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Abstract

Microsatellite loci mutate at an extremely high rate and are generally thought to evolve
through a stepwise mutation model. Several differentiation statistics taking into account the
particular mutation scheme of the microsatellite have been proposed. The most commonly
used is @RST, which is independent of the mutation rate under a generalized stepwise muta-
tion model. @FST and @RST are commonly reported in the literature, but often differ widely.
Here we compare their statistical performances using individual-based simulations of a
finite island model. The simulations were run under different levels of gene flow, mutation
rates, population number and sizes. In addition to the per locus statistical properties, we
compare two ways of combining @RST over loci. Our simulations show that even under a
strict stepwise mutation model, no statistic is best overall. All estimators suffer to different
extents from large bias and variance. While @RST better reflects population differentiation in
populations characterized by very low gene-exchange, @FST gives better estimates in cases of
high levels of gene flow. The number of loci sampled (12, 24, or 96) has only a minor effect
on the relative performance of the estimators under study. For all estimators there is a strik-
ing effect of the number of samples, with the differentiation estimates showing very odd
distributions for two samples.
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Introduction

Microsatellite markers have had a tremendous impact on
population genetics. They have became the most com-
monly used co-dominant genetic markers. Microsatel-
lites mutate at an extremely high rate and are generally
believed to evolve mainly under a stepwise mutation scheme,
characterized by the addition or deletion of one ore more
repeated motifs (e.g. Weber & Wong 1993; Brinkmann et al.
1998; Di Rienzo et al. 1998; Xu et al. 2000).

The high mutation rate of microsatellites has drawbacks.
The probability of identity (by descent or by state) of two
genes decreases as the mutation rate increases (Rousset
1996). FST, a function of probabilities of identity, has
a lowered expectation when the mutation rate is high
(Wright 1978; Charlesworth 1998; Nagylaki 1998; Hedrick

1999; Balloux et al. 2000) and inferences drawn from FST, such
as the number of migrants M, will be biased. This bias
stems from the impossibility to separate the effects of muta-
tion and migration. Fortunately, it has been shown that
when the mutation process is stepwise (it could actually be
multistep and nonsymmetrical, see Kimmel et al. 1996), muta-
tion can be disentangled from processes such as migration
(Slatkin 1995; Rousset 1996). However, statistics based on
the probability of identity of alleles are not sufficient for
this, and we need to account for the evolutionary distance
between alleles. For markers evolving under a stepwise
mutation model, size differences are related to evolu-
tionary distances between alleles (Goldstein et al. 1995;
Michalakis & Excoffier 1996). Several statistics accounting for
the size of alleles have been developed for the estimation
of genetic distances and population differentiation under
stepwise mutation (e.g. Goldstein et al. 1995; Slatkin 1995).
The statistic most commonly used for population differ-
entiation is RST (originally defined by Chakraborty & Nei
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1982; independently derived by Slatkin 1995), which is
independent of the mutation rate under a generalized
stepwise mutation model. The drawback of RST is its high
associated variance compared to other descriptors of
population structure such as FST (Slatkin 1995; Balloux et al.
2000). Since both RST and FST are very commonly reported
for studies using microsatellite markers, and often differ
widely (reviewed in Lugon-Moulin et al. 1999), it seems of
interest to compare their respective behaviour under vary-
ing sampling schemes.

Surprisingly there has been little work on the statistical
properties of these differentiation estimators (other
statistics have received more attention, see Kimmel &
Chakraborty 1996; Pritchard & Feldman 1996). Slatkin
(1995) reported some simulations based on two samples
from 10 populations showing that under stepwise muta-
tions, estimates M of the number of migrants (Nm) from
@RST were less biased than those derived from @FST. More
recently Gaggiotti et al. (1999) compared the performance
of M based on @FST [M(@FST)] and @RST[M(@RST)] also in the case
of two populations. They concluded that the relative per-
formance of M(@FST) and M(@RST) was dependent mainly on
sample size, with M(@FST) being a better estimator for small
samples. But we are aware of no studies addressing speci-
fically the statistical properties of estimators of FST and RST.

Here, using computer simulations, we present an exten-
sive comparison of the statistical properties of estimators of
the parameters FST and RST [actually the θ of Weir & Cock-
erham (1984) and the ρST of Rousset (1996)] in a finite island
model under different levels of gene flow, mutation
rates, population number and sizes. The simulations are
restricted to a strict symmetrical stepwise mutation model.
In addition to exploring properties of statistics for indi-
vidual loci, we compare two methods for combining estimates
across loci. F- and R-statistics are ratios of variances. There
is no consensus in the statistical literature concerning the
best way to estimate these ratios, as one could take the ratio
of the averages or the average over the ratios (see for
instance King et al. 2000). For @FST, simulations in Weir &
Cockerham (1984) showed that the best way to combine
information across loci depends on the level of differenti-
ation. However, most studies report the ratio of averages, as
was suggested by Weir & Cockerham (1984) and Weir
(1996). For R-statistics, two solutions are advocated in
the literature. Goldstein et al. (1995), Slatkin (1995) and
Michalakis & Excoffier (1996) use the ratio of the averages
while Goodman (1997) suggested standardizing the variance
of allele size prior to calculation. In this way all loci are
given the same weight independently of their variance.
This seems to be intuitively reasonable since microsatellite
loci often show manifold differences in allele-size vari-
ance. Last, we investigate the consequences of subsampling
the simulations, focalizing on samples of 20 individuals
from two demes.

