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Abstract

In this thesis, we develop tools to study the influence of predictors on multivariate
distributions. We tackle the issue of conditional dependence modeling using generalized
additive models, a natural extension of linear and generalized linear models allowing for
smooth functions of the covariates. Compared to existing methods, the framework that
we develop has two main advantages. First, it is completely flexible, in the sense that
the dependence structure can vary with an arbitrary set of covariates in a parametric,
nonparametric or semiparametric way. Second, it is both quick and numerically stable,
which means that it is suitable for exploratory data analysis and stepwise model
building. Starting from the bivariate case, we extend our framework to pair-copula
constructions, and open new possibilities for further applied and methodological work.
Our regression-like theory of the dependence, being built on conditional copulas and
generalized additive models, is at the same time theoretically sound and practically
useful.
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Chapter 1

Introduction

Because real-world statistical questions are seldom answered with univariate datasets,
modeling the joint behavior of random variables has novel and promising applications,
in line with topical questions and concerns from numerous fields: from social sciences
like psychology, economics, or finance, to natural sciences like climatology, biology
or robotics. Whether the goal is to describe the joint behavior of stocks in a port-
folio to quantify and manage its risk, or of numerous geological and environmental
characteristics to design a bridge or a damn, multivariate statistical tools are required.

Consider the following research questions:

• Cellular biologists study how predictor genes coordinate the expression of target
genes. Can we further quantify how the association between the targets depends
on the predictors?

• There are relationships between a population’s life expectancy and the country’s
GDP, as well as between male and female life expectancy in a given country. Can
we measure the e�ect of the GDP on the later while controlling for the former?

• The left/right and progressivism/conservatism political alignment of citizens in
a given country are often related. Can we produce a geographical map of the
strength of this e�ect, or further explain it using other demographic factors?

• Volatilities of intraday asset returns show periodicities due to the cyclical nature
of market activity and macroeconomic news releases. Is this also true for their
dependence structure?

To obtain a statistically sound answer, we need framework to model the joint distribution
of random variables conditionally on exogenous predictors (covariates).



2 Introduction

As an introducing example, consider the conditional correlation between the random
variables Y1 and Y2 given X, which is defined by

corr (Y1, Y2 | X) = E [{Y1 ≠ E (Y1 | X)} {Y2 ≠ E (Y2 | X)} | X]
1
E

Ë
{Y1 ≠ E (Y1 | X)}2 | X

È
E

Ë
{Y2 ≠ E (Y2 | X)}2 | X

È21/2

For instance, when Y1 = A+BX and Y2 = C +DX where A, B, C, D are independently
distributed random variables, then

corr (Y1, Y2 | X) = cov (A, C) + {cov (A, D) + cov (B, C)} X + cov (B, D) X2
S

U
Ó
var (A) + 2 cov (A, B) X + var (B) X2

Ô

·
Ó
var (C) + 2 cov (C, D) X + var (D) X2

Ô
T

V
1/2

.

Furthermore, if A, B, C, D have equal variance and correlation fl, we have that

corr (Y1, Y2 | X) = fl (1 + X)2

(1 + 2 flX + X2) .

In this example, it is clear that the conditional correlation depends on the value of the
conditioning variable explicitly. Hence, it is in general not equal to the so-called partial
correlation. However, while the statistical literature abounds with models allowing the
description of covariates e�ects on the behavior of a single random variable, letting the
dependence structure itself be a function of exogenous predictors has only been recently
explored. As often in statistics, it is useful to distinguish between distribution-free and
parametric methods. In Gijbels et al. (2011), the authors suggest two kernel-based
estimators of conditional copulas and corresponding conditional association measures.
While useful as descriptive statistics, their estimators are limited to a single predictor,
and they do not suggest a way of testing for covariates e�ects1. On the parametric side,
Acar et al. (2011) consider a copula parameter that varies with a single covariate. The
authors estimate their model using the concept of local likelihood, and they further
suggest a testing framework in Acar et al. (2013). In Craiu and Sabeti (2012), the
authors develop Bayesian inference tools for a bivariate copula, conditional on a single
covariate, coupling mixed or continuous outcomes. It is extended to multiple covariates
in the continuous case by Sabeti et al. (2014).

1Altough, at the time of writing, a paper of the same authors on the subject is in preparation.



1.1 From Sklar to Patton 3

In this thesis, we tackle the issue of conditional dependence modeling using gen-
eralized additive models (Hastie and Tibshirani 1986), a natural extension of linear
and generalized linear models. Built on roughness penalty smoothing, a generalized
additive model (GAM) is a flexible data analysis tool in a traditionally univariate
context. Compared to existing methods, the framework that we develop benefits
directly from the complete GAM toolbox, which has two main advantages. First, it is
completely flexible, meaning that the dependence structure varies with an arbitrary
set of covariates in a parametric, nonparametric or semiparametric way. Second, it is
very fast and numerically stable, which means that it is suitable for exploratory data
analysis and stepwise model building.

1.1 From Sklar to Patton

Before introducing copulas, we start by discussing how we can characterize the joint
behavior of random variables. In this context, it is useful to distinguish between
two closely related concepts, namely dependence and concordance. Loosely speaking,
a dependence measure relates to any functional characteristic expressing how close
the joint distribution is to the product of the margins. As for the concordance, it
measures the degree of agreement between positive and negative comovements. For
instance, consider two random variables X1 and X2. Provided that it exists, Pearson’s
correlation, namely

corr (X1, X2) = cov (X1, X2)Ò
var (X1)

Ò
var (X2)

,

is often used as a measure of concordance and its absolute value as a measure of
dependence. It detects linear relationships between variables, but it has three drawbacks:
it lacks robustness to outliers, it does not always exists (see Embrechts et al. 2002),
and it depends on the marginal distribution of each random variable. While the
first issue can be alleviated using robust methods, the second and third are arguably
more fundamental. In essence, the last two drawbacks teach us that the moments
of a distribution are not always appropriate to describe the joint behavior of the
underlying random variables. For instance, assume that X1 and X2 both follow a
Gaussian distribution, which means that Y1 = exp (X1) and Y2 = exp (X2) each have
a log-normal distribution. Then if X1 and X2 have zero mean, the same variance ‡2,



4 Introduction

≠1 ≠0.5 0 0.5 1
≠1

≠0.5

0

0.5

1

fl

C
or

r(
Y

1

,Y
2

)

‡

2 = 0.1
‡

2 = 1
‡

2 = 10

Fig. 1.1 Correlation between log-normal random variables: a function of the
correlation between the underlying Gaussian random variables.

and corr (X1, X2) = fl, we have that

corr (Y1, Y2) = exp (fl‡2) ≠ 1
exp (‡2) ≠ 1 ,

which is shown in Figure 1.1. Another issue related to the dependence on the margins
is the range of attainable correlation. Let Y1 and Y2 be comonotonic (respectively
countermonotonic) if

(Y1, Y2) d= (T1(X), T2(X)) ,

where X is another random variable, T1 and T2 are increasing (respectively decreasing)
transformations and d= the equality in distribution. Considering two log-normal random
variables, comonotonicity obtains for instance when Y1 = exp (X) and Y2 = exp (‡X)
with X ≥ N(0, 1), which means that the maximal attainable correlation is

flmax = corr (Y1, Y2) = exp(‡) ≠ 1
Ò

(e ≠ 1) {exp(‡2) ≠ 1}
.

Equivalently, countermonotonicity obtains when Y2 = exp (≠‡X), which means that
the minimal attainable correlations is

flmin = corr (Y1, Y2) = exp(≠‡) ≠ 1
Ò

(e ≠ 1)(exp(‡2) ≠ 1)
.

Both are shown in Figure 1.2, where one can observe that the complete [≠1, 1] interval
cannot be attained.
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Fig. 1.2 Correlation between comonotonic (flmax) and countermonotonic (flmin)
log-normal random variables: attainable correlation range, which does not span
the complete [≠1, 1] interval.

Borrowing from Nelsen (1999), two desirable properties of a dependence (respectively
concordance) measure are:

• invariance to monotone increasing transformations of the margins (respectively
up to a sign change if one of the transformations is monotone decreasing);

• the existence and uniqueness of a minimum (respectively a zero), which is attained
whenever the variables are independent.

For two random variables X1 and X2, Spearman’s rho and Kendall’s tau, denoted by
fl (X1, X2) and · (X1, X2) are rank correlation coe�cients which satisfy the properties
above for a concordance measure (or a dependence measure for their absolute value):

• fl (X1, X2) is simply the Pearson’s correlation between the transformed variables
F1 (X1) and F2 (X2), where F1 and F2 are the marginal distributions,

• and · (X1, X2) is the di�erence between probability of concordance and discor-
dance, namely

P
Ó1

X1 ≠ ÊX1
2 1

X2 ≠ ÊX2
2

> 0
Ô

≠ P
Ó1

X1 ≠ ÊX1
2 1

X2 ≠ ÊX2
2

< 0
Ô

,

where ÊX1 and ÊX2 are independent copies following the same distribution than
(X1, X2).

For instance, when X1 ≥ Exp (1) and X2 = ≠ log (X1), countermonotonicity obtains
and fl (X1, X2) = · (X1, X2) = ≠1, but corr (X1, X2) = ≠

Ô
6/fi.

Note that copulas and dependence measures are closely related (see Joe 1997;
Nelsen 1999 for textbook treatments). In fact, while the etymology of “copula” is bond
or tie in latin, its main statistical raison d’etre is to glue together random variables
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with arbitrary margins in a joint model. Mathematically, a copula is a multivariate
distribution which is supported on the unit hypercube and has uniform margins. As
for the main theoretical justification of copula-based modeling, it lies in the following
theorem:

Theorem 1.1.1 (Sklar’s Theorem 1959). Let X = (X1, . . . , X
d

) be a random vector
such that the marginal distribution of X

i

is F
i

. F is a joint distribution with margins
F

i

for i œ {1, · · · , d} if and only if there exists a copula C such that

F (x1, . . . , x
d

) = C {F1(x1), . . . , F
d

(x
d

)} (1.1)

for all x œ Rd. Moreover, if the margins of F are continuous, then C is unique.

Note that, for all u œ [0, 1]d, the theorem implies that

C (u1, . . . , u
d

) = F
Ó
F ≠1

1 (u1), . . . , Y
d

Æ F ≠1
d

(u
d

)
Ô

= P
Ó
X1 Æ F ≠1

1 (u1), . . . , X
d

Æ F ≠1
d

(u
N

)
Ô

= P {F1(X1) Æ u
d

, . . . , F
d

(X
d

) Æ u
d

}
= P (U1 Æ u1, . . . , U

d

Æ u
d

) ,

where U = (U1, · · · , U
d

) is a random vector such that U
i

= F
i

(X
i

). In other words, the
copula C is also the joint distribution of probability integral transforms. Furthermore,
the first equality suggests a way of constructing the so-called implicit copulas from
known multivariate distributions. For instance, if we consider � (·; �) the multivariate
Gaussian distribution with correlation matrix � and � the standard Normal distribution,
then we obtain the Gaussian copula by writing

C(u1, . . . , u
d

) = �
Ó
�≠1(u1), . . . , �≠1(u

d

); �
Ô

.

Furthermore, with t (·; �, ‹) the multivariate Student’s t distribution with correlation
matrix � and degrees of freedom ‹, and t (·; ‹) the Student’s t distribution with degrees
of freedom ‹, then we obtain the Student’s t copula by writing

C(u1, . . . , u
d

) = t
Ó
t≠1 (u1; ‹) , . . . , t≠1 (u

d

; ‹) ; �, ‹
Ô

.

Alternatively, one can build the so-called explicit copulas by considering distribution
supported in the unit hypercube directly. For instance, Archimedean copulas are built
by considering a continuous and nonincreasing d-monotone (see McNeil and Neölehová
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Name Generator „ Inverse generator „

≠1 Parameter space �
Clayton (u≠◊ ≠ 1)/◊ (1 + ◊u)≠1/◊ (0, Œ)
Gumbel {≠ log(u)}◊ exp

!
≠u

1/◊
"

[1, Œ)
Frank ≠ log

Ó
exp(≠◊u)≠1

exp(≠◊)≠1

Ô
≠ 1

◊ log [1 + exp (≠t) {exp (≠◊) ≠ 1}] (≠Œ, Œ) \ {0}
Joe ≠ log

)
1 ≠ (1 ≠ u)◊

*
1 ≠ {1 ≠ exp(≠u)}1/◊ [1, Œ)

Independence ≠ log(u) exp(≠u)
Table 1.1 Archimedean copulas: generator, inverse generator and parameter space.

2009) generator „ : [0, 1] ◊ � æ [0, Œ) such that „(1; ◊) = 0 for all ◊ œ �, where �
represents the parameter space. Using this generator, the copula is obtained by writing

C(u1, . . . , u
d

) = „≠1 {„ (u1; ◊) + · · · + (u
d

; ◊) ; ◊} ,

and we summarize the most popular in Table 1.1.
Note that the first of the two desirable properties of a dependence measure, namely

invariance to monotone increasing transformations of the margins, essentially states
that such a measure should depend on the copula only. For instance, if C is the copula
of the two random variables X1 and X2, then their Kendall’s tau is

· (X1, X2) = 4
⁄ 1

0

⁄ 1

0
C (u1, u2) dC (u1, u2) ≠ 1,

and their Spearman’s rho can be written as

fl (X1, X2) = 12
⁄ 1

0

⁄ 1

0
u1 u2 dC (u1, u2) ≠ 3

= 12
⁄ 1

0

⁄ 1

0
C (u1, u2) du1 du2 ≠ 3.

Furthermore, in many cases, there is a simple mapping between the copula parameter
and the dependence measure. For instance, if C is the Clayton copula, then we have
that · = ◊/(◊ + 2), similarly, for the Gumbel copula, then · = 1 ≠ 1/◊. As for the
Gaussian copula (and all elliptical copulas such as the Student’s t) with correlation
parameter ◊, then we have that · = 2 sin≠1 (◊) /fi.

While Sklar’s theorem suggests a way of building copulas from known multivariate
distributions, the opposite implication is arguably more useful in practice. Taking
partial derivatives on both sides of (1.1) (provided that they exist), we have that

f(x1, . . . , x
d

) = c {F1(x1), . . . , F
d

(x
d

)}
dŸ

i=1
f

i

(x
i

), (1.2)
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(d) Gumbel copula

Fig. 1.3 Gaussian margins: density contours with di�erent copulas.
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0

2
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0

2

(c) Clayton copula

≠2 0 2
≠2

0

2

(d) Gumbel copula

Fig. 1.4 Student’s t margins: density contours with di�erent copulas.

where f
i

are the marginal densities and c = ˆdC/ˆu1 · · · ˆu
d

is the so-called copula
density. For instance, Figure 1.3 shows bivariate densities obtained using standard
Normal margins and di�erent copulas with a parameter chosen such that · = 0.5 (and
four degrees of freedom for the Student’s t). Alternatively, using Student’s t margins
with four degrees of freedom, we can build bivariate distributions with di�erent margins
but the same dependence structure, as we show in Figure 1.4.

Equation (1.2) also has important implications for inference. Because the right-
hand side is a product, the joint log-likelihood can be written as a sum between the
log-likelihood of each margin and the log-likelihood of the copula. This fact can be
conveniently exploited in a two-step procedure

1. Estimate each of the margins separately to obtain ‚F
i

for i œ {1, . . . , d}.

2. Take the probability integral transform of the data using those margins to estimate
the copula.

When parametric models are available for the margins, the asymptotics of such an
approach are easily obtained. When this is not the case, Genest et al. (1995) investigate
an alternative two-step approach, where the margins are nonparametrically estimated
in the first step. The authors show that this semiparametric procedure is consistent
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and asymptotically normal. While conditions for its semiparametric e�ciency are given
in Genest and Werker (2002), authors also argue that, except for the Gaussian copula,
these requirements are seldom met. In Chen et al. (2006), a sieve maximum-likelihood
estimator is shown to be semiparametrically e�cient for both the copula parameter and
unknown margins. The authors further argue that prior restrictions on the margins
are easily incorporated, studying notably when some but not all are parametric.

Although the conditional correlation is useful as an introducing example, it su�ers
from the same issues discussed in the unconditional case. As such, to appropriately
describe conditional dependence structures, measures that are invariant with respect
to the monotonic transformations of the conditional margins are desirable. However,
while copulas have been studied for more than fifty years, their formal extensions
to conditional distributions have younger origins. To the best of our knowledge,
it is Patton (2002) who first extended the standard theory by imposing a mutual
conditioning algebra for each margin and the copula. Using the concept of conditional
copula, namely a conditional distribution which is supported in the unit hypercube
and has uniform conditional margins, Patton (2002)’s main theoretical contribution
lies in the following theorem:

Theorem 1.1.2 (Patton’s Theorem 2002). Let Y = (Y1, . . . , Y
d

) and X = (X1, . . . , X
q

)
be two random vectors such that the conditional marginal distribution of Y

i

| X is F
Y

i

|X

and F
X

is the distribution of X. For all x œ Rq, F is a joint conditional distribution
with conditional margins F

Y

i

|X for i œ {1, · · · , d} if and only if there exists a conditional
copula C such that

F (y1, . . . , y
d

| x) = C
Ó
F

Y1|X (y1 | x) , . . . , F
Y

d

|X (y
d

| x) | x
Ô

(1.3)

for all y œ Rd. Moreover, if the conditional margins and F are continuous, then C(· | x)
is unique.

Similarly as in the conditional case, C is the joint distribution of U = (U1, · · · , U
d

),
where U is a random vector such that U

i

= F
Y

i

|X (Y
i

| X), namely the conditional prob-
ability integral transforms. Taking partial derivatives with respect to the conditioned
vector on both sides of (1.3) and provided that they exist, we also have that

f(y1, . . . , y
d

| x) = c
Ó
F

Y1|X (y1 | x) , . . . , F
Y

d

|X (y
d

| x)
Ô dŸ

i=1
f

Y1|X (y1 | x) , (1.4)
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where f
Y1|X are the conditional margins and c the conditional copula density. As with

(1.2), the product in the right-hand side of (1.4) means that a two-step procedure can
be conveniently exploited.

1.2 The Epithelial to Mesenchymal Transition
Based on this theory, we can answer the first research question from the beginning of
this chapter, in the context of breast cancer research. In this Section, we study how
predictor genes coordinate the expression of target genes involved in the epithelial to
mesenchymal transition (EMT).

Epithelial cells are essential components of every organ, including the mouth,
lungs, stomach, liver, pancreas, prostate, mammary ducts, etc. They are organized in
layers and are interconnected through cohesive interactions and to the surrounding
environment through adhesive interactions. While mesenchymal cells are mobile and
can migrate easily, normal epithelial cells require their surrounding neighborhood to
stay alive and quiescent. In this context, EMT is a process by which epithelial cells lose
their adhesive and cohesive properties and gain mesenchymal ones. When a tumor cell
results from a normal epithelial tissue and undergoes EMT, it gains invasive properties
by acquiring mesenchymal traits: it can enter the bloodstream, colonize other tissues
and form secondary tumors and metastases.

To better understand EMT, we model the interplay of two transcription factors:
SNAI1 and ZEB2, which primarily down-regulate the expression of cell-cohesion proteins
and up-regulate migration proteins (see Lamouille et al. 2014 for a recent review). In
this context, proteins such as HGF, PDGF-R, FOXC2 and FOXM1 (the predictors)
activate complex signaling pathways in cells, leading to the expression of SNAI1 and
ZEB2 (the targets). For a better understanding, we summarize the process in Figure
1.5.

HGF, PDGF-R, FOXC2

and FOXM1 increased

SNAI1 and

ZEB2 increased

cell-cohesion proteins down-regulated,

migration proteins up-regulated
EMT

Fig. 1.5 The epithelial to mesenchymal transition: a schematic representation of
the biological process.

Using Patton’s theorem, we can quantify how the dependence structure between
the targets varies as a function of the predictors. We perform the analysis in two steps.
First, we fit a linear model on each individual target using all predictors. Second,
we model the dependence structure between the univariate residuals by including the
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e�ects of the predictors. To this end, we use a full RNA expression (standardized
continuous variables) dataset consisting of 516 primary tumors (first studied in Network
and Others 20122).

In Table 1.2, we present the results of two univariate (linear) models, using HGF,
PDGF-R, FOXC2 and FOXM1 as predictors for both SNAI1 and ZEB2. The e�ects of
the predictors are all positive and highly significant, except FOXM1 on ZEB2.

