
  

  

Abstract— Adaptive estimation methods based on general 
Kalman filter are powerful tools to investigate brain networks 
dynamics given the non-stationary nature of neural signals. 
These methods rely on two parameters, the model order p and 
adaptation constant c, which determine the resolution and 
smoothness of the time-varying multivariate autoregressive 
estimates. A sub-optimal filtering may present consistent biases 
in the frequency domain and temporal distortions, leading to 
fallacious interpretations. Thus, the performance of these 
methods heavily depends on the accurate choice of these two 
parameters in the filter design. In this work, we sought to define 
an objective criterion for the optimal choice of these parameters. 
Since residual- and information-based criteria are not 
guaranteed to reach an absolute minimum, we propose to study 
the partial derivatives of these functions to guide the choice of ! 
and ". To validate the performance of our method, we used a 
dataset of human visual evoked potentials during face 
perception where the generation and propagation of information 
in the brain is well understood and a set of simulated data where 
the ground truth is available. 

I. INTRODUCTION 
In the field of neuroscience, the interest in studying the 

dynamical causal interactions that characterize rest- or task-
related brain networks has led to a remarkable increase in the 
application of adaptive estimation algorithms. In particular, 
Granger causality based on adaptive filtering algorithms 
represent a suitable approach to study dynamical networks 
composed by highly non-stationary neural signals (e.g., 
electroencephalogram (EEG) signals) [1] [2]. While adaptive 
filtering allows dealing with time-varying multivariate time-
series, the interpretation and test of direct causal influences 
strictly depends upon the optimal choice of parameters in the 
filter settings. A signal # Granger-causes another signal $ if 
the history of	# contains information that helps to predict $ 
above and beyond the information contained in the history of 
$ alone [3]. Such dependency on the history of multiple signals 
implies a model that should take into account the optimal lag 
(model order) at which causal influences occur and the rapidity 
with which they evolve. In time-varying multivariate 
autoregressive (tv-MVAR) models based on the general 
Kalman filter [4], these two aspects need to be taken into 
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account as a mandatory step during the filter design: a 
suboptimal filter that is unable to track the true dynamics of a 
system can easily increase the risk of wrong causality 
inference. For this reason, it is imperative to rely on objective 
criteria for the selection of the two key Kalman parameters that 
determine the structure and speed of the estimated causal 
influences. The model order & indicates the number of lags to 
be considered during modeling, and the adaptation constant ' 
is the tuning parameter that controls the tracking speed and 
smoothness of the tv-MVAR estimates [5] [6]. 

The model order selection in tv-MVAR models is not 
trivial [7] and has been usually performed by means of 
information-based criteria that neglect the non-stationary 
nature of the signals (e.g., Akaike information criterion, AIC 
[8], and Bayesian information criterion, BIC [9]) [10] [11] or 
through modified time-varying versions of the same criteria 
(e.g., the modified AIC, MAIC [12]). Other approaches have 
relied on choosing the model order a priori [13] or based on a 
comparison between parametric and non-parametric spectral 
density estimates [14] [15], thus, considering only the 
univariate part of the tv-MVAR system.  

The optimal adaptation constant has been also determined 
via similar a priori and information-based approaches [15] [16] 
or through different cost functions that minimize residual 
errors [10] [17] which are prone to the risk of overfitting real 
data. In more recent years, a new method has been proposed to 
estimate the adaptation constant ', based on the predictive 
least square principle (PLS) [5]. Alternative, to overcome the 
use of adaptation constants, windowing approaches have also 
been proposed [18] [19], but with some critical limitations: 
high temporal resolution requires short time windows which 
lead to few residuals when assessing the quality of the fit, the 
model order also depends on the size of the window and both 
the choice of the size of the window and the overlap percentage 
are subjective.  

Given the lack of a standard selection procedure and the 
tendency of residual- and information-based criteria to 
promote overfitting in which an absolute minimum is not 
guaranteed, in the present work we test a new method based 
on the partial derivatives of a residual minimization function. 
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This approach allows the determination of the inflection point, 
i.e., a point on a continuously differentiable plane curve at 
which the function changes from being concave to convex, 
which corresponds to our optimal choice of & and '. Because 
of the lack of an objective ground truth, the evaluation of the 
performance of effective connectivity methods on real data 
sets is challenging. As first step to demonstrate the validity of 
the proposed method, we used a dataset of visual evoked 
potentials (VEP) during face perception where the generation 
and propagation of information in the brain is relatively well 
understood. Complementarily, we tested the method in a set of 
simulated data imposing & and ' a priori. 