Materials and methods

Simulations

We used individual-based simulations to assess the statist-
ical properties of each estimator. The software easypop
(version 1.7) (Balloux 2001) was used to generate populations
of different structures. In all cases, we simulated popu-
lations made of a fixed number of 2000 individuals. These
individuals were either arranged in two demes of 1000
individuals, five demes of 400 individuals or 20 demes of
100 individuals. Migration of individuals (rather than
gametes) among demes followed the island model of
migration and the number of migrants was fixed to 0.1, 1,
or 10. For each replicate, 12 loci were simulated. Replicates
were run for mutation rates µ of 10–2, 10–3 and 10–4 as well
as a mixed situation where four loci were set at 10–2, four
at 10–3 and four at 10–4. Mutations followed a single-step
mutation model with 999 possible allelic states. With this large
number of alleles, the mutation model can be considered
as unconstrained (Balloux et al. 2000). The simulations
were run for 10 000 generations (5nN generations, where n
is the number of demes and N is the size of each deme),
point at which all statistics had reached equilibrium, and
replicated 99 times. Differentiation statistics were computed
from the final generation of each simulation using the software
fstat version 2.9.3 (Goudet 2001, updated from Goudet
1995). Single locus @FST and @RST were estimated following
Weir & Cockerham (1984) and Rousset (1996), respectively.

Expectations of FST and RST under stepwise mutation model

In order to assess the relative performance of the
differentiation estimators under study, and to quantify
their bias, we need their parametric values. Since all
simulations have been performed under a stepwise
mutation model, the theoretical value of RST (E[RST]) is a
function of gene flow only (Slatkin 1995; Rousset 1996). We
will therefore estimate the bias of @FST and @RST using E[RST]
as the reference. Mean square errors (MSE; Rice 1995),
computed as the sum of the squared bias and the variance
(Bias2 + Var), were used to quantify the efficiency of the
respective statistics. Theoretical values for RST and FST,
variance in allele sizes and gene diversity for our model of
population structure are given in Appendix I.

Combining estimates across loci

Multilocus @FST and @RST were computed as the ratio of the
sum (over loci) of variances following Weir & Cockerham
(1984) and Michalakis & Excoffier (1996):
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where ̨  stands for either the variance components of allele
frequencies (@FST) or the variances of allele size (@RST), the
index a stands for among populations and t represents the
overall population. Alternatively, @RST can be computed as
the average of ratios:

(2)

where l stands for the number of scored loci. We show in
Appendix II that @RSTu is similar to the value !URST in
Goodman (1997).

To investigate how increasing the number of loci would
affect the variance of the different estimators, we pooled
replicates to obtain 49 simulations with 24 loci and 12
simulations with 96 loci. We checked that there was no
difference in the components of variances among repli-
cates using a one-way analysis of variance (anova) after
rank transformation of the variance components.

Sub-sampling simulations

Empirical population genetics datasets rarely comprise the
exhaustive population under study. To explore the effect
of nonexhaustive sampling, we subsampled from the
simulated populations. Our goal is not to investigate
extensively the effect of partial sampling strategies, but
to explore how our conclusions would be affected by
sampling only a small part of the population. We sampled
randomly 20 individuals in two populations, a sampling
scheme similar to that used by Slatkin (1995) and Gaggiotti
et al. (1999).

Results

Theoretical values of FST and RST

Table 1 shows the expected values of FST and RST for the
different simulation scenarios. While for a given Nm,
E[RST] changes with the number of populations, it remains
constant for varying mutation rates. On the other hand,
E[FST] varies wildly with mutation rates, particularly for
low migrant numbers. E[FST] is always lower than E[RST],
and in the extreme case of low Nm and high mutation rates,
E[RST] is over eight times as large. E[RST] and E[FST] tend to
similar values as migration increases (Table 1).