N = 522 SNAI1 ZEB2
Estimate Std. Error p-value Estimate Std. Error p-value

(Intercept) 9.59E-02 3.59E-02 7.85E-03 5.04E-02 2.61E-02 5.39E-02
HGF 1.36E-01 5.93E-02 2.21E-02 3.90E-01 4.30E-02 2.59E-18

PDGFR 3.64E-01 7.46E-02 1.42E-06 4.02E-01 5.41E-02 4.90E-13
FOXC2 2.54E-01 6.17E-02 4.57E-05 1.50E-01 4.48E-02 8.49E-04
FOXM1 2.68E-01 3.82E-02 7.07E-12 3.85E-02 2.77E-02 1.66E-01

Table 1.2 EMT univariate results: linear models with all predictors.

In order to describe the dependence structure, note that the correlation between
the predictors equals 0.40 (p < 10≠16). Note that the p-value is computed using the
test statistic

Ô
df ‚r/

Ô
1 ≠ ‚r2 which follows a Student’s t-distribution with df degrees of

freedom, where N is the sample of size, ‚r the usual estimator, and df = N ≠2. While the
residual correlation decreases to 0.37 (p < 10≠16), it is still highly significant. However,
the informativeness di�erence between the partial correlation and our approach is
similar to the di�erence between a correlation coe�cient and a complete regression
analysis. Hence we fit di�erent parametric copulas and we find that the Gaussian
copula is the most appropriate, according to the AIC.

We then let Kendall’s tau depend on a vector of predictors, say x, using

·(x) = g
1
x€—

2
,

where — is a vector of parameters and g(x) = (ex ≠ 1)/(ex + 1) is a link to contrain ·(x)
in [≠1, 1]. In Table 1.3, we show the log-likelihood and AIC for five di�erent models.
Using likelihood-ratio statistics, we find that only HGF and PDGF-R have a significant
e�ect (p < 0.01). Furthermore, when including both significant predictors, the AIC
is the smallest. However, testing HGF+PDGF-R against HGF only does not provide
significant evidence in favor of a more complex model (p = 0.079). Although this can be
explained by a relatively high correlation between the two predictors, multicollinearity
does not reduce the reliability of the model as a whole.

2 tcga-data.nci.nih.gov/docs/publications/brca_2012: The dataset originally contains
522 primary tumors. Although it seldom happens, breast cancer also a�ects males and we remove
those in the sample to avoid a potential confounding factor.

tcga-data.nci.nih.gov/docs/publications/brca_2012


12 Introduction

HGF PDGFRB FOXC2 FOXM1 HGF+PDGFRB
logL 37.81 37.55 41.12 41.18 42.66
AIC ≠71.59 ≠71.08 ≠78.22 ≠78.35 ≠79.28

Table 1.3 EMT bivariate results: log-likelihood and AIC values for di�erent models
for the Kendall’s tau between SNAI1 and ZEB2.

In Figure 1.6, we show the results for the univariate models along with the depen-
dence structure, in terms of linear correlation (which makes sense because we consider
a linear model and a Gaussian copula). In each rightmost panel, we present a null
model with constant correlation, the dependence as a function of the predictor and the
95% confidence intervals. As expected, confidence intervals become larger for values
farther away from the mean predictor’s expression (i.e., zero). Furthermore, the null
model with constant correlation is always in the interval for non-significant predictors
(FOXC2 and FOXM1).

The fact that complex signaling networks coordinate the expression and function
of SNAI1 and ZEB2 and promote their interplay is not new (Peinado et al. 2007).
However, our analysis quantifies the correlation increase between their expression,
depending on the expression of HGF or PDGF-R. Our findings strongly support the
conclusion that those predictors are inducers of EMT via activation of transcription
factors SNAI1 and ZEB2.

1.3 Thesis Outline

In Chapter 2, we develop a generalized additive modeling framework for taking into
account the e�ect of predictors on the dependence structure between two variables. We
propose a maximum penalized log-likelihood estimator, derive its root-n-consistency
and asymptotic normality, discuss details of the estimation procedure and the selection
of the smoothing parameter. Finally, we present the results from a simulation study
and apply the new methodology to a real dataset. In the application, we study the
dependence structure of intraday asset returns. We show that the intraday dependence
pattern, due to the cyclical nature of market activity, is shaped similarly to the
conditional second moment.

In Chapter 3, we use generalized additive models to extend pair-copulas construc-
tions (PCCs), namely flexible models that represent the distribution of a random vector
as a cascade of bivariate copulas. We work specifically in two directions: the inclusion
of exogenous variables and the relaxation of the so-called simplifying assumption. To
model the e�ect of exogenous variables on a PCC, we let each pair-copula parameter
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SNAI1 linear model

HGF gene expression
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Fig. 1.6 EMT results for HGF, PDGF-R, FOXC2 and FOXM1. Left and
middle panels: univariate marginal models; Right panel: dependence structure with
constant dependence (plain line), the dependence as a function of the predictor (dashed
line) and the 95 % confidence intervals (dotted lines). Note that, because we used
a linear model and the Gaussian copula, the dependence structure is appropriately
represented by Pearson’s correlation.
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depend directly on the exogenous variables in a parametric, semiparametric or nonpara-
metric way. Furthermore, to relax the simplifying assumption, we let each pair-copula
parameter depend on the set of conditioning variables implied by the PCC structure.
We propose a sequential estimation method that we study with simulations. Finally, we
apply our method to two data sets. First, we extend our analysis of the time-varying
dependence structure between the intraday returns on foreign exchange rates to the
three dimensional case. Second, we model the seven-dimensional distribution of an
uranium exploration dataset.

In Chapter 4, we describe in details our implementation, which is freely available
as the R (R Core Team 2013) package gamCopula at https://github.com/tvatter/
gamCopula. In Chapter 5, we conclude and discuss directions of future research.

https://github.com/tvatter/gamCopula
https://github.com/tvatter/gamCopula


Chapter 2

Generalized Additive Models for
Conditional Dependence Measures

In this Chapter, we develop the main theory of the thesis, that is our framework for
taking into account the e�ect of predictors on the dependence structure between two
variables. The structure of the Chapter is as follows: In Section 2.1, we provide a gentle
introduction to generalized additive models and the roughness penalty approach. In
Section 2.2, we develop the theoretical framework of generalized additive models for the
dependence structure. We present the general model for the conditional dependence
or concordance measure in Section 2.2.1. In Section 2.2.2, we state some asymptotic
properties of the penalized log-likelihood estimator, namely its

Ô
n-consistency and

asymptotic normality, assuming either known or unknown margins. In Section 2.2.3,
we recast the penalized likelihood estimation as an iteratively reweighted generalized
ridge regression. We close our theoretical considerations in Section 2.2.4, by discussing
a measure of the penalized model’s e�ective dimension and the selection of smoothing
parameters. In Section 2.3, we present a simulation study and an application using a
real dataset. We analyze the results of the simulation study in Section 2.3.1. We study
the cross-sectional dynamics of intraday asset returns in Section 2.3.2. We conclude
and suggest directions for further work in Section 2.4.

To set up the notations, we use uppercase (boldface) letters for scalar random
variables (random vectors and matrices) and lowercase (boldface) letters for scalars
(vectors and matrices). We di�erentiate scalar functions with identical names by their
arguments, and similarly for boldfaced vectors and matrices functions. We use vectors
columns, Î · Î2 for the Euclidean norm, subscripts for the elements of a given matrix or
vector and superscripts for either independent copies of a random quantity or realized
observations. We denote real intervals (or Cartesian products thereof) by double-struck
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capital letters, except for the usual N, Z, R, etc. For k, l œ N and W ™ Rl, we use
Ck(W) for the space of functions with k continuous (partial) derivatives on the interior
of W.

2.1 Generalized Additive Models
To model the distribution of Y given X, it is often useful to start by assuming that the
conditional mean of the response variable is a linear function of the predictor, that is

Y = —1 + —2X + Z

where — = (—1, —2)€ œ R2 and Z is a zero-mean random variable. When facing a
real dataset of n observations {x

j

, y
j

}n

j=1, a common method to estimate the model’s
two parameters by minimizing the residual sum of squares. We define this so-called
ordinary least-squares (OLS) estimator as

‚
— = argmin

— œ R2

nÿ

j=1
(y

i

≠ —1 ≠ —2 x
i

)2 = argmin
— œ R2

Îy ≠ x—Î2 =
1
x€x

2≠1
x€y,

where Î·Î denotes the L2 norm, y = (y1, · · · , y
n

)€ and x = ( 1 ··· 1
x1 ··· x

n

)€. The second

x1

x2

y

y ≠ ‚
—

€x

‚
—

€x

Fig. 2.1 The ordinary least-squares: a projection on the linear span of the predictors.

equality illustrates the fact that the OLS estimator can be viewed as a projection on
the linear span of the predictors (see Figure 2.1 for a graphical example when n = 3).

While the linear relationship between the response and the predictor is a useful
starting point, consider the data in Figure 2.2, which shows measurements of head
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acceleration in a simulated motorcycle accident, used to test crash helmets (see Silver-
man 1985). As is often the case with real data, the linearity assumption is clearly not
satisfied. In this case, a more complex model is required to capture the underlying
features.

0 5 10 15 20 25 30 35 40 45 50 55 60

≠100

≠50

0

50

Time (ms)

A
cc

el
er

at
io

n
(g

)

data
linear fit

Fig. 2.2 Data from a simulated motorcycle accident: the linearity assumption
is seldom verified in real datasets.

A natural extension of the linear framework is obtained by only assuming that the
conditional mean of the response variable is a smooth function of the predictor, that is

Y = f(X) + Z, (2.1)

where f œ F ™ Cl for some l Ø 1 and Z is as before. Expending on the OLS ideas to
estimate f , we start by choosing a basis of (or a close approximation of) F using the
predictor(s). Then, by projecting the response variable on this appropriately chosen
basis, a linear model obtains.
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2.1.1 Basis Decompositions

Consider a collection of m basis functions b
k

œ F for k œ {1, · · · , m}, then we can
write

f(X) =
mÿ

k=1
—

k

b
k

(X), (2.2)

where —
k

œ R for k œ {1, · · · , m} are the parameters. Although the linearity assumption
between the response and the predictor is relaxed, plugging (2.2) into (2.1) still defines a
linear model, whose parameters can be obtained using the OLS estimator by rewritting
the model matrix as

x =

Q

ccca

b1(x1) · · · b
m

(x1)
... . . . ...

b1(xn

) · · · b
m

(x
n

)

R

dddb .

For instance, a polynomial basis can be constructed by using b
k

(x) = xk≠1 for all x œ R.
While they are useful when considering the behavior of a function in the vicinity of
a single point, they tend to perform badly when the whole domain is of interest. In
this context, spline bases are usually preferred because of their appealing numerical
properties1. Simply put, a spline is a piecewise polynomial that is constructed by
dividing the domain of interest using a set of specified points, called knots. More
specifically, a spline of order r has continuous derivatives up to order r ≠ 1 on its
domain.

As an example, let us consider cubic splines, namely piecewise cubic polynomial
with continous first and second derivatives. Without loss of generality, we assume that
the domain is [0, 1], and that the knots are 0 = s0 Æ s1 Æ · · · Æ s

m≠1 = 1. Following
Wood (2006), a basis is obtained by setting b1(x) = 1, b2(x) = x and b

j+2(x) = R(x, s
j

)
for j œ {1, · · · , m ≠ 2}, where

R(x, z) =
Ó
(z ≠ 1/2)2 ≠ 1/12

Ô Ó
(x ≠ 1/2)2 ≠ 1/12

Ô
(2.3)

≠
Ó
(|x ≠ z| ≠ 1/2)4 ≠ 1/2 (|x ≠ z| ≠ 1/2)2 + 7/240

Ô
/24. (2.4)

For instance, {b1(x), · · · , b5(x)} with b1(x) = 1, b2(x) = x, b3(x) = R(x, 1/6), b4(x) =
R(x, 3/6) and b5(x) = R(x, 5/6) form a basis for cubic splines on [0, 1] with three

1For instance, as an interpolant, the spline approximation error can often be made arbitrarily small
using only low-degree polynomials, thus avoiding Runge’s phenomenon (see de Boor 2001, Chapter 2
page 22, and Chapter 4 page 41).
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Fig. 2.3 Cubic splines on [0, 1] with interior knots {1/6, 3/6, 5/6}: b3(x) =
R(x, 1/6), b4(x) = R(x, 3/6) and b5(x) = R(x, 5/6), where R(x, z) is defined by (2.3).

interior knots {1/6, 3/6, 5/6}, and we show the last three basis functions in Figure 2.3.
To fit such a model, we can simply replace row j of the model matrix by

(1, x
j

, R(x
j

, s1), · · · , R(x
j

, s
m≠1)) ,

and use the OLS estimator. As an example, let us consider the data from Figure 2.2
again. In Figure 2.4, we show the resulting fits obtained using evenly spaced knots.
As we observe, the basis choice has a strong influence on the quality of the fit: if the
number of interior knots is too small, then some features are missed, whereas if it is too
large, overfitting becomes more likely. Because of the linear setup, traditional model
selection tools can readily be applied. However, since the knots are evenly spaced, the
di�erent models are not nested, which makes their comparison harder.

2.1.2 The Roughness Penalty Approach

To deal with this issue, an appealing alternative consists in setting a basis larger than
necessary while controlling the smoothness by adding a wiggliness penalty. Note that
the smoothness discussed here does not correspond to the classical definition from
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Fig. 2.4 The simulated motorcycle accident: cubic spline fits with di�erent bases.

mathematical analysis2: it is a rather loosely defined concept that may depend on
the problem at hand. In statistics, a function is often said smooth when belonging to
C2, because discontinuities in the third derivative are di�cult (if not impossible) to
spot visually. However, as outlined in the example above, not all functions are equally
smooth, and various measures of wigglinness can be defined as operators acting on a
function’s second derivative. Having a wigglinness of zero, a constant or linear function
is then completely smooth in this sense. An especially useful penalty is the integrated
squared second derivatives, that is

⁄

F
f ÕÕ(x)2 dx.

While this is a global penalty and one may wish to penalize more locally the second
derivative, the computational benefits of the quadratic form as a penalty are di�cult
to match. For instance, one can easily show that ‚f , defined as

‚f = argmin
f œ C2 (F)

Îy ≠ x—Î2 + ⁄
⁄

F
f ÕÕ(x)2 dx,

2In mathematical analysis, the space of smooth functions is CŒ, that is the space of infinitely
di�erentiable functions.
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with ⁄ a smoothing parameter, is a natural cubic spline, that is a cubic spline with
second derivatives equaling zero at the boundary knots (see e.g., Green and Silverman
2000). Furthermore, for a basis that possesses at least two derivatives integrable on F ,
we have that

⁄

F
f ÕÕ(x)2 dx = —

€s—,

where s depends only on the basis choice. With the cubic spline basis described above,
then s

i+2, j+2 = R(s
i

, s
j

) for 1 Æ i, j Æ m ≠ 2 and zero otherwise. Finally, using this
quadratic form, the penalized OLS estimator admits an analytic solution, since

‚
— = argmin

— œ R2
Îy ≠ x—Î2 + ⁄—

€s— =
1
x€x + ⁄s

2≠1
x€y.

Using the simulated motorcycle accident data again, we can observe the e�ect of the
smoothing parameter on the penalized OLS estimator resulting from the basis with 27
interior knots: when the ⁄ æ 0, we obtain the wiggly solution we obseved in Figure
2.4, and when ⁄ æ Œ, the linear OLS estimator.
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Fig. 2.5 The simulated motorcycle accident: penalized cubic spline fits with 27
interior knots and di�erent smoothing parameters.
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2.1.3 Smoothing Parameter Selection

As observed in the preceding example, the smoothing parameter has a big influence
on the resulting curve estimate. If ⁄ is too small (respectively large), then the data is
undersmoothed (respectively oversmoothed). In order to choose the right amount of
smoothing, it is convenient to define a measure of the model’s penalized dimensionality.
Let h(⁄) be the so-called influence or hat matrix, defined such that ‚y = h(⁄)y, that is
the matrix which yields the predicted response when premultiplying the observations:

h(⁄) = x
1
x€x + ⁄s

2≠1
x€.

We can now define the equivalent (or e�ective) degrees of freedom (see e.g., Green and
Silverman 2000; Hastie and Tibshirani 1990) as the hat matrix’s trace, that is

EDF (⁄) = Tr
;

x
1
x€x + ⁄s

2≠1
x€

<
.

It is clear that, when ⁄ = 0, then the equivalent degrees of freedom is equal to the
number of columns in the model matrix x, that is the basis size m. Furthermore, when
⁄ ≠æ Œ, then the equivalent degrees of freedom usually has 2 for limit. This holds
whenever the linear model is in the span of the chosen basis, which is often the case
when modeling C2 functions. For instance, this is the case for the cubic basis whose
penalty matrix was described above.

Building on this measure of penalized dimensionality, a simple criterion to choose
the smoothing parameter can now be devised. Similarly as in Craven and Wahba
(1979), we define the generalized cross-validation (GCV) score as

GCV (⁄) = n≠1 Îy ≠ h(⁄)yÎ2

{1 ≠ EDF (⁄) /n}2 ,

which is basically a trade-o� between goodness of fit and penalized dimensionality.
In Figure 2.6, we show the generalized cross-validation score as a function of the
smoothing parameter, and we observe that it is minimized for ⁄ ¥ 10≠4 (recall this
intermediate solution in Figure 2.5).
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Fig. 2.6 The simulated motorcycle accident: minimizing the generalized cross-
validation score.

2.2 Generalized Additive Models for Conditional
Dependence Structures

In this section, we detail the approach to model the dependence structure between two
random variables as a function of an arbitrary set of exogenous predictors (covariates).

Let Y œ Y ™ R2 be the random vector (responses) of interest, X œ X ™ Rq be a
vector of q covariates (predictors). For y œ Y, x œ X and i œ {1, 2}, we denote by
FY

i

|X(y
i

| x) = P (Y
i

Æ y
i

| X = x) the conditional margins and by U the random
vector of conditional probability integral transforms with U

i

= FY
i

|X(Y
i

| X). Assume
further that all variables are continuous and have strictly positive densities. In what
follows, we rely on Patton’s theorem, which, in two dimensions, specializes to: for
all x œ X, there exists a unique conditional copula C(· | x) which is the conditional
distribution of U | X = x. In other words, for u œ [0, 1]2, we have that

C(u | x) = P (U Æ u | X = x)
= FY|X

Ó
F ≠1

Y1|X(u1 | x), F ≠1
Y2|X(u2 | x) | x

Ô
. (2.5)



24 Generalized Additive Models for Conditional Dependence Measures

Remark. In Patton (2002), the conditioning vector is the same for the two margins
and copula. In time series, conditioning algebras are usually augmented with past
observations. Therefore, the concept of conditional copulas can be rather restrictive
(see Fermanian and Wegkamp 2012). However, conditional copulas and exogeneity
of the predictors are su�cient to develop a regression-like theory for the dependence
structure.

For y œ Y and x œ X, the joint conditional density is

fY|X(y | x) = ˆFY1|X (y1 | x)
ˆy1¸ ˚˙ ˝

fY1|X(y1 | x)

ˆFY2|X (y2 | x)
ˆy2¸ ˚˙ ˝

fY2|X(y2 | x)

ˆ2C (u | x)
ˆu¸ ˚˙ ˝

c (u | x)

, (2.6)

where u
i

= FY
i

|X (y
i

| x). Similarly as in the unconditional case, the right-hand-side
of (2.6) is a product between conditional marginal and copula densities (fY1|X, fY2|X

and c (u | x)).
In what follows, we focus on bivariate conditional copulas depending on the covariate

only through a single parameter that we denote ÷ œ H. Let c (u | x) = c {u; ÷(x)} with
the parameter being a function of the covariates, that is ÷(x) : X æ H. In Section 2.2.1,
we present the generalized additive model. We formulate the asymptotic properties
assuming either known or estimated margins in Section 2.2.2. In Sections 2.2.3 and
2.2.4, we address the estimation of the model.

2.2.1 The Model

Consider an arbitrary dependence or concordance measure Â between the components
of Y that we want to condition on a realization of X. We assume that

• Â satisfies the two properties of Chapter 1 and takes values in a closed P µ R;

• ÷ a mapping ‹ : P æ H such that ÷ = ‹(Â) with ‹ œ CŒ(P) strictly increasing.

For instance, Kendall’s tau is a natural choice. In this case, the mappings for
common copulas such as the Gaussian, Clayton and Gumbel are ‹(Â) = sin

1
fi

2 Â
2
,

‹(Â) = 2Â/(1 ≠ Â) and ‹(Â) = 1/(1 ≠ Â). For copula families with several parameters,
all but one need to be treated as nuisances. The issue is discussed in Sections 2.3.1
and 2.4.

