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Abstract

Evidence for both, acceleration and deceleration of evolution
through learning can be found in the literature. We suggest
a selection gradient model that allows to predict whether ac-
celeration or deceleration is predominant. The main idea is
that learning alters the genotype-to-fitness landscape, which
determines selection pressure. Assuming that fitness can be
split up into an innate and a learned component, conditions
for the occurrence of the Baldwin and the Hiding effect are
derived. We introduce learning curves to analyse what we
term lifetime fitness. The influence of the shape of the learn-
ing curve on the interaction between evolution and learning
is analysed.

Introduction
The interaction between evolution and learning has been
studied from different perspectives. Straightforwardly, evo-
lution influences learning by resulting in individuals that
have the ability to learn. In artificial life, this mechanism is
employed e.g. in evolutionary robotics (Harvey et al., 2005)
and in virtual environments (Todd and Miller, 1991; Niv
et al., 2002). Furthermore, learning also influences evolu-
tion. Learning may guide a population toward evolution-
ary paths, which would not have been taken in the absence
of learning (Hinton and Nowlan, 1987). Besides this ex-
ploratory influence, learning also affects the rate of evolu-
tion (Keesing and Stork, 1991) if learning alters the selection
pressure. These phenomena are usually subsumed under the
terms Baldwin effect (Baldwin, 1896; Simpson, 1953) and
Hiding effect (Mayley, 1997).

In the next section, we briefly review the Baldwin and the
Hiding effect and highlight some examples from the litera-
ture that have demonstrated either or both of these effects.
Thereafter, we utilize a common method from quantitative
biology, known as the selection gradient analysis (Lande
and Arnold, 1983), to mathematically derive conditions un-
der which selection pressure is increased (Baldwin effect)
or decreased (Hiding effect). Based on this, we investigate
how lifetime learning curves influence the Baldwin and the
Hiding effect. We demonstrate that learning, even in a form
where the learning curves are identical for all individuals in

a population, can increase or decrease the selection pressure.
Furthermore, we discuss the importance of the convexity and
concavity of learning curves emphasizing their influence on
the selection pressure. The influence of learning curves is
important for both biological and artificial systems, when-
ever the system’s behavior is relevant throughout its lifetime,
i.e., (already) while it is learning.

Baldwin vs. Hiding Effect
In the literature, the Baldwin effect has been widely dis-
cussed, but apparently there exists no clear definition of
“the” Baldwin effect. As Depew states:

The Baldwin effect does not reliably refer either to a
theory-neutral empirical phenomenon, or to a single
hypothesis, or to an identifiable mechanism (Depew,
2003, page 5).

Seemingly, the term Baldwin effect subsumes a number of
effects arising from the interdependency of phenotypic plas-
ticity and genetic evolution.

In this paper, we use the term Baldwin effect to describe
the increase in selection pressure as an effect of learning
(unfortunately, a comprehensive review of the Baldwin ef-
fect is beyond the scope of the paper). If learning alters the
fitness landscape such that only the (genetically) very good
individuals of the population reproduce, selection pressure
is increased and evolution is accelerated. The other extreme,
learning may allow innately weak individuals to catch up
with innately strong individuals, and thus selection pressure
is reduced. In the latter case, learning causes a reduction of
fitness differences between weak and strong individuals and
evolution is decelerated (Johnston, 1982). In (Mayley, 1997)
this effect is named Hiding effect. Figure 1 illustrates both
effects.

