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Abstract. Extreme sub-hourly precipitation, typically con-
vective in nature, is capable of triggering natural disasters
such as floods and debris flows. A key component of climate
change adaptation and resilience is quantifying the likelihood
that sub-hourly extreme precipitation will exceed historical
levels in future climate scenarios. Despite this, current ap-
proaches to estimating future sub-hourly extreme precipita-
tion return levels are deemed insufficient. The reason for this
can be attributed to two factors: there is limited availabil-
ity of data from convection-permitting climate models (ca-
pable of simulating sub-hourly precipitation adequately) and
the statistical methods we use to extrapolate extreme pre-
cipitation return levels do not capture the physics governing
global warming. We present a novel physical-based statisti-
cal method for estimating the extreme sub-hourly precipita-
tion return levels. The proposed model, named TEmperature-
dependent Non-Asymptotic statistical model for eXtreme
return levels (TENAX), is based on a parsimonious non-
stationary and non-asymptotic theoretical framework that in-
corporates temperature as a covariate in a physically con-
sistent manner. We first explain the theory and present the
TENAX model. Using data from several stations in Switzer-
land as a case study, we demonstrate the model’s ability to
reproduce sub-hourly precipitation return levels and some
observed properties of extreme precipitation. We then illus-
trate how the model can be utilized to project changes in
extreme sub-hourly precipitation in a future warmer climate
only based on climate model projections of temperatures dur-
ing wet days and on foreseen changes in precipitation fre-

quency. We conclude by discussing the uncertainties asso-
ciated with the model, its limitations, and its advantages.
With the TENAX model, one can project sub-hourly pre-
cipitation extremes at different return levels based on daily
scale projections from climate models in any location glob-
ally where observations of sub-hourly precipitation data and
near-surface air temperature are available.

1 Introduction

Extreme sub-hourly precipitation can lead to natural disasters
such as flash floods, urban floods, and debris flows (Borga
et al., 2014; Cristiano et al., 2017). Quantifying the proba-
bility of exceedance of sub-hourly extreme precipitation in
future climate scenarios is thus of high interest for climate
change adaptation and resilience (Westra et al., 2014; Fowler
et al., 2021b). According to thermodynamics, the atmo-
spheric water vapor holding capacity increases with tempera-
ture at an exponential rate (∼ 7 % ◦C−1, Clausius–Clapeyron
relation; Trenberth et al., 2003). In the presence of full satu-
ration and maximum precipitation efficiency, conditions that
are closely met during sub-hourly extreme events, precipita-
tion intensities are expected to increase with temperature at
a similar rate; this has been demonstrated at the global scale
(e.g., Ali et al., 2021a). Evidence shows that the observed
scaling rates may significantly deviate from the Clausius–
Clapeyron relation, sometimes by up to threefold (Pfahl and
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O’Gorman, 2017; Fowler et al., 2021a). This is likely caused
by temperature-induced changes in the local atmospheric dy-
namics (e.g., vertical advection, moisture convergence) and
strongly depends on the temporal (Fowler et al., 2021a) and
spatial (Peleg et al., 2018) scales of interest. Climate change
is thus expected to modify precipitation extremes in complex
ways, due to the interplay of local dynamic and thermody-
namic processes and large-scale atmospheric dynamics.

Precipitation extremes that occur very rarely, such as mag-
nitudes that are exceeded with a low probability p in a
given year (usually referred to as T -year return levels, with
T = 1/p), are critical for the design and management of
risk mitigation plans. For example, urban drainage systems
in many countries are designed to cope with rainfall inten-
sities up to a certain T -year return level, beyond which ur-
ban flooding is expected. Therefore, it is essential to estimate
future precipitation return levels to facilitate climate change
adaptation. These extremes cannot be derived directly from
the available observations and need to be extrapolated. To do
so, hydrologists and practitioners often apply extreme value
analysis methods, which are typically cumulative distribu-
tion functions of the annual maximum precipitation intensi-
ties (e.g., Papalexiou and Koutsoyiannis, 2013). These mod-
els are usually described by parameters that are estimated
from the available extremes, either the annual maxima or
the exceedances of a high threshold, assuming stationarity
(Coles, 2001; Katz et al., 2002). Climate change, however,
undermines this stationarity assumption.

Quantifying the impact of climate change on extreme sub-
hourly precipitation is typically accomplished in one of three
ways. One option is to compute the relative change in precip-
itation return levels for different time intervals (e.g., present
and future) obtained directly from climate model simulations
while assuming that stationarity holds in each time interval
(for example see Ban et al., 2020; Moustakis et al., 2021). A
second option is to use observed precipitation data to bias-
correct precipitation time series obtained from climate mod-
els, computing and examining the changes in precipitation
extremes over present and future periods (e.g., Maity and
Maity, 2022; Yan et al., 2021). Sub-hourly data from climate
models, however, are rarely available due to storage limita-
tions. In addition, climate models at the global and regional
scales cannot resolve processes that are critical for extreme
sub-daily precipitation, such as convection, making most cli-
mate models unsuitable for analyzing extreme sub-daily pre-
cipitation. Convection-permitting models can be used for
such a task (Ban et al., 2020). However, these models are not
available for all regions and are not forced by all the socio-
economic pathways.

The last option is to utilize non-stationary extreme value
models whose parameters depend on a covariate, such as
time or temperature (e.g., Cheng and AghaKouchak, 2014;
Sippel et al., 2015; Pfahl and O’Gorman, 2017; Vidrio-
Sahagún and He, 2022), and to extrapolate the information
to future scenarios based on this covariate. As a general rule,

some of the parameters of the extreme value distribution are
kept unchanged or linked to one another to reduce uncer-
tainties in parameter estimation (Prosdocimi and Kjeldsen,
2021). The dependence of the other parameter(s) on the co-
variate of interest is chosen among a set of suitable models
(Ragno et al., 2019). Traditional extreme value distributions,
however, cannot be easily linked to the underlying physi-
cal processes because their parametrization does not allow
for separation of the contribution of thermodynamics and at-
mospheric dynamics (Marra et al., 2021). The dependence
of extremes on the covariate of interest is thus empirical
and often limited to monotonic relations. Extrapolating be-
yond the training period becomes highly uncertain (Serinaldi
and Kilsby, 2015; Fatichi et al., 2016; Iliopoulou and Kout-
soyiannis, 2020; Tabari, 2021).

