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Abstract
Despite major research efforts leading to the recent approval of pirfenidone and
nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains
unchanged. The elaboration of international diagnostic criteria and disease
stratification models based on clinical, physiological, radiological, and
histopathological features has improved the accuracy of IPF diagnosis and
prediction of mortality risk. Nevertheless, given the marked heterogeneity in
clinical phenotype and the considerable overlap of IPF with other fibrotic
interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis
remain unclassifiable. Moreover, currently available tools fail to detect early
IPF, predict the highly variable course of the disease, and assess response to
antifibrotic drugs.
 
Recent advances in understanding the multiple interrelated pathogenic
pathways underlying IPF have identified various molecular phenotypes
resulting from complex interactions among genetic, epigenetic, transcriptional,
post-transcriptional, metabolic, and environmental factors. These different
disease endotypes appear to confer variable susceptibility to the condition,
differing risks of rapid progression, and, possibly, altered responses to therapy.
The development and validation of diagnostic and prognostic biomarkers are
necessary to enable a more precise and earlier diagnosis of IPF and to improve
prediction of future disease behaviour. The availability of approved antifibrotic
therapies together with potential new drugs currently under evaluation also
highlights the need for biomarkers able to predict and assess treatment
responsiveness, thereby allowing individualised treatment based on risk of
progression and drug response. This approach of disease stratification and
personalised medicine is already used in the routine management of many
cancers and provides a potential road map for guiding clinical care in IPF.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is typically introduced as a 
chronic progressive and inevitably fatal scarring lung disease with 
a prognosis worse than that of numerous cancers1,2. Hopefully, 
this is now beginning to change. Although the etiology and the 
pathogenesis of IPF are still incompletely understood, two antifi-
brotic drugs, pirfenidone and nintedanib, have recently been proven 
to be effective in slowing disease progression and are now approved 
as treatments in the United States and Europe3,4.

The recent development of affordable, high-throughput -omics 
technologies has opened the era of systems biology and has ena-
bled the emergence of stratified and personalised medicine. These 
approaches are becoming routine practice in oncology5 and have 
enormous potential in offering new insights into the understanding 
and management of pulmonary diseases6, including IPF.

This article aims to provide an overview of recent developments 
in disentangling the complex interrelated mechanisms involved in 
the pathogenesis of IPF with a particular focus on those that may 
lead to improved diagnosis, stratification of disease behaviour, and 
identification of potential novel therapeutic targets and predictors  
of response to treatment. Considerations concerning the past, 
present, and future pharmacotherapy of IPF were addressed in  
the March 2014 issue of this journal7 and will not be discussed  
in this current review.

Diagnosis
The current approach to IPF diagnosis was first described in 
international guidelines published in 2001, which were recently 
updated. These guidelines define precise diagnostic criteria based 
on clinical, radiological, and histopathological features8 and 
enshrine the place of multidisciplinary discussion among experi-
enced clinicians, radiologists, and pathologists as the gold standard 
method for establishing a diagnosis of IPF. Using the current 
guidelines, in about two-thirds of the cases, a confident diagnosis 
of IPF can be achieved based on an appropriate clinical history in 
association with a typical high-resolution computed tomography 
(HRCT) pattern of usual interstitial pneumonia (UIP) (Figure 1). 
When clinical and HRCT data are non-diagnostic, surgical lung 
biopsy (SLB) is recommended to confirm UIP diagnosis histo-
logically (Figure 2). However, SLB carries considerable risks 
and is often contraindicated in older patients with extensive 
co-morbidities or in those presenting with advanced lung disease9. 
Thus, even in experienced centres, a diagnosis of unclassifiable 
interstitial lung disease (ILD) is assigned to about 10% of patients 
who present with progressive pulmonary fibrosis10.

In a recent study of 117 patients with fibrotic ILDs, bronchoscopic 
lung cryobiopsy has proven to be safe and effective in providing 
adequate lung tissue samples, which enabled increased diagnos-
tic confidence in the multidisciplinary diagnosis of IPF11. This 
minimally invasive technique represents an attractive alternative to 
SLB and may, pending further studies, be included in the diagnostic 
algorithm of IPF and other fibrotic ILDs in the near future.

Figure 1. Typical high-resolution computed tomography (HRCT) 
pattern of usual interstitial pneumonia (UIP). The image shows 
subpleural and basal predominance of reticular opacities associated 
with traction bronchiectasis and honeycomb change (clustered  
cystic airspaces with well-defined thick walls and diameter of  
0.3–1.0 cm).

