PGLS during the lysis of the bacteria. Two of the identified 157 

proteins are conserved among Chlamydiales and contain a predicted secretion signal: the 158 

homologues of the protein translocase subunit SecA and the peptidoglycan-associated 159 

lipoprotein Pal. This latter is of interest, because the lipoprotein Pal is known to bind PG directly, 160 

is indirectly associated with the inner membranes through the Tol complex in Escherichia coli 161 

(Gerding et al., 2007) and is conserved among Chlamydiales (Figs. 3B and 3C). W. 162 

chondrophila Pal (PalWch) is encoded in a gene cluster with predicted genes encoding the Tol-163 

Pal system (Fig 3D). Primary sequence analysis showed that PalWch exhibits 49% identity to E. 164 

coli Pal (PalEco) and possesses an extended N-terminal region of 80 residues. However, multiple 165 

alignments indicate that residues important for Pal:PG interaction are invariant in PalWch with 166 
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respect to the wider family of Pal-related proteins, which also comprises OmpA of E. coli 167 

(Figures 3B and 3C, asterisks). 168 

Pal of W. chondrophila is mainly expressed in RBs 169 

As expected for a chlamydial cell division protein, the PalWch transcript was associated 170 

with the RB phase. We measured transcript levels by RT-qPCR and normalized to 171 

rRNA through the developmental cycle and observed a peak of transcription at 16h p.i, 172 

followed by a progressive decrease in mRNA levels to 72h (Fig. 4A). To confirm that 173 

PalWch is also associated with the RB stage, we purified PalWch protein, heterologously 174 

expressed in E. coli, to raise polyclonal antibodies. The antibodies detected a protein of 175 

25 kDa, (the predicted size of PalWch) by immunoblotting already at 16h (Fig. 4B), which 176 

is consistent with a putative role of Pal during the replicative phase of the chlamydial 177 

developmental cycle in which RBs predominate. Moreover, purified EBs exhibited only a 178 

very low ratio of Pal compared to quantities expressed by RBs at 16 and 24h p.i. (Fig. 179 

4B). We used immunofluorescence (IF) microscopy to confirm the association of Pal 180 

with cell division. Serum taken before immunization (pre-immune, Fig. 4C) did not label 181 

any structure in infected Vero cells. In contrast, serum harvested after immunization 182 

recognized W. chondrophila RBs specifically (Fig. 4C, arrow) and not EBs (Fig. 4C, 183 

arrowhead). This was not affected by permeabilization of EBs with a DTT treatment, 184 

which reduces the disulfide bridges present between outer membrane proteins in EBs 185 

(Fig. 4C, +DTT), as shown for C. trachomatis EBs (Raulston et al., 2002). Nevertheless, 186 

low amounts of Pal might still be present in EBs, as observed by Western blotting, but 187 

could not be detected by immunofluorescence (Fig. 4B-C). The presence of PalWch 188 
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predominantly in RBs is consistent with the important role of PG and PG-binding 189 

proteins during RBs division as proposed earlier (Jacquier et al., 2014). 190 

Pal of W. chondrophila binds PG of different bacteria 191 

PG binding of PalWch was then investigated both in vivo and in vitro. First, we probed for the 192 

presence of Pal in the isolated W. chondrophila PGLS (used for MS/MS) by immunoblotting and 193 

found this to be the case. In fact the association of PalWch to PGLS was very strong, and only 194 

removed by boiling in SDS-PAGE buffer but not by washes in 2% or 4% SDS (Fig. 3A). This is 195 

consistent with the putative OmpA-like PG binding motif found in PalWch and in Pal of other 196 

chlamydial lineages (Figs. 3B and 3C) and its genetic linkage to other genes encoding putative 197 

PG biosynthesis and remodeling enzymes (Fig. 3D). In order to determine if recombinant PalWch 198 

can indeed bind PG in vitro, we purified His6-tagged PalWch from E. coli to conduct pelleting 199 

assays with purified sacculi (polymeric PG) from various bacterial species with different 200 

structural characteristics. E. coli PG is characterized by the incorporation of modified amino 201 

acids, such as mDAP (γ-meso-diaminopimelic acid), as in most Gram-negative bacteria, 202 

whereas PG from Gram-positive bacteria, such as Bacillus subtilis and Staphylococcus aureus 203 

have the mDAP replaced by D-isoglutamate or L-Lysine. Therefore we used sacculi from E. coli, 204 

B. subtilis and S. aureus as a template as well as purified PGLS material from W. chondrophila. 205 

His6-PalWch partitioned exclusively with the E. coli PG pellet in the insoluble fraction after 206 

ultracentrifugation, whereas it is in the soluble fraction in the absence of sacculi (Figure 5A). 207 

His6-PalWch exhibited weaker PG binding to B. subtilis and S. aureus sacculi, as indicated by the 208 

fact that His6-PalWch was found in both fractions when equimolar amounts of sacculi were added. 209 

As expected, His6-PalWch was also precipitated by the addition of W. chondrophila PG (Figure 210 

5B). Since PalWch also features the OmpA-like PG binding domain present in other Pal 211 

orthologs, we hypothesized that conserved residues in the OmpA-domain are required for PG 212 

binding of PalWch. In order to further characterize the binding of PalWch to PG we generated a 213 
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His6-PalWch mutated variant (i.e. His6-PalWch D180A/R195A) in residues conserved in the OmpA-214 

like PG binding domain. Purified His6-PalWch D180A/R195A was detected in the soluble fraction 215 

in both the control reaction (no murein) and in the pelletting assay with E. coli sacculi (Fig 5C-216 

D). Since PalWch was strongly associated to the isolated W. chondrophila PGLS, we wanted to 217 

determine if this strong association with murein is maintained also in vitro. His6-PalWch was 218 

released from the insoluble pellet fraction after the first and the second washes with 4% SDS 219 