In the artificial life and biological literature, examples can
be found for both effects. In Hinton and Nowlan’s com-
puter experiments learning leads to an acceleration of evo-
lution (Hinton and Nowlan, 1987) and an analytical treat-
ment supports the simulation results (Fontanari and Meir,
1990). Dopazo et al. find a halting effect of learning in an
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Figure 1: Illustration. Baldwin effect (left): Learning in-
creases fitness differences; Hiding effect (right): Learning
decreases fitness differences.

extension of the Hinton and Nowlan model (Dopazo et al.,
2001). Keesing and Stork identify both an acceleration and
a deceleration effect in an evolving neural network simula-
tion (Keesing and Stork, 1991). They show that learning
with a larger amount of plasticity leads to faster evolution
than learning with less plasticity. Furthermore, both forms
of learning (large and small amount of plasticity) can ac-
celerate evolution, but they also demonstrate that too much
learning can slow down the rate of evolution. Similarly,
French and Messinger show empirically that the strength of
the Baldwin effect depends on the level of phenotypic plas-
ticity (French and Messinger, 1994). In (Papaj, 1994) a sim-
ple simulation model and a neural network model are used to
show how learning inhibits and how learning facilitates evo-
lutionary change. In 2004, Mery and Kawecki have shown
that both acceleration and deceleration effects can even be
found in real biological experiment with fruit flies (Mery
and Kawecki, 2004).

A Selection Gradient Analysis
In the following, we use the selection gradient (Lande and
Arnold, 1983) as a method to analytically treat the Bald-
win and Hiding effect. The selection gradient measures the
strength of selection, and can be approximated by

β =
1
f

∂ f
∂x

, (1)

where f (x) is the fitness function, i.e., the mapping from
genotype x to fitness. The selection gradient describes the
relative fitness change caused by a marginal change in the
genotype and is therefore a measure for the selection pres-
sure. In evolutionary computation, the corresponding selec-
tion method is the fitness proportional selection.

In the following analysis x is treated as a one-dimensional
real number and can be interpreted as one particular dimen-
sion of the complex high-dimensional genotype space as
found in biological and artifical systems. The effect of learn-
ing on the rate of evolution w.r.t. the entire gene set, can be
obtained straightforwardly by combining the effects of all
individual dimensions.

The basic idea underlying our analysis is to compare how
the fitness landscape is altered through learning, and how
this influences the selection gradient. We compare a learn-
ing population and a non-learning one, and derive conditions
for acceleration (Baldwin effect) and deceleration (Hiding
effect) of the rate of evolution. In the absence of learning,
we call the resulting landscape innate landscape f and in
case of learning simply learning landscape fl . We assume
both landscapes f and fl to be positive and monotonically
increasing. The influence of learning on evolution is given
by

βl(x)−β(x)





> 0 ⇒ acceleration (Baldwin effect)
< 0 ⇒ deceleration (Hiding effect)
= 0 ⇒ no effect ,

(2)
where βl denotes the selection gradient in case of learning
and β the one in the absence of learning. We reformulate

βl(x)−β(x) =
f ′l (x)
fl(x)

−
f ′(x)
f (x)

=
f ′l (x) f (x)− f ′(x) fl(x)

fl(x) f (x)

=
f (x)
fl(x)

f ′l (x) f (x)− f ′(x) fl(x)
f 2(x)

=
f (x)
fl(x)

(
fl(x)
f (x)

)′

=
g′(x)
g(x)

,

(3)

with

g(x) =
fl(x)
f (x)

. (4)

We call g the gain function of learning. With sgn denoting
the sign function, Equation (3) implies

sgn(βl(x)−β(x)) = sgn(g′(x)) , (5)

under the assumption of positive f (x), fl(x). If g′(x) > 0
evolution is accelerated, and if g′(x) < 0 evolution is decel-
erated. In Figure 2, a scenario with a negative gain func-
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Figure 2: Learning alters the fitness landscape: An example
of the Hiding effect.



tion gradient is shown. Here the landscape is smoothened
through learning, i.e., the Hiding effect dominates. In other
scenarios the opposite effect may appear, i.e., learning alters
the fitness landscape such that the Baldwin effect dominates.