Remark. As it introduces the requirement of a one-to-one mapping, modeling a depen-
dence or concordance measure instead of the copula parameter directly may seem an
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unnecessary complication. In fact, this choice is dictated by the context of application
and has two desirable properties. First, a dependence or concordance measure has
a more natural interpretation than a copula parameter. Second, when the modeled
distributional feature is the same, it is easier to compare various parametric families,
for instance using information criteria. Nonetheless, the whole theory can be adapted
in a straightforward fashion, using ‹ as the identity and modifying g accordingly (or
vice-versa). In Section 2.3, we also illustrate models specified for the copula parameter.

For x œ X, a generalized additive model for the conditional measure can then be
written as

Â(x; ◊) = g

I

z€
— +

Kÿ

k=1
h

k

(t
k

)
J

, (2.7)

where

• g : R æ P is a strictly increasing and CŒ(R) link expressing the relationship
between the GAM and Â (e.g., g(x) = (ex ≠ 1)/(ex + 1) when P = [≠1, 1]),

• z œ Rp and t œ RK are subsets of x or products thereof to consider interactions,

• — œ Rp is a vector of parameters,

• h
k

: T
k

æ R are smooth functions supported on closed T
k

µ R for all k and

• ◊ œ � is the vector of stacked parameters, containing both — and h
k

for all k.

In this thesis, we assume that the smooth functions h
k

œ C2(T
k

) admit a finite-
dimensional basis-quadratic penalty representation (Green and Silverman 2000; Hastie
and Tibshirani 1990; Wood 2006). A natural cubic spline (NCS) h : T µ R æ R
with fixed knots is a particular case. Suppose that the m fixed knots are such that
inf T = s0 < s1 < · · · < s

m

< s
m+1 = sup T. As an NCS is linear on the two extreme

intervals [s0, s1] and [s
m

, s
m+1] and twice continuously di�erentiable on its support

T, it has only m free parameters (say h œ Rm). Furthermore, there exists a unique
m ◊ m symmetric matrix s of rank m ≠ 2 such that

s
T hÕÕ(t)2 dt = h€sh. This matrix

is fixed in the sense that it depends on the knots but not on h. Apart from NCSs,
many alternative C2 smoothers admit this finite dimensional basis-quadratic penalty
representation. For instance, tensor product splines (functions of multiple predictors)
or cyclic cubic splines (to model periodic functions) are included in the GAM toolbox.
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Remark. Additionally to potential multicollinearities arising from the linear part of
(2.7), concurvity3 may also play a role in the model’s identifiability. To check for
ill-conditioning in a matrix of linear predictors, the condition number is the standard
measure. Similarly, it is possible to quantify concurvity with respect to the data and
chosen bases.

Using such a representation for each h
k

, we denote by h
k

œ Rm

k the m
k

-dimensional
parametrization and h = (h€

1 , · · · , h€
K

)€. Hence, the complete vector of parameters
is ◊ = (—€, h€)€, taking values in � ™ Rd with d = p + q

K

k=1 m
k

. We also define the
m

k

◊ m
k

matrices s
k

such that
⁄

T
k

hÕÕ
k

(t)2 dt = h€
k

s
k

h
k

.

Remark. Each h
k

can be further constrained using a l ◊ m
k

matrix c, such that an
additional set of l < m

k

constraints is met whenever ch
k

= 0. For instance, a sensible
identifiability requirement is that h

k

integrates to zero over T
k

. Letting r be the nullity
of c, we represent an element of its null space by nw, with n a m

k

◊ r matrix and
w œ Rr. Using h

k

= nw as a reparametrization of h
k

, the constraints are automatically
met.

For x œ X and ◊ œ �, the copula parameter is

÷(x; ◊) = ‹ {Â(x; ◊)}

and for u œ [0, 1]2 , we denote the log-likelihood function by

¸
c

(u, x; ◊) = log [c {u; ÷(x; ◊)}] .

Considering a sample of n observations {uj, xj}n

j=1, we estimate ◊ by maximizing the
penalized log-likelihood

¸
c

(◊, “) = ¸
c

(◊) ≠ 1
2

Kÿ

k=1
“

k

⁄

T
k

h
ÕÕ

k

(t
k

)2dt
k

= ¸
c

(◊) ≠ 1
2

Kÿ

k=1
“

k

h€
k

s
k

h
k

= ¸
c

(◊) ≠ 1
2◊

€p(“)◊, (2.8)

3Concurvity is the nonparametric analogue of collinearity. When the model contains smooth
components, we say that concurvity is present when there is j œ {1, · · · , K} such that hj(tj) is highly
correlated with

q
k ”=j hk(tk) (see e.g., Hastie and Tibshirani 1990, pages 118–123, where this definition

is equivalent to their notion of approximate concurvity).
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with ¸
c

(◊) = n≠1 q
n

j=1 ¸
c

(uj, xj; ◊), “ œ (R+ fi{0})K and p(“) is a d◊d block diagonal
matrix with K + 1 blocks; the first p ◊ p is filled with zeros and the remaining K

with m
k

◊ m
k

matrices are “

k

s
k

. The integral terms are roughness penalties on each
component and “ is a vector of smoothing parameters. We define the penalized
maximum log-likelihood estimator as

‚
◊ = argmax

◊ œ �
¸

c

(◊, “). (2.9)

Remark. Fixing the number and location of the knots beforehand amounts to assuming
that the true model can be represented using the finite-dimensional basis (Yu and
Ruppert 2002). If this is not the case, consistency would require either additional
assumptions on the smooth functions or an infinity of knots, or both. However, a
finite-dimensional parameter space implies

Ô
n-consistency and asymptotic normality

under standard regularity assumptions (see Section 2.2.2). In many practical cases,
smoothers are used as approximations of the underlying functions of interest. In
exploratory data analysis for instance, smoothers “let the data speak for themselves”
using a minimal set of assumptions. When the true underlying functions do not admit
a finite dimensional-quadratic basis representation, ‚

◊ is naturally interpreted as a
projection. We refer to Yu and Ruppert (2002), Section 3 for a more detailed discussion.

2.2.2 Asymptotic Properties

In this section, we establish the required assumptions to ensure
Ô

n-consistency and
asymptotic normality of the penalized maximum likelihood estimator. We start by
assuming known margins and extend the results when they are parametrically estimated
within a two-step procedure.

As noted in Joe (1997), Chapter 10, there are two approaches to derive asymptotic
properties in the conditional copula context. With the first approach, one obtains
Ô

n-consistency and asymptotic normality using a Lindeberg-Feller type of condition,
considering the covariates as fixed. With the second approach, similar results are
derived by analyzing the joint distribution of the conditional probability integral
transforms along with the covariates, which are treated as random variables. Because
the finite sample estimators of the covariance matrices are identical, it is a matter of
taste whether one should use one approach or the other. In what follows, we study
Z = (U€, X€)€ œ Z = [0, 1]2 ◊ X directly, because it simplifies an analysis of the
conditional two-step procedure similar to Joe (2005). For z œ Z, we write the joint



28 Generalized Additive Models for Conditional Dependence Measures

density as

fZ(z) = c {u; ÷(x; ◊)} fX(x; Ê), (2.10)

where Ê parametrizes the distribution of the covariates. Because (2.10) implies that
◊ and Ê are globally orthogonal (see Cox and Reid 1987), regularity conditions are
only required for the conditional copula. However, for ‚

◊ to be asymptotically unbiased
when the true ◊0 is in the interior of �, a penalty that vanishes with a

Ô
n-rate is also

necessary.

Theorem 2.2.1. Asymptotic properties assuming known margins

If Assumptions 1 and 2 from Appendix A.1 hold, then ‚
◊ is

Ô
n-consistent and

Ô
n( ‚

◊ ≠ ◊0) d≠æ N
Ó
0, i(◊0)≠1

Ô
,

where i(◊) = cov [ˆ log c {U; ÷(X; ◊)/} ˆ◊]. The detailed assumptions and proof are
provided in Appendix A.1.

In many cases of practical importance, the margins are unknown. While full
maximum likelihood estimation (MLE) is more e�cient, the resulting numerical opti-
mization problem may be very time-consuming or even infeasible. Because it is easier
to implement and faster, two-step estimation is often preferred. In an unconditional
and parametric context, this procedure is called inference functions for margins (IFM)
in Xu (1996) and Joe (1997). In Xu (1996), simulations are further provided for
discrete/categorical models, suggesting this procedure to be highly e�cient. The
theoretical results for the IFM are extended to the continuous case in Joe (2005), where
it is also found that the two-stage e�ciency loss is small. In what follows, we consider
W = (Y€, X€)€ œ W = Y ◊ X and use the second approach outlined in Joe (1997),
Chapter 10 to extend Joe (2005) in the conditional context.

For the sake of simplicity, we assume that each conditional margin depends on the
covariates only through a single scalar parameter that we denote –

i

œ H
i

. In other
words, for y œ Y and x œ X, we let w = (y€, x€)€ and fY

i

|X(y
i

| x) = fY
i

|X {y
i

; –
i

(x)}
with the parameter being a function of the covariates, that is –

i

(x) : X æ H
i

. For
each –

i

, we assume a model similar to (2.7), containing a sum of K
i

smooth functions
admitting a finite-basis quadratic-penalty representation. We denote by

• –

i

œ A
i

™ Rl

i a l
i

-dimensional parametrization,

• ¸
i

(y
i

, x; –

i

) = log
Ë
fY

i

|X {y
i

; –

i

(x)}
È

the marginal log-likelihood,
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• ⁄

i

œ (R+ fi {0})K

i the vector of smoothing parameters,

• p
i

(⁄
i

) the compact representation of the quadratic penalty representation as in
(2.8),

• – = (–€
1 , –

€
2 )€ œ A = A1 ◊ A2 and ⁄ = (⁄€

1 , ⁄

€
2 )€.

Remark. The dependency of the margins on the covariates through a single scalar
parameter is by no means necessary, but yields clearer developments in what follows.
For instance, this formulation includes univariate GAMs, with each margin being
completely determined by –

i

and additional nuisance parameters specific to the chosen
univariate distribution.

Considering a sample of n observations {yj, xj}n

j=1, the parameters can be e�ciently
estimated by maximizing the penalized joint log-likelihood

¸(–, ◊, ⁄, “) =
2ÿ

i=1
¸

i

(–
i

, ⁄

i

) + ¸
c

(◊, “), (2.11)

with ¸
i

(–
i

, ⁄

i

) = ¸
i

(–
i

) ≠ –

€
i

p
i

(⁄
i

)–
i

/2, ¸
i

(–
i

) = n≠1 q
n

j=1 ¸
i

(yj

i

, xj; –

i

) and ¸
c

(◊, “)
as in (2.8) using u

i

= FY
i

|X {y
i

; –
i

(x)}. While ¸
c

(◊, “) is a function of – through the
conditional margins, we hide this dependency for notational clarity. Because the joint
maximization of (2.11) is seldom feasible, we define

‚
– = argmax

– œ A

2ÿ

i=1
¸

i

(–
i

, ⁄

i

).

Using ‚u
i

= FY
i

|X {y
i

; ‚–
i

(x)} in ¸
c

(◊), the two-step estimator ‚
◊ is the same as in (2.9).

Similarly as in Joe (2005), we define

g (w; –, ◊) =

Q

cca

g1(w; –1)
g2(w; –2)
g

c

(z; –, ◊)

R

ddb with

Y
_]

_[

g
i

(w; –

i

) = ˆ¸
i

(y
i

, x; –

i

)/ˆ–

i

g
c

(z; –, ◊) = ˆ¸
c

(u, x; –, ◊)/ˆ◊

.

Hence, ( ‚
–

€, ‚
◊

€)€, which solves

n≠1
nÿ

j=1
g

1
wj; –, ◊

2
≠

Q

cca

p1(⁄1)–1

p2(⁄2)–2

p(“)◊

R

ddb = 0,
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can be viewed as a
Ô

n-consistent and asymptotically normal Generalized Method
of Moment (GMM) estimator with an identity weighting matrix (see Newey and
McFadden 1994, Chapter 6). This is the case provided that both penalties vanish with
a

Ô
n-rate, the usual regularity conditions hold for the joint conditional distribution

and the model is jointly identifiable.

Theorem 2.2.2. Asymptotic properties of the two-step procedure

If Assumptions 1–5 from Appendix A.2 hold, then
1

‚
–

€, ‚
◊

€
2€

is
Ô

n-consistent with

Ô
n

Q

a ‚
–

n

≠ –0
‚
◊ ≠ ◊0

R

b d≠æ N
Ó
0, j(–0, ◊0)≠1v(–0, ◊0)j(–0, ◊0)≠€

Ô
,

where

j(–, ◊) = E

Q

cca

ˆg1/ˆ–

€
1 0 0

0 ˆg2/ˆ–

€
2 0

ˆg
c

/ˆ–

€
1 ˆg

c

/ˆ–

€
2 ˆg

c

/ˆ◊

€

R

ddb ,

and v(–, ◊) = E

Q

cca

g1g€
1 g1g€

2 0
g2g€

1 g2g€
2 0

0 0 g
c

g€
c

R

ddb .

Moreover, we have

Ô
n( ‚

◊ ≠ ◊0) d≠æ N
Ó
0, i(–0, ◊0)≠1

Ê(–0, ◊0)i(–0, ◊0)≠€
Ô

,

where i(–, ◊) = E
1
ˆg

c

/ˆ◊

€
2

and

Ê(–, ◊) = cov

Y
_]

_[
g

c

≠
1
j(–, ◊)

c1 j(–, ◊)
c2

2
Q

aj(–, ◊)11 0
0 j(–, ◊)22

R

b
≠1 Q

ag1

g2

R

b

Z
_̂

_\
.

The detailed assumptions and the proof are provided in Appendix A.2.

Provided that the various analytical expressions exist, the covariance matrices
are consistently estimated using the sample average. Hence, the two theorems can
be used to construct confidence intervals for the dependence measure or the copula
parameter. Using the asymptotic distribution of ‚

◊, sampling a large number of
parameter realizations is computationally straightforward. Then combining (2.7)
and parameter realizations samples any derived quantity, which is much faster than
bootstrap techniques.
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The Wald, Lagrange multiplier, and likelihood-ratio tests apply directly to the
situation where the margins are known. Viewing the two-step procedure as a GMM
estimator allows for straightforward extensions of the usual large sample theory of
hypothesis testing (see Newey and McFadden 1994, Chapter 9).

2.2.3 Penalized Maximum Likelihood Estimation
As an Iteratively Reweighted Ridge Regression

In this section, we describe the estimation procedure, recasting the penalized maximum
likelihood estimation into an iteratively reweighted ridge regression problem. The
idea to use iteratively reweighted least squares for maximum likelihood estimation was
first proposed in Green (1984). It was then extended to iteratively reweighted ridge
regression for penalized maximum likelihood estimation in the context of exponential
families in O’Sullivan et al. (1986). Finally, it appeared in the general setting that we
use in Green (1987). This reformulation is particularly convenient, because algorithms
solving the problem that appears at each iteration are implemented in standard software
packages.

Let Â(◊) be the n◊1 vector with Â(◊)
i

= Â(x
i

; ◊), d(◊) the n◊d matrix ˆÂ(◊)/ˆ◊

and q(◊) the n◊1 vector ˆ¸(◊, “)/ˆÂ. The penalized maximum log-likelihood estimator
‚
◊ satisfies d score equations

ˆ¸( ‚
◊, “)/ˆ◊ = d( ‚

◊)€q( ‚
◊) ≠ p(“) ‚

◊ = 0.

To obtain ‚
◊, ◊

[l], the lth estimate of ◊0, can be updated by Newton–Raphson:

{l(◊[l]) + p(“)}(◊[l+1] ≠ ◊

[l]) = d(◊[l])€q(◊[l]) ≠ p(“)◊[l]. (2.12)

Notice that

l(◊) = ≠ˆ2¸(◊)/◊◊

€ = d€(◊)a(◊)d(◊) ≠
nÿ

j=1
q(◊)

j

ˆ2
Â(◊)

j

/◊◊

€, (2.13)

where a(◊) is the n ◊ n matrix with ≠ˆ2¸(◊, “)/ˆÂÂ

€.

Remark. When the margins are known, the observations are independent and a(◊) is
diagonal. Whereas this is seldom verified in practice, we make it a working assumption
to carry out the estimation, similar as using weighted least squares instead of generalized
least squares.
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By standard arguments, when ◊

[l] is close to ◊0, then E
Ó
q(◊[l])

Ô
¥ 0. Using this ap-

proximation, we simplify the right-hand side of (2.13) by l(◊[l]) ¥ d(◊[l])€a(◊[l])d(◊[l]).
Plugging this expression in (2.12), we have

Ó
d(◊[l])€a(◊[l])d(◊[l]) + p(“)

Ô 1
◊

[l+1] ≠ ◊

[l]
2

= d(◊[l])€q(◊[l]) ≠ p(“)◊[l]. (2.14)

Equivalently, (2.14) can be rewritten as
Ó
d(◊[l])€a(◊[l])d(◊[l]) + p(“)

Ô
◊

[l+1] = d(◊[l])€a(◊[l])y[l], (2.15)

where y[l] = a(◊[l])≠1q(◊[l]) + d(◊[l])◊[l] are the “pseudodata” at the lth iteration.
When a(◊[l]) is positive-definite, then (2.15) has the form of normal equations for a
generalized ridge regression:

◊

[l+1] = argmin
◊ œ �

I

Îy[l] ≠ d(◊[l])◊Î2
a(◊[l]) + Î◊Î2

p(“)

J

, (2.16)

where ÎxÎ2w = x€wx. In other words, ◊

[l+1] results from ridge regressing y[l] on the
columns of d(◊[l]) with weight matrix a(◊[l]) and penalty p(“), and the procedure is
iterated until convergence. Alternatively, Fisher’s scoring technique is obtained by
replacing a(◊[l]) by its expectation, that is the n ◊ n matrix E

Ó
≠ˆ2¸(◊, “)/ˆÂÂ

€
Ô
.

This is especially useful whenever the observed information is not positive-definite.

Remark. As noted in Green (1987), convergence is not guaranteed or may be very slow
for an arbitrary penalized maximum likelihood. In the framework of this thesis, this is
not an issue: convergence for common parametric copulas occurs in a few steps even
when the model is misspecified.

2.2.4 Smoothing Parameters Selection and Equivalent Degrees
of Freedom

In Section 2.2.2, we mention that smoothers are useful for exploratory data analysis.
For instance, when no theory guides the functional form of interest, there is seldom
reason to assume a finite dimensional basis-quadratic representation. As a matter of
fact, roughness penalty methods are often applied the other way: the dimension of
the parameter space is arbitrarily augmented and its e�ective size controlled via the
penalty.
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Let s[l](“) be the so-called influence or hat matrix at the lth iteration, defined such
that s[l](“)y[l] = d(◊[l])◊[l+1], that is

s[l](“) = d(◊[l])
Ó
d€(◊[l])a(◊[l])d(◊[l]) + p(“)

Ô≠1
d(◊[l])€a(◊[l]).

Similarly as in Section 2.1.3, we can now define the e�ective or equivalent degrees of
freedom at the lth iteration as

EDF [l](“) = tr
Ó
s[l](“)

Ô
.

Remark. When the model contains only the parametric part (respectively when “ = 0),
the interpretation is straightforward: EDF [l](“) equals the dimension of the parameter
space, that is p (respectively d = p + q

K

k=1 m
k

). More generally, we see that 0 Æ
s[l](“)

jj

Æ 1 for 1 Æ j Æ d. Hence the EDF of each smooth component h
k

is the sum
of the corresponding trace elements, smaller than or equal to m

k

.

Following Section 2.1.3 again, we can now select “ by minimizing the GCV, that
we define as

GCV [l](“) =
n≠1Îy[l] ≠ s[l](“)y[l]Î2

a(◊[l])
{1 ≠ n≠1EDF [l](“)}2 .

Since the minimization is carried out for each generalized ridge iteration, computational
stability and e�ciency to calculate GCV [l](“) are of utmost importance (see Gu and
Wahba 1991, Wood 2000 and Wood 2004 for details). In the remainder of this Chapter,
the EDF of a model is the final EDF [l](“), obtained at convergence.

Remark. When GAMs are applied to the mean of an exponential family, the numerator
at the optimum corresponds to the deviance (Hastie and Tibshirani 1990; Green
and Silverman 2000, Section 5.4.3.). In the present context, it is only a first order
approximation4, namely a “linearized deviance” (a term coined in Green 1987).