(W1, W2, Fig. 5D), suggesting that other proteins might participate to strengthen the interaction 220 

of PalWch with PGLS in vivo or that the PG isolation process we used strengthened the binding 221 

of PalWch to PGLS. 222 

Knowing that PalWch can bind E. coli sacculi in vitro and that there are no established methods 223 

for genetic manipulation of W. chondrophila, we sought a suitable E. coli strain that could be 224 

used as surrogate host for PG binding and/or functionality test with PalWch. Complementation 225 

experiments revealed that, unlike E. coli Pal (PalEco), PalWch cannot correct the growth defect of 226 

the E. coli ∆pal mutant on McConkey medium (containing detergents such as the bile acid 227 

deoxycholate, to which the ∆pal mutant is sensitive). However, we isolated a spontaneous ∆pal 228 

suppressor mutant (∆palSupp) that can grow on McConkey medium and observed that 229 

expression of PalWch was toxic under these conditions (Fig. 5E). Such toxicity did not occur 230 

when PalEco was expressed at mild levels but was also conferred upon expression of another 231 

chlamydial Pal from P. acanthamoebae, PalPac indicating that this activity is conserved among 232 

Pal of the Chlamydia-related bacteria. Therefore, as means to functionally characterize 233 

chlamydial Pal using this toxicity assay we isolated two mutations (G177V and R237*, 234 

introduction of a stop codon) in PalWch that prevent toxicity in ∆palSupp E. coli and that map to the 235 

OmpA-like PG-binding domain, suggesting that PG-binding is required for the activity of PalWch 236 

in ∆palSupp. To verify this result we engineered a double mutant in two conserved PG-binding 237 

residues (D180A/R195A) of PalWch by site-directed mutagenesis and found that these mutations 238 
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also attenuated the growth defect of ∆palSupp cells harboring PalWch (Fig. 5F). As immunoblots 239 

showed that the mutant forms are stable (Fig. 5G), we conclude that PG binding by PalWch is 240 

also needed for its activity in vivo, at least in a surrogate host and thus that PalWch can bind PG 241 

in vitro and in vivo. Interestingly, the ∆palSupp mutant has lower amounts of OmpA, an outer 242 

membrane protein, which interacts with PG, and which might be thus involved in the sensitivity 243 

of this mutant to PalWch (Fig. S1). 244 

245 

The Pal-Tol complex is localized to the division septum in W. chondrophila 246 

In order to investigate the possible role of PalWch in chlamydial division, we observed its 247 

localization in dividing W. chondrophila cells by immunofluorescence microscopy. PalWch was 248 

highly enriched at the division septum (in 56.9 ± 4.4 % of dividing bacteria, Fig. 4D). This 249 

localization is dependent on the integrity of PGLS, as treatment of infected cells with penicillin or 250 

phosphomycin 2h p.i. resulted in a partial (for penicillin, 30.7 ± 2.0 % of cells showed an 251 

accumulation of PalWch at midcell, Fig. 4D) or nearly total dispersion of PalWch from the midcell 252 

(for phosphomycin, 3.6 ± 5.1 % of bacteria had an accumulation of Pal at midcell, Fig. 4D). 253 

Interestingly, PalWch localization is sensitive to disturbance of MreB by MP265 (Fig. 4D). This is 254 

consistent with earlier results showing a role of MreB in the divisome machinery recruitment in 255 

W. chondrophila (Jacquier et al., 2014). Moreover, vancomycin and teicoplanin, two antibiotics 256 

targeting the d-Ala-d-Ala dipeptide cause the formation of aberrant bodies in W. chondrophila 257 

and have a strong effect on Pal localization at mid-cell (Fig. 4D and Fig. S2A and B). 258 

Interestingly, flavomycin, an antibiotic targeting PG trans-glycosylation enzymes shows no effect 259 

on W. chondrophila proliferation (Fig. S2A). We also observed an effect of vancomycin and 260 

teicoplanin on the localization of other septal proteins, such as MreB, RodZ and NlpD (Fig. 261 

S2C). It is noteworthy that dispersion of Pal from division septum was not complete after drug 262 
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treatment, since Pal foci are still visible (Fig. 4D, arrowheads). These results imply that the 263 

PGLS of W. chondrophila contains a d-Ala-d-Ala dipeptide, which is required for proper 264 

organization of the division machinery. 265 

TolA, TolB, TolQ and TolR, the proteins forming, in association with Pal the Tol-Pal complex are 266 

conserved in the W. chondrophila genome. Transcription of all members of the complex could 267 

be detected by qRT-PCR (Fig. 6A), with a maximum of RNA accumulating between 8 and 24 268 

hours, consistent with a role of the Tol-Pal complex in maintenance of the outer membrane 269 

integrity during division. Members of the Tol complex are apparently expressed slightly earlier 270 

than Pal, since they are detected at 8h p.i. However, this might be explained by a lower 271 

sensitivity of the qRT-PCR for Pal. Our results are thus consistent with the presence of the 272 

genes coding for the Tol-Pal complex in a single operon, since their general expression profiles 273 

are similar. To investigate the localization of Tol proteins, we used a construct allowing the 274 

expression of TolA and TolR fused together. These proteins being relatively small, we assumed 275 

that a combination of them would be more immunogenic. We thus immunized rabbits against 276 

this fusion protein and could raise antibodies, which specifically recognize W. chondrophila by 277 

immunostaining, since the pre-immune serum does not label infected cells (Fig. 6B). The 278 

protein(s) recognized by these antibodies apparently localize(s) at division septum in a PG-279 

dependent manner (Fig. 6C). This strongly implies an important role of the Tol-Pal complex in 280 

division, which might be conserved among all Chlamydiales. 281 

282 

Discussion 283 

Cell division in absence of a FtsZ homologue and of a classical PG is specific to a minority of 284 

bacteria, including anammox Planctomycetes, other members, with Chlamydiales, of the PVC 285 

superphylum. Interestingly, a PG sacculus was recently detected in Planctomycetes (Jeske et 286 
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al., 2015; van Teeseling et al., 2015), and Chlamydia-related bacteria (Pilhofer et al., 2013). 287 