Single locus estimates

The results for individual loci statistics are given in Table 1
and Fig. 1. Average @FST over all simulations lie close to
their expectation most of the time, but very far from E[RST]
when migration is low (Fig. 1e–h and Table 1). It is only
under very low mutation rate and with only two popu-
lations that average @FST strongly underestimate E[FST]

(20% bias, Table 1). Average @RST values also lie far from
their own expectation when migration is low and num-
ber of populations are small (Fig. 1a,c and Table 1). @RST
average values improve with increasing migration
(Table 1). The number of populations has a striking effect
since the distributions of both individual loci @FST and @RST
display a much larger variance for two than for 20
populations (Fig. 1). Average @RST values are downwardly
biased, but this effect tends to disappear as the number of
populations increases (Table 1). The distributions of @RST
are surprising. With two populations, they are completely
asymmetrical with a skew on the left and a mode around 0
(Fig. 1a,c). There is no effect of the mutation rate on @RST.
This was expected for the mean, but it appears to be true for
all higher moments of the distribution. There is a strong
effect of mutation rates on the mean and distribution of @FST,
and it is particularly affected by a heterogeneous muta-
tion rate (Fig. 1e–h). This was expected, as the effect of
migration cannot be disentangled from that of mutation for
statistics based on the probability of identity. We also note
that the distribution of individual loci @FST for very low
gene flow and mutation rate looks very similar to the
distribution of individual loci @RST with very low gene flow
(data not shown).

Averaging over loci

Behaviour of the statistics under exhaustive sampling. Because
@FST estimated as the ratio of sums consistently showed
lower MSE than its counterpart estimated as the average of
ratios (data not shown), we will only report multilocus @FST
as defined in equation 1.

Figure 2 shows the distribution of @RSTu, @RSTw and @FST for
0.1 migrants per generation, where the statistics are estim-
ated over 12 loci. With this number of loci, the distribu-
tion of the different statistics is slightly more bell shaped
than when each locus is taken individually. The distribu-
tion of @RSTw retains a very large variance (Fig. 2, second
row) but its average value is dramatically improved
(Table 1). When the simulation consists of two populations
(left hand side of Fig. 2), @RSTu is biased strongly downward
(Fig. 2a and Table 1). On the other hand, @RSTu has a smaller
variance than @RSTw. As the number of populations in-
creases (right-hand side of Fig. 2 and Table 1), bias and
variance of the two @RST are reduced (note the change of
scale on the x-axis). The distribution of @FST (last row of
Fig. 2) is well centred around its expected value (dashed
line, see also Table 1), but very much offset to the left of the
expected value of RST (solid line). The variance of @FST also
diminishes as the number of populations increases.

Figures 3 and 4 display the distribution of the same
statistics for a number of migrants per generation of 1 and
10, respectively. As migration increases, bias and variance
diminish. @RSTu remains more biased but with a smaller

@R
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variance than @RSTw, and these two characteristics of the dis-
tribution decrease with the number of populations. @FST has
a much smaller variance than the two @RST statistics, and its
distribution is well centred around its expectation (last row
of Figs 3 and 4). But @FST strongly underestimates differen-
tiation when compared to the expectation of RST. Figure 4
shows that when dispersal is large (10 migrants per gener-
ation), the variance of @RSTw remains larger than that of
the two other statistics. It is notable that Fig. 4(b) shows
the small variance and bias of @RSTu when the number of

population is large. @FST also has a small variance in this
case, but gives a slight underestimation of the expectation
of RST (Fig. 4f ).

The joint effect of bias and variance is summarized by
the MSE, shown in Table 2 as its square root for conven-
ience. Whatever the statistic, MSE decreases as the number
of migrants increases. MSE also decreases dramatically as
the number of populations increases, in particular for @RSTw
and @RSTu and low gene flow. This information is summar-
ized in the column ‘best statistic’ of Table 2, where best is

Table 1 Average values of differentiation statistics as a function of the number of scored loci

Expectations
1-locus 
estimate 12-locus estimate 96-locus estimate

n N m µ Nm E[RST] E(FST) @RST @FST @RSTu @RSTw @FST @RSTu @RSTw @FST

2 1000 0.0001 0.01 0.1 0.556 0.065 0.374 0.065 0.374 0.522 0.065 0.376 0.564 0.066
5 400 0.00025 0.01 0.1 0.667 0.122 0.604 0.121 0.604 0.661 0.121 0.605 0.667 0.121

20 100 0.001 0.01 0.1 0.704 0.255 0.694 0.255 0.694 0.702 0.255 0.694 0.701 0.255
2 1000 0.0001 0.001 0.1 0.556 0.202 0.390 0.201 0.390 0.520 0.208 0.390 0.543 0.208
5 400 0.00025 0.001 0.1 0.667 0.344 0.603 0.342 0.603 0.654 0.344 0.603 0.661 0.344

20 100 0.001 0.001 0.1 0.704 0.547 0.692 0.545 0.692 0.702 0.546 0.692 0.703 0.546
2 1000 0.0001 0.0001 0.1 0.556 0.434 0.356 0.338 0.359 0.520 0.434 0.361 0.546 0.442
5 400 0.00025 0.0001 0.1 0.667 0.588 0.597 0.561 0.599 0.672 0.591 0.600 0.672 0.593

