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The use and manufacture of tools have been considered to be cognitively

demanding and thus a possible driving factor in the evolution of intelligence.

In this study, we tested the hypothesis that enhanced physical cognitive abilities

evolved in conjunction with the use of tools, by comparing the performance of

naturally tool-using and non-tool-using species in a suite of physical and gen-

eral learning tasks. We predicted that the habitually tool-using species, New

Caledonian crows and Galápagos woodpecker finches, should outperform

their non-tool-using relatives, the small tree finches and the carrion crows in a

physical problem but not in general learning tasks. We only found a divergence

in the predicted direction for corvids. That only one of our comparisons sup-

ports the predictions under this hypothesis might be attributable to different

complexities of tool-use in the two tool-using species. A critical evaluation is

offered of the conceptual and methodological problems inherent in comparative

studies on tool-related cognitive abilities.
1. Introduction
Animal tool-use has inspired researchers of comparative cognition for decades.

Much of this interest stems from the putative role of tool-use in the evolution of

human intelligence. The idea is that as tools gained importance in the ecology of

early hominids, selection acted upon cognitive abilities to improve their tool-

using proficiency [1]. In this scenario, information-processing was honed in the con-

text of tool manufacture and use, but gradually led to more complex and general

cognitive abilities. Alternately, human tool-use may have evolved as a by-product

of generalized intelligence evolved in another context (e.g. [2]). Thus, it is not sur-

prising that much comparative research on tool-use traditionally revolved around

anthropocentric questions, mainly that of whether and to what extent animal

tool-use indicates continuity in the mental abilities of animals and humans.

Today, reports of tool-use in animals abound, ranging from insects to birds

[3]. Animal tool-use varies tremendously in its complexity and neuronal under-

pinnings and thus, a fundamental revision of the original notion that tool-use is

per se a reflection of intelligence has become necessary. Nevertheless, there are

still reasons not to discard the idea of a potential link between intelligence and

tool-use entirely. One is the existence of animal tool-use bearing the hallmarks

of ‘sophisticated’ and potentially complex information-processing abilities,

e.g. those instances involving use of multiple tools, sequential tool-use and/

or complex tool modification in the wild. The rarity of sophisticated forms of

animal tool-use furthermore suggests that there are constraints for its evolution,

possibly cognitive abilities and/or neural substrate. Another reason is the

existence of supporting correlational evidence: for birds, there is a strong

relationship between tool-use and brain size [4] and tool-use and brain structure

[5], and tool-use and brain size are related in primates [6]. It is therefore impor-

tant to investigate the relationship between tool-use and enhanced cognition,
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but with a focus on identifying the kinds of cognitive tool-

related adaptations to expect, and with clear predictions

of where to look for them. Two approaches could be particu-

larly useful in guiding us to answers. The first is cost–benefit

analysis: tool-related cognitive adaptations are expected only

where tool-use is under strong selection. Furthermore, it may

help to generate hypotheses that can explain why a particular

species evolved tool-use, whereas a closely related species

did not. Second, once hypotheses about the relationship of

tool-use and cognitive traits have been formulated, compar-

ing cognitive performance between closely and distantly

related species is essential to test them. In elaborating

upon the significance of each of these approaches, we will

be focusing on the context in which most tool-use occurs,

namely foraging.
ocB
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(a) The cost and benefits of tool-use and their
link to evolution

The main benefit of tool-use in foraging may be an increase in

quantity or quality of prey that is inaccessible without tools [7].

Unfortunately, quantitative data on the nutritional benefit of

tool-use are scarce [7–12]. At least for some species, it has

been shown that tool-use is more costly than conventional

foraging techniques in terms of time [8,9]. The costs of learning

and the expenditure of cognitive resources involved in tool-use

and its development are more difficult to pin down. Learning

to use tools during ontogeny has been shown to be a substan-

tial investment at least for chimpanzees (Pan troglodytes,
[13,14]) and New Caledonian crows (NCCs; Corvus mondelu-
doides: [15–17]). Other factors and constraints that could

influence the evolution of tool-use are for instance the avail-

ability of tool-materials, morphology, behavioural and

cognitive traits such as sociality and motivation to play and

interact with objects, neural substrate and related energetic

costs [18,19]. Such limiting factors could operate to constrain

or enable the evolution of tool-use at various stages, such as

during its invention, its diffusion through the population

and its maintenance in a population.

