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Objectives: Antibiotic tolerance is a phenomenon allowing bacteria to withstand drug-induced killing.
Here, we studied a penicillin-tolerant mutant of Streptococcus gordonii (Tol1), which was shown to be
deregulated in the expression of the arginine deiminase operon (arc). arc was not directly responsible
for tolerance, but is controlled by the global regulator CcpA. Therefore, we sought whether CcpA
might be implicated in tolerance.

Methods: The ccpA gene was characterized and subsequently inactivated by PCR ligation mutagenesis
in both the susceptible wild-type (WT) and Tol1. The minimal inhibitory concentration and time–kill
curves for the strains were determined and the outcome of penicillin treatment in experimental
endocarditis assessed.

Results: ccpA sequence and expression were similar between the WT and Tol1 strains. In killing
assays, the WT lost 3.5 +++++ 0.6 and 5.3 +++++ 0.6 log10 cfu/mL and Tol1 lost 0.4 +++++ 0.2 and 1.4 +++++ 0.9 log10 cfu/mL
after 24 and 48 h of penicillin exposure, respectively. Deletion of ccpA almost totally restored Tol1 kill
susceptibility (loss of 2.5 +++++ 0.7 and 4.9 +++++ 0.7 log10 cfu/mL at the same endpoints). In experimental
endocarditis, penicillin treatment induced a significant reduction in vegetation bacterial densities
between Tol1 (4.1 log10 cfu/g) and Tol1DccpA (2.4 log10 cfu/g). Restitution of ccpA re-established the
tolerant phenotype both in vitro and in vivo.

Conclusions: CcpA, a global regulator of the carbon catabolite repression system, is implicated in
penicillin tolerance both in vitro and in vivo. This links antibiotic survival to bacterial sugar metab-
olism. However, since ccpA sequence and expression were similar between the WT and Tol1 strains,
other factors are probably involved in tolerance.
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Introduction

Bacteria have evolved two principal mechanisms to evade the
killing effect of antibiotics: resistance and tolerance. Bacteria
resistant to antibiotics are characterized by their ability to grow in
the presence of drug concentrations higher than the one inhibiting
the growth of susceptible members of the same species. Hence,
resistant bacteria have an increased minimal inhibitory concen-
tration (MIC) of the drug. However, when exposed to antibiotic
concentrations exceeding their new MIC, resistant bacteria remain
sensitive to the antibiotic killing effect. Resistance is of utmost
clinical importance and its mechanisms are widely studied.1

In contrast, antibiotic-tolerant bacteria have an unchanged
MIC. However, they have a considerably increased ability to

survive drug-induced killing, even at drug concentrations
exceeding their MIC by several orders of magnitude.2 In other
words, bactericidal drugs act as mere bacteriostatic agents
towards tolerant bacteria.

The first laboratory tolerant mutant was reported in
Streptococcus pneumoniae in 1970.3 In 1974 and 1977, the iso-
lation of clinical specimens of Staphylococcus aureus showing
tolerance to various b-lactams indicated that this phenomenon
was not only a laboratory finding.4,5 Since then, retrospective
screenings of bacterial collections have identified the existence
of tolerant strains in samples dating from the 1950s. Thus,
antibiotic tolerance is not a recent phenomenon, but rather a
phenotype which has been overlooked in the microbiology lab-
oratory because of the lack of proper detection techniques.6
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Tolerant bacteria have been associated with treatment failures in
endocarditis,7 – 9 meningitis,10 pharyngitis11 and osteomyelitis.12

Moreover, they are likely to represent a reservoir of survivors
potentially able to develop further resistance during prolonged
exposure to antibiotics.13,14

In previous work, it was observed that independently gener-
ated tolerant mutants of Streptococcus gordonii were deregulated
in the expression of the arginine deiminase operon (arc).15

Although arc was expressed at the end of the exponential phase
of growth in the kill-susceptible parent strain, it was expressed
constitutively in the tolerant derivatives. Yet, deregulation of arc
was not responsible for tolerance by itself. Indeed, its inacti-
vation did not alter the tolerance phenotype.15 Therefore, we
hypothesized that arc deregulation might represent an indirect
marker of an as yet unknown factor (or factors) responsible for
tolerance.