Temperature can be considered a primary candidate for a
covariate in non-stationary extreme value models as a result
of its direct physical relation with extreme precipitation de-
scribed above. Several studies have found that extreme pre-
cipitation (defined as precipitation corresponding to the 95th
or 99th percentile of the wet time intervals) increases expo-
nentially (i.e., linearly on a logarithmic scale) as near-surface
air- or dew-point temperature increases. This behavior is of-
ten referred to as extreme precipitation–temperature scaling
(for a review of the topic, see Westra et al., 2014; and Fowler
et al., 2021c). This relation is derived for the entire sub-daily
precipitation and temperature data available, often using ei-
ther a binning method (e.g., Ali et al., 2021a) or a quantile
regression method (Wasko and Sharma, 2014). Under some
assumptions, it is possible to project changes in precipita-
tion extremes using these approaches (Peleg et al., 2022).
This, however, comes with several limitations. First, the pro-
jection will be limited to the percentile under consideration
and T -year return levels cannot be extrapolated as they cor-
respond to percentiles that are too high to be derived empir-
ically. Second, return levels also depend on the occurrence
frequency of precipitation, and the current methods for pre-
dicting changes in precipitation extremes with temperature
have the disadvantage of assuming that the storm frequencies
will remain unchanged, which is a strong and unlikely as-
sumption. Last, in many locations, we observe a break in the
extreme precipitation–temperature exponential relationship
at high temperatures (Drobinski et al., 2016), which poses
doubts about the accuracy of the extrapolation (Yin et al.,
2021). The reasons for this break, also known as “hook struc-
ture”, are twofold: limitation in the humidity supply at high
temperatures that prevent precipitation initiation, and insuffi-
cient precipitation data at high temperatures due to the rarity
of very hot and wet conditions. Current methods for predict-
ing extreme precipitation intensification do not take this fac-
tor into account, which is a significant drawback. Using cur-
rent methods to extrapolate how sub-hourly precipitation at a
specific T -year return level will intensify as the temperature
increases is thus highly uncertain.

Hydrol. Earth Syst. Sci., 28, 375–389, 2024 https://doi.org/10.5194/hess-28-375-2024



F. Marra et al.: Predicting extreme sub-hourly precipitation intensification based on temperature shifts 377

In light of this, we argue that current approaches to esti-
mating future precipitation return levels cannot adequately
capture the physics governing climate change. Sub-hourly
extremes cannot yet be quantified in a physically consistent
manner. Here, we present a new method to derive projections
of extreme sub-hourly precipitation return levels based on
in situ observations of precipitation and temperature, on cli-
mate model projections of temperatures during wet days, and
on the projected changes in the frequency of precipitation
events. The model is based on a parsimonious non-stationary
and non-asymptotic statistical framework that uses tempera-
ture as a covariate in a physically consistent manner.

2 The TENAX model

The idea behind the proposed model is to separate the physi-
cal dependence of extreme precipitation on temperature from
the occurrence of precipitation events at a given temperature.
For this purpose, we combine (Fig. 1): (i) a non-stationary
statistical model for the cumulative distribution function of
the precipitation event magnitudes that uses temperature as
a covariate and (ii) an analytical probability density func-
tion for temperatures during precipitation events. Combin-
ing these models with (iii) a non-asymptotic formulation for
extreme return levels, we derive the TEmperature-dependent
Non-Asymptotic statistical model for eXtreme return levels
(TENAX). Non-asymptotic statistics rely on the idea that ex-
tremes are samples from the set of independent realizations
of the process of interest, which are usually termed “ordi-
nary events” or simply “events”. These methods include the
metastatistical extreme value (MEV) and the simplified MEV
(SMEV), and allow one to write extreme value distributions
based on the cumulative distribution function of the ordinary
events and on their occurrence frequency (see Marani and
Ignaccolo, 2015; Marra et al., 2019), exploiting the fact that
the cumulative distribution functionG(x) of the precipitation
annual maxima emerging from a finite number n of indepen-
dent events per year sampled from the cumulative distribu-
tion function F(x) can be written as

G(x)= F(x)n. (1)

Denoting with W(x;T ) the cumulative distribution func-
tion of the magnitude of the events (see Sect. 2.1 for the defi-
nition of these magnitudes) occurring at a temperature T and
with g(T ) the probability density function of temperatures
at which the precipitation events occur, the (marginal) par-
ent cumulative distribution function of the events magnitudes
F(x) becomes

F(x)=

+∞∫
−∞

W(x;T ) · g(T )dT . (2)

Figure 1. A schematic illustration of the components, data, and out-
puts of the TENAX model.

In Sect. 2.1 we present the precipitation event magnitude
model W(x;T ), followed in Sect. 2.2 by the temperature
model of the events g(T ). As the analytical expression for
F(x) may be difficult to treat, we also present in Sect. 2.3
an alternative to derive the cumulative distribution function
of the emerging annual maxima using a Monte Carlo proce-
dure. In this way, only the analytical expressions for the two
model components are needed.

2.1 Precipitation event magnitude model

We define independent ordinary precipitation events using
the unified framework proposed by Marra et al. (2020),
which proceeds in two steps: (i) independent “storms” are
defined as wet periods separated by dry intermissions of at
least ddry= 24 h and (ii) “ordinary events” of duration d are
defined as the maximum d duration intensity observed dur-
ing each storm. For this purpose, we use a running window
with size d and time steps equal to the temporal resolution
of the data. It was shown that using this framework the ordi-
nary events share the statistical properties of the d duration
annual maxima (e.g., the scaling with duration) for all dura-
tions d ≤ ddry (Marra et al., 2020).