The interplay between costs, benefits and limiting factors

can be exemplified by a comparison of the tool-using wood-

pecker finches (WPFs Cactospiza pallida) and the small tree

finch (STF; Camarhynchus parvulus), a sympatric non-tool-using

species that is closely related to the WPF. Though they are both

extractive foragers, the WPF is more specialized on extracting

concealed prey from a substrate. Its straight beak is not only

ideal for pecking at the substrate, but also well-suited for

manipulating tools and may allow better vision at the beak

tip [20]. Similarly, other characteristics related to extractive

foraging such as perseverance and high levels of neophilia

might have increased the likelihood for the evolution of tool-

use in this species. To summarize, slight differences in ecology

and morphology can significantly influence the cost–benefit

ratio and the effect of constraining factors, thus indirectly

influencing the evolutionary trajectory of tool-use.
(b) The comparative approach
Traditionally, there has been a strong focus of tool-use studies

on comparing tool-related complex cognition (e.g. causal

understanding) between humans and various primates

(reviewed in [21–24]) though a small number of studies
have also investigated the tool- related cognitive abilities of

non-tool-using primates [25–27].

A deviation from the focus on primates occurred with the

discovery of highly sophisticated tool-use in NCCs, involving

use of multiple tools to extract arthropods from various sub-

strates and complex tool manufacture in the wild (reviewed

in [28,29]). In the laboratory, they appropriately select and

modify tools for a given task [30,31], display elements of plan-

ning in meta-tool tasks [32,33] and are able to develop

spontaneous solutions to novel technical problems using

novel materials in novel ways [34,35]. Until recently, the tool-

related cognition of NCCs was considered unique among

corvids. However in 2009, rooks (Corvus frugilegus), a non-

tool-using corvid species, were found to perform similarly to

NCCs in several cognitive tool-related tasks [36]. This suggests

that the special cognitive abilities of NCCs may have evolved

in another context preceding the evolution of tool-use [2].

The findings of Emery & Bird [36] remind us of the

importance of a rigorous comparative programme to deter-

mine whether there is a general pattern of association

between an adaptive cognitive specialization and tool-use.

This should not only entail comparisons between distantly

related tool-users, but also between closely related tool-

users and non-tool-users. Thereby, repeated appearance of

the cognitive trait in question only in tool-users in phylogen-

etically independent species pairs would be strong evidence

for a cognitive adaptation [37].
2. Our study: test of tool-related physical
cognition in corvids

Over the past 5 years, we have applied the comparative

method, as described earlier, to two species pairs to investi-

gate the question of whether the use of tools evolved in

conjunction with enhanced and specialized physical cogni-

tive abilities. Previously, we compared general learning and

physical cognitive abilities in the WPF and a closely related

non-tool-using species, the STF. WPFs habitually use twigs

or cactus spines to extract arthropods from crevices and

show simple modification of these tools such tool shortening

or breaking of side twigs [8].

We predicted that if tool-use evolved with enhanced

specialized cognitive abilities, WPFs should outperform STFs

in physical tasks but not necessarily in the general learning

tasks. Contrary to expectation, the STFs performed similarly

or better than WPFs in one of the general learning tasks and

most of the physical tasks [38,39]. Thus, the study yielded

no evidence that WPFs have enhanced physical cognition.

The aim of this study was to provide highly comparable

data from a new tool-using/non-tool-using species pair from

a distantly related group using the methods which had been

applied in the preceding Darwin’s finch study. This allows a

more complete assessment of the hypothesis that tool-use

might generally be associated with adaptive cognitive specializ-

ations in the physical domain. Using the paradigms previously

established with Darwin’s finches, we tested physical cognition

and general learning abilities in tool-using NCCs and a non-

tool-using species, the carrion crow (Corvus corone). To our

knowledge, ours is the only study to rigorously apply the

comparative method to interspecific comparisons of closely

related tool-using/non-tool-using species pairs in two distantly
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Figure 1. (a) The cane task apparatus with canes and rewards arranged as in the
initial test condition. Panels (b) – (e) transfer tasks 1 – 4. Adapted from [38,39].
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related groups and using identical learning paradigms to test

all the species involved.