Figure 2. Photomicrograph of biopsy from a 63-year-old man 
with a multi-disciplinary diagnosis of idiopathic pulmonary 
fibrosis. The patient shows the typical histopathological features of 
usual interstitial pneumonia characterised by spatial heterogeneity 
with areas of subpleural and paraseptal fibrosis and honeycombing 
changes (cystic airspaces lined by bronchiolar epithelium) 
alternating with areas of relatively spared lung parenchyma, 
temporal heterogeneity with admixed areas of active fibrosis with 
fibroblast foci, extracellular matrix deposition (mainly collagen), and 
relative mild or absence of inflammatory cell infiltrate together with 
regions of histologically normal lung tissue.
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Pathogenesis
The heterogeneity in radiological and histopathological appear-
ances, rate of progression, and treatment response observed in 
individuals with IPF suggests that fibrosis arises as a consequence 
of multiple co-activated pathogenic pathways, all of which are 
influenced by complex interactions between endogenous and 
environmental factors12. This multiple-pathway model probably 
explains the disappointing results of therapies targeting single 
receptors or pathways in IPF. Future treatment strategies in IPF 
are likely to focus on combinations of therapies targeting multiple 
pathogenic pathways simultaneously, as is currently used in the 
treatment of many cancers13.

Until 15 years ago, the prevailing pathogenic paradigm in IPF 
was one of chronic inflammation being the precursor to progres-
sive fibrosis. This has shifted over the last decade to a model of 
abnormal wound healing response driven by persistent or recurrent 
alveolar epithelial microinjuries (e.g. cigarette smoke, microaspi-
ration, or infection) in individuals rendered susceptible by ageing 
or genetic predisposition14. Multiple studies have shown that 
alveolar epithelial cell (AEC) apoptosis secondary to injury is fol-
lowed by extravascular coagulation, immune system activation, 
and aberrant persistent activation of AECs, even in the absence of 
the primary stimulus15. These cells, in turn, induce the migration 
and proliferation of local fibroblasts, recruit circulating fibrocytes 

to areas of injury, and promote differentiation of fibroblasts into 
myofibroblasts. This results in the formation of myofibroblast foci, 
the histologic hallmark of UIP, in which persistently activated 
myofibroblasts secrete excessive amounts of extracellular matrix 
(ECM) proteins. Disordered deposition and accumulation of ECM 
components within the interstitium and alveolar spaces lead to 
established fibrosis with progressive destruction of lung architec-
ture and loss of function.

This pathogenic cascade involves complex cell-cell and cell-matrix 
interactions through numerous biochemical mediators, such as 
growth factors, enzymes, chemokines, coagulation factors, and 
reactive oxygen species, all of which have the potential to be influ-
enced by numerous host and environmental factors16–19. Cardinal 
among these is transforming growth factor-beta (TGF-β), a potent 
profibrotic mediator involved in cell recruitment, myofibroblast  
differentiation, and induction of ECM production18–19 (Figure 3).

Disease stratification and personalised medicine
The early manifestations of IPF are, in the absence of a biopsy, 
frequently difficult to distinguish from other ILDs. Furthermore,  
the histological hallmark of IPF, UIP, is found in other disorders 
and so even when a biopsy is available a diagnosis of IPF can  
remain in doubt. A further challenge for clinicians is the fact 
that currently available clinical measures do not allow accurate  

Figure 3. A schematic representing the current model for the pathogenesis of idiopathic pulmonary fibrosis. In genetically susceptible 
individuals, injury activates multiple inflammatory, cell signalling, and repair pathways. Activation of these cascades causes an imbalance 
in profibrotic and antifibrotic mediators. In turn, these mediators activate multiple cell types, causing changes in cellular functioning and 
cell-cell interactions that ultimately result in progressive fibrosis. Abbreviations: CTGF, connective tissue growth factor; FXa, factor Xa; HGF, 
hepatocyte growth factor; IFNγ, interferon-γ; PDGF, platelet-derived growth factor; PGE2, prostaglandin E2; TGFβ, transforming growth  
factor β, Th, T-helper; VEGF, vascular endothelial growth factor.
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prediction of subsequent disease behaviour that can range from 
slowly to rapidly progressive and that, in 5% of cases, is punctuated 
by episodes of rapid acute deterioration or acute exacerbation20.