4Assume that the notion of “saturated model” is well defined in the sense that the likelihood, as a
function of Â (freed from the dependence on ◊), is uniquely maximized at ‚

Â. At the optimum, the
numerator is a first order approximation of 2{¸( ‚

Â) ≠ ¸(‚
◊, “)}.
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2.3 Simulations and Application

2.3.1 Simulation Study

In order to assess the numerical stability of the procedure described in Sections 2.2.3
and 2.2.4, we proceed to a simulation study that we present in this section.

We assume that the true underlying model is either a Gaussian, a Student’s t with
4 degrees of freedom, a Clayton or a Gumbel copula with time-varying Kendall’s tau.
To encompass di�erent cases of practical interest, we use three di�erent deterministic
functions

h1(x) = a + b(x ≠ x0)2

h2(x) = a + b sin {2fic (x ≠ x0)}

h3(x) = a + be≠ (x≠x0)2
2‡

2

Z
____̂

____\

Â(x) = g

I

h0 +
3ÿ

k=1
h

k

(x
k

)
J

, (2.17)

with a, b, x0 œ R, c, ‡2 œ R+, g(x) = (ex ≠ 1)/(ex + 1).

A single deterministic covariate and unpenalized splines

We sample n observations in four steps:

1. Define a grid of times t1 < · · · < t
n

with linear spacing.

2. Compute Kendall’s tau {Â
k

(t
j

)}kœ{1,2,3}
jœ{1,...,n} with Â

k

(t) = g {h
k

(t)}.

3. Recover the copula parameter {÷
k

(t
j

)}kœ{1,2,3}
jœ{1,...,n} using the mapping ÷(t) = ‹{Â(t)}.

4. Sample the corresponding bivariate pseudo-observation
Ó
uj

k

Ô
kœ{1,2,3}

jœ{1,...,n}
.

Using n = 1000, we set the various constants to values such that Â1(t) œ [0.2, 0.80],
Â2(t) œ [0.2, 0.46] and Â3(t) œ [0.2, 0.83] for all t œ [0, 60]. The data are represented in
Figure 2.7 for the Gaussian copula.

The left panels are related to the quadratic form in (2.17), the middle panels to
the sinusoidal form and the right panels to the exponential form. In the top row, we
represent the time-varying Kendall’s tau for each deterministic function in (2.17). In
the bottom row, we plot a corresponding sample of pseudo-observation: some linear
dependence is visible but the time-varying feature is not. This illustrates why it is
usually impossible to formulate a parametric hypothesis without prior knowledge of
the data-generating process.
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Fig. 2.7 Gaussian copula with time-varying dependence: Kendall’s tau
{Â

k

(t
j

)}
jœ{1,...,n} with t1 = 0, t

n

= 60 and n = 1000 for the quadratic (k = 1, left panel),
sinusoidal (k = 2, middle panel) and exponential (k = 3, right panel) specification is in
the top row. The corresponding pseudo-observations {(u

kj,1, u
kj,2)}kœ{1,2,3}

jœ{1,...,n} are in the
bottom row.

To approximate each underlying function h
k

(t), we use natural cubic splines (NCS)
for k œ {1, 3} and periodic cubic splines for k = 2 with homogeneously spaced knots
(Valenzuela et al. 2013). Therefore, the models are not nested when changing the
basis dimension and we use the Aikaike Information Criterion (AIC) to select m1 = 5,
m2 = 4 and m3 = 7 interior knots. We also estimate the quadratic specification without
splines to benchmark the parametric and nonparametric estimation.

Remark. The three deterministic functions cannot be represented using cubic splines
with a finite number of knots. Therefore we strictly study the misspecified case, where
each function is projected on the corresponding spline basis.

Remark. While the Student’s t copula has two parameters, Kendall’s tau is a function of
the correlation parameter only with mapping ‹(Â) = sin

1
fi

2 Â
2

like the Gaussian copula.
We therefore treat the Student’s t copula’s degrees of freedom as a nuisance parameter
that we update after each generalized ridge iteration. As the Student’s t copula’s
Fisher information matrix is not diagonal, this procedure may a�ect the estimated
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Kendall’s tau or lead to non-convergence. An orthogonal reparametrization as in Cox
and Reid (1987) is not conceivable because their suggested di�erential equation has no
solution when the correlation parameter belongs to (≠1, 1).

We simulate 500 datasets of 1000 observations for each deterministic function. For
each dataset, we repeat the (Fisher’s scoring) estimation using either the parametric
specification or the splines with m1, m2 and m3 interior knots. We show the results
in Figure 2.8 and Figure 2.9. In the top row for each copula, we observe that the
mean estimate, ‚E

Ó
‚h

k

(t)
Ô

, is visually indistinguishable from the true curve, h
k

(t). The
bootstrapped 95% confidence intervals (c.i.) are fairly narrow, except near the border
for the exponential specification. In the middle row, the estimated bias is compared to
the true model bias, which is simply the di�erence between h

k

(t) and its projection on
a spline basis. Although numerical issues appear in some cases, the estimated biases
closely follow their true counterpart. Finally, we show

Ô
n times the variance in the

bottom row for each copula. As is usual with many smoothers, the variance near the
boundaries is the highest, except for cyclic cubic splines (using periodic boundary
conditions).

In the Student’s t copula case, the algorithm converges exactly as for the other
copulas. Therefore, the non-orthogonality does not seem to be a practical issue here.
Globally, the simulation study provides evidence of an accurate estimation procedure.

Three random covariates and penalized splines

We sample n observations in four steps:

1. Simulate 3-dimensional covariates {xj}
jœ{1,...,n} with an equicorrelation Gaussian

copula.

2. Compute Kendall’s tau {Â(xj)}
jœ{1,...,n} using (2.17).

3. Recover the corresponding copula parameters.

4. Sample the corresponding bivariate pseudo-observation.

To ensure identifiability, we set the constant a such that
s 1

0 h
k

(t)dt = 0 for each
component k œ {1, 2, 3}. We then build a grid using n œ {200, 1000} and fl œ
{0, 0.5, 0.9} the correlation between the covariates . Furthermore, we also include the
parametrization directly in term of the copula parameter. When using this “natural”
parametrization, the mapping ‹ is the identity and the link g constraints the parameter
space with ÷(x) = g

Ó
h0 + q3

k=1 h
k

(x
k

)
Ô
.
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We simulate 1000 datasets for the various combinations and repeat the estimation
using either the Newton-Raphson (from (2.16)) or the Fisher’s scoring method (replacing
the observed information by its expectation). At each iteration of both algorithms, a
minimization of the generalized cross-validation sum of squares is carried with m1 = 15,
m2 = 20 and m3 = 25 interior knots.

We present an example of such simulation in Figure 2.10, where the Clayton copula
is parametrized using the Kendall’s tau and estimated using Fisher’s scoring method.
Furthermore, the covariates are simulated using a small sample size (n = 200) and
no correlation or with a large sample size (n = 1000) and a correlation of 0.9. We
observe that the bias does not change with the sample size; whereas the width of the
confidence intervals as well as the variance at the boundaries decrease.

To compare the results quantitatively, we use two criterion, namely the average
integrated squared error (AISE)

‚E
5⁄ 1

0

Ó
‚h

k

(x) ≠ h
k

(x)
Ô2

dx
6

and the the average integrated absolute error (AIAE)

‚E
;⁄ 1

0
| ‚h

k

(x) ≠ h
k

(x) | dx
<

,

where the expectation is taken over all simulations for each component k œ {1, 2, 3}.
The results presented in Table 2.1 and 2.2 can be summarized as follows:

• An intermediate value of the correlation (fl = 0.5) does not seem to a�ect the
estimation procedure, as the results are almost equal to the uncorrelated ones.
However, for highly correlated covariates (fl = 0.9), the estimation becomes more
di�cult, a fact consistently translated by higher values of the two criterions.

• As expected, only the average integrated squared error decreases with an increase
in sample size. Furthermore, as previously seen in Figure 2.10, neither the bias
nor the average integrated absolute error are a�ected.

• The simplified Newton-Raphson seems to perform slightly better than Fisher’s
scoring method. However, it is also slower, because the evaluation of the like-
lihood’s second derivative is more demanding than its expectation, which is in
closed form.

A remarkable feature when comparing the four pannels in Table 2.1 and 2.2 is the
stability of the estimation across copula families. It indicates that the formulation of
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the penalized maximum likelihood estimation as a generalized ridge regression problem
(see Section 2.2.3) is appropriate for commonly used parametric copulas. Interestingly,
the parametrization with Kendall’s tau is numerically more stable than the natural
one, but the results are qualitatively similar.

Remark. The number and position of the knots, which are spline/GAM related problems
and outside the scope of this work, are deliberately not studied here.

2.3.2 The Foreign Exchange Market

In this section, we model the cross-sectional dynamics of asset returns, an important
topic in finance and econometrics. More specifically, we study the foreign exchange
(FX) market, which determines the relative value of currencies. This decentralized
market has two main characteristics. First, it operates around the clock from Sunday
10pm to Friday 10pm UTC. Second, it is geographically dispersed because the main
trading centers continuously accommodate various types of buyers and sellers.

In what follows, we use data graciously provided by Dukascopy Bank SA5, an
electronic broker holding a Securities Dealer License issued by the FINMA. It contains
15-minute spaced prices (i.e., 96 observations each day) for the EUR/USD and the
USD/CHF from March 10, 2013 to November 1, 2013. Hence, in a total of 34 trading
weeks, there are 16320 observations (170 days) excluding weekends. In Figure 2.11,
we show the logarithm of the price p

t

= log P
t

and the log-return (or simply return)
r

t

= p
t

≠ p
t≠1.

Because intraday asset returns are heteroskedastic, we need to pre-filter the indi-
vidual series before applying the methodology of this Chapter. A general procedure
used in the high-frequency econometrics literature (see e.g., Andersen and Bollerslev
1997, 1998; Engle and Sokalska 2012; Vatter et al. 2015) consists of two steps:

1. filter the seasonality (i.e., intraday patterns due to the cyclical nature of market
activity),

2. use a non-periodic model (e.g., from the GARCH family) to remove the residual
heteroskedasticity.

For the first step, a popular model is the Fourier Flexible Form (FFF, see Gallant
1981), introduced in this context by Andersen and Bollerslev (1997, 1998). A simplified

5http://www.dukascopy.com/
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Gaussian copula fl = 0 fl = 0.5 fl = 0.9

NR

n = 200 AISE 0.03 0.04 0.06 0.03 0.05 0.06 0.11 0.12 0.13
AIAE 0.05 0.07 0.08 0.06 0.07 0.08 0.10 0.11 0.11

n = 1000 AISE 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02
AIAE 0.05 0.07 0.08 0.06 0.07 0.08 0.10 0.11 0.11

FS

n = 200 AISE 0.03 0.05 0.06 0.04 0.06 0.07 0.11 0.13 0.13
AIAE 0.13 0.16 0.18 0.14 0.17 0.19 0.23 0.26 0.27

n = 1000 AISE 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02
AIAE 0.05 0.06 0.07 0.06 0.07 0.08 0.09 0.10 0.10

t copula fl = 0 fl = 0.5 fl = 0.9

NR

n = 200 AISE 0.03 0.06 0.07 0.04 0.06 0.07 0.15 0.16 0.18
AIAE 0.06 0.08 0.10 0.07 0.09 0.10 0.12 0.13 0.14

n = 1000 AISE 0.01 0.01 0.02 0.01 0.01 0.02 0.03 0.03 0.03
AIAE 0.06 0.08 0.10 0.07 0.09 0.10 0.12 0.13 0.14

FS

n = 200 AISE 0.04 0.06 0.08 0.05 0.07 0.09 0.15 0.18 0.18
AIAE 0.15 0.18 0.21 0.16 0.19 0.22 0.28 0.31 0.31

n = 1000 AISE 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03
AIAE 0.06 0.08 0.09 0.07 0.08 0.09 0.11 0.12 0.12

Clayton copula fl = 0 fl = 0.5 fl = 0.9

NR

n = 200 AISE 0.03 0.05 0.06 0.04 0.06 0.06 0.13 0.12 0.15
AIAE 0.07 0.09 0.10 0.07 0.09 0.10 0.12 0.12 0.14

n = 1000 AISE 0.02 0.01 0.02 0.01 0.01 0.02 0.03 0.03 0.03
AIAE 0.07 0.09 0.10 0.07 0.09 0.10 0.12 0.12 0.14

FS

n = 200 AISE 0.06 0.07 0.09 0.06 0.08 0.09 0.14 0.16 0.18
AIAE 0.16 0.19 0.21 0.17 0.20 0.22 0.27 0.29 0.31

n = 1000 AISE 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03
AIAE 0.07 0.08 0.09 0.07 0.08 0.10 0.11 0.11 0.12

Gumbel copula fl = 0 fl = 0.5 fl = 0.9

NR

n = 200 AISE 0.03 0.06 0.06 0.04 0.06 0.07 0.15 0.15 0.18
AIAE 0.06 0.09 0.09 0.07 0.09 0.10 0.13 0.13 0.15

n = 1000 AISE 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.04
AIAE 0.06 0.09 0.09 0.07 0.09 0.10 0.13 0.13 0.15

FS

n = 200 AISE 0.06 0.08 0.10 0.06 0.09 0.10 0.18 0.20 0.22
AIAE 0.17 0.20 0.23 0.18 0.21 0.23 0.30 0.32 0.34

n = 1000 AISE 0.01 0.01 0.02 0.01 0.01 0.02 0.03 0.03 0.03
AIAE 0.07 0.09 0.10 0.08 0.09 0.10 0.12 0.12 0.14

Table 2.1 Simulation results for the parametrization with Kendall’s tau:
NR/FS stands for Newton-Raphson/Fisher-Scoring, n for the sample size, AISE/AIAE
for the average integrated squared/absolute error and fl for the correlation between
the covariates. In each cell, the three numbers correspond to the three components of
the additive model.
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version of their regression equation is

log r2
t

= s
t

+ ‘
t

, s
t

= s0 +
Lÿ

l=1
{a

l

cos (2filt/T ) + b
l

sin (2filt/T )} ,

where T = 96. It contains two terms: a constant trend s0 and a sum of cosines and
sines with integer frequencies, designed to capture daily oscillations around the base
level. Denoting by ‚s

t

the ordinary least-squares estimate with L = 5, we refer to
‚r

t

= r
t

e≠‚s
t

/2 as the deseasonalized return.
In the top row of Figure 2.12, we show estimated autocorrelation functions for

the absolute return, the deseasonalized absolute return and 95% confidence bands.
We observe that the absolute return’s estimated autocorrelation peaks every 96th
observation, a feature captured by the FFF. In the bottom row of Figure 2.12, we
relate the estimated empirical volatility in each time-interval to the FFF estimate.
As observed in Andersen and Bollerslev (1997, 1998), we can connect the peaks of
volatility to trading activity.

For the second step, we find that an additional GARCH(1,1) filter is su�cient to
proceed to copula-based modeling. Even after pre-filtering, the residuals are highly
dependent with a linear correlation and Kendall’s tau of respectively ≠0.82 and ≠0.60.
Furthermore, as usual with financial returns, both the residuals and their empirical
distributions are highly (upper and lower) tail dependent (cf. McNeil et al. 2005,
Example 5.59, p.235). This last observation explains why, when fitting di�erent
parametric families in what follows, the AIC selects the Student’s t copula as the most
appropriate.

To model a time-varying dependence between the two currency pairs, we use two
predictors. First, the time-of-day (hereafter x1), normalized to lie between zero and
one with a period of 96, is designed to capture the quickly (and periodic) time-varying
characteristics. Second, the absolute time (hereafter x2), expressed in trading hours
elapsed since the first observation, is designed to capture the slowly time-varying
characteristics. Model (2.7) for the Kendall’s tau is written as

Â(x) = g
Ó
z€(x1)— + h1(x1) + h2(x2)

Ô
,

where

• z(x1) = {1, cos (2fix1) , sin (2fix1) , . . . , cos (2fiLx1) , sin (2fiLx1)}€ is the vector
of linear predictors,

• — = (s0, a1, b1, . . . , a
L

, b
L

)€ is the vector of parameters,
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• {h1, h2} are built using (initially non-penalized) natural cubic splines.

Remark. The parametric part z€(x1)— presupposes the same intraday patterns for the
dependence as for the individual volatilities.

In the top left panel of Figure 2.13, we show the AIC of models containing either
z€(x1)‚

— or ‚h1(x1) as a function of the number of parameters: 2L for the FFF (i.e., L

cosines and L sines) and m interior knots for the splines. The panel indicates that 10
is the optimal number in either case and that the parametric model beats the splines.
In the top right panel of Figure 2.13, we show ‚Â(x1) = g

Ó
z€(x1)‚

—

Ô
using the FFF

with 95% confidence intervals (either from parametric bootstrap6 samples or from the
one-step asymptotics). Note that, because we model time-series and use a three-step
procedure, the theory developed in Section 2.2.2 does not strictly apply. However, the
confidence intervals resulting from the parametric bootstrap are only slightly wider
than the one-step asymptotics ones. As expected, the estimated shape closely reflects
that of the volatility presented in Figure 2.12. While this FFF and the splines are
redundant, they provide an important sanity check when estimated separately. In fact,
the shape estimated using the splines (not reported here) is very similar to the FFF.

In the top middle panel of Figure 2.13, we show the AIC of models containing both
the linear function z€(x1)‚

— with L = 5 and ‚h2(x2) with an increasing basis size. As
the dots indicate, the AIC plateaus around 150 interior knots. Alternatively, we set the
basis size at 200 and use generalized cross-validation to select 141.74 e�ective degrees
of freedom. In the middle bottom panel of Figure 2.13, we show ‚Â(x2) = g

Ó
‚h2(x2)

Ô

with 95% confidence intervals. Unlike the parametric component of the model, the
bootstrapped mean di�ers to some extent from the estimate, which is suggestive of
oversmoothing. This also explains why the boostrapped confidence intervals are slightly
smaller than the ones resulting from the one-step asymptotics. In the bottom panel of
Figure 2.13, we show the combined e�ects of the time-of-day and the absolute time,
that is ‚Â(x) = g

Ó
z€(x1)‚

— + ‚h2(x2)
Ô
, for the first four weeks of the sample.

In financial econometrics, a growing literature on multivariate GARCH-type models
indicates a wide acceptance of time-varying dependence between asset returns. However,
our decomposition into periodic and slowly time-varying components is a new empirical
finding itself. While the joint time-series analysis of seasonality and longer-term trend
patterns is common, a similar interplay in the dependence structure is natural.

6In this case, confidence intervals are obtained by simulating from the fitted model 1’000 samples
of the same size than the underlying data.
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2.4 Discussion
In this Chapter, we introduce a general approach to model the influence of covariates
on the dependence structure between two variables. Based on an extension of copula
theory to conditional distributions, our framework benefits directly from the flexibility
of generalized additive models (GAM). As usual for roughness penalty-based methods,
we propose a maximum penalized log-likelihood estimator and derive useful asymptotic
properties. We discuss details of an estimation procedure and assess its performance
via simulations. Finally, we model the dependence structure of intraday returns on
two exchange rates. Interestingly, the intraday pattern, due to the cyclical nature of
market activity, is shaped similarly to the univariate conditional second moments.

Although first restricted to the single-parameter and bivariate case, the approach
has a natural higher-dimensional extension in the single-parameter Archimedean family,
but multi-parameters copula families can also be handled in (at least) three distinct
ways. First, for the Student’s t copula, we update the degrees of freedom after
each generalized ridge iteration. This is a viable option whenever the dependence
or concordance measure of interest is a function of only a single copula parameter.
However, this procedure may lead to numerical instability and convergence should be
carefully checked. Second, when an orthogonal reparametrization as in Cox and Reid
(1987) is analytically (or numerically) tractable, then the GAM can either be specified
element by element or some parameters may be considered as nuisances. Third, to
model the parameters vector as a whole directly, we could consider a multi-dimensional
smoothing framework, such as vector generalized additive models (VGAM, Yee and
Wild 1996). Note that, for implicit copulas, as the number of parameters usually
increases quickly with the dimension, additional complications arise.