We use the Weibull distribution to model the magnitudes
of sub-hourly ordinary precipitation events (referred to as
“events” hereafter). This model, with powered-exponential
tails, is justified by thermodynamic arguments (Wilson and
Toumi, 2005) and is supported by empirical evidence, espe-
cially in the case of convective precipitation, which is the
main driver of hourly and sub-hourly extremes (Berg et al.,
2013; Marra et al., 2020; Wang et al., 2020; Dallan et al.,
2022; Marra et al., 2022). The Weibull tail model describes
the non-exceedance probability of magnitudes using two pa-
rameters (scale and shape). These parameters can be explic-
itly dependent on a covariate, such as the near-surface air
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temperature T :

W(x;T )= 1− e
−

[
x

λ(T )

]κ(T )
, (3)

where λ and κ are the scale and shape parameters, respec-
tively. It is important to note that, although we use near-
surface air temperature as T in our formulation and presen-
tation of the model, dew-point temperature can also be used
as an alternative covariate. As a matter of fact, some consider
it to be a superior choice (e.g., Wasko et al., 2018; Ali et al.,
2021a). Based on our analyses of the case study presented
later, we found no appreciable difference between near-
surface temperature and dew-point temperature (not shown).

The Clausius–Clapeyron relation suggests an exponential
dependence of extreme precipitation with temperature, as
confirmed by multiple studies (as an example, see Fowler
et al., 2021c). This translates into an exponential dependence
of the scale parameter λ on temperature T :

λ(T )= λ0 · eaT . (4)

Since the scaling of extreme precipitation with temper-
ature sometimes also depends on the quantile examined
(Lenderink and van Meijgaard, 2008; Hardwick Jones et al.,
2010), it follows that the shape parameter κ may depend on
temperature as well. This dependence is not obvious and may
be masked by the uncertainty characterizing the estimation of
this parameter (as later discussed). Here we propose a simple
linear relation:

κ(t)= κ0+ bT . (5)

The parameters of the magnitude model are estimated
by left-censoring the observations below a properly defined
threshold ϑ∗ and using the maximum likelihood method. The
left-censoring threshold depends on the local climate and can
be identified using objective tests (Marra et al., 2023). Here
we use a generic threshold ϑ∗ equal to the local 90th per-
centile of the ordinary events. This threshold was found ad-
equate for sub-hourly precipitation extremes in a variety of
climatic conditions (e.g., Wang et al., 2020; Marra et al.,
2020; Dallan et al., 2022; Marra et al., 2022). Note that
this threshold is not a parameter that needs to be optimized
for each case. In fact, provided that Weibull is the adequate
tail model, any threshold ϑ ≥ ϑ∗ provides indistinguishable
results (Marra et al., 2019). This implies that the sensitiv-
ity of the results on this parameter, once it is properly de-
fined, is quite low. The magnitude model has four parameters
(λ0,a,κ0,b). The statistical significance of the dependence
of the shape parameter on T (i.e., the significance of the b
parameter being different from zero) can be evaluated using
the likelihood ratio test.

The example to follow focuses on 10 min peak precipi-
tation intensities (d = 10 min) as a proxy for generic sub-
hourly intensities. Our analyses show that the model assump-
tions generally hold for durations between 10 min and 1 h,

and even longer. We fitted the magnitude model (Fig. 2a) by
using data from the Aadorf station in Switzerland (see the
description of the station and data in Sect. 4 and the discus-
sion of the model fit in Sect. 2.5). In this case, the parameter
b was found to be not significantly different from zero at the
5 % level. Therefore, we set b = 0 and estimated the three
remaining parameters of the magnitude model (λ0,a,κ0) ac-
cordingly.

2.2 Temperature model

We find that in our study case the average temperatures ob-
served duringD hours preceding the peak intensities are well
described by a generalized Gaussian distribution with shape
parameter 4 (e.g., Fig. 2b), whose probability density func-
tion is

g(T )=
2

σ ·0(1/4)
· exp

[
−

(
T −µ

σ

)4
]
, (6)

where µ and σ are location and scale parameters, respec-
tively. The parameters µ and σ can be estimated using the
maximum likelihood method.

We explored time intervalsD ranging from 1 to 24 h in our
case study without observing significant deviations from this
generalized Gaussian model (not shown). We focus here on
the case D= 24 h, as daily temperatures are easier to derive
from climate model simulations (using the temperatures on
wet days, as explained in Sect. 3) and are therefore preferred
for climate change projections.

It is interesting to note that the generalized Gaussian
model can emerge from the combination of two normal dis-
tributions with similar variance and different means, and
can thus be interpreted as the coexistence of different pre-
cipitation types that occur at different mean temperatures
(e.g., summer/winter precipitation or stratiform/convective
processes – Molnar et al., 2015). For the Aadorf station,
for example, separating summer (May to October) and win-
ter (November to April) events yields two normal distri-
butions with similar variance and different mean (Fig. 3).
Superpositioning the two normal distributions as a two-
component mixture model is well approximated by the gen-
eralized Gaussian model (Fig. 3). The generalized Gaussian
fit outperforms ordinary Gaussian fit to the data (Fig. S1 in
the Supplement). This is especially true for the right tail of
the temperature model that, due to the positive scaling of pre-
cipitation intensities with temperature, influences the distri-
bution of extremes the most (e.g., see Fig. S2 in the Supple-
ment where the model was fitted with both options). In other
study areas, different approximations of this combination or
even of different temperature models could be required. Fu-
ture research should investigate in greater detail the tem-
perature model in different regions as well as the underly-
ing drivers. One potential direction, which has already been
demonstrated for Swiss stations, is the use of the skew ex-
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Figure 2. The two model components for the Aadorf station. (a) Empirical observations (red dots) and magnitude model (blue lines corre-
sponding to different percentiles); the dashed gray line shows the left-censoring threshold used. The parameter b is not significantly different
from zero; only three parameters (λ0,a,κ0) are used. (b) Empirical probability density of the average temperatures observed during the 24 h
preceding the 10 min peak precipitation intensities (dashed red) and the estimated generalized Gaussian temperature model g(T ) (solid blue).