In the following, we assume that the fitness fl(x) of a
learning individual x is composed of its innate fitness f (x)
and a learning component l(x):

fl(x) = f (x)+ l(x) . (6)

Using the selection gradient approach, we derive conditions
for the occurrence of the Baldwin respectively the Hiding
effect (recall that we assume f (x) > 0, f ′(x) > 0):

g′(x) =

(
f (x)+ l(x)

f (x)

)′

=

(
1+

l(x)
f (x)

)′

=
l′(x) f (x)− l(x) f ′(x)

f 2(x)

=
l(x)
f (x)

(
l′(x)
l(x)

−
f ′(x)
f (x)

)

=
l(x)
f (x)

(log(l(x))− log( f (x)))′ .

(7)

If l(x) > 0 and f (x) > 0, then

sgn(g′(x)) = sgn((log(l(x)))′− (log( f (x)))′) . (8)

We see that the combination of l(x) and f (x) determines
whether evolution is accelerated or decelerated. In case of
positive functions l(x), f (x), the result of Equation (8) can
also be interpreted in terms of the selection gradient termi-
nology:

Since (log(l(x)))′ = l′(x)
l(x) , the term (log(l(x)))′ can be in-

terpreted as the selection gradient of l(x). Thus, if the selec-
tion gradient of l(x) is larger than the selection gradient of
f (x), evolution is accelerated, and in the opposite case, evo-
lution is decelerated. If f (x) = l(x), learning has no influ-
ence on evolution. In the following, we define categories of
functions l(x) and derive general conclusions for functions
of each category:

Positive, decreasing l(x): A positive, decreasing l(x) im-
plies that weak individuals benefit more from learning than
strong individuals. Since

l(x) > 0∧ l′(x) < 0 ⇒ (log(l(x)))′ < 0)

f (x) > 0∧ f ′(x) > 0 ⇒ (log( f (x)))′ > 0) ,
(9)

and using Equation (8), we obtain g′(x) < 0. Therefore, for
all scenarios with positive, decreasing function l(x), the Hid-
ing effect dominates and evolution is decelerated.

Constant l(x): Next, we consider the case when learning
causes a constant fitness change, i.e., l(x) = a. Using Equa-
tion (7), we obtain

sgn(g′(x)) = sgn
(
−

a
f (x)

(log( f (x)))′
)

= sgn(−a) . (10)

Therefore, in case of constant fitness increase (positive a),
evolution is decelerated (Hiding effect) while for a constant
fitness decrease (negative a) fitness is accelerated (Baldwin
effect). This might at first sight be counterintuitive, but re-
call that relative fitness changes count. A constant fitness
increase implies a larger relative fitness gain for a weak indi-
vidual (with small innate fitness) than for a strong individual
(with large fitness), and vice versa.

Positive, increasing l(x): Finally, we consider the case of
positive, increasing l(x). For such functions, strong indi-
viduals always benefit more from learning than weak indi-
viduals (in terms of absolute fitness gain). Unfortunately, no
simpler formulation than Equation (8) can be derived for this
case, without specifying either l(x) or f (x). However, an ex-
ample illustrates that functions of this category can both ac-
celerate or decelerate evolution: If l(x) = xb and f (x) = xc,
then sgn(b− c) determines whether evolution is accelerated
(b− c > 0) or decelerated (b− c < 0).

The Influence of Learning Curves - An
Extension of the Fitness Landscape Model

In the literature, the concept of fitness landscape has “many
different meanings and associated mathematical representa-
tions” (Stadler and Stephens, 2003, page 390). To model
evolutionary selection, an individual’s fitness has to repre-
sent the number of its offsprings. However, a proper defi-
nition has to take the stochastic nature of the evolutionary
process into account, thus a more favorable notion would be
the average number of offsprings. This definition of fitness
was also assumed in the selection gradient analysis of the
previous section.

So far, we have considered the mapping from genotype
to fitness as a black box and have not yet discussed how
lifetime fitness (the average number of offsprings) is actu-
ally attained. For the selection gradient analysis, there has
been no need for this discussion, because so far we have only
been interested in the result of learning w.r.t. lifetime fitness.
In (Mayley, 1996) this type of fitness assessment is named
posthumous fitness assessment.

