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SUMMARY

TFIIB-related factor 2 (Brf2) is a member of the family
of TFIIB-like core transcription factors. Brf2 recruits
RNApolymerase (Pol) III to type III gene-external pro-
moters, including the U6 spliceosomal RNA and sele-
nocysteine tRNA genes. Found only in vertebrates,
Brf2 has been linked to tumorigenesis but the under-
lying mechanisms remain elusive. We have solved
crystal structures of a human Brf2-TBP complex
bound to natural promoters, obtaining a detailed
view of the molecular interactions occurring at Brf2-
dependent Pol III promoters and highlighting the
general structural and functional conservation of
human Pol II and Pol III pre-initiation complexes. Sur-
prisingly, our structural and functional studies
unravel a Brf2 redox-sensingmodule capable of spe-
cifically regulating Pol III transcriptional output in
living cells. Furthermore, we establish Brf2 as a cen-
tral redox-sensing transcription factor involved in the
oxidative stress pathway and provide a mechanistic
model for Brf2 genetic activation in lung and breast
cancer.

INTRODUCTION

In the eukaryotic nucleus, RNA polymerase (Pol) III transcribes

genes encoding essential RNAs, including tRNAs and the 5S

rRNA. The accurate recruitment of Pol III to its target genes

and the formation of a transcriptionally active pre-initiation

complex (PIC) occur through the association of Pol III with

several specific transcription factors but TFIIIB is the key factor

required for this process (Kassavetis et al., 1999; Schramm

and Hernandez, 2002). TFIIIB is a complex composed of the

TFIIB-related factor 1 (Brf1) (López-De-León et al., 1992;

Wang and Roeder, 1995), the TATA binding protein (TBP) (Kas-

savetis et al., 1992; Lobo et al., 1992), and Bdp1, a SANT

domain-containing protein (Kassavetis et al., 1995; Schramm

et al., 2000). Vertebrates contain an alternative TFIIIB complex

in which Brf1 is replaced by the TFIIB-related factor 2 (Brf2)

(Cabart and Murphy, 2001; Schramm et al., 2000; Teichmann

et al., 2000).
The Brf2-containing TFIIIB complex recruits Pol III to type III

promoters, characterized by a TATA box located 20–25 base

pairs (bp) upstreamof the transcriptional start site and a proximal

sequence element (PSE) located further upstream (Schramm

and Hernandez, 2002). The TATA box is recognized by the

Brf2-TBP complex, which binds synergistically with SNAPc, a

complex binding to the PSE (Henry et al., 1995). Actively tran-

scribed Brf2-dependent genes have been characterized

genome-wide (Carrière et al., 2012; James Faresse et al.,

2012; Oler et al., 2010) and encode a small collection of RNAs

including the spliceosomal U6 small nuclear RNA (snRNA), the

RNA component of the tRNA processing enzyme RNase P,

and the selenocysteine tRNA (Table S1).

Brf2 and Brf1 are part of a family of TFIIB-like transcription fac-

tors that share structural and functional features with the arche-

typal Pol II transcription factor TFIIB (Knutson and Hahn, 2011;

Naidu et al., 2011; Vannini and Cramer, 2012). These factors all

contain an N-terminal B-ribbon/reader/linker domain, which pro-

trudes toward the polymerase active site, and a B-core domain

consisting of two cyclin fold imperfect repeats, which in TFIIB

binds simultaneously to the core of the Pol II enzyme, TBP,

and the DNA. Additionally, Brf2 and Brf1 contain C-terminal do-

mains (CTDs), which represent the major site of interaction with

the adjoining TFIIIB subunits Bdp1 and TBP (Saxena et al., 2005).

Whether TFIIB-like factors display the same architecture as

TFIIB when bound to TBP and DNA is currently not known.

Pol III transcription is tightly regulated during the cell-cycle and

its upregulation has been linked to tumorigenesis (White, 2011).

Recently, Brf2 was found to be specifically amplified in the squa-

mous cell carcinoma subtype of non-small cell lung cancer

(Lockwood et al., 2010). Additionally, Brf2 overexpression is

observed in several forms of cancers and correlates with poor

patient survival rates, implicating Brf2 as a general oncogene,

a prognosis marker, and a target for new anticancer therapies

(Cabarcas and Schramm, 2011; Lu et al., 2013, 2014). Despite

its significance, very little is known about the molecular architec-

ture and mechanisms underlying Brf2-dependent Pol III tran-

scription and its regulation.

RESULTS

Architecture of Brf2-TBP/DNA Complexes
We obtained X-ray crystallographic structures of Brf2-TBP com-

plexes bound to the U6 snRNA (copy number 2, U6-2), RPPH1,
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Figure 1. Structure of the Brf2-TBP/DNA Ternary Complex

(A) Overview of the Brf2-TBP/U6 promoter structure. DNA template and non-template strands are in blue and cyan respectively. Dashed lines represent

disordered regions or regions not present in the crystallization construct.

(B) Schematic of Brf2 domain organization.

See also Figures S1, S2, and S7 and Tables S1 and S2.
and TRNAU1 promoters at resolutions of 1.9 Å, 2.2 Å, and 2.7 Å,

respectively (Figures 1A and S1A–S1D; Table S2). In all three

cases, the double-stranded DNA scaffold used for crystallization

was 28 bp long and corresponded to promoter sequences

extending 10 bp upstream and downstream of the TATA box

(Figure S1A). Notably, the DNA path was not perturbed by the

crystalline environment and was influenced only by the specific

interactions with TBP and Brf2. Where not stated otherwise,

we focus on the analysis of the complex solved at the highest

resolution, the Brf2-TBP/U6-2 complex (hereafter referred to

as the Brf2-TBP/DNA complex), but the conclusions apply to

all three complexes.