20 100 0.001 0.0001 0.1 0.704 0.680 0.693 0.678 0.693 0.710 0.683 0.693 0.710 0.683
2 1000 0.0001 mix 0.1 0.556 0.202 0.358 0.192 0.358 0.490 0.194 0.358 0.534 0.195
5 400 0.00025 mix 0.1 0.667 0.316 0.598 0.340 0.598 0.639 0.314 0.597 0.642 0.315

20 100 0.001 mix 0.1 0.704 0.465 0.693 0.495 0.693 0.702 0.467 0.693 0.706 0.467
2 1000 0.001 0.01 1 0.111 0.031 0.097 0.031 0.097 0.119 0.031 0.097 0.124 0.031
5 400 0.0025 0.01 1 0.166 0.060 0.158 0.060 0.158 0.166 0.060 0.157 0.168 0.060

20 100 0.01 0.01 1 0.190 0.114 0.188 0.114 0.188 0.192 0.114 0.188 0.191 0.114
2 1000 0.001 0.001 1 0.111 0.075 0.092 0.072 0.092 0.101 0.074 0.092 0.102 0.074
5 400 0.0025 0.001 1 0.166 0.128 0.154 0.126 0.154 0.161 0.127 0.154 0.161 0.127

20 100 0.01 0.001 1 0.190 0.175 0.187 0.174 0.187 0.188 0.174 0.187 0.189 0.174
2 1000 0.001 0.0001 1 0.111 0.104 0.078 0.081 0.080 0.094 0.096 0.079 0.096 0.098
5 400 0.0025 0.0001 1 0.166 0.160 0.144 0.145 0.144 0.166 0.160 0.144 0.166 0.160

20 100 0.01 0.0001 1 0.190 0.188 0.181 0.181 0.181 0.191 0.188 0.181 0.192 0.188
2 1000 0.001 mix 1 0.111 0.061 0.090 0.065 0.090 0.116 0.063 0.089 0.124 0.063
5 400 0.0025 mix 1 0.166 0.105 0.149 0.110 0.149 0.150 0.105 0.149 0.147 0.105

20 100 0.01 mix 1 0.190 0.151 0.182 0.155 0.183 0.186 0.149 0.182 0.187 0.149
2 1000 0.01 0.01 10 0.012 0.008 0.012 0.008 0.012 0.011 0.008 0.012 0.011 0.008
5 400 0.025 0.01 10 0.019 0.014 0.019 0.014 0.019 0.019 0.014 0.019 0.019 0.014

20 100 0.1 0.01 10 0.020 0.018 0.020 0.018 0.020 0.019 0.018 0.020 0.019 0.018
2 1000 0.01 0.001 10 0.012 0.011 0.012 0.011 0.012 0.010 0.011 0.012 0.010 0.011
5 400 0.025 0.001 10 0.019 0.018 0.019 0.018 0.019 0.018 0.018 0.019 0.018 0.018

20 100 0.1 0.001 10 0.020 0.020 0.020 0.020 0.020 0.018 0.020 0.020 0.018 0.020
2 1000 0.01 0.0001 10 0.012 0.012 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.012
5 400 0.025 0.0001 10 0.019 0.019 0.018 0.018 0.018 0.019 0.019 0.018 0.019 0.019

20 100 0.1 0.0001 10 0.020 0.020 0.019 0.019 0.019 0.020 0.020 0.019 0.020 0.020
2 1000 0.01 mix 10 0.012 0.010 0.012 0.010 0.012 0.013 0.010 0.012 0.013 0.010
5 400 0.025 mix 10 0.019 0.016 0.018 0.016 0.018 0.018 0.016 0.018 0.018 0.016

20 100 0.1 mix 10 0.020 0.019 0.020 0.019 0.020 0.020 0.019 0.020 0.020 0.019

n, the number of populations; N, the number of individuals per population; m, the migration rate; µ, the mutation rate; E[RST] stands for 
the expectation of RST and E[FST] stands for the expectation of FST. @RSTw is the multilocus estimator of RST according to equation 1 in the text, 
while @RSTu is the multilocus estimator of RST according to equation 2. The average for single locus estimates is based on 1188 replicates, that 
for 12 loci estimates is based on 99 replicates, while the average for 96 loci estimates is based on 12 replicates only.
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Fig. 1 Single locus distribution of @RST and @FST for a number of migrants Nm = 0.1. On all panels, the solid black vertical line represents the
expectation of RST, while the dotted line represent the expectation of FST. Panels (a) to (d): distribution of @RST. Panels (e) to (h): distribution
of @FST. (a) and (e) two populations, µ = 10–3; (b) and (f ) 20 populations, µ = 10–3; (c) and (g) two populations, mixed mutation rate; (d) and
(h) 20 populations, mixed mutation rate.
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Fig. 2 Distribution of @RSTu, @RSTw and @FST for a number of migrants, Nm equal to 0.1. Each estimate is based on 12 loci. The mutation rate is
mixed (four loci at 10–4, four at 10–3 and four at 10–2). Panels (a) and (b): distribution of @RSTu; panels (c) and (d): distribution of @RSTw; panels
(e) and (f ): distribution of @FST. Panels (a) (c) and (e): two populations; panels (b) (d) and (f ): 20 populations. The vertical solid line represents
the expectation of RST, the vertical dotted line that of FST.