This indicates that, even in absence of FtsZ, PVC bacteria still need a septal PG-like structure 288 

(Liechti et al., 2013), which is apparently essential for proper chlamydial division (Frandi et al., 289 

2014; Jacquier et al., 2014) and should also help coordinate the invaginations of the outer and 290 

inner membranes. Interestingly, PGLS of Chlamydiales and possibly Planctomycetes contain 291 

unconventional PG structures (Jeske et al., 2015; Pilhofer et al., 2013; van Teeseling et al., 292 

2015), which might explain why they were not detected earlier. In contrast to Chlamydiales, 293 

Planctomycetes possess transglycosylation enzymes (Jeske et al., 2015; van Teeseling et al., 294 

2015), indicating that the structures and/or the synthesis of their PGLS might be different. 295 

Antibiotics targeting the PG biosynthetic pathway at different levels exhibited various effects on 296 

W. chondrophila growth demonstrating that PG precusors are mandatory for W. chondrophila 297 

DNA replication (effect of phosphomycin) and that PG transpeptidation is required for cell 298 

division but not for DNA replication (no effect of vancomycin and teicoplanin on DNA replication, 299 

but formation of aberrant bodies). Moreover, the lack of effect of flavomycin on W. chondrophila 300 

proliferation might indicate that transglycosylation might not happen in chlamydial PG, thus 301 

explaining the non canonical structure of PG observed in Chlamydia-related bacteria (Pillhofer 302 

et al., 2013) and the absence of genes encoding homologs of transglycosylation enzymes in 303 

chlamydial genomes (Ghuysen and Goffin, 1999). 304 

We found here that W. chondrophila Pal is able to bind PGs purified from both Gram-positive 305 

and Gram-negative bacteria, and PGLS from W. chondrophila, showing that the PG-binding site 306 

of PalWch is not specific to a modified chlamydial PG. In Gram-negative bacteria, Pal specifically 307 

binds to mDAP, a modified peptide, which is a component of all Gram-negative PGs (Parsons et 308 

al., 2006). By contrast, the PG of Staphylococcus aureus, which has no mDAP, but a D-iso-309 

Glutamine is less well bound by PalWch (Fig 4). This suggests that PG of W. chondrophila 310 

contains mDAP, as suggested by its seemingly functional m-DAP biosynthetic pathway encoded 311 
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in chlamydial genomes (Jacquier et al., 2015). Moreover, potential modifications of chlamydial 312 

PGLS are likely not required for binding of PalWch , since this protein efficiently binds to Gram-313 

negative PG. Nevertheless, these modifications might play a role in the resistance of the 314 

chlamydial PGLS towards degradation by different lytic enzymes from the host cell. This would 315 

be consistent with our observations that W. chondrophila PGLS is resistant to mutanolysin 316 

digestion (Fig. 1). The fact that cell division in W. chondrophila can be inhibited with vancomycin 317 

or teicoplanin, drugs specifically binding to d-Ala-dAla dipeptides of the PG is bolsters the 318 

findings that fluorescent d-Ala-dAla dipeptide derivatives could be localized to the C. 319 

trachomatis division septum (Liechti et al., 2013), that PG biosynthetic enzymes are conserved 320 

among Chlamydiales (Reviewed in (Jacquier et al., 2015)) and  that they are required for 321 

cytokinesis and assembly of the septal division machine in this phylum. 322 

The septal localization of Pal in W. chondrophila is consistent with its role in maintenance of 323 

cellular integrity during division, a time when all three envelope layers must indent together (Fig. 324 

7). Outer membrane proteins might play an important role in this process as anchoring site for 325 

septal PG and the subsequent recruitment of the Pal-Tol complex. It would then be of high 326 

interest to investigate the localization of such outer membrane lipoproteins during chlamydial 327 

division. The Pal-Tol complex was recently shown to be physically and functionally connected to 328 

septal PG biosynthesis (Pbp1b-LpoB complex) via the protein YbgF (CpoB) (Gray et al., 2015). 329 

This protein is conserved in Chlamydiales (wcw_0348 in W. chondrophila), but is not 330 

encoded in the Tol-Pal operon and might play a role in the coordination of outer 331 

membrane invagination and new synthesis of PGLS, even in absence of chlamydial 332 

Pbp1-LpoB homologues. 333 

The discovery of a complete and functional Pal-Tol complex in Chlamydiales is of highest 334 

interest in the field of drug development because targeting this complex with specific inhibitors 335 
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might completely block the chlamydial division and disturb cell integrity. In addition, since the 336 

Pal-Tol complex of E. coli mediates colicin sensitivity (Housden and Kleanthous, 2012), the 337 

chlamydial Pal-Tol complex might also, by analogy, represent a specific target to allow the entry 338 

of anti-chlamydial microbial peptides. Finally, given the immunogenicity of this Pal-Tol complex 339 

and the importance of Pal in septic shock caused by E. coli (Godlewska et al., 2009; Hellman et 340 

al., 2002), the chlamydial Tol-Pal complex might be involved in severe immune recognition 341 

leading to inflammation, as commonly observed following C. trachomatis infection, where 342 

inflammation is well known to induce the trachoma lesions (Burton et al., 2011), as well  as tubal 343 

infertility (Hvid et al., 2007), extra-uterine pregnancy (Daponte et al., 2012) and miscarriage 344 

(Baud et al., 2008). 345 

Significance 346 

This study identified the role of the Pal-Tol complex in chlamydial division, highlighting the 347 

importance of peptidoglycan-binding proteins to ensure cell wall integrity during cell division of 348 

distantly related descendants of the Gram negative lineage and possibly eukaryotic organelles, 349 

which possess a minimal division machinery, lacking the main organizer of bacterial division 350 