II. DATA 

A. Visual Evoked Potential of face perception 
Many behavioral studies have investigated the process 

involved in visual stimuli such as face images [20] [21]. 
Traditional measures are based on the N170 face-sensitive 
evoked response component [22]. Human faces evoke a large 
negative potential (N170) over the occipital-parietal scalp, 
more prominent over the right than the left hemisphere, which 
is reduced in evoked potentials elicited by other animate and 
inanimate non-face stimuli [23]. Applying effective 
connectivity in face perception, i.e., describing the network of 
directional effects of one brain region over another, may be a 
powerful instrument to study this visual process. In order to 
study these causal effects, it is important to precisely 
reconstruct the face-response stimulus in the source space. The 
accuracy of the model reconstruction depends on the choice of 
the model parameters. We expected that our tv-MVAR 
estimates would reliably identify the main components of the 
VEP (i.e., the P100 and the N170 in the source space), and that 
the major driver of the network would be localized in the 
lateral, basal temporal and occipital cortices including the 
fusiform gyrus as shown trough EEG changes from implanted 
electrodes [24] [25] [26]. 

B. Experimental protocol 
Participants (13 subjects, 2 males, age=24.15 ± 3.41 y) sat 

in a dimly lit sound-attenuated and electrically shielded room 
with their head positioned on a chinrest at ~70 cm from the 
monitor. Each trial lasted 1.2 s and started with a blank screen 
lasting 500 ms. After the blank interval, one image (either a 
face or a scramble image) was presented for 200 ms and 
participants had the remaining 1000 ms to respond. The task 
was to report whether they saw a face or not (Yes/No task) by 
pressing two buttons on a response box. Faces and scrambled 
images were randomly interleaved across trials. After the 
participant’s response, there was a random interval (from 600 
to 900 ms) before the beginning of a new trial. The experiment 
consisted of 4 blocks of 150 trials each, for a total of 600 trials, 
i.e., 300 with faces and 300 with scrambled images.  For this 
study, we used the EEG data in response of the face images 
(300 trials per subject). During the experiment, EEG data were 
recorded continuously at 1024 Hz through a 128-channel 
Biosemi Active Two EEG system (Biosemi, Amsterdam, The 
Netherlands). Experimental procedures were conformed to 
Swiss Ethics Committee standards and were approved by the 
regional ethics committee (CER-VD). 

C. Preprocessing 
The VEP EEG signals were downsampled at fs=200 Hz 

and detrended to remove slow fluctuations and linear trends 
[57]. The line and monitor noise (50 and 75 Hz, plus 

harmonics) were attenuated with an adaptive multitaper filter 
(Cleanline plugin for EEGLAB). EEG epochs were then 
extracted from the continuous dataset and time-locked from -
1000 ms to 1000 ms relative to the onset of each image. Noisy 
channels were identified by visual inspection and removed 
before preprocessing. Individual epochs containing non-
stereotyped artifacts, peri-stimulus eye blinks and eye 
movements (occurring within ±500 ms from stimulus onset) 
were also identified by visual inspection and removed from 
further analysis (mean number of epochs removed across 
participants: 6±5). Data were cleaned from remaining 
physiological artifacts (eye blinks, horizontal and vertical eye 
movements, muscle potentials and other artifacts) through a 
PCA-informed ICA algorithm implemented in EEGLAB. 
After ICA cleaning, the identified artifact channels were 
interpolated using the nearest-neighbor spline method and the 
data were re-referenced to the average reference. 

D. Simulated Data 
To test if the proposed method is capable of detecting the 

correct values of the model order and the adaptation constant, 
we generated two sets of simulated data imposing & and ' a 
priori. Seventy-eight networks with 82 nodes were generated 
through a random discrete state-space model adding a single-
trial VEP component and observation noise [27]. The 
amplitude of the surrogate tv-MVAR coefficients decreased 
exponentially with the lags following an underdamped 
oscillator. VEPs were generated perturbating the univariate 
values of the simulated tv-MVAR matrices. Asymptotical 
stability of the tv-system was imposed as in [28]. Each 
simulated network contains 100 trials of 800-sample signals 
with signal-to-noise ratio (SNR) equal to 1, model order equal 
to 5, 7 or 9 and the adaptation constant equal to 3 ∙ 10,- or 3 ∙
10,.. 