The overall architecture of the Brf2-TBP/DNA complex (Fig-

ure 1) is reminiscent of the TFIIB-TBP/DNA complex (Nikolov

et al., 1995; Tsai and Sigler, 2000), thus providing experimental

support to the proposed common architectural organization of

TFIIB-related factors and TFIIB (Vannini and Cramer, 2012) (Fig-

ure S1B). In the Brf2-TBP/RPPH1 structure, the Brf2-TBP com-

plex is bound to the DNA with inverse polarity, probably due to

the perfect dyad symmetry of the TATA box at this promoter (Fig-

ures S1A and S1C).

Whether associated with Brf2 or TFIIB, TBP interacts with the

TATA box in an undistinguishable manner, generating a virtually

identical local bend in the DNA. However, as a result of specific

Brf2/DNA interactions, the path of the DNA backbone deviates at

the TATA flanking regions (Figure S1B). Modeling of a Pol III
1376 Cell 163, 1375–1387, December 3, 2015 ª2015 The Authors
closed PIC using the Brf2-TBP/DNA complex revealed no

clashes with the polymerase core and a DNA path that strongly

resembles that of the human Pol II closed PIC (He et al., 2013)

(Figure 2). In this model, the path of the DNA downstream of

the TATA box points directly toward the Pol III subunits C39

and C62, consistent with their DNA binding activity and their

functional role in DNA melting and open PIC stabilization (Brun

et al., 1997; Lefèvre et al., 2011).

Brf2/DNA-Specific Interactions
Brf2 contacts extensively the phosphate backbone of the DNA

and establishes sequence-specific contacts with both the

upstream and downstream TATA flanking regions (Figures 1A

and S1A–S1C). The Brf2 N-terminal cyclin repeat is structurally

related to the corresponding domain in TFIIB, however in the

Brf2-TBP/DNA complex the minor groove of the DNA is more

intimately contacted via a helix-turn-helix motif (Figures 1A and

3A). The highly conserved dyad K113 and K114 (Figure S1E)

contacts the phosphate backbone of the DNA on opposite sides,

allowing the insertion of a short helix into the minor groove and

the consequent direct recognition of bases A+3 and G0
+4

(numbering is relative to the edge of the TATA box, with the

non-template strand designated by a prime) (Figure 3A). The

side chain of R110 forms a direct hydrogen bond with A+3 and

a water-mediated hydrogen bond with G0
+4, whereas the main

chain carbonyl oxygen of A108 forms a direct hydrogen bond



Figure 2. Architecture of the Human Pol III PIC

Model of a Pol III PIC (Vannini and Cramer, 2012) generated using the Brf2-TBP/DNA complex reveals that the path of the downstream DNA points toward the Pol

III-specific subunits C39 and C62, and resembles the path observed in yeast and human Pol II PIC (He et al., 2013; Mühlbacher et al., 2014).

See also Figure S7.
with G0
+4. These interactions locally distort the DNA, leaving the

base T0
+3 unstacked at its downstream edge. A nucleobase T at

position +3 on the non-template strand, followed by a nucleo-

base A, T, or G (collectively abbreviated as D) at position +4, is

notably enriched at Brf2-dependent promoters (Figure S2A).

We investigated the importance of the TD motif, which is also a

conserved feature of the Pol II BREd (Deng and Roberts, 2005),

on the formation of a Brf2-TBP/DNA ternary complex, using

electrophoretic mobility shift assays (EMSAs) (Figure 3B). In

agreement with the observed role of R110 in specific recognition

of A+3, a Brf2 R110Amutant displayed a reduced affinity for DNA

compared to Brf2wild-type, an effect that wasmost prominent in

presence of an A nucleobase at position +3 of the template

strand, suggesting a functional discrimination between T0
+3

-containing and T0
+3 -less promoters (Figures 3B and S2A).

Thus, the conserved TD element, a dinucleotide step character-

ized by low unstacking energies (Protozanova et al., 2004), may

represent a site at the downstream edge of the TATA box where

DNAmelting is favored as a result of the specific interactions with

Brf2 R110 and A108. Indeed, in the Brf2-TBP/RPPH1 structure,

in which the canonical TDmotif is replacedwith TC nucleobases,

the T0
+3C

0
+4 dinucleotide is still specifically recognized by R110

but with an altered set of interactions that leaves the nucleobase

T0
+3 unperturbed and regularly stacked at both edges, likely due

to the higher stacking energy of this dinucleotide step

(Figure S2C).

The Brf2 C-terminal cyclin repeat interacts with the major

groove upstream of the TATA-box, similarly to TFIIB albeit

more intimately (Lagrange et al., 1998; Tsai and Sigler, 2000)

(Figures 1A and 3C). Brf2 residue Y260 establishes a hydrogen

bond and a T-shaped p-p interaction with nucleobase C�4 and
an additional T-shaped p-p interaction with nucleobase C�3

(Figure 3C). T-shaped p-p interactions are favored in the pres-

ence of pyrimidines (Wilson et al., 2014), explaining their enrich-

ment, in particular for C, observed at �4 and �3 positions

(Figure S2A). The hydrogen bond between Y260 and C�4 ex-

plains the presence of a C�4 nucleobase (complementary G in

the non-template strand) at the vast majority of Brf2-dependent

promoters, since a base-specific hydrogen bond is only possible

with the amine group of a pyrimidine nucleobase C or purine nu-

cleobase A at that position. Indeed, substitution of C�4 with a

G or a T residue, or exchange of both adjacent pyrimidines

with purines, resulted in reduced binding (Figure 3D). A nucleo-

base A at position �4 is well tolerated since it can establish an

hydrogen bond with Y260, but exclusively in presence of a

pyrimidine at position �3, in order to preserve the additional

p-p interaction. In summary, the structural and functional data

underscore the preference for a C nucleobase and a pyrimidine

nucleobase (C or T) at positions �4 and �3, respectively, of the

template strand. We named this Brf2-specific dinucleotide step

the ‘‘GR’’ element (Figure S2A).