Expression of the arc operon is under the control of carbon
catabolite repression (CCR),16 which is a global regulatory
mechanism allowing bacteria to utilize the most efficient carbon
source for their growth.17 CCR acts upstream of arc and affects
the expression of numerous other genes, one or several of which
might control tolerance. In Gram-positive bacteria, one of the
trans-acting factors involved in CCR is the carbon catabolite
control protein A (CcpA) depicted in Figure 1.18

Here, we show that CcpA is central to tolerance. Its inacti-
vation almost completely abolished the tolerance phenotype—
i.e. restored susceptibility to antibiotic-induced killing—both
in vitro and in rats with experimental endocarditis. In symmetry,
its restitution restored penicillin tolerance in the test tube as well
as in vivo.

Materials and methods

Bacterial strains and growth conditions

The bacterial strains used in this study are described in Table 1.
Streptococci were grown at 378C in brain heart infusion (BHI) broth
(Difco, Detroit, MI, USA) without aeration or on Columbia agar
(Becton Dickinson Microbiology Systems, Cockeysville, MD, USA)

supplemented with 3% human blood. Growth of the cultures was
followed by measurement of optical density at a wavelength of
600 nm (OD600) using an Ultrospec 500 pro spectrophotometer
(Amersham Biosciences, Piscataway, NJ, USA), as well as by viable
counts on agar plates. When appropriate, antibiotics were added to

the medium at the following concentrations: streptomycin 100 mg/L
and erythromycin 5 mg/L. Bacterial stocks were stored at 2808C in
BHI broth supplemented with 10% (v/v) glycerol.

Antibiotics, enzymes and chemicals

Penicillin G was purchased from Hoechst-Pharma (Zurich,

Switzerland). Restriction enzymes (New England Biolabs Inc.,
Beverly, MA, USA), HotStar Taq DNA polymerase (Qiagen GmbH,
Hilden, Germany) and T4 DNA ligase (Promega Corp., Madison,
WI, USA) were used according to the manufacturer’s recommen-

dations. All other chemicals were reagent-grade, commercially
available products.

Susceptibility testing and time–kill curves

The MICs and minimal bactericidal concentrations (MBCs)
were determined by a standard macrodilution method, with

105–106 cfu/mL of diluted exponential cultures as a final inoculum.19

For time–kill experiments, penicillin G at a final concentration of
2 mg/L (equivalent to 500� the MIC) was added to streptococcal cul-
tures in the exponential phase of growth (OD600 of 0.2, corresponding

to �1�108 cfu/mL). Samples were removed just before antibiotic
addition as well as 24 and 48 h later, serially diluted and plated for
viable counts. Antibiotic carryover on the agar plates was avoided as
described previously.8 The numbers of survivors giving rise to colo-
nies were determined after 48 h of incubation at 378C.

DNA manipulations and transformation, plasmids and

oligonucleotides

The preparation of S. gordonii genomic DNA was done according to
a published method.20 Conventional agarose gel electrophoresis,
restriction endonuclease digests, DNA ligations and PCR amplifica-

tions were performed using standard techniques.21 DNA fragments
were purified from gel or solution using a QIAquick DNA purifi-
cation kit (Qiagen). Small-scale purification of plasmid DNA was
performed using a QIAprep spin miniprep kit (Qiagen). DNA
quantification was done on an ND-1000 spectrophotometer
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Figure 1. CcpA-dependent carbon catabolite repression in low-GC

(,50 mol%) Gram-positive bacteria. The phosphotransferase protein (HPr) is

phosphorylated on a histidine residue by enzyme I (EI) at the expense of

phosphoenolpyruvate (PEP), leading to HPr-His-P. The phosphoryl group is

then transferred to enzyme IIA (IIA) and further to enzyme IIB (IIB), both

being parts of the multidomain structure EIIABC. The uptake of glucose, by

the transporter domain enzyme IIC (IIC), is associated with its

phosphorylation by IIB, yielding glucose-6-phosphate. Glucose-6-phosphate

going through the energy-producing glycolysis pathway produces glycolytic

intermediates such as fructose 1,6-bisphosphate (FBP). This stimulates the

kinase activity of HPr kinase/phosphatase (HPrK/P), generating a

serine-phosphorylated form of HPr (HPr-Ser-P). A CcpA dimer binds to two

HPr-Ser-P, and the resulting heterotetramer regulates the expression of target

genes by binding to catabolite responsive element (cre) sequences in their

promoters. Depending on the position of cre, transcription is either repressed

or activated. Figure adapted from references 48–50.
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(NanoDrop Technologies, Wilmington, DE, USA). The preparation
of S. gordonii competent cells and the transformation experiments
were done as previously described.20 The plasmids and primers used
in the study are described in Table 2. Primer synthesis and sequen-
cing reactions were done by Microsynth GmbH (Balgach,

Switzerland).