(a) Methods
(i) Study locations, subjects and housing
All NCCs and one hooded crow (Corvus cornix) were tested at

the Avian Cognition Research Station (ACRS) hosted by the

Max Planck Institute for Ornithology (MPIO), Seewiesen,

Germany from March to November 2011. All carrion and

the remaining hooded crows were tested at the Konrad

Lorenz Research Station (KLF) in Grünau, Austria from

June to August 2011 and at the MPIO in June 2009 and

November 2009–May 2010. The test for neophilia (see

below) was conducted in 2012 at the ACRS and KLF, and

the NCCs were not the same as the ones tested in the other

tasks (see the electronic supplementary material, table S1).

The data from two hooded crows were included in the car-

rion crow dataset as these closely related species have been

only recently split into two separate species and share similar

ecology and morphology [40]. Although the hooded crows

are treated as carrion crows for the statistical analysis, these

individuals have been made distinguishable from the carrion

crows in the graphs. Furthermore, some WPFs do not use

tools (detailed explanation in the methods of the electronic

supplementary material, see also [38]). The WPF dataset is

therefore comprised tool-using and non-tool-using individuals,

and this distinction is taken into account in the analysis. A sum-

mary clarifying the order of experiments, the participation of

each bird in each experiment as well as rearing history is

given in the methods section and the electronic supplementary

material, table S1. Further details concerning rearing experience

and housing are also in the methods section of the electronic

supplementary material.

(ii) Experiment 1: the cane task
This experiment involved food retrieval contingent on making

a choice between two canes, only one of which could retrieve

the reward. In each condition, one food reward was inside the

hooked portion of the cane and one outside of it (with the

exception of transfer task 4 in which both rewards were

inside the hooked portion of both canes; figure 1). Eight

NCCs, five carrion crows, two hooded crows and 12 WPFs

participated in this experiment.

Transfer tasks. Those subjects that solved the initial version

of the task by reaching the set learning criterion (see below)

within a maximum of 180 trials were then tested in four further

variations of the initial task (transfer tasks, figure 1b–e), where

they received a maximum of 20 trials in each.

(iii) Experiment 2: the reversal task
The apparatus consisted of two feeders covered with coloured

lids (orange and blue) that were mounted 30 cm apart on a

grey Perspex base (50� 50 cm). In each trial, a reward was

placed in one of the feeders, the lids were placed on the feeders

and birds were then allowed to remove one of the two lids.

A transparent Perspex divider prevented the birds from

removing the lid of both feeders. The experiment consisted

of two phases: an initial ‘acquisition phase’ and a ‘reversal

phase’. In the acquisition phase, only one colour was the

rewarded (Sþ) stimulus. Half of the birds started with

orange as Sþ and the other half with blue as Sþ. Once a
subject met criterion (see general experimental procedure),

the colour-reward contingency was reversed in the reversal

phase. Subjects were given a maximum of 140 trials in each

phase. Eight NCCs, seven carrion crows, one hooded crow

and 16 WPFs were tested in this experiment.

(iv) Experiment 3: the novel box-opening task
The apparatus was a box made of opaque, white Perspex with

a transparent lid (box: width¼ 15� depth ¼ 12 � height¼

12 cm; lid overlaps edge at front by 3 cm). The lid was

hinged to the back edge of the box and overlapped the front

edge of the box. The box could be opened by pushing the pro-

truding lip of the lid upwards. Before testing, birds were

habituated to the box by feeding from it once while it was

open. Subjects were given six sessions of 25 min, receiving

up to three sessions per day. A bird was successful and testing

was ended when it opened the box and ate the reward. If a

bird did not make physical contact with the box during a ses-

sion, it was re-habituated to the box as described above and

the session was repeated. A bird was given up to two extra ses-

sions upon failing to make contact with the box in any one

session. Eight NCCs, seven carrion crows and two hooded

crows were tested in this study. Additionally, we compare

the NCC data to that of 18 WPFs which were tested for a pre-

vious study [38]. The ‘total length of testing’ (s) and ‘success’

(opening box and gaining access to the food reward) were

the measurements taken for comparison.

(v) General experimental procedure
Experiments were conducted in the home aviaries of the

birds, and food was removed from their aviaries approxi-

mately 2 h before testing. The apparatus was baited out of

sight of the subject, and for each trial, placed onto the

experimental table or experimental area within the home

aviary. The experimenter then left and observed the trial

via camcorder.