However, in the following, we explicitly introduce learn-
ing curves as an important influence factor of lifetime fit-
ness. Learning curves describe the progress of an individ-
ual’s effort to improve its fitness during lifetime. This ap-
plies to many biological and artificial systems. We term
this type of fitness assessment lifetime fitness assessment.
In this case, an individual is evaluated throughout its life-
time including the learning period. Thus, not only the re-



sult of learning is relevant but also the learning curve. For
example, a population of “early learners” might influence
evolution and in particular selection pressure in a different
way than “late learners”, although the “result” of learning
is identical. In the following, we investigate the influence
of learning curves on the Baldwin and Hiding effect for life-
time assessment, compared to the case of posthumous fitness
assessment.

Extension of the Fitness Landscape Model The basic
idea is to extend the traditional fitness landscape model (Fig-
ure 2) by a lifetime learning dimension, and use this model
to compare environments with lifetime learning (learning
curves), posthumous assessment and without learning.

We define
(x, t) 7→ ft (x, t) , (11)

where ft (x, t) describes some kind of “partial” lifetime fit-
ness of an individual with genotype x at time t. The overall
fitness is the accumulation of an individual’s partial fitness
values over its lifetime t ∈ [0;T ]. An individual’s lifetime
fitness Fl is then given by

Fl(x) =

∫ T

0
ft(x, t)dt . (12)

At first sight the notion of partial fitness ft(x, t) might be
counterintuitive, because an individual either reproduces at
time t or it does not. However, we want to interpret Equa-
tion (11) as the average offspring generation of an average
individual with certain phenotypic characteristics at time t.
The genotype directly encodes the innate phenotype of an
individual with corresponding partial fitness at time t = 0.
Without loss of generality, we set the maximal lifetime,
T = 1. An example of such a landscape is given in Figure 3.
In the absence of learning the partial fitness is constant (in
t-direction). In this case, the lifetime fitness F(x) is given by
the dark-gray area, which we call non-learning area. In case
of learning, lifetime fitness Fl(x) of an individual x is given
by the learning area, which is the sum of the non-learning
area and the light-gray area. In Figure 3 all learning curves

death

life tim
e t

birth

innate phenotype  x

pa
rti

al
 fi

tn
es

s

Figure 3: Lifetime fitness assessment model.

are linear. Posthumous assessment can also be visualized in
the landscape extension as shown in Figure 3. Since learn-
ing curves are not taken into account in this case, the max-
imum partial fitness is achieved immediately after birth. In
the figure, the light-gray (learning curve) triangle becomes a
rectangle. The fitness in case of lifetime assessment can be
related to posthumous assessment as follows

Fl(x) =

∫ 1

0
( f (x)+ lt(x, t))dt = f (x)+

∫ 1

0
lt(x, t)dt , (13)

F(x) = f (x) , (14)

where f (x) equals the dark-gray area of Figure 3, and∫ 1
0 lt(x, t)dt equals the light-gray area. lt(x, t) describes the

shape of the learning curve for a given x with

lt(x,0) = 0 ∧ lt(x,1) = fl(x)− f (x) . (15)

Identical Learning Curves for All Genotypes Firstly, we
consider the case, where for all genotype values the “shape”
of the corresponding learning curves are identical. The
shape is defined by an arbitrary function l̂t(t) with l̂t(0) = 0
and l̂t(1) 6= 0, so that

lt(x, t) = α(x)l̂t (t) , α(x) =
fl(x)− f (x)

l̂t(1)
(16)

is a valid learning function w.r.t. the conditions defined in
Equation (15). Since l̂t(t) is independent of x, the learning
function lt(x, t) has the same shape for all individuals. After
reformulation of

Fl(x) = f (x)+α(x)
∫ 1

0
l̂t(t)dt

= f (x)+( fl(x)− f (x))
∫ 1

0

l̂t(t)

l̂t(1)
dt ,

(17)

we obtain the gain function G(x) for lifetime assessment

G(x) =
Fl(x)
F(x)

= 1+(g(x)−1)