RNA manipulations and real-time quantitative PCR

Total RNA from S. gordonii cultures was extracted at an OD600 of
0.2, just before and 10 min after penicillin addition, using the

RNeasy Mini Kit (Qiagen) combined with the RNA protect bacterial
reagent (Qiagen) according with the manufacturer’s instructions.

Potential DNA contamination was minimized by treating the
isolated RNA with RNase-free DNase (Qiagen). The quantity
and quality of the RNA were assessed using both a spectropho-
tometer and formaldehyde RNA gel electrophoresis.21 Reverse tran-
scription of 1 mg of total RNA was performed using the Omniscript

RT kit (Qiagen) with random decamer primers (Microsynth) and
RNasin (Promega). Relative gene expression analysis by real-time
quantitative PCR was carried out on an ABI Prism 7000 Sequence
Detection System (Applied Biosystems, Foster City, CA, USA), using
a SYBR Green PCR master mix (Applied Biosystems). Primers for

target amplification (Table 2) were designed using the Primer Express
v2.0 software (Applied Biosystems). The 16S rRNA was used as a
normalization factor. Results were interpreted using the Q-Gene
software.22

Table 2. Plasmids and oligonucleotide primers used in this study

Name Description or 50-30 sequence Reference

Plasmids

pJDC9 streptococcal suicide vector; EmR 47

Oligonucleotide primers

erm-K7-DAM104 CCGGGCCCAAAATTTGTTTGATTTGTATCTTAAAATTTTGTATAATAGG 24

erm-K7-DAM105 GGGGATCCAAAAACTGCCGACTGTAAAAAGTACAGTCGGCAGCGACTCATAGAATTATTTC 24

erm-PA GGCGCGCCCCGGGCCCAAAATTTGTTTGAT 23

erm-PB GGCCGGCCAGTCGGCAGCGACTCATAGAAT 23

ccpA_L5 AAGAAACGGTGCTAGAAGC

ccpA_L3 GGCGCGCCAGGCGATCAATTACTTCC

ccpA_R5 GGCCGGCCCTTTAGTTGATGATATCAATGG

ccpA_R3 CTGTCTCACTCAATTTTATGAC

InsccpA 5 GTTATTTCTCAACACTCGCCAAGG

InsccpA 3 TTGCGCTTAGCAAGGAATGTG

ccpA RT 5 CTTCTAAAGCAACGGCTGCTTT

ccpA RT 3 CGCAATCAGCTAGTCCGTTTAA

arcA RT 5 ACTATCCATTCGCTATCGATCCA

arcA RT 3 GATACTGCGTTACCAATTGTAGCAA

16S RT 5 GGAAACGATAGCTAATACCGCATAA

16S RT 3 GAGCCGTTACCTCACCTACTAGCTAA

Underlined portions of oligonucleotides represent engineered restriction sites: GG/CGCGCC, AscI; GGCCGG/CC, FseI.

Table 1. S. gordonii strains used in this study

Designation Relevant genotype, phenotype or description Source or reference

WT spontaneous streptomycin-resistant strain of S. gordonii Challis DL1;

susceptible to penicillin-induced killing; Smr
15

Tol1 a penicillin-tolerant mutant of the WT selected by penicillin cycling; Smr 15

WT DccpA ccpA deletion mutant of the WT; Emr Smr this work

Tol1 DccpA ccpA deletion mutant of the Tol1; Emr Smr this work

Tol1 DccpA(þ) A ccpA restored Tol1 DccpA; Smr this work

CI S. gordonii clinical isolate patient with bacteraemia

3165 S. gordonii NCTC 3165 UK National Culture Collection

7865 S. gordonii NCTC 7865 UK National Culture Collection

Smr, streptomycin resistant; Emr, erythromycin resistant; NCTC, National Collection of Type Cultures.
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Southern blot

Southern-blot experiments were performed with streptococcal chro-

mosomal DNA digested overnight at 378C with DraI and XbaI
according to standard methods.21 Hybridizations with digoxigenin-
labelled PCR DNA probes and chemiluminescent revelation were
done with a DIG-High Prime DNA Labelling and Detection Starter

Kit II (Roche Applied Science, Rotkreuz, Switzerland) according to
the manufacturer’s instructions.

Construction of ccpA-deleted strains of the wild-type

and tolerant S. gordonii

Deletion mutants were generated using the PCR ligation mutagen-
esis technique.23 First, an erythromycin resistance cassette was
PCR-amplified from pJDC9 using primers erm-K7-DAM104 and
erm-K7-DAM105. These two primers introduce both a strong pro-
moter and a transcription terminator, respectively, before and after

the coding sequence.24 Next, a second PCR was performed using
this cassette as a template and primers erm-PA and erm-PB in order
to introduce a 50 AscI and a 30 FseI restriction site. This final cas-
sette was double digested with these two enzymes.