Relying on bivariate building blocks only, so-called pair-copula constructions (see
Bedford and Cooke 2001, 2002 or Aas et al. 2009) represent an appealing alternative,
and this approach is the subject of the next chapter.
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Fig. 2.8 Simulation results for the Gaussian (top three rows) and Student’s
t (bottom three rows) copulas: the same row/column organization prevails for
both copulas. Top row: true curve (plain line), mean estimate (dashed line) and 95%
c.i. are the dotted lines with k = 1 estimated with the parametric model (left panel),
k = 1 estimated with splines (middle left panel), k = 2 (middle right panel) and k = 3
(right panel). Middle row: true model biases (plain line) and estimated model biases
(dashed lines). Bottom row:

Ô
n times estimated variance.
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Fig. 2.9 Simulation results for the Clayton (top three rows) and Gumbel
(bottom three rows) copulas: the same row/column organization prevails for both
copulas. Top row: true curve (plain line), mean estimate (dashed line) and 95% c.i.
are the dotted lines with k = 1 estimated with the parametric model (left panel), k = 1
estimated with splines (middle left panel), k = 2 (middle right panel) and k = 3 (right
panel). Middle row: true model biases (plain line) and estimated model biases (dashed
lines). Bottom row:

Ô
n times estimated variance.
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Fig. 2.10 Clayton copula with three additive components between small sam-
ple size/no correlation (top three rows) and large sample size/correlation
of 0.9 between the covariates (bottom three rows): the same row/column or-
ganization prevails for both studies. Top row: true curve (plain line), mean estimate
(dashed line) and 95% c.i. are the dotted lines with k = 1 (left panel), k = 2 (middle
panel) and k = 3 (right panel). Middle row: estimated model biases. Bottom row:

Ô
n

times estimated variance.
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Gaussian copula fl = 0 fl = 0.5 fl = 0.9

NR

n = 200 AISE 0.10 0.15 0.17 0.11 0.16 0.18 0.34 0.31 0.40
AIAE 0.09 0.13 0.15 0.10 0.13 0.15 0.19 0.20 0.21

n = 1000 AISE 0.02 0.03 0.04 0.02 0.03 0.04 0.07 0.07 0.08
AIAE 0.09 0.13 0.15 0.10 0.13 0.15 0.19 0.20 0.21

FS

n = 200 AISE 0.09 0.15 0.18 0.12 0.17 0.19 0.35 0.38 0.40
AIAE 0.22 0.28 0.31 0.24 0.29 0.32 0.43 0.45 0.47

n = 1000 AISE 0.01 0.02 0.03 0.02 0.02 0.03 0.05 0.05 0.06
AIAE 0.09 0.11 0.12 0.10 0.11 0.13 0.16 0.17 0.18

t copula fl = 0 fl = 0.5 fl = 0.9

NR

n = 200 AISE 0.12 0.17 0.21 0.15 0.19 0.23 0.41 0.37 0.50
AIAE 0.11 0.15 0.18 0.13 0.16 0.19 0.22 0.23 0.25

n = 1000 AISE 0.02 0.04 0.05 0.03 0.05 0.06 0.09 0.10 0.11
AIAE 0.11 0.15 0.18 0.13 0.16 0.19 0.22 0.23 0.25

FS

n = 200 AISE 0.13 0.19 0.24 0.16 0.22 0.25 0.44 0.51 0.53
AIAE 0.26 0.32 0.36 0.29 0.34 0.37 0.48 0.52 0.54

n = 1000 AISE 0.02 0.03 0.03 0.02 0.03 0.04 0.06 0.07 0.08
AIAE 0.10 0.13 0.14 0.11 0.13 0.15 0.19 0.20 0.21

Clayton copula fl = 0 fl = 0.5 fl = 0.9

NR

n = 200 AISE 0.13 0.18 0.21 0.15 0.17 0.22 0.37 0.25 0.42
AIAE 0.11 0.16 0.16 0.12 0.16 0.17 0.24 0.20 0.26

n = 1000 AISE 0.02 0.04 0.04 0.03 0.04 0.05 0.10 0.07 0.12
AIAE 0.11 0.16 0.16 0.12 0.16 0.17 0.24 0.20 0.26

FS

n = 200 AISE 0.31 0.52 0.63 0.10 0.37 0.30 1.75 3.27 3.03
AIAE 0.18 0.22 0.24 0.18 0.23 0.24 0.37 0.43 0.45

n = 1000 AISE 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.03
AIAE 0.07 0.08 0.09 0.07 0.08 0.09 0.12 0.13 0.14

Gumbel copula fl = 0 fl = 0.5 fl = 0.9

NR

n = 200 AISE 0.08 0.13 0.15 0.10 0.14 0.17 0.28 0.22 0.33
AIAE 0.09 0.13 0.14 0.10 0.13 0.14 0.19 0.17 0.21

n = 1000 AISE 0.02 0.03 0.04 0.02 0.03 0.03 0.07 0.05 0.08
AIAE 0.09 0.13 0.14 0.10 0.13 0.14 0.19 0.17 0.21

FS

n = 200 AISE 0.04 0.06 0.07 0.04 0.06 0.07 1.50 2.36 1.17
AIAE 0.14 0.18 0.19 0.15 0.18 0.20 0.32 0.36 0.35

n = 1000 AISE 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03
AIAE 0.06 0.08 0.08 0.07 0.08 0.09 0.11 0.12 0.13

Table 2.2 Simulation results for the natural parametrization: NR/FS stands
for Newton-Raphson/Fisher-Scoring, n for the sample size, AISE/AIAE for the average
integrated squared/absolute error and fl for the correlation between the covariates. In
each cell, the three numbers correspond to the three components of the additive model.
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Fig. 2.11 High-frequency FX data. Top (respectively bottom) row: the log-price
(respectively return) for the EUR/USD (left panel) and USD/CHF (right panel).
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Fig. 2.12 High-frequency FX ACF and volatility: Top row: estimated autocorre-
lation function for the absolute return (plain lines), the deseasonalized absolute return
(dashed lines) and 95% confidence bands (dotted lines). Bottom row: sample volatility
(dots), FFF volatility (plain lines) and various events impacting the volatility level
(dashed and dotted lines). The left panel corresponds to EUR/USD, and the right
panel to USD/CHF.
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Fig. 2.13 High-frequency FX results: Top left: AIC and number of parameters in
the z€(x1)— vs h1(x1) (triangles vs dots) specification. Top right: ‚Â(x1) (plain and
dotted lines) with 95% c.i. (dashed lines and gray area). Middle top: AIC and basis
size for the splines vs penalized splines (dots vs triangle and dotted line) specification
of h2(x2). Middle bottom: ‚Â(x2) (plain and dotted lines), 95% c.i. (dashed lines and
gray area) and zooming period for the next row (dashed and dotted lines). Bottom
panel: ‚Â(x) (plain and dotted lines) with 95% c.i. (dashed lines and gray area) on the
zooming period.





Chapter 3

Generalized Additive Models for
Pair-Copula Constructions

In this chapter, we extend the bivariate framework of Chapter 2 to conditional dis-
tributions with d Ø 2 dimensions. The structure of the Chapter is as follows: in
Section 3.1, we first give an introduction to Pair-copula constructions (PCCs), which
are flexible representations of the dependence underlying some multiviariate joint
distribution. Using the framework of Chapter 2, we then describe two extensions: the
modeling of simplified PCCs with exogenous covariates, as well as a first step toward
non-simplified PCCs. In Section 3.2, we discuss model selection and estimation. The
estimator’s behavior is studied with simulations in Section 3.3. In Section 3.4, we
present two applications of our method. First, we study the time-varying dependence
structure between the intraday returns on three major foreign exchange rates using a
PCC with exogenous covariates. Second, we model the seven-dimensional distribution
of an uranium exploration dataset using a non-simplified PCC. We conclude with a
discussion in Section 3.5.

3.1 Generalized Additive Models for Pair-Copula
Constructions

3.1.1 Pair-Copula Constructions

This section starts with a brief introduction to pair-copula constructions (PCCs). For a
more extensive treatment, we refer to Aas et al. (2009) and Czado (2010). Popularized
in Aas et al. (2009), they became a hot-topic of multivariate analysis over the last
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couple of years. The idea is to model the complete joint distribution of a d-dimensional
random vector by considering pairs of (conditional) random variables. Let us consider a
three dimensional example. The joint density f1,2,3(x), x œ R3, of a vector of continuous
random variables X = (X1, X2, X3) can be decomposed as

f1,2,3(x) =f1(x1) ◊ f2(x2) ◊ f3(x3) ◊ c1,2 {F1(x1), F2(x2)} ◊ c2,3 {F2(x2), F3(x3)}
◊ c1,3;2

Ó
F1|2(x1 | x2), F3|2(x3 | x2); x2

Ô
,

where

• f1, f2, f3 are the marginal densities,

• c1,2 is the joint density of (F1(X1), F2(X2)),

• c2,3 is the joint density of (F2(X2), F3(X3)),

• and c1,3;2 is the joint density of
1
F1|2(X1 | X2), F3|2(X3 | X2)

2
.

The above decomposition can be generalized to arbitrary dimension d and leads to
tractable and very flexible models.

Note that, in general, the conditional density c1,3;2 is also a function of x2. However,
this e�ect is often ignored for the sake of tractability, in which case we speak about a
simplified PCC. When this so-called simplifying assumption is made, then the complete
joint distribution can be built using unconditional bivariate copulas. Discussions on the
simplifying assumption can be found in Ha� et al. (2010); Stöber et al. (2013). More
recently, Spanhel and Kurz (2015) investigated theoretically what can go wrong when
the simplifying assumption is not satisfied. They found that — besides missing out on
the ignored e�ects — spurious dependence patterns can appear when the dimension
exceeds three. This makes it di�cult to interpret and estimate a simplified model.

Following the seminal work of Joe (1997) and Bedford and Cooke (2001, 2002), any
copula density c can be decomposed into a product of d(d ≠ 1)/2 bivariate (conditional)
copula densities. The decomposition is not unique, but all possible decompositions can
be organized as graphical structure, called regular vine (R-vine) - a sequence of trees
T

m

= (V
m

, E
m

), m = 1, . . . , d ≠ 1 satisfying the following conditions:

1. T1 is a tree with nodes V1 = {1, . . . , d} and edges E1.

2. For m Ø 2, T
m

is a tree with nodes V
m

= E
m≠1 and edges E

m

.

3. (Proximity condition) Whenever two nodes in T
m+1 are joined by an edge, the

corresponding edges in T
m

must share a common node.
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The corresponding tree sequence is also called the structure of the PCC. A PCC
identifies each edge e of the trees with a bivariate copula c

j

e

,k

e

;D
e

(a so-called pair-
copula). The joint density of the PCC can then be written as the product of all
pair-copula densities:
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where u
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¸œD
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is called conditioning set and
the indices j
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form the conditioned set. Put di�erently, the pair-copula density
c
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describes the dependence between the two variables U
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and U
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e

, conditional
on U

D

e

= u
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e

.

Example 1. The density of a PCC corresponding to the tree sequence in Figure 3.1 is

c(u1, . . . , u5) = c1,2(u1, u2) ◊ c1,3(u1, u3) ◊ c3,4(u3, u4) ◊ c3,5(u3, u5)
◊ c2,3;1(u2|1, u3|1; u1) ◊ c1,4;3(u1|3, u4|3; u3) ◊ c1,5;3(u1|3, u5|3; u3)
◊ c2,4;1,3(u2|1,3, u4|1,3; u{1,3}) ◊ c4,5;1,3(u4|1,3, u5|1,3; u{1,3})
◊ c2,5;1,3,4(u2|1,3,4, u5|1,3,4; u{1,3,4}),

where we used the abbreviation u
j

e

|D
e

:= C
j

e

|D
e

(u
j

e

|u
D

e

).

Among others, Dissmann et al. (2013) suggest model selection and inference tools
for R-vines. Brechmann et al. (2012) study the problem of exponentially increasing
complexity in larger dimensions and suggest to either truncate or simplify R-vines.
In Joe et al. (2010), the relationship between tail dependence of a vine copula and
tail dependences and conditional tail dependences of lower-dimensional margins is
investigated. In Nikoloulopoulos et al. (2012), vines are used to obtain stronger
lower than upper tail dependence in the joint distribution of financial assets. In
Min and Czado (2010, 2011), Markov chain Monte Carlo algorithms are developed
to compute credible confidence intervals, detect (conditional) independence, perform
model selection and estimation. In Panagiotelis et al. (2012), conditions under which
any multivariate discrete distribution can be decomposed as a PCC are given. In Bauer
et al. (2012), the vines framework is extended from undirected to directed acyclic
graphs, allowing for new conditional independence assumptions.

An interesting extension of the PCC is to include the e�ect of exogenous variables.
This is particularly useful when one wants to investigate the influence of a deterministic



54 Generalized Additive Models for Pair-Copula Constructions

1

3

1
, 3

2
1, 2

4

3, 4

5

3
, 5

(a) T1

1, 2

1, 3

2
, 3; 1

3, 4

1, 4
; 3

3, 5

1
, 5; 3

(b) T2

2, 3; 1

1, 4; 3

2
, 4; 1

, 3

1, 5; 3

4, 5
; 1,

3

(c) T3

2, 4; 1, 3

4, 5; 1, 3

2
,5;1

,3
,4

(d) T4

Fig. 3.1 A regular vine tree sequence: the four trees of a five dimensional PCC.

covariate (such as space or time) on a complex dependence structure. For instance, the
joint spatio-temporal modeling of several hydrograph flood variables, such as the flood
peak, the hydrograph volume and hydrograph duration, is necessary to design and
manage risks for hydraulic structures like dams. Another example is the modeling of
joint distribution of intraday returns on exchange rates, whose the dependence structure
changes over time due to the cyclical nature of market activity. Even when the covariate
is random, we are often only willing to study its e�ect on the joint distribution of
a response vector of interest. In this case, it is usually unnecessary or inconvenient
to model its stochastic behavior explicitly, and a regression-like theory for PCCs is
required. In the hydrological example above, when a region under study characterized
by large hydro-climatic heterogeneities, the inclusion of additional (potentially random)
descriptors in the model is important; especially as the ultimate goal is the extrapolation
(prediction) at ungauged sites. Similarly, scheduled economic news, such as the monthly
release of the US unemployement rate, or the FOMC press conference, impact in a
crucial way the dependence structure between intraday returns. Previous work in this
direction include regime switching PCC (Stöber and Czado, 2014), and spatial PCC
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models (Erhardt et al., 2015a,b; Gräler, 2014), where the individual parameters of the
pair-copulas were modeled as linear functions of distances between di�erent locations.

In the next Section, we discuss this extension, modeling explicitly the conditional
copula density using the framework of Chapter 2. We further generalize the model in
Section 3.1.3 by relaxing the simplifying assumption.

3.1.2 Pair-Copula Constructions with Exogenous Covariates

Recall that, in a simplified PCC, we ignore the influence of the covariate vector u
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on the pair-copula density c
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. In this case, the density of the PCC collapses to
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Using the framework of Chapter 2, we make each pair-copula depend on a vector of
exogenous variables w:
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where the dependence parameter, which can be either a dependence measure such as
Kendall’s tau or a copula parameter directly, is expressed as
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As in Equation (2.7), ze and t
e,k

are vectors of elements in w (or products thereof),
and g

e

, —

e

, ◊

e

are defined similarly. Note that, in this Chapter, we use s instead of h

to represent smooth components, because the h is usually reserved for the h-functions
in the PCC context.

In this model, the covariate vector w is equal for all pair-copulas c
j

e

,k

e

;D
e

. In
particular, the number of covariates remains constant across the trees. For instance,
consider the three dimensional PCC from Figure 3.2 again, and assume that each
copula parameter depends on a covariate x and time t. As such, the vector of covariates
w = (x, t) is the same in T1 and T2. Supposing that we want the e�ect of time-variation
to be nonparametric and the e�ect of the other covariate to be parametric, a model for
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Fig. 3.2 A simplified three-dimensional PCC with exogenous covariates: the
three conditional copula parameters for a PCC that depend on a covariate x paramet-
rically and t nonparametrically.

the corresponding conditional pair-copulas can be written as

Â1,2(w) = g1,2
Ó
x—1,2 + s1,2(t)

Ô
,

Â1,3(w) = g1,3
Ó
x—1,3 + s1,3(t)

Ô
,

Â2,3;1(w) = g2,3;1
Ó
x—2,3;1 + s2,3;1(t)

Ô
.

3.1.3 Non-simplified Pair-Copula Constructions

Recall that, in its most general form, a PCC consists of conditional copula densities:
For a given edge e, the function c
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is the copula density associated with the
conditional random vector
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. If we assume
that the copula density is equal across all possible values of u
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e

, the model is called
“simplified”. In contrast, our goal is to explicitly model the variation of the copula
density across the values of u
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e

.
Using the framework of Chapter 2 again, we model the density of a PCC as
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Fig. 3.3 A non-simplified PCC: the four trees of a four-dimensional regular vine.

It is noteworthy that the covariate vectors u

D

e

usually di�er between edges. In
particular, the number of components in u

D

e

grows with the tree level: for e œ E
m

,
the covariate vector u

D

e

consists of m ≠ 1 components. For instance, consider the
four-dimensional PCC from Figure 3.3. In T1, each edge has an empty conditioning set
and the corresponding pair-copula is simplified. However, in T2 and T3, the conditioning
sets are {1} and {1, 4}. Hence, using only nonparametric smooth functions, a model
for the corresponding conditional pair-copulas can be written as

Â2,4;1(u1) = g2,4;1
Ó
s2,4;1(u1)

Ô
,

Â3,4;1(u1) = g3,4;1
Ó
s3,4;1(u1)

Ô
,

Â2,3;1,4(u2,3;1,4) = g2,3;1,4

Y
]

[
ÿ

jœ{1,4}
s2,3;1,4,j

(u
j

)
Z
^

\ .

3.2 Sequential Estimation and Model Selection

We next discuss how the models proposed in Section 3.1 can be estimated. First, we
give some heuristics for the selection of covariates and basis size for a single pair-copula
when the parametric family is known. Second, we adapt the usual sequential estimation
procedure to the class of PCC models proposed in Sections 3.1.2 and 3.1.3.

3.2.1 Model selection for a Single Pair-copula Family

At this step, the goal is to select a GAM model assuming a known pair-copula family.
Generally speaking, there can be at most one unique smooth function s

e,k

for each
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covariate. But usually there is no a priori knowledge of its shape. This gives rise to
two questions:

1. Which of the covariates have an influence?

2. What is the appropriate basis size for each of the smooth functions?

Below, we give heuristically motivated answers to these questions.
To answer the first question, we first set the basis size for each component to five,

which is at the same time big enough to detect obvious non-linear relations and small
enough to be quickly estimated. Second, we use a variant of backward elimination,
where we start with all the covariates, remove at each step the ones whose individual
p-values are above a pre-specified level –, re-estimate the model and iterate until
all remaining covariates are significantly non-zero. Note that, additionally to the
usual issues related to step-wise selection methods, p-values for the smooth terms are
necessarily approximate. As suggested in Marra and Wood (2012); Wood (2013a,b) in
the exponential family context, we compute individual p-values using a Wald test1.

As for the second question, once the set of covariates is selected, our answer is
heuristic again. With GAMs, the choice of the basis size is usually not critical: it should
be large enough so that the underlying features in the data can be well approximated,
but small enough such as to maintain a good computational e�ciency and low variance
(although this last problem is partly addressed using the penalization).

To achieve a good trade-o�, we start with a small basis size (b
j

= 5 for the selected
covariate j), fit the model, check whether the estimated equivalent degree of freedom
corresponding to b

j

is “close” to this upper limit2, increase b
j

if that is the case, and
iterate until no further increase is required for any of the covariates. Additionally, at
each step, we make sure that no individual basis size is greater than the sample size
divided by thirty. While not theoretically justified, keeping a reasonably large ratio of
number of observations to number of parameters is a rule of thumb that was found
useful in this context3.

1To compute the test statistics, we use a covariance matrix that results from the Bayesian
interpretation of GAMs. While there is no optimality result for the power, Marra and Wood (2012),
extending the analysis of Nychka 1988, motivated the use of this covariance matrix by showing that
the resulting intervals have better frequentist performances (power and distribution under the null)
than those computed using a strictly frequentist approximation.

2For cubic splines, the upper limit is in fact bj ≠ 1, because we require that the smooth integrates
to zero for identifiability, which means that one degree of freedom is lost.

3Note that this restriction was not enforced in an earlier version of the code. However, it is clear
that the variance of the estimates increases when the the ratio of number of observations to number
of parameters decreases. Furthermore, because we noticed numerical instabilities in simulations when
the ratio was around 30 and lower, we decided to use it as a bound in our algorithm.
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We summarize this method in Algorithm 1, where we use PMLE, a function which
computes the penalized maximum log-likelihood estimator ‚

◊ while selecting the vector
of smoothing parameters “ automatically using GVC minimization. Its inputs are two
n ◊ 1 vectors (say u1 and u2), a n ◊ k matrix of k covariates, and a k ◊ 1 vector of
basis sizes for the smooth components corresponding to each covariates. Its output is
the fitted model.