FtsZ, but that maintained a peptidoglycan layer and peptidoglycan-binding proteins, which are 351 

essential for division. This is a further step towards the understanding of the exact mechanism 352 

of the division of these obligate intracellular pathogens. 353 

354 

Experimental procedures: 355 

Strains and growth conditions 356 

E. coli strains and mutants were grown in Luria Bertani broth (LB). W. chondrophila ATCC VR-357 

1470T was grown in the amoeba Acanthamoeba castellanii ATCC 30010 cultivated in 25 cm2 358 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 

cell-culture flasks containing 10 ml of peptone-yeast extract-glucose medium (PYG) incubated 359 

for 6 days at 28°C (Jacquier et al., 2013). Cell suspension was then harvested and filtered using 360 

a 5 m-pore filter to purify bacteria from intact ameobae in the flow-through. Strains, plasmids 361 

and antibodies used in this study are described in the supplemental experimental procedures. 362 

Cell culture and bacterial infection 363 

Vero cells (ATCC CCL-81) were grown and infected by Waddlia chondrophila as 364 

described earlier (Jacquier et al., 2014). Shortly, Vero cells were grown in 75 cm3 flasks 365 

containing 20 ml DMEM supplemented with 10% fetal calf serum at 37°C in presence of 366 

5% CO2. Cells were diluted to 105 cells/ml, grown overnight and infected with a 2000x 367 

dilution of W. chondrophila. The infected cells were then centrifuged for 15 minutes at 368 

1790 x g, incubated 15 minutes at 37°C and washed once with PBS before addition of 369 

fresh media. 370 

371 

372 

Cell wall analysis 373 

Vero cells were infected as described above, collected 28 h p.i. and washed with PBS. 374 

20 mg of infected cells (containing about 1010 Waddlia cells) were collected by 375 

centrifugation for 10 minutes at 10’000 x g and were incubated for 1h at 95°C in order to 376 

heat-inactivate the bacteria. Cell wall isolation, digestion and HPLC was performed by 377 

Cecolabs (Tuebingen, Germany), using a protocol adapted from (de Jonge et al., 378 

1992a, b). Briefly, cells were boiled in sodium dodecyl sulfate (SDS) and the cell wall 379 

was harvested by centrifugation and broken with glass beads. Broken cell wall was then 380 
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digested with mutanolysin, MltA or CwlT. The analysis was done on a C18 column (MZ-381 

Analysentechnik, Mainz, Germany) on a Agilent 1200 system (Agilent, Santa Clara, CA) 382 

using a 150 minutes gradient from 5% to 30% methanol in sodium phosphate buffer. 383 

Quantitative analysis of selected peaks was done by integration of the peak area using 384 

the trapezoidal rule. The area of each peak was then used to derive the ratio of cell wall 385 

components among the different strains, by normalizing each peak area to the total of 386 

the peaks present in each HPLC analysis run. 387 

Detection of Waddlia PG by hNod expressing cells 388 

Isolated Waddlia PG was tested using HEK-Blue hNod1 and hNod2 kits (InvivoGen, 389 

San Diego, CA), following the manufacturer’s indications. Briefly, 20 l of standards and 390 

isolated PG were added in 96 well plate to 3.105 cells expressing hNod1 (resp. hNod2) 391 

resuspended in HEK-Blue detection medium. The suspension was then incubated for 392 

16h and activation of Nod receptors was detected at 620 nm using a FLUOstar Omega 393 

microplate reader (BMG Labtech, Ortenberg, Germany).   394 

Characterization of PG-binding proteins by mass spectrometry 395 

Cell wall of W. chondrophila was isolated as described above, but in absence of 396 

protease treatments. This cell wall was then washed by successive boilings in 2% and 397 

4% SDS. Samples taken before and after the washes were analyzed by mass 398 

spectrometry (Protein analysis facility of the University of Lausanne, Switzerland). Ratio 399 

of peptide abundance between both samples was calculated and proteins showing 400 

enrichment after washing were selected as PG-binding candidates. 401 

Murein (sacculi) pull-down assay 402 
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PalWch-His6 was overproduced in E. coli Rosetta (λDE3)/pLys. Protein was purified by nickel 403 

affinity chromatography as described above, concentrated by ultrafiltration in Amicon 3K 404 

columns (Millipore, Darmstadt, Germany) and stored at -80°C in binding buffer (20 mM Tris-HCl, 405 

1 mM MgCl2 30 mM NaCl, 0.05% Triton X-100, pH 6.8) containing 50% glycerol. Bradford assay 406 

was used to determine the protein concentration in each sample. E. coli, Bacillus subtilis, and 407 

Staphylococcus aureus mureins (sacculi) were purchased from Anasyn (Tuebingen, Germany) 408 

and resuspended in binding buffer at a concentration of 10 mg/ml. PalWch-His6 (6µg) was added 409 

to 1 mg of murein in a total volume of 0.2 ml and incubated on ice for 30 minutes. Murein from 410 

samples was collected by centrifugation using a Beckman SW55Ti rotor at 303648 × g for 30 411 

min at 4°C. Sedimented murein was resuspended in 0.1 ml of cold Binding buffer and 412 

centrifuged again. Murein pellets were resupended in 0.1 ml of cold binding buffer. The 413 

supernatant of the first centrifugation step (S), the supernatant of the washing step (W) and the 414 

pellet (P) were analysed by SDS-PAGE followed by immunoblot with anti-His6 antiserum 415 

(1:2000 dilution, Cell Signaling, Danvers, MA) (see supplemental experimental procedures for 416 

details). 417 

Immunofluorescence labeling 418 

Immunofluorescence was performed as described (Croxatto and Greub, 2010; Jacquier et al., 419 