Figure 3. Empirical probability densities of the average tempera-
tures observed during the 24 h preceding the 10 min peak precipi-
tation intensities (dashed lines) for precipitation events during the
entire year (black; as in Fig. 2), summer events (red, May to Octo-
ber), and winter events (blue, November to April). Solid lines rep-
resent the fitted temperature models for the entire year (black, g(T )
model; as in Fig. 2), summer (red, Gaussian model), and winter
(blue, Gaussian model). The purple line shows the combination of
the empirical summer and winter distributions.

ponential power (SEP) distribution, which is a flexible para-
metric distribution proposed by Evin et al. (2019).

2.3 Return level estimation

The cumulative distribution function F(x) defined in Eq. (2)
has a complex analytical form. However, once the magnitude
modelW(x;T ) and the temperature model g(T ) are defined,
the temperature-dependent non-asymptotic distribution for
the extreme return levels (TENAX) can be derived using a
Monte Carlo framework. Specifically, it is possible to gen-
erate a large collection of temperatures Ti with i = 1, . . .,N
sampled from g(T ) to obtain a Monte Carlo approximation
of F(x). Using the simplified metastatistical extreme value
(SMEV) formulation (Marra et al., 2019), we can obtain an
estimate of the distribution of annual maxima as

GTENAX(x)=

 +∞∫
−∞

W(x;T ) · g(T )dT

n

'

(
1
N

N∑
i=1

W(x;Ti)

)n
, (7)

where N is the number of Monte Carlo-generated events and
n is the average number of events in a year. Return levels
can be derived numerically by inverting Eq. (7). In our case
study, we set N to 2 · 104.

It is important to point out that the tail heaviness of F(x)
in Eq. (2) depends on the properties of both the magnitude
model W(x;T ) and the temperature model g(T ). There-
fore, the independence of the shape parameter of the mag-
nitude model on temperature (i.e., the case b = 0) does not
imply that the tail heaviness of F(x) is invariant (see also
Fig. S2). Moreover, despite the magnitude model W(x;T )
being based on a Weibull distribution, combining it with tem-
perature models with heavier tails than the one in Eq. (6)
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(e.g., a Gaussian model; Fig. S1) yields parent distributions
with tails that are heavier than Weibull (Fig. S2). Thus, the
TENAX model with Weibull tails can explain the tails heav-
ier than Weibull reported in some cold regions, e.g., northern
Europe (Wang et al., 2020; Poschlod, 2021). This showcases
the flexibility of the TENAX model formulation.

2.4 Uncertainty quantification

The estimated precipitation return levels are subject to un-
certainties arising both from the magnitude and temperature
models. In principle, it is possible to quantify the asymptotic
variance of the parameters’ estimators under the maximum
likelihood framework, but it would then be complex to prop-
agate those to the return levels. It is therefore more conve-
nient to use a bootstrap approach, such as the one suggested
by Overeem et al. (2008). The years in the record are ran-
domly re-sampled with replacement to create multiple real-
izations of M years each, where M is the observed record
length. The model parameters and precipitation return levels
are then estimated for each realization to obtain an estimate
of the uncertainty. This method, already in use for other non-
asymptotic approaches (e.g., Marra et al., 2020), ensures that
the influence of long-term drivers that act on seasonal or an-
nual levels (i.e., the natural climate variability) is preserved.
This allows us to explicitly consider uncertainty in both the
estimation of the average annual number of events and the
temperature affecting the events.

2.5 Evaluation of the TENAX model

The TENAX model is evaluated in light of its performance
in quantifying extreme precipitation at different return lev-
els, as well as its ability to reproduce the properties of the
extreme precipitation–temperature scaling relationship. We
first compare the return levels estimated using the TENAX
model with (i) the official return levels provided by Me-
teoSwiss for the Aadorf station and (ii) the return levels es-
timated using a non-asymptotic method (Marra et al., 2020;
see below) (Fig. 4). As can be seen in the figure, the com-
bination of the magnitude model W(x;T ) and temperature
model g(T ) in the Monte Carlo framework of Eq. (7) pro-
vides return level estimates that are indistinguishable from
those of both traditional methods (generalized extreme value
estimation by MeteoSwiss) and established non-asymptotic
approaches (the SMEV model with Weibull parent distribu-
tion and the same left-censoring threshold as the TENAX
model; Marra et al., 2020). For example, MeteoSwiss and
SMEV estimations for the 10-year (50-year) return levels are
19.1 and 19.8 mm (26.4 and 28.9 mm), respectively, while
the TENAX estimations are in close agreement with 20 mm
(29.7 mm) prediction (Fig. 4). In addition, uncertainties in
the estimated return levels are comparable to the ones of the
SMEV model and are smaller than the ones of the official
MeteoSwiss estimates despite being based on data records

Figure 4. Observed annual maxima for the station of Aadorf plot-
ted using the Weibull plotting positions (green crosses) and (i) Me-
teoSwiss official return levels for a set of return periods (black cir-
cles; error bars show the 5–95th confidence interval); (ii) return lev-
els estimated using a one-type SMEV (dashed red line; shaded red
area shows the 5–95th confidence interval obtained from 103 boot-
straps with replacement across the available years); and (iii) return
levels estimated using the TENAX model (GTENAX(x) in Eq. (7);
solid blue line; shaded blue area shows the 5–95th confidence inter-
val obtained from 103 bootstraps with replacement across the avail-
able years).

that are over 20 years shorter (1981–2018 of SMEV and
TENAX as opposed to 1960–2020 of MeteoSwiss).