In parallel, a sequence overlapping the 50 portion of the ccpA
gene was amplified using primers ccpA_L5 and ccpA_L3. A second
sequence overlapping the 30 portion of ccpA was amplified using
primers ccpA_R5 and ccpA_R3. The 50 and 30 overlapping portions
contained an AscI and an FseI site, respectively. The two amplicons

were digested with these enzymes and ligated separately to the
resistance cassette. The ligation product was amplified using primers
ccpA_L5 and ccpA_R3 in order to generate the whole chimera con-
struct. Finally, the 2 kb construct was transformed into competent
WT and Tol1. Recombinants were selected on erythromycin-

containing agar plates and purified, and the correct inactivation of
ccpA was assessed by PCR and Southern blot (data not shown).

Restitution of ccpA in the Tol1 DccpA strain

When grown on blood agar plates, DccpA mutants produced slightly

smaller and less shiny colonies, an observation which parallels
recent results in S. pneumoniae.25 On the other hand, growth rate in
BHI broth assessed by OD600 and chain length formation observed
by phase-contrast microscopy were identical between DccpA
mutants and their parent strains (data not shown). We took advan-

tage of the agar-plate phenotype to detect restitution of the bona
fide gene in DccpA mutants. Tol1 DccpA competent cells were trans-
formed with a PCR product encompassing the full ccpA open
reading frame amplified from Tol1 genomic DNA using primers

ccpA_L5 and ccpA_R3. Reversion to the morphology of parental
ccpA(þ) colonies correlated with the restitution of the complete
ccpA gene, as assessed by PCR and DNA sequencing (data not
shown).

Rat model of experimental endocarditis

The permission for experimentation on living animals regarding the
present work was granted by the State Veterinary Office of the
‘Canton de Vaud’ (permission 879.5). Catheter-induced aortic veg-
etations were produced in female Wistar rats (180–200 g) as pre-

viously described.26 Twenty-four hours later, groups of 5–10 animals
were inoculated intravenously with 0.5 mL of saline containing
107 cfu of exponential-phase streptococci. This inoculum consistently
infected 100% of vegetations in untreated animals (data not shown).8

The experiments were repeated two or more times and the results

were pooled. Intra-operative mortality was �10%, mostly due to
catheter-induced cardiac arrhythmia.

Penicillin treatment and evaluation of infection

Control rats were sacrificed at the time of treatment onset, i.e. 16 h
after inoculation, in order to measure the severity of valve infection
at the start of therapy. Treated animals received procaine penicillin
(300 000 U/kg) given subcutaneously every 12 h for a total of 2

days. This regimen produced peak and trough antibiotic levels in the
serum of rats, which approximated drug concentrations in the serum
of humans during intravenous penicillin therapy.8 Treated rats were
killed 12 h after the trough level of the last antibiotic dose, a time

at which no antibiotic was detectable in the serum anymore.
Euthanasia was performed in a 100% CO2 atmosphere. The cardiac
vegetations were dissected, weighed, homogenized in 1 mL of
saline, serially diluted and plated for viable colony counts. Colonies
growing on the plates were enumerated after 48 h of incubation at

378C. The dilution technique permitted detection of .2 log10 cfu/g
of tissue. Vegetations with negative cultures were given a value of
2 log10 cfu/g, the lower limit of detection, in subsequent calculations
for statistical analysis. Plating was done on both antibiotic-
containing and antibiotic-free agar to ascertain the stability of the

markers. Bacteria recovered from infected valves were retested
in vitro to assess the stability of both the phenotype and genotype
of the strains.

Statistical analysis

Median bacterial titres in the vegetations of penicillin-treated groups
were compared by the non-parametric Kruskal–Wallis test with
Dunn’s multiple comparison test. Differences were considered

significant when the P value was ,0.05.