3.2.2 Sequential Estimation of a Pair-Copula Construction

For estimation of PCC models it is common to follow a sequential estimation approach
(see e.g. Aas et al., 2009; Hobæk Ha�, 2013; Nagler and Czado, 2015), which we outline
below. Assume that u

i = (ui

1, . . . , ui

d

), i = 1, . . . , n, are observations from a pair-copula
construction and the vine structure is known. Then, the pair-copulas of the first tree,
T1, can be easily estimated using the method described in the previous subsection.
This is not as straightforward for trees T

m

, m Ø 2 since data from the densities c
j

e

,d

e

;D
e

are unobserved. However, we can sequentially construct pseudo-observations by an
appropriate transformation of the data.

Define the h-functions (c.f. Aas et al., 2009) corresponding to a pair-copula density
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for all (u, v) œ [0, 1]2. The dot in the third argument represents one of the GAM-
formulations in Section 3.1. A crucial insight is the following: Assume we have (pseudo-
)observations from the pair-copula density c
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, (3.5)

for i = 1, . . . , n.
As only the estimates of each pair-copula in T

l

are required to compute pseudo-
observations for tree T

l+1, we make use of the following sequential estimation procedure,
starting with tree T1:

1. For each edge in the tree:

(a) Select covariates and estimate the GAM model for each copula family.
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Algorithm 1 Model selection for a bivariate conditional copula
1: Inputs:

u1, u2, y1, . . . , y
k

, –
2: Initialize:

b Ω k
basis

j

Ω 5, j = 1, . . . , b
cov Ω a n ◊ b matrix with columns y1, . . . , y

b

sel Ω false
3: while ANY(sel ”= true) AND b > 0 do Û Remove the “unsignificant” covariates
4: fitted Ω PMLE(u1, u2, cov, basis)
5: Clear basis, PV , and sel
6: PV

j

Ω p-value of fitted corresponding to column j of cov, j = 1, . . . , b
7: sel

j

Ω true, j = 1, . . . , b
8: for j = 1 to b do
9: if PV

j

Ø – then
10: sel

j

Ω false
11: remove column j from cov
12: end if
13: end for
14: b Ω q

b

j=1 1P V

j

<–

15: basis
j

Ω 5, j = 1, . . . , b
16: end while
17: fitted Ω PMLE(u1, u2, cov, basis)
18: if b ”= 0 then Û Select the basis size
19: EDF

j

Ω EDF of fitted corresponding to column j of cov, j = 1, . . . , b
20: if ANY(EDF > (basis ≠ 1)/2) then
21: while ANY(sel == true) AND ALL(basis < n/30) do
22: Clear sel
23: sel

j

Ω false, j = 1, . . . , b
24: for j = 1 to b do
25: if EDF

j

> (basis
j

≠ 1)/2 then
26: sel

j

Ω true
27: basis

j

Ω 2 · basis
j

28: end if
29: end for
30: fitted Ω PMLE(u1, u2, cov, basis)
31: EDF

j

Ω EDF of fitted corresponding to column j of cov, j = 1, . . . , b
32: end while
33: end if
34: end if
35: return fitted
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(b) Use the AIC, BIC, or any suitable information criterion to choose a copula
family.

(c) Use the estimated pair-copula density to construct pseudo-observations for
the next tree via (3.5).

2. Go to next tree.

The fact that the tree sequence T1, T2, . . . , is a regular vine guarantees that at any step
in this procedure, all required pseudo-observations are available.

3.3 Simulations

We evaluate the performance of the estimation and model selection procedures of
Section 3.2 in a simulation study. In particular, we investigate the influence of copula
family, type of smooth function, tree level, and sample size on the estimation accuracy.

3.3.1 Pair-Copula Constructions with Exogenous Covariates

In this section, we present simulation results to study the model described in Section
3.1.2. Before an analysis of the results, we outline how simulations were set up.

Setup

To encompass di�erent cases of practical interest, we use the same three deterministic
functions as in Chapter 2 normalized to ensure identifiability, namely

s1(x) = ≠2/3 + 8(x ≠ 0.5)2 (3.6)
s2(x) = sin (2fix) (3.7)
s3(x) =

Ô
2fi/4

Ó
�1/2,1/8(0) ≠ �1/2,1/8(1)

Ô
+ exp

Ó
≠32(x ≠ 1/2)2

Ô
, (3.8)

where �
µ,‡

denotes the Gaussian distribution function with mean µ and standard
deviation ‡. In order to make consistent estimation feasible, we represent each of the
smooth functions using cubic splines interpolation based on 10 knots (equidistant on
the unit interval). The Kendall’s tau of each pair-copula is then specified as a function

Â
e

(x) = g
Ó
s

r

e

(1)(x1) + s
r

e

(2)(x2)
Ô

, g(x) = (ex ≠ 1)/(ex + 1),



62 Generalized Additive Models for Pair-Copula Constructions

where, for each pair e, the indices r
e

(k), k = 1, 2, are drawn with equal probability
from the set {1, 2, 3}. This results in a Kendall’s tau range of approximately [≠0.9, 0.9]
for each pair. Additionally, we draw the copula family for each pair-copula with equal
probability from the Gaussian, Student’s t (with four degrees of freedom), Clayton and
Gumbel families. Using independent covariates, each distributed uniformly on [0, 1],
the experiment is repeated 1 000 times for sample sizes n = 500, 2 000.

Note that, since there are three pair-copulas in a 3-dimensional PCC, we sample
six deterministic functions for each experiment. In order to also study the influence of
the copula family, there is an impractically large number of possible combinations for
each sample size (36 ◊ 43 = 46 656), which explains why we opt for this randomization.

Furthermore, in this experiment, the Clayton and Gumbel families are extended to
allow for · < 0 by using 90¶ and 270¶ rotations. For example, if cClay(u1, u2; ÷) denotes
the Clayton copula with parameter ÷, then cClay90(u1, u2; ÷) = cClay(u2, 1 ≠ u1; ÷) is its
90 degree (counter-clockwise) rotation and allows for negative dependence. We refer
the reader to Chapter 4 for more details.

Results

We start with a detailed analysis of the case n = 500. Later, we compare the
performance to the case n = 2 000. Figure 3.4a shows the three deterministic functions
s1, s2, s3 (solid lines), median estimates (dashed lines), and 95% confidence bands
(dotted). The top row corresponds to the optimal estimator (opt), where we assumed
that the copula families and number of knots are known. The bottom row shows the
results for the estimator that assumes no prior knowledge (except the structure of the
vine) and uses the model selection algorithm proposed in Section 3.2.1 (sel) as well
as the AIC to select the copula family. Both estimators capture the characteristics
of each smooth function quite well. We observe some bias in areas of high curvature
and increasing variability in the estimates towards the boundaries. These findings are
in line with the results from Chapter 2. On a first glance, there seems to be little
di�erence between the optimal estimator and the model selection algorithm.

In the top row of Figure 3.4b, the e�ect of the copula family on estimation accuracy
is illustrated with boxplots of the integrated absolute error (IAE, see the simulation
study of Chapter 2) between the true and estimated function. The results indicate
that the family does have an impact on accuracy of both estimation methods. The
Clayton copula seems to be a little problematic. This is most likely caused by the fact
that the Clayton density explodes at the (0,0) corner very fast, leading to instabilities.
In the two left plots of the bottom row the results are split by tree level. We see
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(b) Split by family and tree (both for n = 500) and sample size (bottom right).

Fig. 3.4 PCC with exogenous covariates: simulation results for the correctly
specified estimator (opt) and model selection algorithm (sel).
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Gaussian Student’s t Clayton Gumbel
Gaussian 24.2 0.0 0.1 0.4 24.8

Student’s t 0.8 24.1 0.3 0.2 25.4
Clayton 0.0 0.0 24.9 0.0 24.9
Gumbel 0.0 0.1 0.0 24.7 24.8

25.1 24.2 25.3 25.4 100.0
Table 3.1 PCC with exogenous covariates: contingency table of true family (rows)
and family selected by the model selection algorithm (columns) in percent. All numbers
are rounded to one digit.

that the estimation accuracy gets worse in the second tree. The main reason is that
the sequential estimation approach (c.f., Section 3.2.2) relies on pseudo-observations.
Estimation errors from the first tree propagate to the second tree, and so on. The
remaining plots of the bottom row indicate that estimation accuracy improves notably
when we increase the sample size from n = 500 to n = 2 000.

Overall, we observe that the selection algorithm does a very good job in estimating
the smooth functions s1, s2, s3 — it even performs slightly better than the optimal
estimator. This can be explained by the increased flexibility in choosing the number of
knots: if the data doesn’t convey enough information, a smaller number of knots can
decrease the variance. However, this does not mean that the correct copula model was
selected. This can be further investigated by comparing the true pair-copula families
to the families selected by the algorithm. Table 3.1 shows a contingency table of true
and selected families over all scenarios of this study. We see that, most of the time,
the algorithm also manages to correctly identify the true family.

3.3.2 Nonsimplified Pair-Copula Constructions

The simulation setup for the nonsimplified case is similar to the above. But here, we
specify the Kendall’s tau of each pair-copula as

Â
e

(u
D

e

) = g

Y
]

[
ÿ

kœD

e

s
r

e

(k)(uk

)
Z
^

\ , g(x) = (ex ≠ 1)/(ex + 1),

where, for each pair e, the indices r
e

(k) are drawn with equal probability from the
set {1, 2, 3}. This results in a Kendall’s tau range of approximately [-0.5, 0.5] in the
second tree, and [-0.9, 0.9] in the third tree.

Figure 3.5 shows the results of the simulation study. They are very similar to the
case with exogenous covariates and all conclusions from Section 3.3.1 transfer.
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(b) Split by family. tree (both for n = 500) and sample size (bottom right).

Fig. 3.5 Nonsimplified PCC: simulation results for the correctly specified estimator
(opt) and model selection algorithm (sel).
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3.4 Applications

3.4.1 The Foreign Exchange Market Revisited

In our second application, we continue our study the cross-sectional dynamics of
intraday asset return of Chapter 2. We extend the bivariate model to encompass
three or more exchange rates using vines with exogenous covariates framework. We
use the same data graciously provided by Dukascopy Bank SA4, which contains 15-
minute spaced returns (i.e., 96 observations each day) for the EURUSD, USDJPY and
USDCHF from March 10, 2013 to November 1, 2013. Hence, in a total of 34 trading
weeks, there are 16320 observations (170 days) excluding weekends.

As in Chapter 2, because intraday returns are heteroskedastic, we need to pre-
filter the individual series before applying the methodology of this Chapter. However,
contrasting with Chapter 2, we keep the decomposition of the volatility in two multi-
plicative components (a seasonal, often assumed deterministic, part and a stochastic
part), but we model it directly within a one-step procedure. In fact, it is straightfor-
ward to achieve this within the GARCH-family, where r

t

= ‡
t

y
t

for ‡
t

a function of
{r

t≠1, ‡
t≠1, r

t≠2, ‡
t≠2, · · · } and y

t

a white noise. Using sines and cosines to explain the
intraday conditional variance, we write

log ‡2
t

=
C

Ê +
Kÿ

k=1
{a

k

cos (2fikt/T ) + b
k

sin (2fikt/T )}
D

+ – ‘
t≠1 + “ (| ‘

t≠1 | ≠E | ‘
t≠1 |) + — log ‡2

t≠1,

where T = 96. Note that this model is the EGARCH(1,1) from Nelson (1991),
augmented with external regressors to take the seasonality into account. The sum
of cosines and sines with integer frequencies, designed to capture daily oscillations
around the base level, is similar to the Fourier Flexible Form (FFF, see Gallant 1981),
introduced in this context by Andersen and Bollerslev (1997, 1998). Denoting by ‚‡

t

the fitted volatility using the maximum log-likelihood estimator with K = 5, we refer
to ‚y

t

= r
t

/ ‚‡
t

as the residuals.
In Figure 3.6, we show the returns along with fitted conditional standard deviations

for the first week of sample. From this picture, it is clear that the periodicity is
stronger for the EURUSD and USDCHF than for the USDJPY. In Figure 3.7, the
black (respectively red) curve represents the autocorrelation of the absolute value
of the returns (respectively residuals), where we observe that our univariate models

4http://www.dukascopy.com/
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EURUSD-USDCHF EURUSD-USDJPY USDCHF-USDJPY
-0.608 -0.171 0.252

Table 3.2 Unconditional dependence between the foreign exchange rates: the
Kendall’s tau computed using each univariate model’s residuals.

appropriately capture the heteroskedasticity. In Figure 3.8, the black (respectively red)
curve represents the empirical (respectively fitted) volatility per 15 minutes bin, where
we recognize the usual modes at the opening time of the Tokyo, London and New-York
markets.

From the residuals, we then compute observations on the copula scale by using the
empirical cumulative distribution for each margins. Because the USDCHF residuals
exhibit the higher dependence with the other two exchange rates (see Table 3.2), we
choose this pair as the central node of the trivariate PCC. Furthermore, we use the
same FFF regressors as in the conditional variance to model the periodic component
of the dependence structure. We also add a smooth function of the time to model the
evolution of the dependence over the sample period. Then, similarly as the example of
Section 3.1.2, a model for the corresponding conditional pair-copulas can be written as

Â1,2(w) = g1,2
Ó
x(t)€

—1,2 + s1,2(t)
Ô

,

Â2,3(w) = g2,3
Ó
x(t)€

—2,3 + s2,3(t)
Ô

,

Â2,3;2(w) = g2,3;2
Ó
x(t)€

—2,3;2 + s2,3;2(t)
Ô

,

where x(t) = (1, cos (2fit/T ) , . . . , cos (2fi5t/T ) , sin (2fit/T ) , . . . , sin (2fi5t/T ))€, 1 =
EURUSD, 2 = USDCHF, and 3 = USDJPY. Before describing the results, two
additional remarks concerning the model are:

• To facilitate its interpretation, we estimate the PCC directly using the Kendall’s
tau parametrization (and not the copula parameter) as in Chapter 2.

• We use the Student’s t for all tree conditional pair-copulas, because it is favored
by the AIC over the Gaussian or common Archimedean copulas, as is often the
case when modeling financial data.

In order to capture the time-varying features, each smooth was estimated with 100
knots, but the generalized cross-validation minimization reduced the e�ective degrees
of freedom to 80.24, 57.94 and 39.13. Furthermore, the average Kendall’s tau, that is
simply g(intercept), for the first two pair-copulas are ≠0.62 and 0.27, which is close to
the unconditional values (see Table 3.2). As for the last conditional pair-copula, the
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Fig. 3.6 First week of the foreign exchange rates data: in each row, the returns
time-series is in black, and a two conditional standard deviations time-series is in red.
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Fig. 3.7 Autocorrelations of the foreign exchange rates: in each row, the au-
tocorrelation of the absolute value of the return is in black, and the deseasonalized
residual is in red.
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Fig. 3.8 Periodic component of the foreign exchange rates: in each row, the
black (respectively red) curve represents the empirical (respectively fitted) volatility
per 15 minutes bin.
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average Kendall’s tau is only 0.05, because most of the dependence is captured in the
first tree.

In Figure 3.9, we show all smooth and periodic components (without the intercept).
The confidence intervals are computed using a parametric bootstrap procedure, similarly
as the one devised in the application of Chapter 2. Notice that the first two rows
essentially mirror each other because the dependence for the EURUSD-USDCHF is
negative while that of the USDCHF-USDJPY is positive. An interesting feature about
their periodic components is that the dependence peaks at the opening of the Japanese
market, as well as at the opening and closing of the US market, but it seems to be less
impacted by the European markets. As for the third copula, its smooth component has
less e�ective degrees of freedom (i.e., it is smoother) because some of the time-varying
features are already captured in the first tree. However, unlike in the first tree, the
main dependence peak is at the European opening, while that for the Japanese opening
and the US opening and closing are slightly smaller.

Overall, when modeling intraday financial data using PCCs, our study suggests that
a severe underestimation/overestimation of the dependence may result from failing to
factor in its dynamic properties. Furthermore, while most of the time-varying features
are captured in the first tree, special care should be taken for the second tree.

3.4.2 The Uranium Exploration Data

In second first application, we revisit the uranium exploration data initially used
by Cook and Johnson (1981). The data represent 655 water samples collected in
Colorado and contain measurements on the log-concentration (in parts per billion) of
seven trace elements: uranium (U), lithium (Li), cobalt (Co), potassium (K), caesium
(Cs), scandium (Sc), and titanium (Ti). More recently, Acar et al. (2012) fit a three-
dimensional non-simplified PCC to a subset of the data. Their analysis indicates that
the simplifying assumption does not hold.

We use the GAM-framework developed in this Chapter to fit a non-simplified PCC
to the seven variables. First, we transform the original data to the copula scale by
applying the empirical probability integral transform. The transformed data represents
pseudo-observations from a seven-dimensional copula. Following Dissmann et al. (2013)
for simplified PCCs, the vine tree structure is selected by sequentially maximizing the
sum of absolute Kendall’s tau, and the resulting first three trees are shown in Figure
3.10. For the selection of smooth components and pair-copula families we apply the
approach described in Section 3.2.
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(a) The EURUSD-USDCHF copula.
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(b) The USDCHF-USDJPY copula.
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(c) The EURUSD–USDJPY;USDCHF copula.

Fig. 3.9 Smooth and periodic components of the foreign exchange’s PCC:
for the three non-simplified conditional copulas, ‚s(t) (plain line) with 95% c.i. (gray
area) is represented in the left column, x(t)€ ‚

—(t) (plain line) with 95% c.i. (gray area)
in the right column). Note that all smooths are centered around 0.
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Fig. 3.10 First three trees of the PCC selected for the uranium data: dotted
lines indicate simplified pair-copulas; solid lines non-simplified ones. The variables are
encoded as follows: 1 – U, 2 – Li, 3 – Co, 4 – K, 5 – Cs, 6 – Sc, 7 – Ti.
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In the first tree, the conditioning set is empty, so all pair-copulas are necessarily
simplified (i.e., unconditional). In the second tree, only two out of five pair-copulas are
modeled as non-simplified (indicated by a solid line in Figure 3.10) by the selection
algorithm of Section 3.2.1. Then, in the third three, only one pair is modeled as
non-simplified. Finally, in the lower trees (i.e, T4, T5, T6), all pair-copulas are modeled
as simplified.

For the non-simplified pair-copula, the resulting specification is

Â3,7;6 (u6) = g3,7;6

I

—3,7;6 + s3,7;6 (u6)
J

,

Â5,6;7 (u7) = g5,6;7

I

—5,6;7 + s5,6;7 (u7)
J

,

Â3,5;6,7 (u7) = g3,5;6,7

I

—3,5;6,7 + s3,5;6,7 (u7)
J

,

where —3,7;6, —5,6;7, —3,5;6,7 œ R are intercepts. Note that the scandium (Sc) could have
been part of Â3,5;6,7 but was not selected. The functions s3,7;6, s5,6;7 and s3,5;6,7 are
shown in Figure 3.11 (the confidence intervals are computed using parametric bootstrap
once again). The pair-copula c3,7;6, which captures the e�ect of scandium (Sc) on the
dependence between cobalt (Co) and titanium (Ti) and has been investigated before
in Acar et al. (2012). Similar to these authors, we find that the dependence declines
for large values and has a local maximum for average values of the covariate (Sc).
Concerning s5,6;7, its estimated equivalent degree of freedom (< 1.5) suggests that
a linear function of the covariate (Ti) is appropriate. Finally, since the confidence
band is so large for the last non-simplified pair-copula, it is unclear whether the
non-simplification really or whether the detected (linear) relationship is spurious.

Concerning all the other pair-copulas, we summarize the selected family and
Kendall’s tau (with 95% confidence intervals in parenthesis) in Table 3.3. By construc-
tion, most of the unconditional dependence is captured in the first tree, where the
dependence is high for all selected pair-copulas. Then, the overall captured dependence
quickly drops in the lower trees, and it is again unclear whether many of the estimated
relationships are spurious or not.

Overall, an interesting e�ect is that most of the unconditional dependence is
captured in the first tree, whereas most of the conditional dependence is captured in
the second. This suggests that a more sophisticated model selection may be appropriate:
for instance, after the first tree, we could minimize sequentially the sum of the p-values
of a conditional independence test.
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Fig. 3.11 Smooth functions of the uranium data’s PCC: for the three selected
non-simplified conditional copulas, ‰g(s) is the plain line and the 95% c.i. is the grey
area.