Modular Architecture of Brf2 CTD
The Brf2 CTD is organized into three conserved modular struc-

tural elements (Figures 1 and S1E). Brf2 conserved residues

291–314 fold into an unusual semi-circular a helix, which we

named the ‘‘arch.’’ Brf2 truncation at position D289, but not at

positions R394, G380, G348, or A311, prevented the formation

of a SNAPc-Brf2-TBP/DNA complex (Figure S3A), consistent

with the arch constituting a main SNAPc-binding interface.

The C-terminal part of the Brf2 CTD (residues 374–419) folds

into a TBP ‘‘anchor domain,’’ which structurally resembles Brf1
Cell 163, 1375–1387, December 3, 2015 ª2015 The Authors 1377



Figure 3. Brf2/DNA Sequence-Specific Interactions

(A) Close-up view of the TATA box (yellow), downstream flanking region and sequence-specific interactions with Brf2. DNA template and non-template strands

are in blue and cyan respectively.

(B) Substitutions at positions +3 and +4 of the wild-type (circled in red) U6-2 promoter decrease binding of a R110A mutant, in particular when a T nucleobase is

present at position +3 on the non-template strand (in cyan). R110A versus wild-type (WT) is the ratio between the percentage of binding of themutant versus wild-

type Brf2 proteins.

(C) Close-up view of the TATA box (yellow), upstream flanking region and sequence-specific interactionswith Brf2. DNA template and non-template strands are in

blue and cyan respectively.

(D) Substitutions at positions�3 and�4 of the wild-type (circled in red) U6-2 promoter reveal more efficient complex formation with a pyrimidine nucleobase and

a C nucleobase at positions�3 and�4 of the template strand, respectively. (B and D) The intensity of the complex formed with TBP, U6-2 nonmutated sequence

and wild-type Brf2 (lane 1) was used as a reference for relative quantification. *Indicates samples that were quantified relative to a distinct wild-type sequence

reference not shown on the figure. Representative gels of three independent experiments. The data shown are the mean values and SE of three independent

experiments. In the insets, 10 ml of a typical binding reaction (25 ml total) with Brf2 wild-type or Brf2 mutants were loaded on a SDS-PAGE gel and stained with

Coomassie-blue, confirming that equal amounts of protein of comparable quality were used for EMSA assays.

See also Figures S2 and S7.
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Figure 4. The Brf2 Molecular Pin

(A) The Brf2 TBP anchor domain but not the molecular pin is essential for

Brf2-TBP interaction in absence of the DNA, as shown by a pull-down

assay.
homology region II and binds TBP on its convex surface similarly

to other TBP-associated factors (Anandapadamanaban et al.,

2013; Juo et al., 2003) (Figure S3B). Remarkably, deletion of

the TBP anchor domain (residues 365–419) not only abolishes

the binding of Brf2 to TBP but also abrogates the formation of

a ternary Brf2-TBP/DNA complex (Figures 4A and 4B).

A Brf2-specific short structured element (residues 357–363),

the ‘‘molecular pin,’’ encompasses a conserved LPPC motif

and lies at the ternary interface between the Brf2 C-terminal cy-

clin repeat, TBP, and the DNA (Figure S1E and Figure 4C). This

helical element virtually pins the ternary complex together, juxta-

posing onto a hydrophobic pocket at the interface between TBP

and the Brf2 C-terminal cyclin repeat, which, in contrast to what

is observed for TFIIB, strongly interact together. The Brf2 residue

W215 forms a hydrophobic stack with TBP residues R269 and

P267 (Figure 4C) and is conserved throughout Brf2 evolution

and in human and yeast Brf1, implying a conserved general ar-

chitecture of Pol III Brf1- and Brf2-TBP complexes (Figures

S1E and S2B). These additional strong interactions between

the Brf2 and Brf1 C-terminal cyclin repeats and TBP may

contribute to the observed increased stability of the Pol III-PIC,

as compared to Pol II (Arimbasseri et al., 2013). The deletion of

the molecular pin does not impair Brf2 binding to TBP in the

absence of DNA but severely impairs the formation of a ternary

complex, underscoring the central role of the molecular pin in

the formation of a functional Brf2-TBP/DNA complex (Figures

4A and 4B). At the tip of the molecular pin, the Brf2 residue

C361 is buried in the groove between two adjacent phosphate

groups of the DNA backbone, establishing both van der Waals

and water-mediated hydrogen bonds at the upstream edge of

the TATA box (Figure 5A).

Brf2 Is Redox Regulated
A recurring theme in redox signaling by transcription factors is

the presence of a reactive cysteine thiol that can cycle through

reduced and oxidized states, ‘‘sensing’’ the redox environment

of the cell (Brigelius-Flohe and Flohe, 2011). We noticed a

remarkable structural similarity between the conserved Brf2

C361 and NF-kB p50 C59 (Ghosh et al., 1995) (Figure S3C), a

DNA-binding cysteine residue regulated via oxidative modifica-

tions in vivo (Pineda-Molina et al., 2001), prompting us to inves-

tigate the redox properties of Brf2.

Using tandemmass-spectrometry, we could detect reversible

oxidative modifications of C361 upon overnight incubation of

Brf2 in absence of reducing agents and in presence of dime-

done, a cyclic diketone that specifically reacts with sulfenic

acid (Figure S4). The strictly conserved C361 and the nearby

non-conserved C370 were the only two cysteine residues clearly

identified with bound dimedone, suggesting that these residues

reside in a local protein environment prone to oxidation. Indeed,

the chemical environment surrounding these residues is en-

riched in positively charged residues (K363, K367, and R368),
(B) The Brf2 TBP anchor domain and the molecular pin are essential for the

formation of a Brf2-TBP/DNA complex, as shown in an EMSA.