Results

Identification and analysis of a ccpA homologue

in S. gordonii

A ccpA homologue was sought in the S. gordonii database avail-
able at The Institute for Genomic Research (http://www.tigr.org)
by comparison with previously published sequences16,27 and
PCR-amplified using primers ccpA_L5 and ccpA_R3. A 1005 bp
open reading frame was identified, encoding a 334 amino acid
protein showing 87% identity and 94% similarity to its S. pneu-
moniae homologue.28 Inspection of the region upstream of the
putative ATG start codon revealed candidates for the 235 and
210 promoter elements, as well as for the ribosome-binding site
(Figure 2). A region of dyad symmetry, representing a putative
transcription terminator, is present five bases after the TAA stop
codon. This indicates that the ccpA homologue is most probably
transcribed as a single messenger RNA. A Southern-blot
experiment using a 300 bp probe targeting the inner part of
ccpA synthesized using primers InsccpA 5 and InsccpA 3
revealed that a single copy of the gene was present in both WT
and Tol1 strains (Figure 3). Moreover, the exact same sequence
could be amplified from three other strains of S. gordonii
originating from different culture collections (CI, 3165, 7865),
thus indicating that the gene is well conserved. The ccpA
nucleotide sequence was submitted to the GenBank/EMBL/
DDBJ databases (accession number DQ157896).
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Inactivation of ccpA leads to loss of antibiotic tolerance

in vitro

A study describing an S. pneumoniae ccpA homologue—called
regM—showed that its inactivation using insertion-duplication
mutagenesis was unstable in vivo and resulted in a high rate of
reversion due to excision of the insert.28 Therefore, we chose to
inactivate ccpA using the PCR ligation mutagenesis technique23

based on omega recombination (see Materials and methods).
To assess the effect of the ccpA deletion on the in vitro

susceptibility to the antibiotic, we determined the MICs and
MBCs as well as the loss of viable counts after exposure of the
test bacteria to 2 mg/L (i.e. 500� the MIC) of penicillin G

(Table 3). The MICs of penicillin were not affected by the
ccpA inactivation or restitution. On the other hand, differential
results were obtained regarding drug-induced killing. First, the
parent strain lost 3.5 + 0.6 and 5.3 + 0.6 log10 cfu/mL in
viable counts in time–kill experiments after 24 and 48 h
of exposure, respectively, whereas the tolerant mutant lost
0.4 + 0.2 and 1.4 + 0.9 log10 cfu/mL at the same endpoints
(Table 3). Accordingly, the MBC/MIC ratios of penicillin
were �4 for the parent WT and .500 for the tolerant mutant
Tol1 (Table 3). This value confirms the tolerant phenotype
of the tolerant mutant, as defined by an MBC/MIC ratio .32
for tolerant bacteria.5 Second, although the inactivation of
ccpA did not affect the susceptibility to drug-induced killing