To evaluate the TENAX model’s ability to reproduce the
extreme precipitation–temperature scaling relationship we
computed the 99th percentile of the 10 min peak precipita-
tion intensities from the observed data using both the quan-
tile regression approach suggested by Wasko and Sharma
(2014) and the common temperature binning approach (e.g.,
Ali et al., 2021b) with fixed intervals of 1.5 ◦C (Fig. 5).
The 99th scaling rate using the quantile regression method
was found to be 12.3± 0.8 % ◦C−1; we note that this rate
is higher than the expected rate for this region (around
7 % ◦C−1; Molnar et al., 2015) since the scaling was com-
puted for the event peak intensities rather than for all the
10 min wet time intervals. Plotting the magnitude model
W(x;T ), we obtained a visually good fit with the observed
scaling (Fig. 5), as well as an agreement with the scaling
rate, which in the TENAX model is linked to the parameter a
(11.8 % ◦C−1). The TENAX model not only fully matches
the precipitation–temperature scaling right (Fig. 5) but also
reproduces correctly the break in scaling relationship, known
as “hook structure” and reported by many studies (e.g., Ut-
sumi et al., 2011; Panthou et al., 2014; Visser et al., 2021;
Yin et al., 2021). This is an important result, as TENAX was
not explicitly designed to reproduce this phenomenon. The

Hydrol. Earth Syst. Sci., 28, 375–389, 2024 https://doi.org/10.5194/hess-28-375-2024



F. Marra et al.: Predicting extreme sub-hourly precipitation intensification based on temperature shifts 381

Figure 5. Precipitation–temperature scaling relation for the station
of Aadorf. The magnitude model W(x;T ) (blue line) reproduces
the observed extreme precipitation–temperature scaling rate for
the 99th percentile as obtained from a quantile regression method
(black squared-line; shaded area shows the 5–95th confidence in-
terval obtained from 103 bootstraps with replacement across the
available data points) and from using the binning method (dot-
ted red line). The 99th percentile scaling line simulated by the
TENAX model is plotted with a dotted purple line (median from
103 Monte Carlo samples with the same number of events of the
observed record; the shaded area shows the 5–95th confidence in-
terval). The numerical values represent the 99th scaling rate for the
observed quantile regression method (black) and the modeled mag-
nitude model W(x;T ) (blue).

“hook structure” naturally emerges from an exponential de-
pendence of extreme precipitation on temperature that has
no intrinsic upper limit (as Clausius–Clapeyron) and from a
sharp decrease in the probability of occurrence of precipita-
tion events at high temperatures. For Aadorf, this sharp de-
crease appears to be well reproduced by a generalized Gaus-
sian model with a shape parameter equal to 4, as in Eq. (6).

3 Climate change projections

The magnitude model W(x;T ) represents the physics of the
precipitation processes at a given temperature in the area of
interest. Assuming that this physics is invariant (for example,
that the scaling relationship between extreme precipitation
and temperature is maintained, as shown by Ban et al., 2020),
it is possible to use the TENAX model to derive projections
of future return levels based on (i) the projected changes in
mean and variance of the temperatures affecting the precip-
itation events and on (ii) the projected changes in average
number of annual precipitation events. To do so, one needs
to derive a projected temperature distribution g′(T ) and ap-
ply the Monte Carlo method in Eq. (7) using the projected
number of annual events n′.

The temperature distribution g′(T ) can be derived based
on the projected changes in mean and standard deviation
of the D-hour temperatures preceding the peak precipita-
tion intensities. We found that the 24 h temperatures preced-
ing the peak precipitation intensities can be approximated by
changes in the daily temperatures during precipitation events
(not shown). This is in accordance with previous studies ex-
ploring the relationship between sub-daily extreme rainfall
intensities and temperature (Ali and Mishra, 2018; Ali et al.,
2021b). Hence, the advantage of usingD = 24 hours and not
a shorter duration to estimate the change in temperature be-
comes now clear, as it is possible to use climate models with
daily temperature and precipitation data for this purpose. In
principle, to accurately adjust the average number of precipi-
tation events in the future, climate models with at least hourly
temporal resolution are required. However, since the sensi-
tivity of the return levels to this parameter is relatively low
(see below), one could use the changes in the number of wet
days as a proxy for the change in the number of precipitation
events.

This approach to project future precipitation return levels
relies not only on the assumption that the magnitude model
W(x;T ) is invariant but also that it holds for unexplored
higher temperature ranges. While it is safe to assume that the
dependence on temperature of a given physical process re-
mains invariant (Trenberth et al., 2003), it is necessary for the
entire W(x;T ) to be invariant. This is a stronger assumption
as it also requires the proportions among different processes
leading to heavy precipitation to be unchanged. We claim this
assumption is reasonable for the case of sub-hourly precipi-
tation, as sub-hourly extremes tend to be related to convec-
tive processes only. Additional care should be taken when
applying similar models to longer durations for which multi-
ple processes characterized by different magnitudes may lead
to extremes, such as daily durations. Here, extensions of the
TENAX model able to handle multiple types of processes
(e.g., Marra et al., 2021) may be required.

3.1 Sensitivity of the projections to µ,σ , and n

Next, we examined the sensitivity of the modeled extreme
sub-hourly precipitation return levels to changes in climate.
Figure 6 shows the sensitivity to changes in (i) the mean
temperature during a D-hour interval preceding the 10 min
peak precipitation intensity µ (Fig. 6a), (ii) the correspond-
ing standard deviation σ (Fig. 6b), and (iii) the average yearly
number of precipitation events n (Fig. 6c).

Increases in mean temperature µ and/or in the standard
deviation σ imply a higher probability of occurrence of pre-
cipitation events at higher temperatures, which through the
magnitude model is related to a higher probability of precip-
itation extremes. Interestingly, 20 % changes in the standard
deviation yield an impact on precipitation return levels sim-
ilar to a 3 ◦C increase in the mean temperature. The mean
change in temperature during precipitation alone could then
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Figure 6. Sensitivity of sub-hourly precipitation return levels of the Aadorf station to changes in the temperature model (mean tempera-
ture µ, a, and temperature standard deviation σ , b) and in the number of annual precipitation events (n, c).

be insufficient to fully describe the expected changes in ex-
tremes, with critical implications for climate change projec-
tions.

The sensitivity of extreme precipitation return levels to n is
relatively small. The average number of precipitation events
in a year needs to double (i.e., 2n) to have an impact com-
parable to a 1 ◦C increase in the mean temperature or to a
∼ 10 % increase in the standard deviation (i.e., 1.1σ ). The
other stations examined in the case study also demonstrate
that temperature changes have a greater impact on precipita-
tion return levels than changes in the number of precipitation
events (not shown).