Experiments 1–2 were two-choice learning experiments

involving the same basic procedure. These tasks were con-

ducted in blocks of 10 trials. In each trial, the subject was
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given 5 min to choose between two options for which the

correct side was pseudorandomized and counterbalanced

right and left. Some slight modifications to the original testing

conditions and testing regime with WPFs were made with the

corvids (see the electronic supplementary material, methods).

Learning criterion. To meet the success criterion, a bird had

to make 15 or more correct choices within two consecutive

blocks of 10 trials. Specifically, the number of correct responses

in one of the two blocks had to be at least seven consecutively

correct and in the other at least eight or in one block all

10 correct. This criterion was derived using a Monte Carlo

simulation (details in [41]). Some subjects developed a pos-

itional bias, which we defined as six consecutive choices of

one side, probably owing to intermittent reinforcement.

When this happened, we applied a side bias correction pro-

cedure (‘correction trials’, see the electronic supplementary

material, methods for details).

(vi) Statistical analysis
Fisher’s exact test was used to test for species differences in

the proportion of individuals to meet the success criterion.

We also compared learning speed and success probabi-

lity between NCCs and carrion crows/hooded crows and

between NCCs and WPFs in the initial phases of the cane

task and for both phases of the reversal task using general-

ized linear mixed models, specifying logistic regression

with binomial errors (GLMM, [42]). For each species compari-

son, a separate model was constructed for the initial phase of

the cane task and for both phases of the reversal task. Prior to

fitting the model, we z-transformed trial number to a mean of

0 and a standard deviation of 1, and side bias correction trials

were removed from all datasets. Full details of the modelling

process and the full model results can be found in the

methods and results sections, electronic supplementary

material, tables S2–S4.

Each statistical comparison between NCCs and WPFs

was conducted once only with tool-using WPFs and once

with all WPFs pooled (details in the electronic supplementary

material, methods). Since the conclusions always remained the

same regardless of which WPF grouping was used, we report

only results for the comparison of NCCs with pooled WPFs.

All statistics were conducted with R v. 2.15.1 [43].

(vii) Comparison of novelty reactions and motivation between
corvid species

Novelty reactions between carrion crows and NCCs were

assessed in two different ways.

First, we presented individuals with a novel object

(green dog-toy ball, electronic supplementary material, figure

S1) and measured latency to first contact. Birds received one

10 min session per day during which they were separated

from other birds. If they did not approach the object within a

session, the novel object was removed and the individual

received another session the next day. The test ended after the

session in which the birds first touched the object or after 13 ses-

sions, if individuals did not approach before. Each bird received

a value calculated by adding the total session time until it

touched the object for the first time. Birds that did not touch

the ball within 13 sessions received a ceiling value which was

calculated by adding one to the highest latency to touch the

ball among the other crows. The Mann–Whitney U-test was

used to compare ball touch latencies between the species.
Second, we measured the latency to approach the cane

apparatus and also to touch the cane averaged over the first

50 trials for each individual (details in the electronic sup-

plementary material). While strictly speaking, these do not

provide measures of novelty reaction, they do however pro-

vide a way of comparing the motivation with which these

animals interacted with the cane apparatus. We deemed this

important as carrion crows are known to be neophobic,

when approaching novel food [44] and differences in motiv-

ation could potentially explain differences in cane task

performance. These measures were scored from videos by

M.F.S. In trials where the birds did not approach the apparatus

at all in 5 min, birds were given a ceiling value, which was

derived by adding 1 to the maximum time in each category.

The Mann–Whitney U-test was used to compare apparatus

approach and cane touch latencies between the species.

(b) Results
(i) Experiment 1: the cane task
Neither the five carrion crows nor the two hooded crows

were able to solve the initial task, while five of the eight

NCCs and eight of the 12 WPFs met the learning criterion

in this phase. The proportion of NCCs and WPFs to reach cri-

terion in the initial task did not differ significantly (Fisher’s

exact test: p ¼ 1). However, proportionally more NCCs than

carrion crows solved the initial task (Fisher’s exact test, p ¼
0.026). The disparity in learning performance in the initial

task between NCCs and carrion crows was further reflected

in the significant difference in the speed with which they

improved in this task (corvid model: species � trial: x2
1 ¼

4.13, p ¼ 0.042; figure 2).