(C) Close-up view of the Brf2 molecular pin at the interface between the Brf2

C-cyclin repeat, TBP, and the DNA.

See also Figures S3 and S7.

Cell 163, 1375–1387, December 3, 2015 ª2015 The Authors 1379



Figure 5. Brf2 Redox Regulation

(A) Close-up view of C361 at the ternary interface between the Brf2 C-cyclin repeat, TBP, and the upstream edge of the TATA box. Yellow dots represent the van

der Waals radius of the sulfur atom.

(B) Representative EMSA of Brf2-TBP/DNA complexes upon pre-incubation of Brf2 proteins with the alkylating agent iodoacetamide. The IC band was used for

loading normalization. *Indicates addition of the reducing agent after the oxidative treatment during complex assembly.

(C) Representative EMSA of Brf2-TBP/DNA complexes upon removal of reducing agent (DTT) and incubation over time. The IC band was used for loading

normalization. *Indicates addition of the reducing agent after the oxidative treatment during complex assembly.

(D) Representative EMSA of Brf2-TBP/DNA complexes upon pre-incubation of Brf2 proteins with H2O2. The IC band was used for loading normalization.

*Indicates addition of the reducing agent after the oxidative treatment during complex assembly.

(E) Representative EMSA of Brf2-TBP/DNA complexes upon pre-incubation of Brf2 proteins with gradients of oxidized/reduced glutathione (GSSG:GSH). The IC

band was used for loading normalization. *Indicates addition of the reducing agent after the oxidative treatment during complex assembly.

See also Figures S3, S4, and S7.
which are known to stabilize thiolate anions, reducing the pKa of

the cysteine residues and thus resulting in a sulfur atom that is

more susceptible to oxidation (Lo Conte and Carroll, 2013). Pro-

tein sulfenylation is a reversible post-translational modification

that is emerging as a novel regulatory mechanism with particular

relevance in redox signal transduction (Gupta and Carroll, 2014).

In this context, the formation of mixed disulfide bonds between
1380 Cell 163, 1375–1387, December 3, 2015 ª2015 The Authors
sulfenic acid intermediates and low molecular-weight thiols

such as glutathione constitutes a common cellular mechanism to

prevent progression toward irreversible oxidation states, thus

ensuring reversible regulation. We confirmed by tandem mass-

spectrometry that upon incubation with oxidized glutathione,

Brf2 is efficiently S-glutathionylated specifically at residues

C361 and C370 (Figure S4). Altogether, the mass-spectrometry



data indicate that Brf2 C361 and C370 are highly reactive

cysteine residues that are prone to oxidation and can be S-glu-

tathionylated in vitro.

We thus tested the functional relevance of Brf2 oxidative

modifications on the formation of functional Brf2-TBP/DNA

complexes using EMSAs. Incubation of Brf2 with iodoaceta-

mide, a low molecular-weight compound that irreversibly alkyl-

ates reactive cysteine and lysine residues in proteins and

peptides, resulted in a severe reduction of Brf2-TBP/DNA com-

plex assembly (Figure 5B). This effect was mediated by residue

C361, since a Brf2 C361A mutant was insensitive to treatments

with the alkylating agent and displayed unaltered affinity for

TBP/DNA complexes (Figure 5B and S3F). Thus, out of a total

of 16 cysteine residues, Brf2 C361 is the sole reactive cysteine

negatively regulating the formation of the Brf2-TBP/DNA

ternary complex upon alkylation. Brf2 oxidation caused by

removal of reducing agents and incubation over time impaired

the formation of the ternary complex, an effect that was mostly

reversible and mediated by C361 (Figure 5C). This finding sug-

gests that oxidative modifications of C361 can reversibly

modulate the assembly of the ternary complex and that a

C361A mutation can confer redox-insensitivity to Brf2. In

agreement, incubation of wild-type Brf2 with low concentra-

tions of H2O2 also impaired the formation of the complex, while

the C361A mutant remained insensitive (Figure 5D), suggesting

that Brf2 C361 is susceptible to regulation by reactive oxygen

species (ROS). Moreover, a Brf2 C361D mutant, structurally

mimicking the oxidation state of C361 as a cysteic acid, was

compromised in ternary complex formation with an apparent

50-fold reduction in affinity for TBP-DNA complexes, while still

capable of efficiently binding to TBP (Figures S3D–S3F). To

better simulate the perturbations of the redox potential that

occur during oxidative stress in the cell, we treated Brf2 with

gradients of oxidized/reduced glutathione (GSSG/GSH), whose

ratio increases drastically during oxidative stress (Jones, 2006).

The formation of the ternary complex was highly sensitive to

Brf2 treatments with GSSG/GSH, an effect that was fully

reversed by addition of reducing agents and again exclusively

mediated by C361, since the C361A mutant was insensitive

to treatments with high GSSG/GSH ratios (Figure 5E).

Collectively, these results support a redox-sensing functional

role of Brf2 C361, whose critical localization at the Brf2-TBP/

DNA ternary interface enables modulation of the assembly of a

functional complex.

Brf2-Dependent Pol III Transcription Is Redox-
Regulated in Living Cells
Having established Brf2 as a bona fide redox sensor, we asked

whether synthesis of Brf2-dependent RNAs might be regulated

in response to oxidative stress in living cells. We monitored the

intracellular levels of Brf2-dependent transcripts by qRT-PCR in

MRC5 lung fibroblast cells challenged by exposure to tert-bu-

tylhydroperoxide (t-BHP), a potent inducer of oxidative stress.