3.2 Hindcast evaluation of TENAX projections

We evaluated the ability of the TENAX model to project pre-
cipitation return levels under increased temperatures in hind-
cast, by splitting the 38-year record of the Aadorf station into
two periods of 19 years each. The mean temperature dur-
ing precipitation events µ increased by 0.46 ◦C for the sec-
ond period (2000–2018) compared to the first period (1981–
1999), accompanied by an increase of 6 % in the standard de-
viation of temperature during precipitation events σ and by
a 1.8 % increase in the average number of events per year n.
This is confirmed by the different empirical probability dis-
tributions of temperature during the events between the two
periods (Fig. 7a, dashed lines).

A magnitude model W(x;T ) was fitted independently for
each period, and their similarity was checked with a like-
lihood ratio test. The general theory of this test posits that
under a null hypothesis H0, said L(θ) being the likelihood
function computed for the parameter θ in the parameter space

2, the log-likelihood ratio −2ln
( supH0

L(θ)

supL(θ )
)

can be used as
test statistics. In the numerator, the likelihood is maximized
under the constraints of the null hypothesis H0, while in the
denominator, the likelihood function is maximized without
constraints. The null hypothesis is that W(x;T ) is the same
in the two periods, or in other words that the parameters of

W(x;T ) are the same. Under H0, the parameters are esti-
mated from the original data, basically ignoring the division
into two periods. The unconstrained maximization, instead,
fits a separate set of parameters for each of the two periods.

The null hypothesis of the magnitude models being the
same in the two periods could not be rejected, thus support-
ing our working hypothesis, i.e., that a magnitude model fit-
ted for an observed period will be invariant and can be used
in a future-warmer period. Notably, the similarity between
magnitude models of the two periods holds for almost all the
stations presented later in the case study (not shown), im-
plying that changes in extreme sub-hourly precipitation are
likely entirely and directly driven by changes in temperature.
The only exception (Adelboden station) is due to an individ-
ual outlier (a particularly strong winter precipitation event
occurred at cold temperature) that heavily affects the magni-
tude model in one of the two periods.

While the temperature differences may seem small, they
imply a considerable increase in the 10 min peak precipita-
tion return levels, as demonstrated by the observed annual
maxima (plus symbols in Fig. 7b). We then implemented the
TENAX model to predict the precipitation return levels for
the second period. To that end, we used the magnitude and
temperature models fitted for the first period but shifted the
µ and σ parameters of the temperature model to fit the tem-
perature of the second period (i.e., by applyingµ′ = µ+0.46;
σ ′ = 1.06·σ ; n′ = 1.018·n). As a result, we obtained the pre-
cipitation return levels shown with a solid red line in Fig. 7b.
The results obtained well reproduce the distribution of the
observed annual maxima, although no information on the
magnitude of any event that occurred during the second pe-
riod is used for this projection. The numerical experiment
demonstrated that the TENAX model can be applied effec-
tively to study the effects of climate change on precipitation
return levels.

Beyond examining the changes in the observed annual
maxima between the two periods (plus symbols in Fig. 7b),
other indications support our model results of the intensifi-
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Figure 7. Predicting precipitation return levels for the period 2000–2018 for the Aadorf station based on temperature shifts with respect to
the period 1981–1999. (a) The observed probability distribution function for the first (dashed blue line) and second (dashed red lines) periods
and the temperature models fitted for the first period using the observed data (solid blue line) and projected for the second period by applying
changes in µ, σ , and n to the model of the first period (solid red line). (b) The observed precipitation annual maxima for the first and second
periods (blue and red plus symbols, respectively) and the estimated precipitation return period by the SMEV model fitted by the observed
data for the first period (dashed line). The solid red line represents the precipitation return levels simulated by the TENAX model for the
second period based on the magnitude model W(x;T ) fitted for the first period and the projected temperature model for the second period.

cation of short-duration precipitation extreme. For example,
Libertino et al. (2019) reported a statistically significant in-
crease in short-duration (hourly) precipitation return levels in
the Italian Alps, not far from the Aadorf station. Dallan et al.
(2022) associated these trends with an increase in the propor-
tion of convective storms during summer. Indeed, our model
shows an increase in the proportion of storms that occur at
higher temperatures (and therefore, following Eq. (3), have
higher potential for extremes), which likely occurred during
the summer (see Figs. 7 and 3). Moreover, our projections
show an increase in the tail heaviness of F(x), consistent
with what was reported by Dallan et al. (2022). As the mag-
nitude model is kept unchanged, this change in tail heaviness
is mainly due to changes in the temperature distribution.

4 Case study

We next demonstrate how the TENAX model can be applied
to a real-world climate change impact study. Our case study
focuses on eight climate stations in Switzerland (Fig. 8). Lo-
cated within or near the Swiss Alps, these stations represent
various climates (Rubel et al., 2017), from warm temper-
ate (Köppen classification Cfb) to boreal (Dfc) and alpine
(ET), and experience varying degrees of extreme precipita-
tion (ranging from 6.3 to 25 mm for 10 min extreme precip-
itation on a 10-year return level; see Fig. 8). Furthermore,
the climate stations are located at different elevations rang-
ing from 273 to 3294 m above sea level (Table S1 in the Sup-

plement), which makes them subject to varying degrees of
orographic effects (Dallan et al., 2023) and projected tem-
perature shifts (Palazzi et al., 2019). The complexity of the
terrain and climate, and the availability of high-quality mon-
itored and modeled data that are processed by a single op-
erator (see following section), provide an excellent basis for
evaluating our model.

4.1 Data

For each station, 10 min precipitation and 1 h temperature
records were obtained from MeteoSwiss for the period 1981–
2018. The stations are part of the SwissMetNet project,
which comprises about 260 automatic stations with strict
quality controls (Landl et al., 2009). We grouped the 10 min
precipitation intensities into precipitation events as described
above (see also Marra et al., 2020) and calculated the aver-
age temperature during the 24 h preceding the 10 min peak
intensity of each event.