   1 AAAGAAATATTGTCAAAACCAATGTTAACAGCCTTATCGGCATATTGGCCTGCTACAAGC 
  61 ATTTTTTGGATTTCATCAGCAGACTTAATGAGTCGCATCCGTTGGATAAATGGTGTAAGG 
 121 TTTGTAAAGTCAGCCTGCTCAAAAACAGTTTTCAAACCGTGGTATTTAGTTAAAATTAAG 
 181 TTGTCAAATTCAACAGCCACAGTTTTAACCCCTTTGACTGGTAGGGAAGCCTTAATTTTG 
 241 TTCCAAGGGTTTTCAGAATCTACATAACCTACTACAGGAAAAGAAACGGTGCTAGAAGCA 
 301 CGCTCTACTTCTAAAGCGGGAACAAAAAGTAGAGGTTCTTGATTTGTGAAGACAAAGAGA 
 361 AACATTTGACGCTCATGAGGGTCGCTATAAAATCCGGTTAAATAATGAATAGTAACTGGA 
 421 TCTGAAATGATTGCAGCGTCTTTTTTCTCATTTTCAAGAAAATTACGAATTTGATTCAAT 
 481 TTTGTCATAATGAAACCTTCTTTCTATGCCTCTATTTTGGCAAAAAATGGCTAAAAAAGC 
                                    -35                    -10 
 541 AAGAGTTTTCAAATAAACTCATCAAAATGCTTGAAAGTGTTTCCAAGAAGTGATAAAATG
                                              RBS    ccpA
 601 TTCTTGGTAGGAATATGAAAACGTTATTTTCAACTTTAAGAAAGGAAGCAATATGAACAC 
                                                          M  N  T 
 661 AGACGATACAGTAACCATTTATGATGTCGCCCGTGAAGCAGGGGTTTCTATGGCGACAGT 
       D  D  T  V  T  I  Y  D  V  A  R  E  A  G  V  S  M  A  T  V 
 721 TAGTCGTGTAGTTAATGGAAACAAGAATGTAAAAGAAAACACTCGGAAAAAAGTTTTGGA 
       S  R  V  V  N  G  N  K  N  V  K  E  N  T  R  K  K  V  L  E 
 781 AGTAATTGATCGCCTTGATTATCGTCCAAATGCAGTAGCTCGTGGTTTGGCTAGCAAGAA 
       V  I  D  R  L  D  Y  R  P  N  A  V  A  R  G  L  A  S  K  K 
 841 GACTACGACAGTTGGTGTTGTGATTCCAAGTATTACAAATAGTTATTTCTCAACACTCGC 
       T  T  T  V  G  V  V  I  P  S  I  T  N  S  Y  F  S  T  L  A 
 901 CAAGGGAATTGATGATATTGCTGAGATGTATAAATACAATATCGTCCTAGCAAACAGCGA 
       K  G  I  D  D  I  A  E  M  Y  K  Y  N  I  V  L  A  N  S  D 
 961 TGAGGATGATGATAAGGAAGTTTCAGTTGTAAACACTCTCTTTTCGAAACAAGTAGATGG 
       E  D  D  D  K  E  V  S  V  V  N  T  L  F  S  K  Q  V  D  G 
1021 TATTATCTTTATGGGTTACCACCTTACTGAAAAGATTCGGTCAGAATTTTCACGCTCACG 
       I  I  F  M  G  Y  H  L  T  E  K  I  R  S  E  F  S  R  S  R 
1081 CACGCCAGTTGTCTTGGCTGGAACTATTGATGTGGAGCACCAATTGCCAAGTGTTAATAT 
       T  P  V  V  L  A  G  T  I  D  V  E  H  Q  L  P  S  V  N  I 
1141 AGATTATAAACAGGCTACAATTGATGCTATCACATTCCTTGCTAAGCGCAATAAAAAAAT 
       D  Y  K  Q  A  T  I  D  A  I  T  F  L  A  K  R  N  K  K  I 
1201 TGCTTTTGTGTGCGGACCTTTAGTTGATGATATCAATGGAAAAGTACGCTTATCCGGTTA 
       A  F  V  C  G  P  L  V  D  D  I  N  G  K  V  R  L  S  G  Y 
1261 TAAAACGGCTCTTAAGAGCAAAAAGCTGTCATACAGCGAAGGTCTTGTTTTTGAGTCTAA 
       K  T  A  L  K  S  K  K  L  S  Y  S  E  G  L  V  F  E  S  K 
1321 GTATGGCTATGATGATGGCTATAATTTAGCTGAACGAGTAATTGCTTCTAAAGCAACGGC 
       Y  G  Y  D  D  G  Y  N  L  A  E  R  V  I  A  S  K  A  T  A 
1381 TGCTTTTGTTACAGGTGATGAGCTGGCAGCTGGTCTTTTAAACGGACTAGCTGATTGCGG 
       A  F  V  T  G  D  E  L  A  A  G  L  L  N  G  L  A  D  C  G 
1441 AGTAAAAATTCCAGAGGATTTTGAAATTATTACTAGCGATGATTCACAAATATCTCGCTA 
       V  K  I  P  E  D  F  E  I  I  T  S  D  D  S  Q  I  S  R  Y 
1501 TACACGTCCAAATTTGTCGACTATAAGCCAGCCTTTATATGATTTAGGTGCTATTAGTAT 
       T  R  P  N  L  S  T  I  S  Q  P  L  Y  D  L  G  A  I  S  M 
1561 GCGTATGCTGACTAAAATTATGCACAAGGAAGAGTTGGAAGAACGTGAAGTTGTTCTATC 
       R  M  L  T  K  I  M  H  K  E  E  L  E  E  R  E  V  V  L  S 
                                               >>>>>>>>>     <<<<
1621 TCATGGTATTTACGAACGGAACTCAACTAGAAAATAAAAGATAAAGTCACCATTTGGTGG
       H  G  I  Y  E  R  N  S  T  R  K  . 
     <<<< 
1681 CTTTTTTGGTATGCAGTTTGAGGATACTTGTTGGAAAGAAAAGTCATAAGATTGAGTGAG 
1741 ACAGACTTGCTTTTGCCATTTAAAGTTTAATTTTTTTCTGCTTTCAGGTATAATAGTATT 
1801 TATGAAAGTTTTATTGTATTTAGAAGGAAAATCAGTGCTAGAAAAATCTGGTATTGGTCG 
1861 AGCTTTGCAACACCAAATGCATGCCTTGGACTTGGCTGGTATTCCGTATACGACAGATAT 
1921 TTTAGGTGATTATGATGTAGTCCATATTAATACTTATGGACCAAGAAGTTTGCTCCTCTT 
1981 ACATGCC 

Figure 2. Sequence analysis of the S. gordonii ccpA locus. The deduced amino acid sequence is given for ccpA. Putative 235 and 210 promoter elements,

as well as ribosome-binding site and transcription terminator, are underlined.
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in the WT, it almost fully restored kill-susceptibility in the toler-
ant mutant, as indicated by MBC/MIC ratios and viable losses
in time kill experiments (Table 3). Third, restitution of ccpA
restored kill-resistance in the tolerant mutant. Thus, ccpA
appeared a key element in the tolerant phenotype of Tol1
(Table 3).