III. METHOD 
In the framework of a MATLAB toolbox (code available 

upon request to the authors) that implements the adaptive 
Kalman filtering [4] and information Partial Directed 
Coherence (iPDC) in the source space [29], we propose a new 
analytical approach for the optimal choice of the Kalman 
parameters. (We refer the reader to [30] for further details on 
the implementation of the effective connectivity pipeline in the 
source space from high-density EEG recordings). In order to 
estimate in parallel the adaptation constant and the tv-MVAR 
model order, we refined the predictive least square principle 
(PLS) [5] [31]: 

/012 (4,6) =
9
:
∑ (1 − '):,=:
=>9 ?/@4(A)?

.													(1) 

where B is the number of samples, ' is the adaptation 
constant [4], /@ is the true prediction error function of A and 
the model order & [32]). /012 (&, ') is a method based on model 
residuals and should be minimized to choose & and '. 
However, as for other residual- and information-based criteria 
in the context of tv-MVAR models (AIC, BIC), the cost 
function is not ensured to reach its absolute minimum and 
tends to monotonically decrease with overfitting (Fig. 1a). 
This could leads to too high model order and adaptation 
constant that would increase both computational cost and noise 
sensitivity. If an absolute minimum does not exist, we propose 
to study the partial derivative of the cost function /012 (&, '). 
Our aim was to find the value at which the /@ does not 
significantly improve by increasing & and '. Thus, we 
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estimated the inflection point of the cost function /012 (&, ') 
studying its partial derivatives C(∙)

C4
  along p coordinate axis. We 

kept the variable	' fixed and differentiated the resulting 
function as a function of variable &. Geometrically, the partial 
derivative gives the slope of the function at each point in the 
directions parallel to the & coordinate axis. We estimated the 
negative values of DE

C4E
/012 (&, ') and we chose (&F4=, 'F4=) 

such that both C
C4
/012 (&, ') and D

G

C4G
/012 (&, ') tend to zero in 

the neighborhood of (&F4=, 'F4=). These values of & and ' 
indicate our inflection point, i.e., the point of the cost function 
where the curvature changes its sign while a tangent exists. To 
test the goodness of the data fitting using the values 
H&F4=, 'F4=I	for each subject, we computed the residuals from 
the data and the model estimates, the J/KL outflow from the 
tv-MVAR coefficients, and parametric and non-parametric 
power spectra of VEP dataset. 

IV. RESULTS 

As a representative example, the cost function /012 (&, ') is 
reported in Fig.1a for a representative subject. Given that 
/012 (&, ') is a differentiable function and the lack of a global 
minimum, we could study its partial derivatives (Fig.1 b-c-d) 
and estimate the inflection point. Considering all subjects, the 
model order & was estimated in the interval [4: 9], i.e., 
[20: 45]	TU, and the adaptation constant '	spanned between 
[1.6: 5.4]10,-. (In parallel, we also exploited the time-varying 
formulation of AIC and BIC as cost function varying p and c 
in the same intervals, the 96% of the estimated values tended 
to -¥, rendering a reliable estimation of the absolute minimum 
and the computation of the partial derivatives impossible.) The 
obtained values for the model order & satisfied the hypothesis 
on the average maximum human brain fiber length (circa 
15	'T) and conduction delay (circa 6	T/U) [33]. Whereas, the 
values for the adaptation constant ' are in the same interval to 
the one suggested by Schögl in [6] and exploited in [4]. Fig. 2 
reports a comparison between the model prediction (Fig. 2b) 
and the original data (Fig. 2a) for a representative subject. It is 
clear that there is a strong correlation between the model 
prediction and the original data, Y > 0.5 (Fig. 2c).  Fig. 3 
depicts the average across subject of the power in [1-40] Hz 
for our 82 regions of interest (ROIs). The power was computed 
both directly from the reconstructed source waveforms by a 
non-parametric approach (Fig. 3a) and from the tv-MVAR 
coefficients (Fig. 3b) during N170. We found a strong 
correlation between the distributions of power in the brain 
regions computed with the two different methods. Indeed, 
ROIs with the maximal power (> 95% percentile) were 
localized in the right lateral occipital cortex and in the right 
inferior temporal cortex with both methods. Finding the 
regions with highest power with a non-parametric approach 
might already give enough information about the main drivers 
in a network, but we should take into account that non-
parametric approaches are less robust to artifacts and noise in 
the EEG than parametric ones. 