2014). Infected Vero cells on coverslips were fixed by incubation for 5 minutes in ice-cold 420 

methanol for 5 minutes. Cells were then washed 3 times with PBS and subsequently blocked 421 

and permeabilized for a minimum of 1 h in blocking buffer (PBS, 0.1% saponin, 1% BSA). 422 

Coverslips were then incubated with primary antibodies directed against bacteria in blocking 423 

buffer for 1 h at room temperature, washed 3 times with PBS supplemented with 0.1% saponin 424 

and incubated for 1 h with secondary antibodies in blocking buffer containing DAPI (Molecular 425 

Probes). Coverslips were then washed 3 times with PBS containing 0.1% saponin, once with 426 
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PBS and a last time with distilled water, before they were mounted onto glass slides using 427 

Mowiol as mounting medium (Sigma-Aldrich). 428 

Confocal and fluorescence microscopy 429 

Confocal microscopy pictures were taken using a Zeiss LSM 510 Meta (Zeiss, Oberkochen, 430 

Germany). Images treatment and quantification were then performed using the ImageJ software 431 

(http://www.macbiophotonics.ca). 432 

Quantitative PCR 433 

Infection was quantified by real-time PCR, as described (Jacquier et al., 2014). Cells were 434 

resuspended by scrapping at different time points after infection. Genomic DNA was extracted 435 

from 50l of cell suspension using the Wizard SV Genomic DNA purification system (Promega, 436 

Madison, WI) and eluted in 200l of water. 5l of DNA were then mixed with iTaq supermix 437 

with ROX (BioRad, Hercules, CA), 200 nM of primers WadF4 and WadR4 and 100 nM of probe 438 

WadS2(Goy et al., 2009). Quantitative PCR conditions were 3 min at 95°C followed by 40 439 

cycles of 15 sec at 95°C and 1 min at 60°C. Amplification and detection of the PCR products 440 

were performed using a stepOne Plus Real-time PCR System (Applied Biosystems, Carlsbad, 441 

CA). 442 

RNA extraction, cDNA synthesis and qPCR 443 

RNA quantification was performed as described(Jacquier et al., 2014). Briefly, 500 l of infected 444 

cell were harvested at the given time points and mixed with 1 ml of RNA Protect (Qiagen, Venlo, 445 

Netherlands). The suspension was then incubated for 5 minutes at room temperature and then 446 

centrifuged for 10 minutes at 5000 x g. The resulting pellet was frozen at -80°C. RNA was 447 

extracted from the pellet using the RNeasy Plus kit (Qiagen). DNA was selectively digested by 448 

DNAse, using Ambion DNA-free kit (Life technologies, Grand Island, NY). 449 
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cDNA was then reverse transcribed using a Goscript Reverse Transcription System (Promega, 450 

Fishburg, WI). qPCR was performed on 4 l of cDNA with addition of 10 l of iTaq Universal 451 

SYBR Green mix (BioRad, Hercules, CA), 4.8 l of water and 0.6 l of each specific forward 452 

and reverse primers targeting the 16S rRNA encoding gene and the pal, tolA, tolB, TolQ or TolR 453 

genes. Cycling conditions were 3 min at 95°C followed by 45 cycles of 15 sec at 95°C and 1 min 454 

at 60°C. A stepOne Plus Real-time PCR System (Applied Biosystems, Carlsbad, CA) was used 455 

for amplification and detection of the PCR products. 456 
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612 

Figure legends 613 

Figure 1: Known cell wall hydrolytic enzymes liberate cell wall fragments from W. 614 

chondrophila. Vero cells infected with W. chondrophila in presence of the indicated antibiotics, 615 

were harvested 28h p.i. and washed with PBS. Bacteria were heat-inactivated at 95°C for 1 h. 616 

The bacterial cell wall was isolated and digested with mutanolysin (A), MltA (B) and CwlT (C-D-617 

E). Cell wall fragments were separated by HPLC. (a,b,c,d,e) peaks showing a decrease after 618 

treatment with penicillin or phosphomycin, percentages shown in red. 619 

620 

Figure 2: Peptidoglycan isolated from W. chondrophila is recognized by Nod1 and Nod2 621 

receptors. HEK cells expressing the hNod1 receptor (A) or the hNod2 receptor (B) were 622 

incubated with  the indicated concentration in g/ml of the following standards: C12-iE-DAP 623 

(acylated derivative of iE-DAP), iE-DAP (D--Glu-mDAP), MDP (MurNAc-L-Ala-D-isoGln), L18-624 

MDP (synthetic derivative of MDP), M-TriDAP (MurNAc-L-Ala-D--Glu-mDAP), M-TriLYS 625 

(MurNAc-Ala-D-isoGln-Lys), murabutide (MurNAc-Ala-D-isoGlnOBu), TriDAP (L-Ala--D-Glu-626 
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mDAP), PGEco (PG of E. coli), PGSau (PG of S. aureus). The indicated concentrations in g/ml of 627 

PGWch (PG of W. chondrophila) were used. Highest response is normalized as 100 %. Error 628 

bars show standard deviation of 3 independent experiments. 629 

630 

Figure 3: Pal is conserved among Chlamydiales. A) Pal strongly binds to isolated PG of W. 631 

chondrophila. PG was isolated from Vero cells infected with W. chondrophila 28h p.i. in absence 632 

of proteolysis. Resulting material was washed by incubating successively in 2% and 4% SDS at 633 

37°C for 30 minutes. Samples of washes and washed PG were then resuspended in loading 634 

buffer and proteins were detected by Western blotting. B) Predicted domain organization of W. 635 

chondrophila Pal: SS, Signal Sequence and, in green, OmpA-like PG binding domain PF00691. 636 