∫ 1

0

l̂t(t)

l̂t(1)
dt , (18)

where g(x) is the gain function for posthumous assessment
(cf. Equation 4) and the gradient G′(x) as

G′(x) = g′(x)
∫ 1

0

l̂t(t)

l̂t(1)
dt . (19)

This shows, that w.r.t. the sign of the gain function gradient,
the lifetime assessment approach leads to the same result as
the posthumous assessment approach:

sgn(G′(x)) = sgn(g′(x)) , (20)

if the integral over the normalized learning curve of l̂t(t)
is positive (which can indeed be assumed since otherwise



learning could be detrimental in terms of lifetime fitness
for the individual). However, the shape of the learning
curve might have a strong influence on the magnitude of the
acceleration/deceleration effect.

The following short simulation study provides empirical
evidence to confirm the results of the theoretical analysis
(cf. Equation 19). We simulate evolution with a standard
evolutionary algorithm with asexual populations of 100 in-
dividuals. The genotype x is a 1-dimensional real num-
ber confined to [0;1]. Mutation is realized by adding a
N(µ = 0,σ = 10−4) normally distributed random number to
the genotypic value, and is clipped at the boundaries of the
genotype interval. Stochastic Universal Sampling (Baker,
1987) is employed as a selection method. Initially, popula-
tions are randomly distributed on [0;0.1].

In case of posthumous assessment, an environment is de-
fined completely by (a) a fitness function f (x) that in the
absence of learning maps the genotype value to fitness, and
(b) a learning function fl(x) that maps a genotype value to
fitness in case of learning. For lifetime assessment, addition-
ally, (c) the learning curve l̂t(t) has to be defined. For these
three categories, we define sets of functions and combine
them to describe the environments.

In Table 1, six lifetime assessment environments are de-
fined, which all have the same innate fitness function f1(x).
Figure 4 shows the resulting landscapes and learning func-
tions. For comparison, the upper gray line shows the fitness
assessment in case of posthumous assessment, i.e., the max-
imum fitness is achieved at birth (t = 0). The “no learning”
curve at the bottom illustrates the fitness assessment in the
absence of learning. For each environment, we analysed the
selection gradient using equations (4,19). However, due to
space limitations, we omit these calculations here. The re-
sults are shown in the last column of Table 1(b). For all com-
binations of innate fitness f1 with learned fitness fl1 (En-
vironments E1-E3), evolution is decelerated through learn-
ing. The magnitude of this deceleration effect is strongest in
case of E1 and weaker for E2 and E3. For all combinations
of innate fitness f1 with learned fitness fl2 (E4-E6), evolu-
tion is accelerated through learning, and again this effect is
strongest for E4 and weaker for E5 and E6.

In Figure 5, we compare the evolution with the three
learning curves to the cases of posthumous assessment and
“no learning” using simulations with the evolutionary algo-
rithm introduced above.

Since the differences between the evolutionary progresses
can be small, we also show the evolution of relative (percent-
age) genotype differences normalized to the “no learning”
case. The simulation results confirm our theoretical consid-
erations summarized in Table 1(b): Evolution can both be
accelerated as well as decelerated. The effects are strongest
in case of posthumous assessment, and weakened through
learning curves. The more convex the learning curve is, the

Table 1: Settings of the first simulation study
(a) Functions

Functions
f1(x) = x
fl1(x) = f1(x)+ x

1
2

fl2(x) = f1(x)+ x2

blt1(t) = t
1
4

blt2(t) = t
blt3(t) = t4

(b) Environments

Environments Expected effect
E1: ( fl1 , blt1 ) strong decel.
E2: ( fl1 , blt2 ) medium decel.
E3: ( fl1 , blt3 ) weak decel.
E4: ( fl2 , blt1 ) strong accel.
E5: ( fl2 , blt2 ) medium accel.
E6: ( fl2 , blt3 ) weak accel.
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Figure 4: Environments of the first simulation study. Left:
Innate landscape f1 and learning landscapes fl1, fl2 for
posthumous assessment. Right: Learning curves lt1, lt2, lt3.
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Figure 5: Results of the first simulation study (average over
100 independent runs). Top-left: Genotype evolution for the
combinations ( f1, fl1) and the learning curves l̂t1, l̂t2, l̂t3, rep-
resenting environments E1-E3. Bottom-left: Evolution of
the corresponding relative genotype differences (in percent).
Top-right: Same as top-left but using fl2 instead of fl1, i.e.,
representing environments E4-E6. Bottom-right: Evolu-
tion of the corresponding relative genotype differences.

weaker is the acceleration (Baldwin effect) respectively de-
celeration (Hiding effect).