Remarkably, all the Brf2-dependent transcripts tested were

severely reduced upon treatment, while leucine tRNA pre-

cursors (p-tRNA), a Brf1-dependent transcript, remained un-

changed (Figure 6A). We then focused on the selenocysteine

(SeCys) tRNA, an essential tRNA encoded by a single active
gene in mammalian genomes (James Faresse et al., 2012;

Oler et al., 2010). Intracellular levels of SeCys p-tRNA were

severely reduced in a t-BHP concentration- and exposure

time-dependent manner (Figure 6B). Removal of the oxidative

agent after an acute exposure promptly restored high levels

of SeCys p-tRNA (Figure 6C). Importantly, oxidative stress-

induced decrease of SeCys p-tRNA was Brf2-dependent, since

transient transfection with Brf2 overexpression vectors rescued

this effect (Figure 6D). Strikingly, overexpression of the Brf2

redox-insensitive C361A mutant led to an increase of SeCys

p-tRNA, suggesting the loss of a negative regulatory step.

Conversely, overexpression of the Brf2 oxidized-mimic C361D

did not affect SeCys p-tRNA, suggesting that this mutant is

virtually inactive (Figure 6D). In agreement with the existence

of a post-translational regulatory mechanism, the decrease of

SeCys p-tRNA levels observed upon treatment of MRC5 cells

with t-BHP did not correlate with reduced Brf2 expression

levels, which in fact increased during oxidative stress (Fig-

ure 7A). Furthermore, we observed an 80% reduction of SeCys

mature tRNA (m-tRNA) levels in cells challenged with t-BHP, an

effect that was reversed by overexpression of Brf2 (Figure S5A).

Despite tRNAs generally being considered as molecules with a

relatively long half-life, this result is in agreement with previ-

ously published data highlighting the higher rate of decay of

SeCys tRNA when compared to other tRNAs (Jameson et al.,

2002).

Redox Sensing by Brf2 Modulates Resistance to
Oxidative Stress in Normal and Cancer Cells
SeCys tRNA is essential for the synthesis of selenoproteins, the

vast majority of which are involved in ROS detoxification and in

the maintenance of cellular redox homeostasis (Kasaikina et al.,

2012). To test whether the observed Brf2-dependent reduction

of SeCys tRNA levels upon oxidative stress can impact the syn-

thesis of selenoproteins and, consequently, resistance to ROS,

we monitored the expression levels of a group of selenopro-

teins (Gpx1, Gpx4, SelM, and Sep15) in which a SeCys residue

is present toward the N terminus of the protein (Kasaikina et al.,

2012). In conditions of oxidative stress, as monitored by the

increased steady-state levels of the nuclear factor erythroid

2-related factor 2 (Nrf2), intracellular levels of all the selenopro-

teins tested were substantially reduced in MRC5 cells, an effect

that was rescued by overexpression of Brf2, while no differ-

ences were observed in unchallenged cells (Figure 7A). Strik-

ingly, Brf2 overexpression in MRC5 cells resulted in a marked

acquired resistance toward oxidative stress enabling MRC5

cells to evade apoptosis (Figure 7B). Paralleling the redox-

induced changes in SeCys p-tRNA synthesis, overexpression

of the Brf2 redox-insensitive C361A mutant enabled a more

pronounced resistance to oxidative stress when compared to

Brf2 wild-type, while the Brf2 oxidized-mimic C361D was

severely impaired in conferring resistance to apoptosis (Fig-

ure 7C). Since Brf2 has been recently discovered as a top-

scoring candidate driver in breast carcinomas (Sanchez-Garcia

et al., 2014), we additionally investigated the effects of Brf2

overexpression on selenoproteins expression levels and

evasion of apoptosis in MCF10A cells, a mammary epithelium

cell line with low expression of Brf2. We observed a strong
Cell 163, 1375–1387, December 3, 2015 ª2015 The Authors 1381



Figure 6. Brf2-Dependent Transcription Is Redox Regulated in Living Cells
(A) qRT-PCR analysis shows that Brf2-dependent-transcripts (SeCys p-tRNA, RPPH1, RNA7SK, and U6 snRNA) are globally downregulated during oxidative

stress, while a Brf1-dependent transcript (Leu p-tRNA) remains unchanged.

(B) SeCys p-tRNA levels are strongly reduced in cells challengedwith t-BHP relative to the unchallenged cells (as highlighted by gray and black lines, respectively)

in a dose- and time-dependent manner, as measured by qRT-PCR.

(C) SeCys p-tRNA levels rapidly recover upon removal of the exogenous oxidative stress inducer, as measured by qRT-PCR. Wash indicates replacement of

media containing t-BHP with fresh media.

(D) Effects of overexpression of Brf2 and Brf2 mutants (inset) on SeCys p-tRNA levels during oxidative stress, as measured by qRT-PCR.

The numbers indicated on the histograms represent the percentage of reduction of selenocysteine tRNA levels, while if numbers are indicated above the his-

tograms they represent the percentage of increase. Cumulative data of at least three experiments, mean + SEM. Unpaired t test: *p < 0.05; **p < 0.005;

***p < 0.0005; ****p < 0.0001. p > 0.05 were deemed not significant and values were not reported.

See also Figures S5 and S7.
acquired resistance to oxidative stress that correlates with

higher levels of selenoproteins, analogously to what observed

in MRC5 cells (Figures S5B–S5D).