Table 2 Mean Square Error (MSE) of the three statistics, @FST, @RSTu and @RSTw for estimates based on 12, 24 and 96 loci

n N m µ

Expectations Sq root MSE @FST (×100) Sq root MSE @RSTu (×100) Sq root MSE @RSTw (×100) Best statistic

E(RST) E(FST) 12 loci 24 loci 96 loci 12 loci 24 loci 96 loci 12 loci 24 loci 96 loci 12 loci 24 loci 96 loci

2 1000 0.0001 0.001 0.556 0.202 34.9 34.9 34.8 18.1 17.4 16.7 12.6 9.3 5.2 Rw Rw Rw
5 400 0.00025 0.001 0.667 0.344 32.4 32.3 32.3 8.4 7.4 6.5 6.7 5.2 2.2 Rw Rw Rw

20 100 0.001 0.001 0.704 0.547 15.9 15.9 15.9 2.9 2.1 1.4 3.6 2.5 1.3 Ru Ru Rw
2 1000 0.0001 mix 0.556 0.202 36.5 36.3 36.0 21.0 20.3 20.0 17.7 13.5 7.7 Rw Rw Rw
5 400 0.00025 mix 0.667 0.316 35.4 35.3 35.2 8.8 7.7 7.2 10.2 6.8 3.9 Ru Rw Rw

20 100 0.001 mix 0.704 0.465 23.8 23.8 23.7 3.3 2.3 1.6 4.9 3.0 1.9 Ru Ru Ru
2 1000 0.001 0.001 0.111 0.075 4.0 3.8 3.7 3.5 2.7 2.0 4.5 3.3 2.1 Ru Ru Ru
5 400 0.0025 0.001 0.166 0.128 4.1 4.0 4.0 2.9 2.1 1.7 3.7 2.8 1.7 Ru Ru Rw

20 100 0.01 0.001 0.190 0.175 1.9 1.8 1.6 1.7 1.2 0.6 1.9 1.5 0.8 Ru Ru Ru
2 1000 0.001 mix 0.111 0.061 5.0 4.9 4.9 3.7 3.1 2.4 7.9 6.5 2.9 Ru Ru Ru
5 400 0.0025 mix 0.166 0.105 6.2 6.2 6.1 3.2 2.5 2.1 4.8 3.3 2.3 Ru Ru Ru

20 100 0.01 mix 0.190 0.151 4.2 4.1 4.1 2.1 1.5 1.2 2.9 2.2 1.1 Ru Ru Rw
2 1000 0.01 0.001 0.012 0.011 0.2 0.2 0.1 0.4 0.3 0.1 0.7 0.6 0.3 Fw Fw Ru
5 400 0.025 0.001 0.019 0.018 0.2 0.2 0.1 0.5 0.3 0.1 0.7 0.5 0.3 Fw Fw Fw

20 100 0.1 0.001 0.020 0.020 0.1 0.1 0.0 0.3 0.2 0.1 0.4 0.3 0.2 Fw Fw Fw
2 1000 0.01 mix 0.012 0.010 0.3 0.3 0.2 0.5 0.3 0.2 0.9 0.6 0.4 Fw Fw Ru
5 400 0.025 mix 0.019 0.016 0.3 0.3 0.3 0.4 0.3 0.2 0.8 0.6 0.4 Fw Fw Ru

20 100 0.1 mix 0.020 0.019 0.2 0.1 0.1 0.2 0.1 0.1 0.5 0.3 0.2 Fw Ru Ru

For convenience and clarity of reading, the square root of MSE (×100) is represented rather than MSE. The last three columns, labelled ‘Best Statistic’ 
show which of the three statistics has the lowest MSE. Rw stands for @RSTw, Ru stands for @RSTu and Fw stands for @FST.
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used with the statistical sense of efficiency (see Rice 1995).
@RSTw is the best statistic to use for low migration rate and
small number of populations. As gene flow or the number
of populations increases, @RSTu becomes the statistic of
choice. For the highest rate of gene flow (10 migrants per
generation) the best statistic is @FST. For smaller mutation
rates, @FST also tends to outperform @RSTu for moderate
migration rates (data not shown).

Effect of the number of loci. Table 1 shows that the average
@RSTw improves as we move from 12 to 96 loci, particularly
for low Nm and small number of populations. However,
this improvement is slight. The changes for @FST are minute.
Table 2 shows the effect of increasing the number of loci to
24 and 96 on MSE. This increase in the number of loci
should affect the variance of the statistic, but not its bias.
Therefore, we expect statistics with high variance and low
bias to become better. Indeed, the statistic with the smallest
bias but the largest variance, @RSTw, benefits most from an
increased number of loci, followed by @RSTu (Table 2). @FST
benefits close to nothing from this increased number of loci.