Exploiting the tv-MVAR coefficients, we computed the 
|iPDC| values during the first 500 ms after the stimulus, and 
we compared the values of the outflow from each ROIs at 
N170. The connectivity patterns between the different cortical 
regions were summarized by representing the total outflow 
from a cortical region toward the others, generated by the sum 

of all the statistically significant links obtained by application 
of the iPDC to the cortical waveforms (with their values). In 
Fig. 4, the total outflow during N170 for each ROI is 
represented by a sphere centered on the cortical region, whose 
radius is linearly related to the magnitude of all the out-coming 
directed links to the other regions. Such information is also 
coded through a color scale. The greatest amount of 

Partial derivatives of [\]̂ in a representative subject 

Figure 1. Values of (a) /012 4,6 and its (b) first-, (c) second- and (d) third- 
partial derivative along & axis in a representative subject. 

 Source waveform in the left inferior temporal cortex in a 
representative subject 

Figure 2. (a) Reconstructed source waveform in the left inferior temporal 
cortex in a representative subject. (b) Predicted values by the tv-MVAR 
model (p = 4; c = 0.0043) for the source waveform in the same brain 
region of (a). (c) Scatter plot of the original data in (a) versus the 
predicted values in (b).  

 Non-parametric and parametric average power in all subjects 

Figure 3. (a) Non-parametric and (b) parametric average power [1-40] 
Hz across subjects computed from the source waveforms in the 82 ROIs 
during N170. Nodes dimension and color identify the value of the 
power. 

 

(a) (b)
["#/%%&]( ["#/%%&](

Average outflow in all subjects 

                   
Figure 4. Average outflow across subjects in the 82 ROIs computed 
from iPDC matrix during N170. Nodes dimension and color identify the 
value of the outflow. 
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information outflow depicts the ROI as one of the main 
sources (drivers) of functional connections to the other ROIs 
[34]. The ROIs with the maximum outflow (> 95% percentile) 
were localized in the right lateral-occipital cortex, and in the 
inferior temporal cortex (Fig. 4). Our findings are in 
accordance with the ones in the literature. N170 usually 
displays right-hemisphere lateralization and its response in the 
scalp is maximal over occipito-temporal electrodes.  
Regarding the source of N170, this event-related potential was 
shown to be generated in widely distributed occipital–
temporal–parietal cortical regions. 

In Tab. 1 the results of the set of simulations are reported: 
the 2nd column stands for the p and c imposed a priori; the 3rd 

and the 4th columns to c predicted and to the p predicted 
(mean±std) by 100 trials of each simulated network. Both the 
estimated values for the adaptation constant and the model 
order satisfied the hypothesis. 

TABLE I.  SIMULATION RESULTS 

# simulations x (#trials, # nodes, 
SNR, # samples) 

Model parameters 
(p, c) "!`abc"dab !!`abc"dab 

13	x	(100, 82, 1, 800) 

(g, h ∙ ij,h) [1 ± 0.3] ∙ 10,- 5 ± 2 

(k, h ∙ ij,h) [1 ± 6] ∙ 10,- 8 ± 2 

(l, h ∙ ij,h) [1 ± 0.1] ∙ 10,- 9 ± 3 

(g, h ∙ ij,m) [1 ± 0.5] ∙ 10,. 4 ± 2 

(k, h ∙ ij,m) [1 ± 0.5] ∙ 10,. 7 ± 4 

(l, h ∙ ij,m) [3 ± 2] ∙ 10,. 9 ± 3 

 

V. CONCLUSION 
In this work, we proposed to study the partial derivatives of 

residual- and information-based criteria to guide the choice of 
p and c when these functions do not reach an absolute 
minimum. We reported the results in both surrogate and real 
data testing the partial derivatives of /012 . The consistence of 
the results of the simulations and in finding the main drivers 
during N170 prove the validity of adaptive estimation 
algorithms in estimating tv-Granger causality after an 
accurate choice of the model order and adaptation constant.  

This is an important first step towards automated model 
selection in tv-MVAR modeling.  
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