NCCs and WPFs did not differ significantly in their

learning speed of the initial task (tool-user model: species �
trial: x2

1 ¼ 0.001, p ¼ 0.973; figure 2) nor did they differ in

their overall success probability (tool-user model: species:

x2
1¼ 2.21, p¼ 0.137; figure 2). Nevertheless, they generally

learned over the course of trials (tool-user model: trial: z¼ 4.98,

p , 0.001; figure 2).

Transfer performance. The five NCCs and eight WPFs that

successfully solved the initial task were subsequently tested

in four transfer tasks. Only one WPF and no NCCs met

criterion in the first transfer task. Two NCCs and one tool-

using WPF met criterion in the second transfer task. As we

found previously, performance was best in the third transfer

task where three NCCs and six WPFs met criterion. No

individuals solved the fourth transfer task.

To further assess transfer differences between NCCs and

WPFs, we pooled data from the first two transfer tasks for

each bird and calculated the proportion of trials in which

birds made a correct choice to the total trials received in the

first two sessions. We used only data from the first two ses-

sions of each transfer, because the sample size of NCCs

declined to four after the second transfer task since one

subject fell ill. There was no significant difference in transfer

performance between NCCs (median proportional correct ¼

1.58, range ¼ 1.21–1.74) and WPFs (median ¼ 1.79, range ¼

1.53–2.22) according to this measure (Mann–Whitney

U-test: NNCC ¼ 5, NWPF ¼ 8; U ¼ 9; p ¼ 0.124).

(ii) Experiment 2: the reversal task
All individuals met the learning criterion during the acqui-

sition phase and also in the reversal phase, with the
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exception of one carrion crow, two NCCs and one WPF in the

reversal phase. NCCs and carrion crows did not differ in their

speed of learning either in the acquisition phase (acquisition

phase model: group � trial number: x2
1 ¼ 0.02, p ¼ 0.882;

figure 2) or in the reversal phase (reversal phase model:

species � trial number: x2
1 ¼ 0.14, p ¼ 0.711; figure 2)

although individuals clearly improved in both phases of the

task (acquisition phase-corvid model: trial number: z ¼ 6.52,

p , 0.0001; reversal phase model: trial number: z ¼ 6.92,

p , 0.0001; figure 2). Overall success probability also did

not differ between these species in the acquisition phase

(species: x2
1 ¼ 0.17, p ¼ 0.682; figure 2) and in the reversal

phase (species: x2
1 ¼ 0.76, p ¼ 0.383; figure 2).

In the acquisition phase, WPFs were significantly faster in

their learning speed than NCCs (acquisition phase model:

species � trial number: x2
1 ¼ 10.08, p ¼ 0.001; figure 2) but not

in the reversal phase (reversal phase model: species � trial

number: x2
1¼ 0.001, p ¼ 0.974; figure 2). There was no species

difference in overall success probability in the reversal phase

(reversal phase model: species: x2
1 ¼ 0.0005, p¼ 0.982; figure 2)

though individuals clearly improved over trials in this phase

(reversal phase model: z ¼ 8.53, p , 0.001; figure 2).
(iii) Experiment 3: the novel box-opening task
Five NCCs, eight WPFs and six carrion crows successfully

solved the task within six sessions. There was no significant

difference in proportional success between carrion crows
and NCCs (Fischer’s exact test, p ¼ 1), nor was there a signifi-

cant difference in proportional success between NCCs and

WPFs (Fisher’s exact test, p ¼ 0.673).

Comparison latency to success. When the length (in seconds)

of all sessions was summed for each individual and species

comparisons conducted, we found no significant differences

either between NCCs (median ¼ 6269 s, range ¼ 82–9000)

and carrion crows (median ¼ 1740 s, range¼ 34–9000; Mann–

Whitney U-test: NCC ¼ 9, NNCC ¼ 8, U ¼ 30.5, p ¼ 0.623) or

between WPFs (median ¼ 9000 s, range ¼ 50–9000) and

NCCs (Mann–Whitney U-test: NWPF¼ 18, NNCC ¼ 8, U ¼ 55,

p ¼ 0.327).
(iv) Comparison of novelty reactions and motivation between
corvid species

There was no evidence of a significant species difference either

in the median mean times to approach the cane apparatus (car-

rion crows: median approach time ¼ 6.16 s, range¼ 4.68–

48.48; NCCs: median¼ 6.75 s, range¼ 2.12 –21.98; Mann–

Whitney U-test: NCC ¼ 7, NNCC ¼ 8, U ¼ 18, p ¼ 0.281) or in

the median mean times to touch the cane (carrion crows:

median cane touch time ¼ 8.92 s, range¼ 6.74–61.20; NCCs:

median¼ 8.79 s, range¼ 4.42 –25.78; Mann–Whitney U-test:

NCC¼ 7, NNCC ¼ 8, U ¼ 19, p ¼ 0.336) during the first 50 trials.