Conversely, to test the functional consequences of decreasing

Brf2 activity during oxidative stress in cancer cells, we reduced

the levels of Brf2 via small interfering RNA (siRNA) in A549 cells

challenged with t-BHP. A549 are epithelial human lung adeno-

carcinoma cells displaying high Brf2 expression and a generally

increased resistance to t-BHP treatment when compared to

MRC5 fibroblasts (Figures 7A and 7D). In A549 cells, we could

additionally monitor the expression levels of Gpx2, a selenopro-

tein upregulated by Nrf2 during oxidative stress (Brigelius-Flohé

et al., 2012) and overexpressed in colorectal and prostate cancer
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(Emmink et al., 2014; Naiki et al., 2014). As for the primary cell

lines, we observed an inverse correlation between cellular

commitment to apoptosis and the expression level of selenopro-

teins (Figures 7A and 7D). Levels of all the selenoproteins tested,

including Gpx2 that was upregulated during oxidative stress,

were reduced in Brf2-silenced cells challenged with 50 mM

t-BHP, a condition that induced apoptosis (Figures 7A and 7D).

This effect, as well as the decrease of SeCys p-tRNA levels,

was reversed by concomitant overexpression of a siRNA-resis-

tant form of Brf2 (Figure S6), suggesting a direct involvement

of Brf2 in the oxidative stress response pathway and in the

acquired resistance to oxidative stress observed in human lung

adenocarcinoma cells.



DISCUSSION

The structures of Brf2-TBP/DNA ternary complexes reveal a

general conservation of the architecture of TFIIB-related factors

and specific recognition of DNA elements by Brf2. A TD element

at the downstream edge of the TATA box, a central component

of the BREd Pol II core promoter element (Deng and Roberts,

2005), is specifically recognized by a Brf2 minor groove interact-

ing element, resulting in a local distortion of the nucleic acid

structure and a partially unstacked T nucleobase (Figures 2,

3A, and S2C), suggesting that BREd and BREd-like elements

could represent sites primed for DNA melting. In this respect,

the winged helix domains of yeast Pol III subunit C34 and Pol II

transcription factor TFIIF (Tfg2 subunit), which have been

involved in open complex formation and/or its stabilization

(Brun et al., 1997; Mühlbacher et al., 2014), have been located

exactly opposite of this site by cross-linking coupled with

mass-spectrometry (Mühlbacher et al., 2014; Wu et al., 2012).

A completely unexpected finding was the discovery of a

redox-sensing regulatory module embedded in a TFIIB-related

core transcription factor, implying a direct redox-dependent

control of a eukaryotic nuclear RNA polymerase. Fewer than

20 Brf2-dependent genes are actively transcribed in mammalian

cells, but their products are all involved in key functions (Table

S1).We have focused on the SeCys tRNA gene, since selenopro-

teins are directly involved in the oxidative stress response. We

discovered that levels of SeCys tRNAs and selenoproteins are

strongly reduced during oxidative stress in living cells in a Brf2-

dependent manner, and this effect is inversely correlated with

oxidative stress-induced apoptosis (Figures 6, 7, and S5).

Abrogating selenoprotein expression or expression of trun-

cated selenoproteins induces apoptotic cellular death, sensitiza-

tion toward oxidative stress and a reversion of the cancerous

phenotype (Anestal et al., 2008; Emmink et al., 2014; Yoo

et al., 2013). Reduced selenoprotein expression or generation

of defective truncated selenoproteins might occur upon pro-

longed activation of the Nrf2 pathway, which upregulate the syn-

thesis of TrxR1 and Gpx2 mRNAs, in conjunction with limited

intracellular amounts of SeCys tRNAs. Indeed, we show that

levels of Secys p-tRNAs, SeCys m-tRNAs and selenoproteins

are reduced during prolonged oxidative stress in a Brf2-depen-

dent manner (Figures 6A, 6B, 7A, S5A, and S5C). Thus, Brf2

redox-dependent regulation constitutes a cellular blockade

capable of generating pro-apoptotic signals upon prolonged

oxidative stress, by limiting the availability of SeCys tRNA

(Figure S7).

Redox-dependent activation of Nrf2 is one of the principal

events of the oxidative stress response pathway and is constitu-

tively activated in squamous cell lung and breast carcinomas

(Brigelius-Flohé et al., 2012; Cancer Genome Atlas Research

Network, 2012; Sjöblom et al., 2006). Major targets upregulated

by Nrf2 upon oxidative stress include TrxR1 and Gpx2, two

essential selenoproteins involved in the maintenance of redox

homeostasis and anti-oxidant defense, which are found overex-

pressed in several forms of cancers (Biaglow and Miller, 2005;

Brigelius-Flohé et al., 2012; Emmink et al., 2014; Naiki et al.,

2014). Thus, we hypothesized that overexpression of Brf2, which

is also observed in many forms of cancer (Cabarcas and
Schramm, 2011), is required to overcome the Brf2-dependent

reduction of SeCys tRNAs observed during prolonged oxidative

stress, in order to maintain sufficient expression levels of seleno-

proteins required for ROS detoxification and redox homeostasis.

In agreement with this model, reducing Brf2 protein levels in

A549 lung adenocarcinoma cells via siRNA resulted in dimin-

ished levels of selenoproteins (Figure 7A) and a considerable

sensitization toward t-BHP, an inducer of oxidative stress (Fig-

ure 7D). This finding strongly supports a model of Brf2 as a key

human redox-sensor involved in the oxidative stress pathway

and mechanistically links its overexpression to malignancy, via

a mechanism that enables cancer cells to evade apoptosis in

conditions of prolonged oxidative stress, a hallmark of cancer

(Hanahan and Weinberg, 2000). In this context, ectopic overex-

pression of Brf2 in lung fibroblasts (Figures 7A–7C) and mam-

mary epithelial cells (Figure S5) reveals Brf2 oncogenic potential

under oxidative stress conditions, supporting its role as an onco-

genic driver in lung squamous cell carcinoma (Lockwood et al.,

2010) and breast cancer (Sanchez-Garcia et al., 2014). Whether

pro-apoptotic signals are generated exclusively in response to

decreased intracellular levels of SeCys tRNA or whether addi-

tional Brf2-dependent transcripts are involved in the process re-

mains to be determined.