However, from the columns labelled ‘best statistic’ in
Table 2 it is clear that doubling or even multiplying by

eight the number of typed loci has very little effect on
which statistic is best. When there is a change, it follows
expectations, the statistic with small bias but large
variance (e.g. @RSTw compared to @RSTu, or @RSTu compared
to @FST) becoming better. Overall, there is not a best statistic
for all situations. While mutation rate heterogeneity
increases MSE slightly, it does not affect which statistic
is best.

Partial sampling. The results for partial sampling are given
in Table 3. The statistics affected most by the sampling
scheme are those with large variances. @RSTw deteriorates
most, followed by @RSTu, while @FST is little affected.

When the original simulation consists of two popula-
tions, MSE changes little (compare Tables 2 and 3, first row
for instance). The largest increases in MSE appear when
subsamples are taken from a population originally com-
prising 20 populations (e.g. the third row of Tables 2 and
3). This increase goes from fourfold for low migration to
10-fold for the highest migration. Although when sampl-
ing exhaustively MSE decreases as the number of popula-
tions increases (Table 2), the reverse is true under a partial
sampling scheme of 2 × 20 (Table 3).
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Fig. 3 Distribution of @RSTu, @RSTw and @FST for a number of migrants, Nm equal to 1. Each estimate is based on 12 loci. The mutation rate is 
mixed (four loci at 10–4, four at 10–3 and four at 10–2). Panels (a) and (b): distribution of @RSTu; panels (c) and (d): distribution of @RSTw; panels 
(e) and (f ): distribution of @FST. Panels (a) (c) and (e): two populations; panels (b) (d) and (f ): 20 populations. The vertical solid line represents 
the expectation of RST, the vertical dotted line that of FST.
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Discussion

We have shown that under restricted gene flow and a
pure stepwise mutation model, there is not a single
best estimator of population subdivision. The existing
estimators suffer from large bias and large variance to
different extents. When populations are highly structured
(Nm = 0.1), @RSTw does best, particularly when the number
of samples is small. When populations are very weakly
structured (Nm = 10), @FST does best. For intermediate
situation (Nm = 1), @RSTu is the statistic of choice, although
when very small samples are taken, @FST does slightly better.
Although increasing the number of loci decreases MSE for
all statistics under study, our simulations show that the
‘best’ statistic is almost independent of the number of
typed loci (Tables 2 and 3). These conclusions are valid for
the intermediate to large mutation rates commonly found
in empirical surveys of microsatellites (corresponding to
gene diversities larger than 70%). For lower mutation rates
(leading to gene diversities of 50% or lower), the tendency
is for @FST to do better than @RST (data not shown). However, as
mutation rate decreases, the distribution of @FST (and therefore
its mean and variance) becomes similar to that of @RST.

Generally, these results are concordant with the empir-

ical findings reviewed by Lugon-Moulin et al. (1999). These
authors reviewed empirical studies based on microsatel-
lites, where @FST and @RST had been obtained. For moderate
to strong differentiation, @RST seems a better estimator,
because it was larger than @FST in 13 studies out of the 15
reviewed. While there is some circularity in this argument,
since @RST is used to define the level of structuring, the geo-
graphical level at which these studies were carried out is
compatible with little genetic exchange. For low levels of
differentiation, these authors found that estimates of @FST
were larger than @RST in six studies out of eight. This pattern
is not expected (as differentiation decreases, the expecta-
tions of @FST and @RST converge, but @FST never becomes larger
than @RST, even under mutation models others than a step-
wise mutation model, unless allele size differences are
inversely related to evolutionary distances between alle-
les), but might be explained by the higher variance of @RST
estimators. On the whole therefore, empirical estimates are
in agreement with our simulation results concerning the
ranking of the different statistics.

Before discussing the empirical evidence for a stepwise
mutation model, we first address the issue of estimating
gene flow from estimators of population differentiation. As
a start we note that methods other than those based on
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Fig. 4 Distribution of @RSTu, @RSTw and @FST for a number of migrants, Nm equal to 10. Each estimate is based on 12 loci. The mutation rate is 
mixed (four loci at 10–4, four at 10–3 and four at 10–2). Panels (a) and (b): distribution of @RSTu; panels (c) and (d): distribution of @RSTw; panels 
(e) and (f ): distribution of @FST. Panels (a) (c) and (e): two populations; panels (b) (d) and (f ): 20 populations. The vertical solid line represents 
the expectation of RST, the vertical dotted line that of FST.
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F- and R-statistics have been recently developed to estimate
gene flow, and often seem to perform better (see for
instance Pritchard et al. 2000). Our purpose here is not to
advocate the use of differentiation estimators to infer levels
of gene flow (see Whitlock & McCauley 1999). Rather it is
to clarify the recent reports in this journal of strongly
biased estimates of the number of migrants M from @RSTw or
@FST (Gaggiotti et al. 1999), and which might seem surprising
in the light of our results. Indeed, Table 1 shows that the
@FST of Weir & Cockerham (1984) is essentially unbiased.
This is also true for @RSTw estimates based on 12 loci. Applying
the classical relation:

(3)

(where i is one of @FST or @RSTw) to results in Table 1 would
therefore lead to unbiased estimates of M as long as migration
was not too large. This is expected, since low migration is
necessary for equation 3 to be valid (see Cockerham & Weir
1993). Even when subsampling 20 individuals in two
demes, estimates of M from @RSTw always remain within
30% of their expectations (data not shown). The main
reason for the difference between our simulations and
those of Gaggiotti et al. (1999) stems from them averaging
M estimates rather than differentiation estimates. As
Cockerham & Weir (1993) pointed out (see equation 7 of
their paper), M obtained from averaging M estimates will
be inflated compared to a situation where differentiation
estimates are first averaged, and then equation 3 is applied.

Intuitively, this is because small variations on @FST (or @RST)
when differentiation is small translate into very large
differences for M estimates, because of the nonlinearity of
equation 3. @FST and @RST in the lower tail of their
distribution will translate into a very large estimate of Nm,
which will then take an unduly large weight in the average
M estimates. The strong constraint in allele size imposed
by Gaggiotti et al. (1999) might explain the remaining
discrepancies between our simula-tions and theirs.

As noted above, it is under stepwise mutation that RST
allow inference of quantities, such as the number of
migrants, independently of mutation. If it is unlikely that
the mutation scheme of microsatellite loci exactly follows
this model, it remains open how much the mutation pat-
tern of microsatellites deviates from it. An important con-
cern is the effect of a finite number of possible allelic states.
Constraints on allele size will render the mutation pattern
more similar to that expected under a model where mutant
alleles take one of k possible states at random (the ‘KAM’
model). Indeed, for the extreme case of a constraint to two
allelic states, each mutation will generate the other allelic
state. Rousset (1996) showed the expectations of identity in
states under a KAM model to be those of an Infinite Allele
Model (IAM), with a new mutation rate µ′ modified
according to the relation µ′ = kµ/(k – 1). With constraint on
allele size, size is no longer an accurate predictor of allelic
distances. As the constraint gets stronger, alleles become
equidistant. As perfect dinucleotide alleles rarely exceed
30 repetitions, the maximal possible size of microsatellite

M i
i

n n
( )  

( / )  

/(   )
≈

−
1 1

4 1

−

Table 3 Mean Square Error (MSE) of the three statistics, @FST, @RSTu and @RSTw for estimates based on 12 and 24 loci but for a subsample of 
each simulated dataset, consisting of two samples of 20 individuals

n N m µ E[RST] E[FST]

Square root MSE (×100) Best statistic

@FST
12 loci

@FST
24 loci

@RSTu
12 loci

@RSTu
24 loci

@RSTw
12 loci

@RSTw
24 loci 12 loci 24 loci

2 1000 0.0001 0.001 0.556 0.202 35.2 35.2 18.9 18.1 12.8 9.4 Rw Rw
5 400 0.00025 0.001 0.667 0.344 32.7 32.6 19.6 18.5 13.9 11.6 Rw Rw

20 100 0.001 0.001 0.704 0.547 18.1 17.5 21.7 20.6 16.0 10.9 Rw Rw
2 1000 0.0001 mix 0.556 0.202 36.5 36.2 21.3 20.5 17.3 12.9 Rw Rw
5 400 0.00025 mix 0.667 0.316 36.6 36.2 22.1 20.9 18.0 15.4 Rw Rw

20 100 0.001 mix 0.704 0.465 24.9 24.3 20.0 17.8 20.8 15.5 Ru Rw
2 1000 0.001 0.001 0.111 0.075 4.2 4.0 4.8 3.8 5.8 4.5 Fw Ru
5 400 0.0025 0.001 0.166 0.128 5.1 4.6 6.3 5.2 7.8 6.2 Fw Fw

20 100 0.01 0.001 0.190 0.175 4.5 3.4 6.1 5.0 8.3 6.3 Fw Fw
2 1000 0.001 mix 0.111 0.061 5.0 4.9 4.7 3.7 8.9 6.9 Ru Ru
5 400 0.0025 mix 0.166 0.105 7.0 6.7 6.0 5.0 10.1 7.4 Ru Ru

20 100 0.01 mix 0.190 0.151 5.3 4.4 6.6 5.5 11.2 8.9 Fw Fw
2 1000 0.01 0.001 0.012 0.011 0.8 0.6 1.5 1.1 1.6 1.3 Fw Fw
5 400 0.025 0.001 0.019 0.018 0.9 0.6 1.6 1.1 2.5 1.7 Fw Fw