There was no significant difference between NCCs

(median latency ¼ 7475 s, range ¼ 328–7475) and carrion

crows (median latency ¼ 3152 s, range ¼ 4–7474) in the
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(c) Discussion and main conclusions from our study
Our previous study [38] did not confirm the presence of

enhanced physical cognitive abilities in the WPF, when com-

pared with a closely related non-tool-using species. However,

in line with the prediction that tool-use evolved with

enhanced physical cognitive abilities, this study found that

NCCs outperformed carrion crows in the cane task, but not

in two general learning tasks. This difference in corvids but

not Darwin’s finches matches the expectation that sophisti-

cated cognitive tool-related adaptations should be found in

species with sophisticated tool-use, as NCCs substantially

exceed WPFs in tool diversity and the complexity of tool

manufacture (reviewed in [28]).

The difference in NCC and carrion crow performance

cannot be explained by different levels of neophobia or motiv-

ation, because we found no significant difference in either of our

two measures between the two species, but it might be attribu-

table to the unaccustomed cognitive load that the manipulation

of a tool imposed on the non-tool-using species [45].

However, there are several reasons to treat the results

with caution. One is that the comparison groups of corvids

did not share identical rearing conditions: most of the

NCCs were wild-caught, whereas all of the carrion crows

were hand-raised. Although this could have had a substantial

effect on the results, it is difficult to predict exactly in which

direction. Another reason is that none of the carrion crows

reached the learning criterion in the cane task and, thus,

the performance of this large-brained corvid was worse

than that of the STFs. This is surprising, especially given

the excellent performance of other non-tool-using corvids,

such as rooks in physical tasks [36,46].

Also, the comparison of large-brained corvids and distantly

related WPFs did not expose a significant difference in physical

task performance between these tool-using species either in the

initial cane task or in the cane transfer task performance. The

lack of a difference in the cane transfer tasks is very surprising

given the performance of NCCs in other tasks that indicate at

least some sensitivity to physical rules and transfer to similar

problems [35,47,48]. One way of understanding these results

is that NCCs may simply use simple perceptional cues in

some situations but not in others [23,49]. Also, perhaps the

cane task poses a problem that is irrelevant to these species’

natural tool-use, and thus imposes an unanticipated measure

of difficulty on both species. Finally, it may be that the perform-

ance of NCCs, who usually engage in sophisticated tool-use,

may somehow be impaired when forced to engage in artificial

tasks involving choices between two options [50] or involving

restricted object manipulation as necessitated by the cane

task. For future studies, we suggest inclusion of two groups

of tool-users: one which uses freely manipulable tools and

one which uses the pre-inserted tools. We further recommend,

where possible, the avoidance of binary choice tasks.

Our data on the physical cognitive adaptive specialization

hypothesis are subject to some of the criticisms shared by

many studies of comparative cognition. For one thing, cogni-

tive characteristics other than the one of interest could have

been taxed by the tasks, leading to a pattern that does not

fit our prediction. We also may have missed the crucial sub-

category of physical cognition that differs between the
species, having only presented one test of physical cognition.

Finally, the lack of identical rearing conditions between

groups is a common problem with long-lived and unusual

species that require significant funds to raise and maintain.

These problems are linked to some of the more universal

challenges confronting researchers in comparative cognition.

In the following, we address some potential solutions for

these challenges and touch upon our suggestions for future

research on tool-related cognition.
3. Outlook
(a) Troubleshooting the physical cognitive adaptive

specialization hypothesis: getting ahead of
ourselves?