3.5 Discussion

In this Chapter, we extend our bivariate frameworke to multivariate distribution,
while introducing two extensions of the pair-copula constructions (PCCs). First, we
take into account the e�ect of exogenous covariates on the dependence structure.
Second, we relax the usual simplifying assumption, letting each copula parameter of
the decomposition depend on its conditioning set. Both extensions are achieved using
the flexibility of generalized additive models (GAMs), which allow for parametric,
semiparametric or nonparametric specifications. Building on the maximum penalized
log-likelihood estimator for bivariate copulas of Chapter 2, we propose a sequential
estimation algorithm as well as a fully automatic model selection procedure. We
evaluate both in a simulation study, and we find that

• the variance is higher in the lower trees, although the e�ciency loss of the
sequential estimation is small,

• and the performances of the selection and estimation are comparable to that of
an oracle estimator (where the structure and copula families are known but not
the smooth components).

Finally, we apply the new framework to two real datasets. First, we model the
dependence structure of intraday returns on three exchange rates, and we observe
that the bivariate results of Chapter 2 are extended directly in this higher-dimensional
example. In other words, the data suggests that the dependence can be decomposed
into a smooth and a periodic component. Furthermore, the periodic components for
each conditional pair-copulas have peak that correspond to openings and/or closings
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markets around the world. Finally, while most of the time-varying features are captured
in the first tree, there is still a significant amount of periodicity left in the second tree.
Second, we revisit the uranium exploration data of Cook and Johnson (1981), where we
show empirically that the simplifying assumption. This example is interesting because
it highlights that, for real datasets, the non-simplified PCC model can capture most of
the unconditional dependence in the first tree, and the conditional dependence in the
second.

We conclude this chapter with three observations representing potential directions
for further work, although out of the scope of this thesis. First, while we present our
framework in the general semiparametric form, the simulations are only concerned with
the smooth components. The reason is that automatic model selection procedures for
specifications containing parametric and nonparametric terms are seldom studied in
the statistics literature. Second, as the dimension of the dataset under study grows, so
does the conditioning set of the copulas in the lower trees. To alleviate this issue, we
could use a dimensionality reduction method restricted to the unit hypercube. Third,
while we used the algorithm of Dissmann et al. (2013) to select the vine structure, it
may not be optimal for PCCs with exogenous covariates and/or non-simplified ones.
For instance, depending on the application context, we may want to first select the
pairs for which the covariates e�ects are stronger, or alternatively the pairs for which
the simplifying assumption is violated the most.
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Li,U Cs,K Cs,U
Copula family t t t
Kendall’s tau 0.124 (0.072,0.175) 0.196 (0.15,0.245) 0.439 (0.405,0.475)

(a) Tree 1 (first three copulas)

Co,Sc Cs,Ti Sc,Ti
Copula family t Gumbel type 2 t
Kendall’s tau 0.527 (0.491,0.563) 0.315 (0.264,0.359) 0.429 (0.384,0.47)

(b) Tree 1 (last three copulas)

Cs,Li;U K,U;Cs Ti,U;Cs
Copula family Clayton type 2 Gaussian t
Kendall’s tau 0.049 (-0.003,0.094) 0.102 (0.05,0.152) -0.1 (-0.15,-0.044)

(c) Tree 2

K,Li;Cs,U K,Ti;Cs,U Sc,U;Cs,Ti
Copula family Clayton type 2 t t
Kendall’s tau 0.083 (0.031,0.128) -0.039 (-0.093,0.018) -0.04 (-0.091,0.014)

(d) Tree 3

Li,Ti;Cs,K,U K,Sc;Cs,Ti,U Co,U;Cs,Sc,Ti
Copula family t Gaussian Clayton type 1
Kendall’s tau -0.013 (-0.062,0.038) -0.194 (-0.243,-0.146) -0.026 (-0.072,0)

(e) Tree 4

Li,Sc;Cs,K,Ti,U Co,K;Cs,Sc,Ti,U Co,Li;Cs,K,Sc,Ti,U
Copula family Clayton type 2 t Clayton type 1
Kendall’s tau 0.132 (0.092,0.172) -0.036 (-0.088,0.012) -0.053 (-0.091,-0.011)

(f) Tree 5 and 6

Table 3.3 The simplified copulas of the uranium data’s PCC: families and
Kendall’s tau (with 95% c.i. in parenthesis).





Chapter 4

Code

The R (R Core Team 2013) functions for estimation and inference of the models
described in Chapters 2 and 3 are collected in the package gamCopula, available at
https://github.com/tvatter/gamCopula. Currently, gamCopula is heavly relying on
the mgcv (see Wood 2006) and VineCopula (see Schepsmeier et al. 2015) packages,
as it basically extends and mix both of them. In this Chapter, we describe practical
details of our implementation, which revolves around two S4 classes, namely gamBiCop
and gamVine.

4.1 The gamBiCop Class
gamBiCop is an S4 class used to store a generalized additive model either for the condi-
tional Kendall’s tau (as described in Chapter 2) or directly for the conditional copula
parameter. Instances of this class can be created by using the function gamBiCop() or
calls of the form new("gamBiCop", ...). It contains four slots:

• family encodes the copula family.

• model is an S3 gamObject as returned by the gam function from the mgcv package.

• par2 stores the second parameter for the Student’s t copula.

• tau is TRUE for the Kendall’s tau specification or FALSE for the copula parameter.

For the encoding of the copula family, we follow the convention of the package
VineCopula. Currently, the Gaussian, Student’s t and Frank are implemented us-
ing their standard parametrization (as well as the natural mapping with Kendall’s tau).
For the Clayton and Gumbel, as explained in Chapter 3, a modification is required to

https://github.com/tvatter/gamCopula
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allow for both positive and negative dependence. In order to span the complete [≠1, 1]
interval for Kendall’s tau, we consider the 90/180/270 degrees rotated versions of such
copulas. For instance, if cClay(u1, u2; ÷) denotes the Clayton copula with parameter ÷,
then cClay90(u1, u2; ÷) = cClay(u2, 1≠u1; ÷) is its 90 degrees (counter-clockwise) rotation
and allows for negative dependence. Hence, the families of double Archimedean are
obtained by mixing a copula of positive dependence (either the standard or survival,
that is the 180 degrees rotated) and one of negative dependence (either the 90 or
270 degrees rotated). As such, additionally to the three families listed above, the
gamCopula package contains

• the double Clayton type I (standard and rotated 90 degrees),

• the double Clayton type II (standard and rotated 270 degrees),

• the double Clayton type III (survival and rotated 90 degrees),

• the double Clayton type IV (survival and rotated 270 degrees),

• the double Gumbel type I (standard and rotated 90 degrees),

• the double Gumbel type II (standard and rotated 270 degrees),

• the double Gumbel type III (survival and rotated 90 degrees),

• and the double Gumbel type IV (survival and rotated 270 degrees).

There are three main functions related to the gamBiCop class, namely gamBiCopEst,
gamBiCopSim, gamBiCopPred, respectively allowing to estimate a model, or simulate
and predict from a fitted one.

For instance, let us assume a Gaussian copula conditional on a single covariate x

with parameter

◊(x) = g(1 + x),

where g(x) = (ex ≠ 1)/(ex + 1). We obtain 500 normally distributed observations of
the covariate x using:

set.seed(0)
n <- 5e2
x <- rnorm(n)

For now without our package, we simulate from the model described above with:
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g <- function(x) (exp(x)-1)/(exp(x)+1)
par <- g(1+x)
u <- t(sapply(par, function(par) BiCopSim(N = 1, family = 1, par)))

Note that BiCopSim is the bivariate copula simulation function from the VineCopula
package, and we simulate 1 observation for the family 1 (i.e., the Gaussian) for each
element of par. Before estimating the model, it is necessary to set-up a dataframe
with the first two columns named "u1" and "u2":

data <- data.frame(u, x)
names(data)[1:2] <- c("u1", "u2")

Finally, we can use gamBiCopEst to estimate the model:

cop <- gamBiCopEst(data, ~ x, family = 1 tau = FALSE)

Notice that the option tau = FALSE is used because the model is specified for the
copula parameter. As for the second argument, it uses the standard way of specifying
formulas in R (in this case a linear model with x as predictor). In fact, to obtain a
smooth function of the covariate(s), the second argument of gamBiCopEst can also be
a gam formula (which is described in detail in the help pages ?gam, ?formula.gam and
?gam.models from the package mgcv).

The output from gamBiCopEst is a list containing various informations on the fit,
as well the model fit (element res of the list), from which a summary can be obtained,
in this case by calling summary(cop[["res"]]):

Gaussian copula with par(z) = (exp(z)-1)/(exp(z)+1) where
Formula:
z ~ x

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.99429 0.07704 12.91 <2e-16 ***
x 0.95659 0.07219 13.25 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.257 Deviance explained = 26.1%
GCV = 0.93863 Scale est. = 0.93487 n = 500
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Other methods such as logLik, AIC, BIC, EDF and plot are also available for this class.
Furthermore, using gamBiCopSim, gamBiCopPred, gamBiCopPDF and gamBiCopCDF, it
is then possible to simulate new observations, predict the calibration function, the
parameter and/or Kendall’s tau, compute the density or cumulative distribution from
this fitted object. Note that those functions use a gamBiCop object as first argument
and newdata as (optional) second argument, which, if provided, should contain all the
variables required by the gam formula. Finally, the model selection algorithm described
in Chapter 3 is implemented in the function gamBiCopSel.

4.1.1 A Complete Example

In this section, we give a complete example in a set-up similar to the simulation study
of Chapter 2. We first load the required packages and set the seed for reproducibility:

require(copula)
require(mgcv)
set.seed(0)

Then, we set the simulation parameters (sample size, correlation between covariates,
and Gaussian copula family):

n <- 5e2
rho <- 0.5
fam <- 1

We create a function factory for a copula parameter depending on three variables:

eta0 <- 1
calib.surf <- list(

calib.quad <- function(t, Ti = 0, Tf = 1, b = 8) {
Tm <- (Tf - Ti)/2
a <- -(b/3) * (Tf^2 - 3 * Tf * Tm + 3 * Tm^2)
return(a + b * (t - Tm)^2)},

calib.sin <- function(t, Ti = 0, Tf = 1, b = 1, f = 1) {
a <- b * (1 - 2 * Tf * pi/(f * Tf * pi +

cos(2 * f * pi * (Tf - Ti))
- cos(2 * f * pi * Ti)))

return((a + b)/2 + (b - a) * sin(2 * f * pi * (t - Ti))/2)},
calib.exp <- function(t, Ti = 0, Tf = 1, b = 2, s = Tf/8) {
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Tm <- (Tf - Ti)/2
a <- (b * s * sqrt(2 * pi)/Tf) * (pnorm(0, Tm, s) -

pnorm(Tf, Tm, s))
return(a + b * exp(-(t - Tm)^2/(2 * s^2)))})

We simulate a 3-dimensional matrix of covariates:

covariates.distr <- mvdc(normalCopula(rho, dim = 3),
c("unif"),
list(list(min = 0, max = 1)),
marginsIdentical = TRUE)

X <- rMvdc(n, covariates.distr)

Using the covariates, we simulate from the conditional model to obtain the copula
observations:

U <- condBiCopSim(fam, function(x1,x2,x3) {
eta0+sum(mapply(function(f,x) f(x),

calib.surf,
c(x1,x2,x3)))},

X[,1:3], par2 = 6, return.par = TRUE)

We merge the copula observations and covariates and give appropriate names to the
columns of the dataset:

data <- data.frame(U$data,X)
names(data) <- c(paste("u",1:2,sep=""),paste("x",1:3,sep=""))

We first fit a model fit with a basis size (arguably) too small and unpenalized cubic
spines:

pen <- FALSE
basis0 <- c(3, 4, 4)
formula <- ~s(x1, k = basis0[1], bs = "cr", fx = !pen) +

s(x2, k = basis0[2], bs = "cr", fx = !pen) +
s(x3, k = basis0[3], bs = "cr", fx = !pen)

system.time(fit0 <- gamBiCopEst(data, formula, fam))

Then we fit a model fit with a better basis size and penalized cubic splines (via GCV
minimization):
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pen <- TRUE
basis1 <- c(3, 10, 10)
formula <- ~s(x1, k = basis1[1], bs = "cr", fx = !pen) +

s(x2, k = basis1[2], bs = "cr", fx = !pen) +
s(x3, k = basis1[3], bs = "cr", fx = !pen)

system.time(fit1 <- gamBiCopEst(data, formula, fam))

We extract the gamBiCop objects and show various methods:

res <- sapply(list(fit0,fit1), function(fit){fit$res})
metds <- list(’logLik’=logLik,’AIC’=AIC,’BIC’=BIC,’EDF’=EDF)
lapply(res, function(x) sapply(metds, function(f) f(x)))

In this particular case, the last line returns:

[[1]]
[[1]]$logLik
’log Lik.’ 267.9789 (df=9)

[[1]]$AIC
[1] -517.9578

[[1]]$BIC
[1] -480.0264

[[1]]$EDF
[1] 1 2 3 3

[[2]]
[[2]]$logLik
’log Lik.’ 298.8658 (df=16.14058)

[[2]]$AIC
[1] -565.4505

[[2]]$BIC
[1] -497.4242
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[[2]]$EDF
[1] 1.000000 1.999076 7.406505 5.735001

We can finally compare between the fitted and true model for each of the three smooth
functions and basis choice, and display the results (see Figure 4.1):

fitted <- lapply(res, function(x)
gamBiCopPred(x, data.frame(x1=u,x2=u,x3=u), type = "terms")$calib)

par(mfrow = c(1, 3), pty = "s")
yy <- c(-2,1.5)
for(k in 1:3){

plot(u, true[[k]]$true, type = "l", ylim = yy,
xlab = paste("Covariate",k), ylab = paste("Smooth",k),
cex.axis = 1.5, cex.lab = 1.5, lwd = 2)

lines(u, fitted[[1]][, k], col = "red", lwd = 2)
lines(u, fitted[[2]][, k], col = "green", lwd = 2)

}
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Fig. 4.1 A complete example on gamBiCopEst: in each panel, the true underlying
function is in black, the fitted model with cubic splines and a fixed (small) basis is
in red and the fitted model with cubic splines and a larger basis penalized via GCV
minimizationgreen is in green.

4.2 The gamVine Class
gamVine is an S4 class used to store a conditional and potentially non-simplified
pair-copula construction (as described in Chapter 3). Instances of this class can be
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created by using the function gamVine() or calls of the form new("gamVine", ...).
It contains four slots:

• Matrix is a lower triangular d ◊ d matrix that defines the tree structure.

• model is a list containing d ◊ (d ≠ 1)/2 elements, with each element being either
a list with three numeric items (family, par and par2) or an object of class
gamBiCop.

• names is a vector of d names.

• covariates is an (optional) vector of names for the exogenous covariates.

Similarly as for the gamBiCop class, the gamCopula package deals with the gamVine
class via functions allowing to estimate a model or simulate from a fitted one. However,
the estimation part is arguably more complex because of the (often) required structure
selection (i.e., which pairs should be included). We build on the insights of the
VineCopula package and propose three estimation methods:

• gamVineSeqEst, like RVineSeqEst, assumes that both the structure and model
for each pair are known. It takes a dataset and gamVine object as first and
second inputs and uses the first input to estimate sequentially the model from
the second input.

• gamVineCopSelect, like RVineCopSelect, assumes that only the structure is
known. It takes a dataset and a Matrix object as first and second inputs and
uses the first input to estimate sequentially the model from the second input.
Because only the structure (i.e., which pairs should be included) is known, the
function uses gamBiCopSel for the model selection of each pair-copula.

• gamVineStructureSelect, like RVineStructureSelect, assumes that nothing
is known. It takes a dataset and uses it sequentially select and estimate the
model. Similarly as gamVineCopSelect, it uses gamBiCopSel for the pair-copula
selection. Furthermore, the structure is selected as in RVineStructureSelect,
namely using maximum spanning trees with absolute values of pairwise Kendall’s
taus as weights (see Dissmann et al. 2013 for more details).

Once the model is estimated, one can simulate from a gamVine object by using
gamVineSim.
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4.2.1 A Complete Example
In this section, we give a complete example in a set-up similar to the simulation study
of Chapter 3. We first load the required packages and set the seed for reproducibility:

require(copula)
require(mgcv)
set.seed(0)

Then, we set the simulation parameters (sample size and all copula families allowed):

n <- 1e3
fam <- c(1:2,301:304,401:404)

Next, we define a 4-dimensional R-vine tree structure matrix

d <- 4
Matrix <- c(2,3,4,1,0,3,4,1,0,0,4,1,0,0,0,1)
Matrix <- matrix(Matrix,d,d)
nnames <- paste("X", 1:d, sep = "")

We create a function factory for a copula parameter depending on three variables:

eta0 <- 1
calib.surf <- list(

calib.quad <- function(t, Ti = 0, Tf = 1, b = 8) {
Tm <- (Tf - Ti)/2
a <- -(b/3) * (Tf^2 - 3 * Tf * Tm + 3 * Tm^2)
return(a + b * (t - Tm)^2)},

calib.sin <- function(t, Ti = 0, Tf = 1, b = 1, f = 1) {
a <- b * (1 - 2 * Tf * pi/(f * Tf * pi +

cos(2 * f * pi * (Tf - Ti))
- cos(2 * f * pi * Ti)))

return((a + b)/2 + (b - a) * sin(2 * f * pi * (t - Ti))/2)},
calib.exp <- function(t, Ti = 0, Tf = 1, b = 2, s = Tf/8) {

Tm <- (Tf - Ti)/2
a <- (b * s * sqrt(2 * pi)/Tf) * (pnorm(0, Tm, s) -

pnorm(Tf, Tm, s))
return(a + b * exp(-(t - Tm)^2/(2 * s^2)))})

In other to create a gamVine object, we first define gam-vine model list:
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count <- 1
model <- vector(mode = "list", length = d*(d-1)/2)
sel <- seq(d,d^2-d, by = d)

For the first tree, a family and its (uncondictional parameter) is then randomly selected:

for (i in 1:(d-1)) {
# Select a copula family
family <- sample(familyset, 1)
model[[count]]$family <- family

# Use the canonical link and a randomly generated parameter
if (is.element(family,c(1,2))) {

model[[count]]$par <- tanh(rnorm(1)/2)
if (family == 2) {

model[[count]]$par2 <- 2+exp(rnorm(1))
}

} else {
if (is.element(family,c(401:404))) {

rr <- rnorm(1)
model[[count]]$par <- sign(rr)*(1+abs(rr))

} else {
model[[count]]$par <- rnorm(1)

}
model[[count]]$par2 <- 0

}
count <- count + 1

}

For trees 2 and 3, we select, for each edge, one copula family, and then for each
conditioning variable, one function from the factory. Then, we approximate this
function using a gam object from the mgcv package that we use as the basic building
bloc of the model:

# A dummy dataset
data <- data.frame(u1 = runif(1e2), u2 = runif(1e2),
x = matrix(runif(1e2*d),1e2,d))
for(j in 2:(d-1)){
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for(i in 1:(d-j)){
# Select a copula family
family <- sample(familyset, 1)

# Select the conditioning set and create a model formula
cond <- nnames[sort(Matrix[(d-j+2):d,i])]
tmpform <- paste("~",paste(paste("s(", cond, ", k=10, bs=’cr’)",

sep = ""), collapse=" + "))
l <- length(cond)
temp <- sample(3, l, replace = TRUE)

# Spline approximation of the true function
m <- 1e2
x <- matrix(seq(0,1,length.out=m), nrow = m, ncol = 1)
if(l != 1){

tmp.fct <- paste("function(x){eta0+",
paste(sapply(1:l, function(x)

paste("calib.surf[[",temp[x],"]](x[",x,"])",
sep="")), collapse="+"),"}",sep="")

tmp.fct <- eval(parse(text = tmp.fct))
x <- eval(parse(text = paste0("expand.grid(", paste0(rep("x",l),

collapse = ","),")", collapse = "")))
y <- apply(x,1,tmp.fct)

}else{
tmp.fct <- function(x) eta0+calib.surf[[temp]](x)
colnames(x) <- cond
y <- tmp.fct(x)

}

# Estimate the gam model
form <- as.formula(paste0("y", tmpform))
dd <- data.frame(y, x)
names(dd) <- c("y", cond)
b <- gam(form, data = dd)
#plot(x[,1],(y-fitted(b))/y)
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# Create a dummy gamBiCop object
tmp <- gamBiCopEst(data = data, formula = form,

family = 1, n.iters = 1)$res

# Update the copula family and the model coefficients
attr(tmp, "model")$coefficients <- coefficients(b)
attr(tmp, "model")$smooth <- b$smooth
attr(tmp, "family") <- family
if (family == 2) {

attr(tmp, "par2") <- 2+exp(rnorm(1))
}
model[[count]] <- tmp
count <- count+1

}
}

Finally, we can create the gamVine object:

GVC <- gamVine(Matrix=Matrix,model = model,names=nnames)
print(GVC)

In this particular case, the last line returns:

GAM-Vine matrix:
[,1] [,2] [,3] [,4]

[1,] 2 0 0 0
[2,] 3 3 0 0
[3,] 4 4 4 0
[4,] 1 1 1 1

Where
1 <-> X1
2 <-> X2
3 <-> X3
4 <-> X4

Tree 1:
X2,X1: Gumbel type 3 (survival and 90 degrees rotated)
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X3,X1: Clayton type 4 (survival and 270 degrees rotated)
X4,X1: Gumbel type 3 (survival and 90 degrees rotated)

Tree 2:
X2,X4|X1 : Gumbel type 4 (survival and 270 degrees rotated) copula
with tau(z) = (exp(z)-1)/(exp(z)+1) where
z ~ s(X1, k = 10, bs = "cr")
X3,X4|X1 : Gumbel type 4 (survival and 270 degrees rotated) copula
with tau(z) = (exp(z)-1)/(exp(z)+1) where
z ~ s(X1, k = 10, bs = "cr")

Tree 3:
X2,X3|X4,X1 : Clayton type 4 (survival and 270 degrees rotated) copula
with tau(z) = (exp(z)-1)/(exp(z)+1) where
z ~ s(X1, k = 10, bs = "cr") + s(X4, k = 10, bs = "cr")

We can now simulate from the gamVine object:

sim <- gamVineSim(n, GVC)

We can also try various estimation methods:

fitGVC <- gamVineSeqEst(sim, GVC, verbose = TRUE)
fitGVC2 <- gamVineCopSelect(sim, Matrix, verbose = TRUE)

Here, by taking GVC as an input, gamVineSeqEst assumes that we now the model and
simply re-estimate the parameters using the dataset. However, gamVineCopSelect
takes only the R-vine matrix as an input, and performs automatically for each edge of
the PCC the selection of the copula family, of the covariates, and of the basis size for
each smooth component. Finally, we can plot the results (see Figure 4.2):

par(mfrow=c(3,4))
plot(GVC, ylim = c(-2.5,2.5))

plot(fitGVC, ylim = c(-2.5,2.5))

plot(fitGVC2, ylim = c(-2.5,2.5))
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Fig. 4.2 A complete example on the gamVine class: in each row, the four smooth
components are displayed. The first row corresponds to the true model, the second row
to the output of gamVineSeqEst, and the third row to the output of gamVineCopSelect.
In this case, notice that the ordering of the smooth functions in the third tree is
di�erent for gamVineCopSelect (the smooth function of X4 appear before that of X1).
Furthermore, because the basis size is fixed by GVC in gamVineSeqEst, there is no
a priori reason to believe that this size is optimal for this particular dataset. This
explains why, in the third tree, the smooth function of the first covariate (i.e., s(X1, ·))
estimated by gamVineCopSelect looks better in this particular case.