20 100 0.1 0.001 0.020 0.020 1.0 0.8 1.5 1.0 2.2 1.5 Fw Fw
2 1000 0.01 mix 0.012 0.010 0.7 0.5 1.4 1.0 2.6 2.1 Fw Fw
5 400 0.025 mix 0.019 0.016 0.9 0.6 1.5 1.0 3.1 2.2 Fw Fw

20 100 0.1 mix 0.020 0.019 0.9 0.7 1.7 1.3 3.7 3.0 Fw Fw
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alleles seems to be constrained. The limited size of micro-
satellite alleles could be due to selection against long alleles
(Garza et al. 1995; Nauta & Weissing 1996). It is however,
more likely that the absence of very high repeat numbers is
due to a mutation bias of long alleles towards shorter ones
(Schlötterer et al. 1998). Xu et al. (2000) reported an excel-
lent fit between empirical data and a mutation model
where the rate of expansion mutations is constant across
the entire allele distribution, and the rate of contraction
mutations increases exponentially with allele size.

The accuracy of the stepwise mutation model to describe
the evolution of microsatellite alleles remains an open
question, particularly for the commonly used di-nucleotide
repeat motifs (Ellegren 2000a, 2000b). However, our
simulations show that even under the strictest stepwise
conditions, differentiation statistics developed for this
mutation model are not always the most adequate, because
of their high associated variance. Departures from a gen-
eralized stepwise mutation model are likely to make the
expectations of RST and FST statistics converge. As the
estimators of the former will retain a larger variance than
the latter, unless a prohibitive number of loci is used, @FST
will often be the statistic of choice, particularly for moder-
ate to high levels of gene flow.
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Appendix 1

Following the implementation of the island model in
easypop, we assume a diploid, monoecious population
with nonoverlapping generation, where selfing occurs at
random. Dispersal occurs at a rate m at the zygotic stage,
and sampling takes place after dispersal, before reproduction
and death. The population is made of a finite number n of
demes, each of equal size N. Symmetric single-step mutation
occurs at a rate µ. Under these conditions, the generating
function of the probabilities pk that a randomly chosen allele
differs by k steps from another randomly chosen allele,

, can be used to obtain the expectations
(or theoretical values) for variance in allele sizes and gene
diversity and therefore for R- and F-statistics (see
Wehrhahn 1975; Rousset 1996). In the following, the
generating functions ψ1(z) is for pairs of genes within
individuals, ψ2(z) is for pairs of genes between individuals
within demes and ψ3(z) is for pairs of genes between
subpopulations. The recursions for the generating functions

are

where a = (1 – m)2 + m2/(n – 1) is the proportion of pairs of
genes within a deme which came from the same deme in
the previous generation, b = (1 – a)/(n – 1) is the pro-

portion of pairs of genes in different demes which came
from the same deme in the previous generation and
r(z) = (1 – (2 – z – 1/z)u/2)2 is the factor by which step-
wise mutation changes the generating functions (see
Rousset 1996). At equilibrium between mutation, migration
and drift, Ψj,t+1(z) = Ψj,t(z) = Ψj(z) leading to the following
system of equations:

where c = 1/2N.
Since the expected mean difference in allele size with

a symmetric mutation process is 0, the expected variances
in allele size Vj is half the second derivative of the generat-
ing function of the probabilities pk with respect to z in the

neighbourhood of 1, 

(Rousset 1996). RST expectation is given by the ratio (V3 –
 V2)/V3. Numerical expression for the Vj and RST were
obtained with the computer package mathematica
(Wolfram 1991).

For gene diversities, Rousset (1996) showed how to
compute the probabilities of identity in state Q1, Q2 and Q3.
Using the numerical evaluation of the following expression:

where the ψj(z) have been defined above. The expectation
of FST is then (Q2 – Q3)/(1 – Q3). Numerical expressions for
the Qj and FST were obtained with computer package
mathematica (Wolfram 1991).
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Appendix 2

Calling Mo and Vo the mean and variance in allele size at a
locus, Goodman (1997) suggested that the centred normal-

ized allele size  should be used instead of

allele size x in the estimation of RST. Individual loci @RST
will not be affected by this centering–rescaling, but the
overall loci estimator will, because each individual locus
variance component will be divided by its locus allelic size
variance [since Var(aX + b) = a2Var(X)]. Goodman’s @RST
will thus be expressed as:

Where l represents the number of loci. Vt is an unbiased

estimator of Vo, so that Vt ≈ Vo, and therefore .

(In fact, one could argue that Vt should be used for the total
variance instead of Vo).

This leaves us with  i.e. the

average of the ratios. Therefore, the Goodman multilocus
@RST is similar to taking the average of individual loci @RST.
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