The ecological approach in understanding adaptive behaviour

and underlying cognitive mechanisms is an iterative process of

investigation, synthesizing hypotheses and predictions both

from the functional and mechanistic perspective. A classic

example of this process has been described in detail by

Smulders et al. [51] for food caching. Differences in brain mor-

phology between caching and non-caching species and

seasonally varying brain morphology in several food-caching

species from parids to corvids have been central findings fuel-

ling the cognitive adaptive specialization hypothesis for food

storers (reviewed in [52]). In the food-caching paradigms, eco-

logical knowledge not only helped to point to memory as a

likely solution to the problem which food hoarders face in

the wild, but later it helped to refine the hypothesis to fit var-

ious ecological circumstances of food hoarding animals. More

specifically, the realization that only a subgroup of food hoar-

ders need to remember cache locations for a long period lead

to the proposal that only these species should have a duration

of spatial memory longer than that of other species. Thus, the

spatial memory hypothesis for food hoarding comes from

knowledge of the function of food hoarding in animals and

is informed by the details of ecology.

In the case of tool-use, there has been a disproportionate

focus on human-like complex cognitive mechanisms like

causal understanding that may be involved in animal tool-

use. However, gradual improvements through associative

processes (i.e. associative learning of spatial relationships,

attention towards relevant cues) could improve efficiency of

flexible and context-specific tool-use just as well as complex

mechanisms and thus should be included in predictions.

Also, recent data suggest that the underlying cognitive mech-

anisms of even supposedly sophisticated tool-users such as

chimpanzees and NCCs are a mixture of complex and

simple mechanisms and those in between [23]. We suggest

that future studies put less weight on distinguishing between

complex and simple cognition in tool-use and that they are

careful to root predictions about tool-related cognitive mech-

anisms in detailed examination of the tool problems faced by

animals in their natural context.
(b) Roadmap for future comparative studies of tool-use
and cognition

As we see it, there are currently two main approaches to take

in advancing our understanding of the cognitive mechanisms
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underlying tool-related cognition. One is to refine hypotheses,

whereas the other is to refine methodology.

(i) Using knowledge of tool-use in a natural context to refine
hypotheses

NCCs exemplify how knowledge of ecology and natural his-

tory has been useful in suggesting areas of cognition for

experimental investigation. For example, geographical vari-

ation in NCC tools has been touted as suggestive of

cumulative cultural evolution [53]. Along with other field

studies that have demonstrated the existence of ample oppor-

tunities for social transmission of information in this species,

this suggests that it may be promising to look at social learning

in NCCs [53]. Furthermore, the observation that NCCs use

barbed pandanus tools in the appropriate orientation in the

wild (in order to be functional the tool must be held such

that the hooks on the barbed edge face backwards from the

tool tip) lead researchers to question the cognition involved

in this behaviour [54]. One explanation put forth was that

NCCs might have a human-like underlying understanding

of the physical properties of hooks, leading to an understand-

ing of the functional features of the tool. Another is that the

behaviour might also be the result of simple associative

mechanisms—possibly trial and error learning. Subsequent

experimental investigation with wild-living crows or those

held briefly in captivity showed limited attendance of the

crows to the functional orientation of the barbs and also

that when tools are dropped and/or picked up in the non-

functional orientation, repositioning arises from simple

associative strategies. In conclusion, the authors state their

view that correct functional tool orientation in the wild may

simply be the outcome of applying the correct procedural rules

of pandanus tool manufacture ([54], but see also [55]). This is a

laudable example of an observation from the wild that was rig-

orously tested using semi-wild experiments that were devised

to differentiate between the so-called high-level and low-level

underlying cognitive abilities. Its results clearly illustrate that

what seems complex is not necessarily so. Other observational

field studies on bearded capuchin monkeys (Sapajus libidinosus)
and chimpanzees inspired the hypothesis that enduring artefacts

play an important role for some nonhuman species in learning to

use tools by supporting persistent practice [56]. To summarize,

detailed knowledge of the behaviour from wild populations

will help to identify the type of the problems that animals are

faced with in nature and thus generate more accurate hypotheses

concerning the underlying mechanisms of their behaviour.

Thereby, it is essential to adhere to the principle of parsimony

and presume the lowest denominator of cognitive mechanisms

required for solving the problem. Improved knowledge of ecol-

ogy and tool-use in a natural context will help to formulate more

precise and appropriate predictions concerning which specific

cognitive mechanisms might be linked to tool-use.