In addition, we obtained daily precipitation and tempera-
ture time series for each climate station based on the offi-
cial CH2018 Swiss climate change scenarios (Sørland et al.,
2020; Fischer et al., 2022). The daily time series are quantile-
mapped and bias-corrected for each climate station for the
period between 1980 and 2099. Data are available for 10 re-
gional climate models at 12 km resolution (EUR-11), which
are a combination of four different regional climate models
that were driven by four different general circulation mod-
els (see Tables S2 and S3 in the Supplement) following the
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Figure 8. Location of the eight sub-hourly climate stations. The values on top of each station indicate the 10 min peak precipitation [mm] for
a 10-year return level as computed by MeteoSwiss. The values in brackets represent the intensification projected by the TENAX model for
the end of the century (2081–2099) in comparison to the present climate (1981–2018) for the RCP8.5 emission scenario using a multi-model
median projection from 10 climate models.

CMIP5’s RCP8.5 emission scenario. As a reference period
(i.e., the current climate), we consider 1981 to 2020, while
the future period for which we later compute changes in pre-
cipitation return levels is 2080 to 2099 (i.e., the end of the
century). The changes in the annual occurrence of precipi-
tation events n were computed as the changes in the occur-
rence of daily rainfall events, and the projected changes in
mean temperature µ and standard deviation of temperature σ
have been estimated based on the wet day temperatures. Ta-
ble S2 presents the projected changes for each climate model
from which the multi-model median change for every sta-
tion is calculated (Table 1). The changes in mean and stan-
dard deviation of temperature (which the model is sensitive
to; Sect. 3.1) differ considerably from station to station (by
up to 1.2 ◦C and 12 %). On the other hand, there is general
agreement that the average number of precipitation events at
an annual scale will decrease by approximately 4 %–7 % for
almost all stations toward the end of the century (Table 1).

4.2 Present climate

Similar to the procedure described in Sect. 2 and demon-
strated above for the Aadorf station, the parameters of the
TENAX model were fitted to the observed precipitation and
temperature data of the eight stations (Table S4 in the Supple-
ment). Model results were evaluated against the official Me-
teoSwiss estimation of precipitation return levels (Table 2).
There appears to be a good agreement between TENAX’s
simulated precipitation return levels and MeteoSwiss estima-
tion, with an average bias of only 5.3 % between the two es-
timations. The largest bias is found at Piz Corvatsch station
for the 100-year precipitation return level (19.7 %), but it re-
mains within the uncertainty range of the estimation provided

Table 1. Multi-model median changes in mean temperature µ, tem-
perature standard deviation σ , and the annual occurrence of pre-
cipitation events n computed from 10 climate models (see details
in Table S4). The changes are for the end of the century (2080–
2099) in comparison with the reference period of 1981–2020, for
the RCP8.5 emission scenario.

Name µ′ = µ+ [◦C] σ ′ = σ · n′ = n·

Aadorf 2.8 0.99 0.93
Adelboden 3.1 1.07 0.96
Aigle 2.3 1.05 0.92
Altdorf 2.7 1.10 0.99
Chasseral 3.0 1.05 0.91
Lugano 2.5 1.04 0.94
Piz Corvatsch 3.5 1.11 0.95
Säntis 3.3 1.03 0.95

by MeteoSwiss (not shown). In fact, all of the TENAX model
estimations fall within the MeteoSwiss uncertainty range. We
note that while we fitted the model parameters for the period
1981–2018, MeteoSwiss estimations are for a longer period
(1960–2020).

4.3 Future climate

The TENAX model projections of precipitation return lev-
els for the end of the century are presented in Fig. 9 for
the Aadorf station; the estimations for the other stations are
shown in Fig. S3 in the Supplement. As expected, there is
a high degree of heterogeneity in the estimations of the fu-
ture precipitation return levels when examining the individ-
ual models (Fig. 9, gray lines). This is primarily due to the
large uncertainties in the projections of change in temper-
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Table 2. Official estimation of precipitation return levels (RL; years) made by MeteoSwiss for the period 1960–2020 (MS; mm) and the
estimation of the TENAX model (mm) for eight stations examined in the case study for the period 1981–2018.

RL Aadorf Adelboden Aigle Altdorf Chasseral Lugano Piz Säntis

MS TENAX MS TENAX MS TENAX MS TENAX MS TENAX MS TENAX MS TENAX MS TENAX

2.33 12.7 12 11 10.9 8.3 8.6 8 8.4 9.7 9.6 16.7 16.7 4.1 4.2 11.3 10.8
5 16.4 16.1 14.6 14.9 10.7 11.3 10.7 11.6 12.8 12.6 21.1 21.3 5.2 5.2 14.3 13.4
10 19.3 19.8 17.9 18.5 13.0 13.7 13.2 14.4 15.5 15.2 25.0 25.3 6.3 6.1 17 15.7
20 22.4 23.7 21.5 22.3 15.6 16.2 15.9 17.5 18.3 17.8 29.2 29.2 7.5 6.9 19.8 17.9
30 24.1 26 23.7 24.6 17.3 17.6 17.7 19.3 19.9 19.4 31.8 31.5 8.3 7.5 21.5 19.3
50 26.5 29.1 26.8 27.7 19.8 19.6 20.1 21.8 22.2 21.4 35.2 34.4 9.5 8.1 23.7 20.9
100 30.1 33.4 31.6 32 23.7 22.3 23.9 25.3 25.5 24.3 40.6 38.5 11.2 9 27.1 23.2

Figure 9. Extreme precipitation return levels computed by the
TENAX model for the present (1981–2018; blue line) and future cli-
mate (2080–2099; gray lines represent 10 individual climate models
and the red line shows the multi-model median) for Aadorf station.
Numbers represent the intensification rate for the 10-, 30-, 50-, and
100-year return periods.

ature between the climate models (Fig. S2). Moreover, we
see that the climate model uncertainty is more pronounced
in long return levels, i.e., the model uncertainty increases in
its prediction of precipitation return levels for the future cli-
mate (increased dispersion between gray lines in Fig. 9) as
frequency decreases.