Different Learning Curves for Different Genotypes We
now consider the case where learning curves are different for
different genotype values. In the notation of Equation (16),
this means that the shape of the learning curve l̂t now de-
pends on both t and x, and we get l̂t(x, t). The following ex-
ample illustrates how learning curves can influence the rate
of evolution for this case. We choose fl(x) = α f (x) so that
without consideration of learning curves (i.e., posthumous
fitness assessment), there is no influence of learning on evo-
lution. As in the first simulation, we choose learning curves
of the form l̂t(t) = td . However, now the learning curves are
influenced by genotype x. We define

l̂t(x, t) = te(x)
, (21)

with e(x) = k2x−1, k > 0 and x ∈ [0;1].
We compare two environments (cf. Figure 6), setting 1

with (α = 3,k = 0.25) and setting 2 with (α = 3,k = 4.0). In
setting 1, learning curves are convex for small genotypic val-
ues x and concave for large x, and vice versa in setting 2. The
results are shown in Figure 6. In setting 1, learning accel-
erates evolution and in setting 2, learning decelerates evolu-
tion. A detailed analysis of the selection gradient can not be
included here, however, qualitatively the results can be un-
derstood as follows. In general, an individual with concave
learning curve gains more from learning than an individual
with convex learning curve. Therefore, if genotype values
of innately strong individuals are associated with concave

setting 1 setting 2
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Figure 6: Top-row: Partial fitness landscapes for the second
simulation study. Genotype x encodes the innate phenotype,
which is modified over lifetime t. Bottom-row: Simulated
average genotype evolution for settings 1 and 2 compared
to the case of no learning (average over 100 independent
runs). Bottom-left: Plain representation of genotype evo-
lution. Bottom-right: Percentage genotype difference be-
tween setting 1 respectively setting 2 and average genotype
evolution in case of no learning.

learning curves, and genotype values of innately weak in-
dividuals with convex learning curves, the strong ones gain
proportionally more from learning, thus the Baldwin effect
dominates (cf. Figure 6, setting 1). In the opposite case, the
Hiding effect dominates (cf. Figure 6, setting 2).

Conclusion
In the literature, evidence can be found that learning can
both speed up and slow down the rate of evolution. In this
paper, we employed a commonly used approach – analysis
of the selection gradient – to get a better understanding of
the conditions that lead to a positive or negative influence of
learning on evolutionary progress. We evaluate how learning
alters the genotype-to-fitness landscape, and how this influ-
ences selection pressure. Under the assumption that fitness
can be split up into an innate and a learned part, conditions
for the occurrence of the Baldwin and the Hiding effect have
been derived. In the second part of the paper, we introduced
the concept of the learning curve and analysed its influence
on the rate of evolution. It turns out that in the case when
the learning curves are identical for all genotypes, the result
of lifetime learning determines whether the Baldwin or the
Hiding effect appears. However, the shape of the learning
curve influences the magnitude of these effects. In case of
different learning curves for different genotypes, not only
the magnitude is influenced, but also the kind of effect that
can be observed. Whether evolution is accelerated or de-
celerated depends on how the learning curve varies with the
genotype value.

The selection gradient approach allows to quantify the
Baldwin and the Hiding effect and has the potential to ex-
plain (at least partially) results from the related literature.
At the same time, we have to keep in mind that the effect of
learning on the selection pressure is only one type of influ-
ence that learning can have on evolution.
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