(ii) Improving methods
Not only do we need more background information on species’

natural behaviour to inform predictions, but we could also

benefit greatly from improvements in methodology. Much

would be gained if more studies adopted a rigorous compara-

tive approach with interspecific comparison between at least

one tool-using and one non-tool-using species, using the same

or at least a comparable methodology. Including more non-

tool-using species in the comparison will furthermore ensure
robustness of an observed pattern. Another huge challenge of

comparative cognition is that we often are unaware of the full

suite of cognitive mechanisms influencing performance in a

given task. Consequently, we are often not clear about the ques-

tions posed, an issue which is compounded in multi-species

comparisons. Ideally, task designs should account for the differ-

ent species ‘non-focal’ cognitive traits, that is, those traits which

are not at the focus of an experiment, but can nevertheless have a

strong, sometimes central influence on task performance, such

as attention, motivation and temperament but also species

differences in perception [57,58]. A good example of this

approach is the study of Chappell et al. [59] that presents a

detailed analysis of the relationship between perseverance and

impulsivity on innovation in tool-use problems with human

children. One solution is to develop task batteries that include

tests of such general psychological variables in addition to

those specifically probing only the cognitive trait(s) of focal

interest [58,60]. Here, it is important to ‘find the right items to

test’ by rooting predictions in species ecology and observation

and the tasks must be revised as necessary. There is one major

conundrum inherent in the task battery approach for multiple

species (and also more generally in comparative cognition): in

order to yield comparable data, tasks must be standardized,

yet some species-specific task modifications are a ‘necessary

evil’ to increase ecological validity and the likelihood that each

species is being asked the same question. The crux of the pro-

blem is that we often do not know in advance what the

cognitive, motor and perceptual disparities between species

are and how they will influence task performance. Danger lies

in succumbing to the temptation of ‘quick and dirty’ exper-

iments that simply apply pre-existing paradigms to new

species without sufficient thought devoted to tailoring the pro-

blem to the species at hand [61]. Intimate knowledge of a

species through careful observation both in the field and in the

laboratory is the best help in designing comparable studies

and ecologically valid paradigms. In combination with an

improved understanding of animal’s overall psychological pro-

files (i.e. motivation, temperament, motor and perceptual

abilities, etc.), a useful framework inspired by Artificial Intelli-

gence could help to decompose demands of cognitive tasks

into their component parts [62]. This would help clarify the

nature of the problem, taking into account the information avail-

able to the animals and possible problem solutions.

One further issue we faced in this study is the interpret-

ation of failure. Should we accept the null hypothesis that

carrion crows simply do not have enhanced physical cogni-

tion? Our comparative results suggest that this may not be

justified and that further testing is needed to understand

these results. Seed et al. [63] recently reviewed this topic in

detail and suggest that understanding failures can be achieved,

for example, by deconstructing a task and lowering task

demands while asking the same question and by testing the

species in several different analogous tasks [64]. Another

way to understand failures is to look at whether the difference

between individuals that pass and fail can be correlated with

variation in another psychological trait [63]. These approaches

might be fruitful in future attempts to understand our results.

To conclude, in the field of comparative cognition, con-

siderable progress has been made by adopting an integrative

approach in understanding animal cognition [65]. The process

of the ecological approach is nonlinear, oscillating bet-

ween predictions generated from functional and mechanistic

knowledge of a behaviour. Thus, an understanding of the
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relationships between cognition and behaviour requires con-

sideration of both ultimate and proximate standpoints. The

best approach to choose at a given time is determined by

common sense. However, the ecological context of behaviour

must always be kept in mind, especially during laboratory

studies of mechanism.

Permission to conduct experiments with the woodpecker finches was
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the experiments with the crow species at MPIO, permission was
granted by the government of Upper Bavaria in Germany (Az.
55.2-1-54-2531-87-08). The work with the carrion crows at KLF com-
plied with guidelines provided by the Austrian Federal Act on the
Protection of Animals (Animal Protection Act -§ 24 Abs. 1 Z 1 and
2; § 25 Abs. 3 – TSchG, BGBl. I Nr. 118/2004 Art. 2). Furthermore,
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based exclusively on behavioural tests, they are classified as
non-animal experiments in accordance with the Austrian Animal
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at the KLF (licence AT00009917) before and after completion of the
present study.
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