The unexpected finding of Brf2 as a specialized Pol III TFIIB-

related factor with redox-sensing properties suggests that the

emergence and strict conservation of Brf2 in higher metazoans

has been evolutionary driven to uncouple the transcriptional

output of the Brf2-dependent promoters from the bulk of Pol III

transcription, in order to operate a stringent redox-dependent

control on a very small subset of Pol III genes. Since both sele-

noproteins and Brf2 are absent in lower eukaryotes such as

plants and fungi, evolution of a redox-dependent transcription

factor devoted to the transcription of SeCys tRNA must have

represented an important event during evolution of higher

complexity organisms.

EXPERIMENTAL PROCEDURES

A detailed description of protocols can be found in the Supplemental Experi-

mental Procedures.

Protein Expression and Purification

Brf2 lacking the Zn-ribbon/B-reader/B-linker (62–419, N-terminal His-tagged)

was co-expressed with a TBP-core construct (169–339) and used for struc-

tural determination. Full-length Brf2 (C-terminal His-tagged) was cloned into

pSBET and used for biochemical assays. The Quickchange Site-Directed

Mutagenesis kit (Agilent Technologies) was used to generate the Brf2 point

mutants.

Crystallization, Data Collection, Structure Solution, and Refinement

Complexes were assembled at a final concentration of 60 mM and crystals

were grown by mixing 1 ml each of complexes and crystallization solution

(10%–20% PEG 3350, 50–100 mMMgCl2, 2 mM DTT) in hanging drop plates.

Following harvesting and cryo-cooling, diffraction data were collected at the

Diamond Light Source (UK) and ESRF (France) synchrotrons. The structure

was solved by molecular replacement, using TFIIB-TBP/DNA (Protein Data

Bank: 1C9B) as the search model.

EMSAs

EMSAs where performed with 50-Cy5 fluorescently labeled oligonucleotides.

The gels were scanned with a Typhoon FLA9500 (GE Healthcare).
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Figure 7. Selenoproteins Levels and Resistance to Oxidative Stress Are Regulated in a Brf2-Dependent Manner

(A) Manipulation of Brf2 protein levels affects selenoproteins expression levels during oxidative stress in MRC5 and A549 cells. In the upper insets, a western blot

analysis of Nrf2 confirms induction of oxidative stress with 50 mM and 100 mM t-BHP in MRC5 and A549 cells, respectively. A western blot analysis of Brf2

immunoprecipitation from 107 MRC5 or A549 cells is shown in the lower insets (IP).

(B) Overexpression of Brf2 in MRC5 cells challenged with t-BHP results in decreased apoptosis as measured by FACS analysis via annexin V-FITC/PI staining.

The y axis represents the % of apoptotic cells, including both cells in early (annexin V-positive and PI-negative) and late (annexin V-positive and PI-positive)

apoptosis.

(C) Effects of overexpression of Brf2 wild-type andmutants on acquired resistance to apoptosis inMRC5 cells asmeasured by FACS analysis via annexin V-FITC/

PI staining. The y axis represents the % of apoptotic cells, including both cells in early (annexin V-positive and PI-negative) and late (annexin V-positive and

PI-positive) apoptosis.

(legend continued on next page)
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Brf2 Pull-Down Experiments

Pull-Down experiments were performed by incubation of bait and prey

proteins in binding buffer and loaded onto a His SpinTrap columns (GE

Healthcare). Following washing and elution, samples were analyzed by SDS-

PAGE.

Mass Spectrometry

Full-length Brf2 samples were digested with trypsin and infused into an LTQ

Velos Orbitrap mass spectrometer (Thermo Fisher Scientific) to characterize

cysteine oxidation states.

Fluorescence Polarization Assay

Binding of 50-Alexa488-labeled oligonucleotides were monitored at different

Brf2-TBP concentrations by fluorescence anisotropy at 25�C on a POLARstar

Omega plate reader (BMG Labtech).

Immunopurification

Immunopurification from cells lysed in RIPA buffer were carried out using a

chip-grade Brf2 antibody (ab17011, Abcam) covalently coupled to epoxy-

magnetic beads (Life Technologies), according to themanufacturer’s protocol.

Brf2 Overexpression and siRNA

Cells were transfected with 1.5 mg of pCDNA3.1 (empty vector control),

Brf2WT-pCDNA3.1, Brf2C361A-pCDNA3.1, or Brf2C361D-pCDNA3.1 DNA

in a 6-well plate format, with Lipofectamine 2000 according to manufacturer’s

instructions. In Figures 7C and S5D, cells were transfected with 1.5 mg of

pCDNA3.1 (empty vector control) or 1.2 mg pCDNA3.1+ 0.3 mg of the relevant

Brf2 construct.

For Brf2 knockdown, cells were transfected with siGENOME Human Brf2

siRNA (M-013340-00-0005, Dharmacon) in Figures 7A and 7D, and with

siGENONE Human Brf2 siRNA (1) (D-013340-03-0010, Dharmcacon) or

siGENOME Human Brf2 siRNA (2) (D-013340-04-0010, Dharmacon) in Fig-

ure S6, using Lipofectamine 2000 (Life Technologies). Allstars negative control

(QIAGEN) was used for all control siRNA experiments.

qRT-PCR

Total RNA was extracted from treated cells with TRIzol reagent (Life Tech-

nologies) according to the manufacturer’s instructions. SeCys p-tRNA was

quantified using the relative standard curve method and the 5S rRNA as an

endogenous control. SeCys m-tRNA was monitored using a previously pub-

lished protocol (Honda et al., 2015) with minor modifications.