Chapter 5

Conclusion

In this thesis, we developed tools to model the influence of predictors on multivariate
distributions. Our regression-like theory of the dependence, being built on conditional
copulas and generalized additive models, is at the same time theoretically sound
and practically useful. Both the bivariate dependence structures (Chapter 2) and
pair-copula constructions (Chapter 3) open new possibilities for further applied and
methodological work, of which we provide a non-exhaustive list in this chapter. Fur-
thermore, the R implementation of all the methods suggested in this thesis (and more)
being publicly available at https://github.com/tvatter/gamCopula, any researcher
from either statistics or an applied domain can use it and/or improve on it. Note that,
because Chapter 2 and 3 have their own concluding sections, we avoid repeating again
what has been done, in order to focus on what lies ahead.

In the bivariate context, our univariate GAM framework comes short for multi-
parameters copulas when several parameters are functions of the covariates. Note that,
for common copulas, an orthogonal reparametrization à la Cox and Reid (1987) is
seldom feasible analytically. As suggested in Chapter 2, a multi-dimensional smoothing
framework, such as vector generalized additive models (VGAM, Yee and Wild 1996),
represents a potential solution. After discussions and exchanges of code with the
author of the R package VGAM, this idea is implemented for the Student’s t-copula.
However, a systematic study of this approach has yet to be devised. Furthermore, even
when treating every parameter but one as nuisance, the numerical behavior of most
multi-parameters bivariate families is unknown. This is why they are still missing from
the gamCopula toolbox, whose only multi-parameters family is the Student’s t.

Useful to the bivariate dependence structures, and necessary to (even moderate-
dimensional) pair-copulas constructions, better automatic model selection methods
for generalized additive models are desperately needed. In fact, tackling this issue,

https://github.com/tvatter/gamCopula
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which is not strictly related to conditional copulas, is more di�cult than it appears
when leaving the “linear world” (i.e., when allowing for smooth components). For
instance, traditional methods usually fail to detect a quadratic function of a covariate.
Furthermore, when non-linearity is assumed, then what basis size (or equivalently,
what bandwidth in a local-likelihood or kernel context) should we choose to test for
multiple covariates e�ects? And what if some of the additive components are linear
and other are smooth? Given the complexity of this problem, it may be surprising
that the crude algorithm suggested in Chapter 3 performs well in our simulations and
applications. Because Marra and Wood (2011) is, to the best of our knowledge, the
only publication on the subject, automatic model selection for GAMs is an important
direction of further research to make them (even more) practically useful.

While diagnostics checks are available for GAMs, they have not been explored in
the framework developed in this thesis. In the copula context, it is possible to use
y[l] ≠ s[l](“)y[l] at convergence as “pseudo-residuals” (see Chapter 2 for the definition of
the “pseudo-data” y[l], and the hat-matrix s[l](“)). The pseudo-residuals can then be
plotted against the linear predictor, or used in other diagnostic checks. Furthermore, the
pseudo-data at convergence can also be plotted against s[l](“)y[l], the “fitted response”,
to evaluate the quality of the fit. However, it is not clear how methods developed
for distributions from the exponential family perform when applied to (conditional)
copulas. Similarly, other GAM-related issues have not been considered in this thesis.
First, the location of the knots was taken as equally spaced, but other settings (such
as location based on quantiles of the covariate’s distribution) could be useful. Second,
we only used cubic splines, but higher-order (e.g., quartic) splines or other types (e.g.,
thin-plate splines) could also be considered.

Another related issue for PCCs is that the dimension of the conditioning set for
each edge in the lower trees grows with the dimension of the dataset. Hence, for
non-simplified constructions, this set, from which one has to select covariates, quickly
becomes prohibitively large. As explained in the discussion of Chapter 3, this issue
could be alleviated using dimensionality reduction restricted in the unit hypercube.
However, when considering anything but the Euclidean space, there seems to be a
lack of tailor-made approach. By this, we do not mean that principal component
analysis, linear discriminant analysis or more modern methods such as t-distributed
stochastic neighbor embedding cannot be applied to, for instance, categorical data
or data restricted to any cartesian product of (open, or closed, or neither) intervals.
Traditional methods are often applied with success to this kind of data, but they
lack theoretical foundations. In other words, while heuristics may work, they are not



95

equivalent at exploiting the fundamental properties of the underlying space that is
being “reduced”. For instance, principal component analysis may sometimes be applied
with success to data restricted to the unit hypercube, provided that the underlying
copula is close to Gaussian. However, a sample reconstructed from a small number of
components is in general not constrained to the unit hypercube.

Finally, we close this thesis with two potential applications that have been discussed
with and sparked the interest of researchers from both climate science and financial
econometrics. First, researchers from the Department of Civil Engineering of the
Technical University of Madrid have a dataset of 60 annual maxima of hydrographs
peak-flow and volume for 33 sites in the Ebro catchment. Their joint modeling is of
particular interest to design and manage risks for hydraulic structures like dams, because
the T-year flood at a given location is a function of both quantities. Furthermore,
in this semi-arid region characterized by large hydro-climatic heterogeneities, the
inclusion of additional descriptors (covariates) in the model is necessary; especially
as the ultimate goal is the extrapolation (prediction) at ungauged sites. Note that
modeling spatio-temporal maxima require the most recent tools of extreme value
analysis. Furthermore, conditional copulas depending on the same set of covariates
naturally link the two univariate models in a bivariate model for the joint distribution
of spatio-temporal maxima. Second, while Andersen and Bollerslev (1997, 1998) first
suggested to use the Fourier Flexible Form to capture daily periodic patterns, it is
arguably their econometrics analysis of the impact of scheduled economic news on
exchange rates volatility that promoted the two papers. While the authors lacked
the methodology to go a step further, studying the impact of economic news on the
dependence structure between intraday returns can be achieved using the framework
developed in this thesis. Generally related to the usefulness of GAMs applied to
financial data, it should be noted that the time-varying models developed in Chapters
2 and 3 are purely descriptive. While GAMs are useful data exploration tools, splines
only allow for (often linear) extrapolation. Hence, in a time-series context, including a
dynamic component (e.g., an autoregressive term) in the dependence structure would be
required for prediction. Finally, an interesting alternative to the approach of Chapters 2
and 3 would be to first filter the linear component of the dependence structure through
a multivariate GARCH, and then use a GAM to model the non-linear component.
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Appendix A

Proof of the Theorems of Chapter 2

A.1 Proof of Theorem 2.2.1
In what follows, we define c(z; ◊) = c {u; ÷(x; ◊)} as well as
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6. For each triplet 1 Æ q, r, s Æ d, there exists a function b : Z æ R such that, for
◊ œ �0 and z œ Z, |ˆ3¸

c

(z; ◊)/ˆ◊

qrs

| Æ b(z), with E {b(Z)} < Œ.
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To prove Theorem 2.2.1, we require the following three lemmas.

Lemma 1. Let h(z, ◊) be continuously di�erentiable, a.s. dz, on ◊ œ �0.
If

s
sup

◊ œ �0

Îˆh(z; ◊)/ˆ◊Î dz < Œ, then for ◊ œ �0,

1.
s

h(z; ◊) dz is continuously di�erentiable, and

2.
s

ˆh(z; ◊)/ˆ◊ dz = ˆ
s

h(z; ◊) dz/ˆ◊.

Proof. See Newey and McFadden (1994), Lemma 3.6.

Lemma 2. If Assumption 2 holds, then

1. E {g
c

(Z; ◊0)} = 0, and

2. E {≠„

c

(Z; ◊0)} = i(◊0).

Proof. By the law of iterated expectations, E {g
c

(Z; ◊0)} = E [E {g
c

(Z; ◊0) | X = x}]
and E {≠„

c

(Z; ◊0)} = E [E {≠„

c

(Z; ◊0) | X = x}] for all x œ X. Then by Assumption
2, (3) and (4) and Lemma 1,

E {g
c

(Z; ◊0) | X = x} =
⁄

g
c

(z; ◊)c(z; ◊0) du

=
⁄ ˆc(z; ◊)

ˆ◊

-----
◊=◊0

du

=
ˆ

⁄
c(z; ◊) du
ˆ◊

--------
◊=◊0

= 0

proves the first part of Lemma 2 and

E {„

c

(Z; ◊0) | X = x} =
⁄

„

c

(z; ◊0)c(z; ◊0) du

=
⁄ ˆg

c

(z; ◊)c(z; ◊)
ˆ◊

€

-----
◊=◊0

c(z; ◊0) du

≠
⁄

g
c

(z; ◊0)gc

(z; ◊0)€c(z; ◊0) du

= ≠
⁄

g
c

(z; ◊0)gc

(z; ◊0)€c(z; ◊0) du

the second.
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Lemma 3. Let a œ R+ and Sa be the surface of a sphere with radius an≠1/2 and center
◊0, that is

Sa =
Ó
◊ œ � : ◊ = ◊0 + n≠1/2a, ÎaÎ = a

Ô
.

For any ‘ > 0, there exists a such that

P

Q

a sup
◊ œ Sa

¸
c

(◊, “) < ¸
c

(◊0, “)
R

b Ø 1 ≠ ‘

when n is large enough.

Proof. Let ◊ = ◊0 + n≠1/2a œ Sa. A Taylor expansion around ◊0 yields

n¸
c

(◊, “) ≠ n¸
c

(◊0, “) = n¸
c

(◊) ≠ n¸
c

(◊0) ≠ n

2
Ó
◊

€p(“)◊ ≠ ◊

€
0 p(“)◊0

Ô

= n1/2g
c

(◊0)€a
¸ ˚˙ ˝

R1(a)

+ 1
2a€

„

c

(◊0)a
¸ ˚˙ ˝

R2(a)

≠ 1
2a€p(“)a
¸ ˚˙ ˝

R3(a)

≠ n1/2
◊

€
0 p(“)a

¸ ˚˙ ˝
R4(a)

+ n≠1/2

6
ÿ

q

ÿ

r

ÿ

s

a
q

a
r

a
s

ˆ3¸
c

(◊)/ˆ◊

qrs

---
◊=Â

◊

¸ ˚˙ ˝
R5(a)

,

with Â
◊ in the interior of Sa. By Lemma 2, (1), Assumption 2, (4) and the CLT,

n1/2g
c

(◊0) dæ N {0, i(◊0)} and |R1(a)| = O
p

(1)a. By Lemma 2, (2) and the law
of large numbers, „

c

(◊0)
pæ ≠i(◊0). Thus, by the continuous mapping theorem,

R2(a) pæ ≠1
2a€i(◊0)a Æ ≠1

2⁄mina2 with ⁄min > 0 the smallest eigenvalue of i(◊0).
Assumption 1 directly implies R3(a), R4(a) pæ 0. Finally, by Assumption 2, (6),---ˆ3¸

c

(◊)/ˆ◊

qrs

|
◊=Â

◊

--- Æ n≠1 q
n

j=1 b(zj) pæ E {b(Z)} < Œ. By this and Cauchy-Schwartz
inequality, |R5(a)| pæ 0.

Collecting only the terms that do not vanish in probability, we obtain

n¸
c

(◊, “) ≠ n¸
c

(◊0, “) Æ Z = O
p

(1)a ≠ 1
2⁄maxa2 (A.1)

when n is large enough. Because the choice of ◊ œ Sa was arbitrary, (A.1) must also
be satisfied for the supremum and we have

P

Y
]

[ sup
◊ œ Sa

¸
c

(◊, “) < ¸
c

(◊0, “)
Z
^

\ Ø P (Z < 0) .
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Because for all ‘ > 0, there exists a such that P (Z < 0) Ø 1 ≠ ‘, the proof is
complete.

Remark. The proof of Lemma 3 is closely related to that of Xingwei et al. (2010) in the
context of hazard regression, where the authors consider a unique spline component.

Lemma 1 is used to show that
s

c(z; ◊) du is twice continously di�erentiable and
that the order of di�erentiation and integration can be interchanged. Lemma 2 is
the proof that the score has zero mean and of the information matrix equality. By
Lemma 3, the penalized log-likelihod has a local maximum ‚

◊ in the interior of a sphere
centered on ◊0. Hence, we have that Î ‚

◊ ≠ ◊0Î = O
p

(n≠1/2).

Remark. By Assumption 2, (1) and Newey and McFadden (1994), Lemma 2.2, it is clear
that ◊0 is the unique maximizer of Q(◊) = E {¸

c

(Z, ◊)}. Furthermore, Assumption
1, Assumption 2, (1) and Newey and McFadden (1994), Lemma 2.4 also imply that
¸

c

(◊, “) converges to Q(◊) uniformly in probability. However, using such arguments to
prove consistency does not lead directly to the

Ô
n-rate.

To prove the asymptotic normality, we di�erentiate the log-likelihood (2.8) to obtain
d score equations, that is

0 = g
c

( ‚
◊) ≠ p(“) ‚

◊. (A.2)

The second order Taylor expansion of (A.2) around ◊0 then reads

g
c

(◊0) + {„

c

(◊0) ≠ p(“)} ( ‚
◊ ≠ ◊0) ≠ p(“)◊0 + r = 0, (A.3)

where r is a p-vector satisfying

r
q

= 1
2( ‚

◊ ≠ ◊0)€ ˆ2g
c

(◊)
q

ˆ◊◊

€

-----
◊=Â

◊

( ‚
◊ ≠ ◊0)

with Â
◊ such that Î Â

◊ ≠ ◊0Î Æ Î ‚
◊ ≠ ◊0Î. Multiplying the left-hand side of (A.3) by

Ô
n,

we obtain the following system of random linear equations with d unknown:

{„

c

(◊0) ≠ p(“) + r}
Ô

n( ‚
◊ ≠ ◊0) = n1/2 {p(“)◊0 ≠ g

c

(◊0)} ,

where we redefine r as the p ◊ p matrix satisfying

r
qr

= 1
2( ‚

◊ ≠ ◊0)€ ˆ„

c

(◊)
qr

ˆ◊

-----
◊=Â

◊

.



A.2 Proof of Theorem 2.2.2 107

By Assumption 1 (respectively Assumption 2, (6)), p(“) pæ 0 and n1/2p(“)◊0
pæ 0

(respectively r pæ 0) is straightforward. As noted previously, n1/2g
c

(◊0) dæ N {0, i(◊0)}
and „

c

(◊0)
pæ ≠i(◊0). By Slutsky’s theorem, we conclude that

Ô
n( ‚

◊ ≠ ◊0) dæ
N {0, i(◊0)≠1}.

Remark. Using “ = o(1)1 and similar arguments,
Ô

n( ‚
◊≠◊0≠p(“)◊0) dæ N {0, i(◊0)≠1}.

A.2 Proof of Theorem 2.2.2
We use the same notations as in A.1, but we make explicit the dependency of the
conditional copula on – (e.g., c(z; ◊) becomes c(z; –, ◊)). Recalling that w = (y€, x€)€

and z = (u€, x€)€ with u
i

= FY
i

|X {y
i

; –
i

(x)}, we further define fY
i

|X(w; –

i

) =
fY

i

|X {y
i

; –

i

(x)} and

g (w; –, ◊) =

Q

cca

g1(w; –1)
g2(w; –2)
g

c

(z; –, ◊)

R

ddb with

Y
_]

_[

g
i

(w; –

i

) = ˆ¸
i

(w; –

i

)/ˆ–

i

g
c

(z; –, ◊) = ˆ¸
c

(z; –, ◊)/ˆ◊

,

as well as „

ci

(z; –, ◊) = ˆg
c

(z; –, ◊)
ˆ–

€
i

= ˆ2¸
c

(z; –, ◊)
ˆ◊–

€
i

.

Assumption 3. Regularity conditions for the margins:

1. Assumption 1 hold for ⁄.

2. Assumption 2 hold for each margin.

Assumption 4. Joint identifiability: E {g (W; –, ◊)} = 0 if and only if – = –0 and
◊ = ◊0.

Assumption 5. Let A0 ◊ �0 be an open neighborhood around (–€
0 , ◊

€
0 )€.

1. g
c

(z; –, ◊) is C1(A0 ◊ �0).

2. E

Y
_]

_[
sup

(–€, ◊

€)€ œ A0 ◊ �0

Î„

ci

(z; –, ◊)Î

Z
_̂

_\
< Œ.

Lemma 4. E {g
i

(W; –0i

)g
c

(Z; –0, ◊0)} = 0

Proof. E {g
i

(W; –

i

)g
c

(Z; –, ◊)} = E [E {g
i

(W; –

i

)g
c

(Z; –, ◊) | X = x}] by the law
of iterated expectations. E {g

i

(W; –0i

)g
c

(Z; –0, ◊0) | X = x} = 0 follows by Joe
(2005), Appendix.



108 Proof of the Theorems of Chapter 2

As noted in Section 2.2.2, ( ‚
–

€, ‚
◊

€)€, which solves

n≠1
nÿ

j=1
g

1
wj; –, ◊

2
≠

Q

cca

p1(⁄1)–1

p2(⁄2)–2

p(“)◊

R

ddb = 0,

can be viewed as a Generalized Method of Moment (GMM) estimator with an
identity weighting matrix (see Newey and McFadden 1994, Chapter 6). Because
ˆg (w; –, ◊) /ˆ(–€, ◊

€)€ is lower triangular, j(–0, ◊0)€j(–0, ◊0) is nonsingular. Fur-
thermore, Assumptions 1–5 directly imply the other conditions of Newey and McFadden
(1994), Theorems 3.4 and 6.2. As in Joe (2005), the only non-trivial calculations concern
the zeros of v(–0, ◊0), where

v(–, ◊) = cov {g (W; –, ◊)} ,

and Lemma 4 concludes the proof.
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