Inactivation of ccpA leads to loss of penicillin tolerance

during treatment of experimental endocarditis

The impact of ccpA inactivation was tested in rats with exper-
imental endocarditis receiving penicillin therapy (Figure 4). The
four test organisms were equally able to infect damaged valves
as shown by similar bacterial densities in the vegetations at the
start of therapy (median log10 cfu/g: 7.20–7.81; P . 0.05
between groups). However, as for time–kill experiments, they
demonstrated different responses to therapy. First, the penicillin-
susceptible parent strain was successfully eradicated by penicil-
lin in most animals. Second, the tolerant mutant resulted in a
very significant number of treatment failures, thus confirming
the detrimental effect of tolerance on penicillin therapy.8 Third,

deletion of ccpA in the tolerant mutant restored penicillin
efficacy to the level of the susceptible strain, thus confirming the
loss of tolerance observed in vitro.

Finally, restitution of the bona fide ccpA gene in the DccpA
tolerant mutant restored treatment failure in animals, as pre-
dicted from test-tube experiments. Of note, in rats left untreated
throughout the experiment, no spontaneous bacterial clearance
was observed and densities were always higher than in untreated
controls sacrificed at the onset of penicillin therapy (data not
shown). Therefore, the critical impact of ccpA on tolerance was
also relevant in vivo.

Nucleotide sequence and analysis of ccpA expression

The converging results of both in vitro and in vivo experiments
point to an important role of CcpA in the survival mechanism of
S. gordonii to antibiotic treatment. The next logical step was to
determine whether a mutation in either the ccpA coding
sequence or promoter could be responsible for the tolerance
phenotype. The sequence of the ccpA open reading frame plus
an additional 400 nucleotides upstream of it was identical in
both the parent and the tolerant mutant (data not shown). Since
no differences were found in the ccpA gene and its putative
regulatory region, we assessed whether a difference could be
found in the transcription of ccpA between the parent and the
tolerant mutant, using quantitative determination of ccpA
mRNA. Culture samples of the WT and Tol1 were taken just
before penicillin addition and 10 min after antibiotic challenge.
The results failed to show a significant difference of ccpA
expression between WT and Tol1, either before or after
penicillin exposure.

Taken together, these results indicate that CcpA itself is not
the primary cause of kill-survival, but that it serves as a central
hub for as yet undetermined players involved in tolerance.

Discussion

Previous work in our laboratory indicated that multiple
exposures of S. gordonii to penicillin could select for spon-
taneous mutants that were tolerant to the drug.15 When such
mutants were generated separately from individual cultures,
6 out of 10 had a deregulation in the arc operon, indicating that
a majority of them shared some kind of common tolerance
mechanism. Since arc or arc mutations were not directly

WT

D X

3 kb
2.4 kb

Toll

D X

Figure 3. Southern-blot analysis using a digoxigenin-labelled probe

targeting the inner part of the ccpA gene showing the presence of one single

copy of the gene at the expected locus in both wild-type (WT) and Tol1.

Predicted band sizes were 2.39 and 2.95 kb for DraI and XbaI digestions,

respectively. D, DraI-digested chromosomal DNA; X, XbaI-digested

chromosomal DNA.

Table 3. MICs, MBCs and time–kill determinations of penicillin for the test strains

Penicillin susceptibility

Loss of viabilitya

(log10 cfu/mL)

Strain MIC (mg/L) MBC (mg/L) MBC/MIC ratio 24 h 48 h

WT 0.008 0.016 2 3.5 + 0.6 5.3 + 0.6

WTDccpA 0.004 0.016 4 3.3 + 0.5 5.6 + 0.5

Tol1 0.008 .4 .500 0.4 + 0.2 1.4 + 0.9

Tol1D ccpA 0.008 0.032 4 2.5 + 0.7 4.9 + 0.7

Tol1D ccpA (þ) 0.004 .4 .1000 0.9 + 0.2 1.8 + 0.8

aMean (+SD) of three independent experiments.
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responsible for tolerance,15 the deregulation of arc pointed
towards possible alterations in upstream regulatory systems, par-
ticularly CCR.16,18