C) The features of the OmpA-like PG binding domain are conserved. Amino acid sequences of637 

the OmpA-like PG binding domain of PF00691 (ompAEco), PalEco, PalWch, and PalPac were 638 

aligned using MUSCLE. Amino acids are highlighted for their conservation and charge. Point 639 

mutation obtained and used in the experiments in figure 2 are marked with asterisks.D) Tol-pal 640 

locus organization in Waddlia chondrophila (Wch), Simkania negevensis (Sne), Parachlamydia 641 

acanthoamoebae (Pac) and Chlamydia trachomatis (Ctr). Orthologs proteins were searched by 642 

BBH using as query W. chondrophila Tol-Pal protein sequences. Arrows orientations do not 643 

represent the actual strand orientation of the tol-pal locus in the genome. 644 

Figure 4: Pal is transcribed and expressed in W. chondrophila. A) Transcription of Pal is 645 

maximal 16 h p.i.. RNA was extracted from Vero cells infected with W. chondrophila at the 646 

indicated time points p.i.. Pal RNA was then quantified by qRT-PCR and normalized by 647 

comparison with the 16S rRNA. Error bars represent standard deviations of two independent 648 

experiments. B) Pal protein is expressed in W. chondrophila. Antibodies raised against purified 649 

heterogously expressed Pal recognize a protein of 29kDa in protein extracts of W. chondrophila-650 

infected vero cells at the given time points by Western blotting. An antibody raised against the 651 
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whole inactivated W. chondrophila was used as control (Wad). Corresponding bands were 652 

quantified using Image J and fold increase of Pal in comparison with Wad is represented. Error 653 

bars represent the standard deviation of two independent experiments. C) Pal expression is 654 

restricted to RBs. Pre-immune control serum and serum harvested after immunization were 655 

used for immunofluorescence staining of Pal. Only RBs (arrow) and not EBs (arrowhead) 656 

contain a detectable amount of Pal. Addition of DTT to increase EBs permeability does not 657 

increase EBs labeling (Bar = 20 m). D) Pal localizes at the division septum in a PG and MreB-658 

dependent manner. Vero cells infected by W. chondrophila were treated with the indicated 659 

antibiotic 2h p.i., fixed 24h p.i. and processed for immunofluorescence (Bar = 1 m). Enrichment 660 

of Pal at mid-cell was quantified and results are provided in percentage for each condition. 661 

Standard deviation of two independent experiments is also given. The few aberrant bodies 662 

(<10%) still exhibiting some accumulation of Pal at mid-cell are likely aberrant bodies 663 

presenting some degree of invagination at mid-cell. Arrowheads show foci of Pal 664 

accumulation. 665 

666 

Figure 5: PalWch binds PG in vitro and its PG binding activity can be measured in a E. coli 667 

system. A-B) PalWch binds preferentially to Gram-negative PG in vitro. His6-PalWch was 668 

incubated with or without E. coli, B. Subtilis, S. aureus PG, or W. chondrophila PGLS. PG was 669 

then pelleted by ultracentrifugation and washed once with buffer. His6-PalWch was detected by 670 

immunoblotting in the supernatant (S), the wash fraction (W) and the pellet fraction (P). The size 671 

markers are indicated in kDa. C-D) Mutations in conserved residues (D180A/R195A) mapping in 672 

the OmpA-like PG binding domain of PalWch abolish the binding to E. coli murein. 673 

Immunoblotting with antibodies against His6-tag was used to reveal His6-PalWch and the mutant 674 

variant in the supernatant (S), the wash fraction (W), the pellet fraction (P) and the supernatant 675 
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of the E. coli cells lysate (L). The insoluble pellet fraction resulting from the co-pelletting assay 676 

of His6-PalWch with E. coli murein were washed thrice with 4% SDS and the resulting washing 677 

steps (W1, W2 and W3) were loaded on the SDS-PAGE gel without previous boiling. The size 678 

markers are indicated in kDa. E) Effect of palWch orthologs expression in ∆palsupp on McConkey 679 

supplemented with 0.5% Glucose (McCG). Basal expression of PalWch and PalPac are sufficient 680 

to restrict the growth of ∆palsupp on McCG, conversely basal level of PalEco supports the growth 681 

of ∆Palsupp. F) Point mutations in the OmpA-like PG binding domain of palWch prevent the letal 682 

effect of wild type palWch expression on McCG. G) PalWch point mutants accumulate at levels 683 

similar to that of PalWch WT. Overnight cultures were diluted in fresh LB media supplemented or 684 

not with 1 mM IPTG to an OD = 0.1 and grown for 4h at 30°C. OD were measured at t= 4h and 685 

adjusted to 0.5 for all the cultures. Proteins in the resulting cell extracts were detected by 686 

immunoblotting with anti-PalWch antiserum. 687 

Figure 6: Members of the Tol complex are expressed in W. chondrophila and localize to 688 

the division septum in a PG-dependent manner. A) Transcription of TolA,B,Q and R are 689 

maximal between 8 and 16 h p.i.. qPCR was performed as explained earlier. Error bars 690 

represent standard deviations of two independent experiments. B) TolAR antibody is specific. 691 

TolAR antibodies were produced by immunization of a rabbit with a TolAR fusion protein. Serum 692 

before and after immunization were used for immunofluorescence as described earlier (Bar = 20 693 

m). C) Tol complex localizes to the division septum in a PG-dependent manner. 694 

Immunofluorescence was performed after treatment or not with the indicated antibiotics (Bar = 1 695 

m). 696 

Figure 7: Model of the maintenance of membrane integrity by the Pal-Tol complex during 697 

division. A) early organization of the division site. B) early invagination and divisome 698 

organization. C) Late components of the divisome. OM: outer membrane, PG: peptidoglycan, 699 