Flow Cytometry

Cell viability and apoptosis were assessed by flow cytometry using annexin V

and propidium iodide staining.

ACCESSION NUMBERS

The accession numbers for the atomic coordinates and structure factors of the

Brf2-TBP/U6-2, Brf2-TBP/TRNAU1, and Brf2-TBP/RPPH1 structures re-

ported in this paper are Protein Data Bank: 4ROC, 4ROD, and 4ROE,

respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2015.11.005.
(D) Lowering Brf2 protein levels by siRNA in A549 cells challenged with t-BHP re

analysis via annexin V-FITC/PI staining. Inset: a western blot analysis of Brf2 imm

reduction. The y axis represents the % of apoptotic cells, including both cells i

PI-positive) apoptosis.

See also Figures S5 and S7.
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Mühlbacher,W.,Sainsbury,S.,Hemann,M.,Hantsche,M.,Neyer,S.,Herzog,F.,

and Cramer, P. (2014). Conserved architecture of the core RNA polymerase II

initiation complex. Nat. Commun. 5, 4310.

Naidu, S., Friedrich, J.K., Russell, J., and Zomerdijk, J.C.B.M. (2011). TAF1B is

a TFIIB-like component of the basal transcription machinery for RNA polymer-

ase I. Science 333, 1640–1642.

Naiki, T., Naiki-Ito, A., Asamoto, M., Kawai, N., Tozawa, K., Etani, T., Sato, S.,

Suzuki, S., Shirai, T., Kohri, K., and Takahashi, S. (2014). GPX2 overexpression

is involved in cell proliferation and prognosis of castration-resistant prostate

cancer. Carcinogenesis 35, 1962–1967.

Nikolov, D.B., Chen, H., Halay, E.D., Usheva, A.A., Hisatake, K., Lee, D.K.,

Roeder, R.G., and Burley, S.K. (1995). Crystal structure of a TFIIB-TBP-

TATA-element ternary complex. Nature 377, 119–128.

Oler, A.J., Alla, R.K., Roberts, D.N., Wong, A., Hollenhorst, P.C., Chandler,

K.J., Cassiday, P.A., Nelson, C.A., Hagedorn, C.H., Graves, B.J., and Cairns,

B.R. (2010). Human RNA polymerase III transcriptomes and relationships to

Pol II promoter chromatin and enhancer-binding factors. Nat. Struct. Mol.

Biol. 17, 620–628.

Pineda-Molina, E., Klatt, P., Vázquez, J., Marina, A., Garcı́a de Lacoba, M.,

Pérez-Sala, D., and Lamas, S. (2001). Glutathionylation of the p50 subunit of

NF-kappaB: a mechanism for redox-induced inhibition of DNA binding.

Biochemistry 40, 14134–14142.

Protozanova, E., Yakovchuk, P., and Frank-Kamenetskii, M.D. (2004).

Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol. 342,

775–785.

Sanchez-Garcia, F., Villagrasa, P., Matsui, J., Kotliar, D., Castro, V., Akavia,

U.D., Chen, B.J., Saucedo-Cuevas, L., Rodriguez Barrueco, R., Llobet-Navas,

D., et al. (2014). Integration of genomic data enables selective discovery of

breast cancer drivers. Cell 159, 1461–1475.

Saxena, A., Ma, B., Schramm, L., and Hernandez, N. (2005). Structure-func-

tion analysis of the human TFIIB-related factor II protein reveals an essential

role for the C-terminal domain in RNA polymerase III transcription. Mol. Cell.

Biol. 25, 9406–9418.

Schramm, L., and Hernandez, N. (2002). Recruitment of RNA polymerase III to

its target promoters. Genes Dev. 16, 2593–2620.

http://refhub.elsevier.com/S0092-8674(15)01485-3/sref8
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref8
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref9
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref9
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref9
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref9
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref10
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref10
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref11
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref11
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref11
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref11
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref11
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref12
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref12
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref13
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref13
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref13
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref13
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref14
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref14
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref15
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref15
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref16
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref16
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref17
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref17
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref18
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref18
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref18
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref19
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref19
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref19
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref20
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref20
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref20
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref20
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref21
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref21
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref21
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref22
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref22
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref23
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref23
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref23
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref24
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref24
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref24
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref25
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref25
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref25
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref25
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref26
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref26
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref26
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref26
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref26
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref27
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref27
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref28
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref28
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref28
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref29
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref29
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref29
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref29
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref30
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref30
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref30
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref30
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref31
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref31
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref32
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref32
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref32
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref33
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref33
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref33
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref33
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref34
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref34
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref34
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref35
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref35
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref35
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref35
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref36
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref36
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref36
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref36
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref37
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref37
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref37
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref38
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref38
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref38
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref39
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref39
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref39
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref39
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref40
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref40
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref40
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref41
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref41
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref41
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref41
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref41
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref42
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref42
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref42
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref42
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref43
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref43
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref43
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref44
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref44
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref44
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref44
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref45
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref45
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref45
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref45
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref46
http://refhub.elsevier.com/S0092-8674(15)01485-3/sref46


Schramm, L., Pendergrast, P.S., Sun, Y., and Hernandez, N. (2000). Different

human TFIIIB activities direct RNA polymerase III transcription from TATA-

containing and TATA-less promoters. Genes Dev. 14, 2650–2663.
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