The present results indicate that inactivating ccpA—a central
element of CCR (Figure 1)—in a representative tolerant mutant
of S. gordonii (Tol1) almost completely restored its suscepti-
bility to penicillin-induced killing both in vitro and in rats
with experimental endocarditis. Nevertheless, the experiments
disclosed that ccpA was unlikely to be the primary effector of
tolerance because it carried no mutations in its structural gene or
promoter region, and it was expressed similarly in the kill-
susceptible parent and the tolerant mutant during growth.

The CCR pathway regulates the expression of numerous
genes—including the arc operon—in response to the availability
of carbohydrates in the medium. In the reference Gram-positive
organism Bacillus subtilis, CCR modulates the expression of up
to 250 genes.29 The number of genes affected in streptococci is
unknown, but certainly involves numerous elements as well.
Thus, one or several genes implicated in CCR or regulated by it
could represent a final effector of tolerance in the Tol1 mutant.

Genes or gene products associated with tolerance in strepto-
cocci and staphylococci include the major autolysin LytA,30

PBP2b,31 the cell wall branching proteins MurM and MurN,32

the PsaA ABC transporter,33 the ZmpB metalloprotease,34 the
heat-shock protein ClpC,35 the ABC transporter, the signalling
peptide and two-component system locus vex123-pep27-vncRS,36

the autolysin LytB,37 the lysozyme LytC,38 the capsular
polysaccharide39 and the two-component system lytSR which
regulates the antiholins LrgAB and the CidAB holins.40,41 Some
of them are still debated.42 – 44 Detailing the effect of each of
these genes is beyond the scope of this discussion, but it is
noteworthy that the capsular polysaccharide has been shown to
contribute to tolerance in S. pneumoniae.39 In S. pneumoniae

D39, deletion of ccpA induced a down-regulation of the capsular
locus,28 whereas capsule production was unchanged in a ccpA
deletion mutant of S. pneumoniae TIGR4.25 Thus, the role of
ccpA in capsule production in streptococci is not clear. In
addition, S. gordonii appears to be an unencapsulated bacterium.
Furthermore, a link between antibiotic tolerance and carbo-
hydrate metabolism through the regulation of S. aureus cidABC
and lrgAB genes has recently been described.45 Thus, a normally
functioning ccpA could allow the expression of one or multiple
tolerance effector genes, whereas an altered ccpA could alter
their expression and restore kill-susceptibility. This model com-
plies with the observation described here.

It is the analysis of the upstream regulation of the arc operon
that led to ccpA, the integrity of which is indispensable for the
phenotypic expression of tolerance. Yet, in spite of an unaltered
and normally expressed ccpA gene in the tolerant mutant Tol1,
arc was indeed deregulated in this very same organism. This
suggests the existence of one or several mutations that must
affect directly or indirectly the expression of arc and maybe the
function (but not the expression) of ccpA as well. Identifying
such mutations is the object of ongoing experiments.

In summary, this study indicates that ccpA is important for
the phenotypic expression of tolerance in certain tolerant
mutants of S. gordonii arising spontaneously during penicillin
exposure. Our results indicate that the ccpA gene product is
likely to act indirectly by allowing the functional expression of
other effectors of tolerance. Importantly, down-modulation of
ccpA could restore kill-susceptibility of tolerant S. gordonii in
vitro and restore therapeutic efficacy of penicillin in vivo. It is
important to examine whether this is also true for tolerant
mutants of other species. Interestingly, it has recently been
shown that ccpA deletion induced a 4-fold reduction in oxacillin
resistance levels in a highly methicillin-resistant strain of
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Figure 4. Outcome of 2 days of penicillin (PEN) therapy of experimental endocarditis due to either S. gordonii wild-type (WT), its penicillin-tolerant

derivative (Tol1), the ccpA-deleted Tol1 (Tol1 DccpA) or its restored derivative [Tol1 DccpA (þ)]. Each dot above the bars at 2 log10 cfu/g represents the

bacterial density in the vegetation of a single animal. Dots under the bars represent sterile vegetations. Statistical differences were evaluated by the

non-parametric Kruskal–Wallis test with Dunn’s multiple comparison test. NS, not significant.
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S. aureus.46 Thus, CcpA must be a hub in the pathway of
drug-induced bacterial death and might represent a new target to
promote drug-induced killing of tolerant bacteria.
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