IM: inner membrane.  TolA,B.Q and R are depicted by their last letter only. 700 
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Figure S1: OmpA protein levels are lower in the ∆palsupp mutant. Steady-state 701 

levels of E. coli OmpA (OmpAEco, arrowhead) in E. coli WT, ∆pal, ∆palsupp and ∆ompA 702 

cell lysates (mutants shown in duplicate) determined by immunoblotting using polyclonal 703 

antibodies targetting OmpAEco (upper panel). The same relative amounts of cell lysates 704 

were resolved by SDS-PAGE and stained using Coomassie Brilliant Blue to confirm that 705 

same amounts of total proteins were loaded in each lane (lower panel). 706 

Figure S2: W. chondrophila is partially sensitive to vancomycin and teicoplanin. A) 707 

Vancomycin and teicoplanin, but not flavomycin induce the formation of aberrant bodies in W. 708 

chondrophila. Vero cells infected with W. chondrophila were treated with the indicated antibiotic 709 

2 h p.i. and then processed for immunofluorescence. Host cells were stained with concanavalin 710 

A (Conc. A) (Bar = 10 m). B) Vancomycin and teicoplanin did not affect the replication of 711 

bacterial DNA, despite these antibiotics strongly affected W. chondrophila proliferation. Infected 712 

Vero cells were treated or not with the indicated antibiotic at the given concentrations (g/ml) 2h 713 

p.i. and harvested at the given time points. DNA was extracted and W. chondrophila 16S DNA 714 

was quantified by qPCR.  C) Vancomycin and teicoplanin treatment disturb the proper 715 

localization of important septal proteins RodZ, MreB and NlpD.  Infected Vero cells were treated 716 

as in (A) and the indicated proteins were detected (green) (Bar = 2 m). 717 
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723 

724 

725 

726 

727 

728 

729 

Table S1: Proteins enriched in washed PG. PG isolated from W. chondrophila in 730 

absence of proteolysis was successively washed by boiling in 2% and 4% SDS. PG was 731 

then harvested and samples before and after washing were analyzed by mass 732 

spectrometry. Proteins enriched after washing are presented in this table. 733 

Name Description 
Cell 
wall 

Washed 
cell wall Enrichment 

Signal 
sequence 

ClpC ATP-dependent Clp protease ATP-binding subunit 0.10 0.34 3.35 

Mdh Malate dehydrogenase 0.10 0.25 2.51 

GyrA DNA gyrase subunit A 0.15 0.36 2.42 

DnaJ Chaperone protein 0.15 0.31 2.05 

Pnp Polyribonucleotide nucleotidyltransferase 0.40 0.70 1.75 

AcpP Acyl carrier protein 0.10 0.17 1.68 

SecA Protein translocase subunit 0.30 0.50 1.68 Y 

ClpX ATP-dependent Clp protease ATP-binding subunit 0.15 0.22 1.49 

TrxA Thioredoxin 0.15 0.22 1.49 

wcw_1035 Uncharacterized protein 0.10 0.14 1.40 

wcw_1672 ABC-type transporter, ATPase subunit 0.10 0.14 1.40 

Gnd 6-phosphogluconate dehydrogenase 0.10 0.14 1.40 

GroES3 10 kDa chaperonin 0.25 0.34 1.34 

RpoC DNA-directed RNA polymerase subunit beta' 2.00 2.66 1.33 

PepF Oligoendopeptidase F 0.25 0.31 1.23 
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RpoB DNA-directed RNA polymerase subunit beta 2.15 2.57 1.20 

Tig Putative trigger factor 0.30 0.34 1.12 

Efp3 Elongation factor P 0.25 0.28 1.12 

Pal Peptidoglycan-associated lipoprotein 0.15 0.17 1.12 Y 

DnaN DNA polymerase III subunit beta 0.75 0.81 1.08 

NusA Transcription elongation protein 0.50 0.53 1.06 

MreB Actin-like ATPase involved in cell morphogenesis 0.45 0.48 1.06 

NrdA Ribonucleoside-diphosphate reductase 2.15 2.27 1.05 

ClpP3 ATP-dependent Clp protease proteolytic subunit 0.30 0.31 1.02 

FbaB Fructose-bisphosphate aldolase 0.25 0.25 1.01 

734 

735 

736 

737 

Table S2: Proteins only detected in washed PG. PG was treated as described for table S1. 738 

Proteins detected only in washed PG are presented in this table. 739 

Name Description 
Washed 
cell wall 

Signal 
sequence 

Conserved in 
Chlamydiaceae 

wcw_0501 Uncharacterized protein 0.56 Y Y 

wcw_0969 Uncharacterized protein 0.48 Y 

GreA Transcription elongation factor 0.36 Y 

PheT Phenylalanine--tRNA ligase beta subunit 0.31 Y 

GltX Glutamate--tRNA ligase 0.25 Y 

FtsH ATP-dependent zinc metalloprotease 0.22 Y 

GatA Glutamyl-tRNA(Gln) amidotransferase subunit A 0.22 Y 

GspD Putative general secretion pathway protein D 0.22 Y Y 

AccC Biotin carboxylase 0.20 Y 

ProS Proline--tRNA ligase 0.20 Y 

PyrG CTP synthase 0.17 Y Y 

wcw_1595 SWI/SNF helicase 2 family protein 0.14 Y 

wcw_0579 Proline amido peptidase 0.14 Y 

ClpB ATP-dependent Clp protease, ATP-binding subunit ClpB 0.08 Y 

PolA DNA polymerase I 0.06 Y 

740 
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Highlights 

1) We analyzed all proteins binding to chlamydial peptidoglycan (PG), including Pal

2) We confirmed that Pal is binding to PG both in vivo and in vitro

3) We showed that Pal localizes at the division septum in a PG-dependent process

4) We showed that vancomycin inhibits chlamydial division, dispersing Pal

eToc 

Jacquier et al. demonstrated the presence of a functional chlamydial Tol-Pal complex at the 

division septum, which is bound to chlamydial peptidoglycan and apparently plays an important 

role in the maintenance of the bacterial membrane integrity. 