Precipitation return levels at the end of the century are in-
creasing at all stations as a result of the projected increase
in temperature at all locations (Fig. S3). However, the rate
of intensification is not the same everywhere; as an example,
precipitation is projected to increase at a rate ranging from
13 % to 38 % at the 10-year return level (Fig. 8; values repre-
sent median changes. The ensemble in Figs. 9 and S3 provide
insight into the uncertainties arising from different climate
models). Intensification rates are not solely determined by
temperature shifts and changes in precipitation occurrence
but also by the local physical processes behind 10 min peak

intensities (i.e., the parameters of the magnitude model). For
example, while the changes in temperature and precipitation
occurrence are rather similar between Lugano and Altdorf
stations, the 10-year intensification in Lugano is projected to
be on the order of 13 % by the end of the century, while the
intensification in Altdorf is anticipated to be on the order of
35 %. Furthermore, we observe that the rate of intensifica-
tion tends to be negatively correlated with the precipitation
return level. The intensification rate at Aadorf station, for in-
stance, decreases from 22.5 % to 19 % when comparing 10-
and 100-year return periods (Fig. 9).

5 Final remarks on the model and future development

We intend to introduce here the new TENAX model, ex-
plain the physical-based concept behind it, and demonstrate
its abilities. There is, of course, a need to further develop the
model and test it in other climates and environments in ad-
dition to the case study presented here. Considering the tem-
perature model, future research should investigate the phys-
ical drivers underlying its form. For example, we demon-
strated that in our case study a generalized Gaussian model
describes well the distribution of temperature in the 24 h pre-
ceding sub-hourly peak intensities; this model emerges from
the superposition of two seasonal Gaussian models (Fig. 3)
with similar variance and which are almost equi-populated.
It would be beneficial to test this temperature model in other
locations as well as to propose general approaches to deter-
mine its form. We used a Weibull distribution for the mag-
nitude model. In general, other locations could be described
by different distributions, a possibility to be explored from
case to case. It should be recalled, however, that the Weibull
model adopted in our application yields parent distributions
with different tails depending on the temperature model used
(Fig. S2).

The TENAX model has the potential to be easily general-
ized to different types of precipitation (or seasons or synoptic
systems that initiate precipitation). In this case, each type of
event would have specific magnitude and temperature mod-
els, and their impact on extreme return levels would be quan-
tified using a multi-type SMEV (as in Marra et al., 2021). The
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combination of this approach with information on how tem-
perature and precipitation occurrence are projected to change
per event type may enhance the physical robustness of our
projections.

We have briefly discussed the model’s sensitivity and un-
certainty issues. While a method to estimate the TENAX
model’s uncertainty in return levels for the present climate
was presented and the sensitivity to the model parame-
ters µ, σ , and n has been adequately explored (Sect. 3.1), we
have merely touched on the uncertainties emerging from the
TENAX model due to climate model uncertainties in the pro-
jection of temperature and precipitation. While temperature
simulations are regarded as relatively reliable, previous stud-
ies have indicated that regional climate models, such as the
one we used, are unable to simulate intense convective pre-
cipitation events, often underestimating their frequency and
number (e.g., Caillaud et al., 2021). Future developments to
assess these uncertainties will be necessary in this regard.

Our final point is that it would be interesting and useful to
further develop the model and apply it to estimate the inten-
sification of sub-hourly precipitation in urban areas, where
the risk of pluvial flooding is high. The TENAX model will
likely require further development in order to explicitly ac-
count for the urban heat island and its diurnal cycle, which is
a critical physical component for the evaluation of extreme
precipitation (Huang et al., 2022). Thus, it is likely that a
diurnal cycle module will need to be incorporated into the
model. These exciting directions highlight the great poten-
tial of using the TENAX model to predict changes in future
sub-hourly extreme precipitation and related hazards.

6 Conclusions

We present the TENAX model, a physically consistent
method to provide projections of extreme sub-hourly pre-
cipitation return levels in future climates based on the pro-
jected changes in temperature during precipitation events and
in their occurrence frequency. The TENAX model consists
of two parts: a magnitude model, which represents the ex-
ceedance probability of sub-hourly intensity as a function of
temperature, and a temperature model, which represents the
probability density of temperatures during the events. The
magnitude model contains information on the physics of the
precipitation process and is assumed to be invariant in time,
which we demonstrate to be true using the model in hindcast.
The temperature model changes in time and is used to esti-
mate future return levels. There are only seven parameters
in the model, which can be easily fitted to the data, making
it simple and not demanding. The model can effectively be
re-parameterized to fit future climate conditions by adjusting
only three parameters, which can be estimated from a climate
model at a daily resolution without the need to downscale
precipitation or temperature data.

We showed that the TENAX model quantifies the observed
return levels satisfactorily and with reduced uncertainties
with respect to official estimates. It fully reproduces the ob-
served scaling rates between extreme precipitation and tem-
perature and can explain other known properties of this rela-
tion, such as the “hook structure”, despite not being explicitly
designed for it. The TENAX model represents a step forward
in the understanding of the physical mechanisms behind the
statistics of sub-hourly extreme precipitation and can poten-
tially be used to assess changes in extreme sub-hourly precip-
itation more easily, accurately, and credibly than is currently
possible.

Code and data availability. The TENAX model is available at
https://doi.org/10.5281/zenodo.8345905 (Marra and Peleg, 2023),
including the data necessary to reproduce the results for the Aadorf
station as an example. The codes for the identification of ordi-
nary events and for running the SMEV model are available at
https://doi.org/10.5281/zenodo.3971558 (Marra et al., 2020). Pre-
cipitation and temperature data for all the stations in Switzerland
shown in the case study were provided by MeteoSwiss and can be
freely accessible from the IDAWEB at https://gate.meteoswiss.ch/
idaweb (last access: 24 January 2024).
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