Highlights and Etoc
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Supplemental experimental procedures 

Strain construction 

Strain ∆pal::KmR (MG5) (Gerding et al., 2007) is a derivative of TB28 (∆lacZYA <frt>). It was 

kindly provided by Prof. Piet de Boer (Case Western Reserve University, Cleveland, OH). 

Plasmids and site directed mutagenesis 

Plasmids used in this study were maintained in the E. coli cloning strain EC100D (Epicentre, 

Madison, WI). The expression construct for palWch (Wcw_0122) (nt: 126916-127662 of the 

Waddlia chondrophila genome, accession number NC_014225.1), palPac (nt: 119153-119869 of 

the Parachlamydia acanthoamoebae genome, accession number NC_015702.1), and palEco (nt: 

778290-778811 of the Escherichia coli MG1655 genome, accession number NC_000913.3) 

were made by amplification of palWch, palPac, and palEco as 746, 716, and 521 bp fragments, 

respectively, flanked by an NdeI site at the 5' end and an EcoRI site at the 3' end. These 

fragments were ligated into pMT335 that had been restricted with NdeI and EcoRI. The resulting 

plasmids were confirmed by sequencing and used to transform E. coli strains. 

pSRK (GmR) plasmid constructions were made by liberating palWch, palPac, and palEco from 

pMT335 recombinant plasmids by digestion with NdeI and XbaI. The resulting fragments were 

ligated in pSRK (GmR) that has been digested with the same restriction endonucleases NdeI 

and XbaI. pSRK::palWch, pSRK::palPac, and pSRK::palEco plasmids were confirmed by 

sequencing and introduced in E. coli by chemical transformation. 

The overexpression construct for antibody production and murein pull-down assays of palWch 

was made by amplification of a shorter fragment of palWch flanked by NdeI/EcoRI recognition 

sequences. The first 22 aminoacids of palWch were removed as they code for a putative signal 

sequence. The resulting fragment was then ligated into pET28a (Novagen, Darmstadt, 

Supplemental experimental procedures
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Germany) restricted with the same endonucleases NdeI and EcoRI. The resulting plasmids 

(pET28a::palWch) was used to produce protein to raise antibodies, and in murein pull-down 

assays. 

PalWch synthetic point mutants were purchased as synthetic g-blocks from IDT (Integrated DNA 

Technology, Coralville, IA), amplified by Hi-Fidelity Taq polymerase and cloned in either in 

pMT335 or pSRK vectors. 

Antibodies, probes and reagents 

Polyclonal mouse and rabbit antibodies against W. chondrophila were produced locally as 

described previously (Croxatto and Greub, 2010). The secondary antibodies Alexa Fluor 488 

goat anti-rabbit, 488 anti-mouse, 594 anti-rabbit and 594 anti-mouse were purchased from 

Molecular Probes (Grand Island, NY). Phosphomycin, penicillin, vancomycin and teicoplanin 

were obtained from Sigma-Aldrich. 

His6-PalWch protein was expressed from pET28a::palWch in E. coli Rosetta (DE3)/pLysS 

(Novagen) and purified under native conditions using Ni2+ chelate chromatography. A 5 mL 

overnight culture was diluted into 1 L of pre-warmed LB at 30°C. OD600nm were monitored until 

OD600nm=~ 0.3-0.4, then 1mM IPTG were added to the culture and growth continued. After 3 

hours cells were pelleted, and resuspended in 25 mL of lysis buffer (10 mM Tris HCl pH8, 0.1 M 

NaCl, 1 mM ß-mercaptoethanol, 5% glycerol, 0.5 mM imidazole triton 0.02%). Cells were 

sonicated (Sonifier Cell Disruptor B-30; Branson Sonic power Co., Danbury, CT) on ice using 12 

bursts of 20 seconds at output level 5.5. After centrifugation at 6'000 rpm the supernatant was 

loaded onto a column containing 5 mL of Ni-NTA agarose resin pre-equilibrated with lysis buffer. 

Column was rinsed with lysis buffer ,400 mM NaCl and 10 mM imidazole, both prepared in lysis 

buffer. Fractions were collected (in 300 mM Imidazole prepared in lysis buffer) and resolved on 

a 12.5% SDS polyacrylamide gel. The fractions containing the purified protein were used to 
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immunize New Zealand white rabbits (Josman LLC, Napa, CA) or mice (Eurogentec, Leuven, 

Belgium). 

Protein extraction, SDS-PAGE, Western Blot 

500l of infected cell culture were harvested at the indicated time points by centrifugation at 

6’000 x g for 5 minutes. Proteins were extracted from the cell pellet by resuspension in loading 

buffer (60 mM Tris pH 6.8, 1% SDS, 1% mercaptoethanol, 10% glycerol, 0.02% bromophenol 

blue) and heated at 95°C for 10 min. 10l of the suspension were used to load on a 12.5% 

polyacrylamide precast gel (BioRad, Hercules, CA). After 45 min of migration at 200V, proteins 

were electrotransferred onto a nitrocellulose or PVDF membrane (Millipore) at 75V for 1 hour. 

The membrane was blocked with 5% milk for 2 hours and then incubated for at least 2 hours 

with the indicated antibody. An incubation of 2 hours with a HRP-conjugated goat anti-mouse or 

anti-rabbit antibody, depending on the primary antibody used, was then performed. Detection of 

HRP was performed using 0.03% hydrogen peroxide, 220 g/ml luminol and 32.5 g/ml 

coumaric acid in 0.1 M Tris pH 8.5 or Immobilon Western Blotting Chemoluminescence HRP 

substrate (Millipore). Chemiluminescence was recorded with the ImageQuant LAS 4000 Mini 

imager (GE healthcare, Waukesha, WI). Images were then treated using ImageJ. 
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