These challenges highlight the need for the development and  
validation of diagnostic markers specific to IPF and prognostic 
markers of future disease behaviour to guide treatment decisions, 
including referral for transplant21. The recent approval of pir-
fenidone and nintedanib and the identification of new potential 
therapeutic targets have created an urgent need for theragnostic  
markers, i.e. markers able to assess, ideally at an early stage, 
therapeutic response to a given drug. Such markers could be used 
to improve patient selection in clinical trials and also to person-
alise treatment based on an individual’s risk of progression and  
treatment response. This in turn would avoid unnecessarily 
exposing individuals to side effects and would improve the cost- 
effectiveness of treatment. This approach of disease stratification 
and personalised medicine is already used in the routine management of 
cancers and has the potential to improve clinical care in IPF.

Clinical phenotyping
Several clinical, physiologic, radiographic, and pathologic variables 
enable a certain degree of mortality prediction in IPF. Older age, 
male sex, smoking history, low body mass index (BMI), pulmonary 
hypertension, and concomitant emphysema are clinical predictors 
of worse survival20. Longitudinal changes in forced vital capacity 
(FVC) and diffusion capacity for carbon monoxide (DL

CO
) are more 

predictive of prognosis than baseline values. Thus, a 5–10% decline  
in FVC at 6 months is associated with a more than twofold 
increase in the risk of mortality over the subsequent year22. Using  
relative change in FVC instead of the absolute change enables  
earlier detection of progression with similar prognostic accuracy23. Also 
reported as independent predictors of mortality are baseline 6-minute 
walk distance (6MWD) and change in 6MWD at 6 months24.

Additionally, several multi-dimensional risk prediction models 
integrating various clinical, physiological, and radiological vari-
ables have been validated in IPF25–29 (Table 1). These compos-
ite staging systems are more accurate in predicting baseline and 
longitudinal mortality risk than individual physiological variables 
and permit stratification of IPF patients into groups with distinct 
patterns of survival. Nevertheless, they cannot reliably predict 
future disease behaviour (as measured by rate of decline in FVC) or 
response to treatment30. Additionally, they provide no insights into 
underlying pathobiology and thus fail to identify distinct molecu-
lar phenotypes of disease. The integration of dynamic parameters 
measured over time and biological biomarkers able to reflect 
disease activity is needed to improve the accuracy of disease 
stratification models and guide personalised management31.

Interestingly, the development and greater accessibility of 
18F-fluorodeoxyglucose positron emission tomography (18F-FDG-
PET) may provide a novel method for evaluating disease activ-
ity in IPF. Areas of established honeycomb fibrosis appear to be 
highly metabolically active, as shown by increased 18F-FDG uptake 
on PET/CT32. More importantly, increased 18F-FDG uptake is also 
observed in areas of radiologically normal lung parenchyma on 
HRCT, suggesting that PET/CT may have a higher sensitivity than 

HRCT in detecting early disease in IPF and may thus represent a 
potential useful tool in monitoring disease activity and response to 
treatment33, albeit one which is limited by radiation exposure.

Molecular phenotyping
High-throughput -omics technologies enable the rapid, accurate, 
and simultaneous analysis of high numbers of genes, RNA tran-
scripts, proteins, or metabolites. This in turn has facilitated the 
emergence of systems biology, a multidisciplinary methodology 
based on integration models aimed at understanding biological sys-
tems as a whole, i.e. as a dynamic network of complex interrelated 
networks extending from the genome to the environment. This 
contrasts with linear models that have been used in the past to 
explain the action of individual genes and proteins6. Such multi-
scale modelling should permit mapping of the considerable phe-
notypic heterogeneity of IPF and may enable the identification of 
specific molecular phenotypes associated with clinical outcomes 
that could be used to improve diagnosis accuracy and disease 
stratification21 (Table 2).

Ideal molecular biomarkers should reflect key pathological 
pathways, be easily and accurately measured, have been validated, 
and offer added value to currently used approaches34. IPF stratifica-
tion and personalised management based on molecular biomarkers 
is not yet available in current clinical practice, but recent advances 
in understanding the complex pathobiology of IPF has identi-
fied candidate biomarkers involved in AEC dysfunction, immune 
dysregulation, ECM remodelling, and fibroproliferation35. A pre-
requisite for the use of biomarkers in clinical practice is valida-
tion in large well-phenotyped cohorts with longitudinal follow up 
of both clinical and molecular parameters. Among several cohort 
studies are the COMET (Correlating Outcomes With Biochemical 
Markers to Estimate Time to progression in Idiopathic Pulmonary 
Fibrosis) study in the United States36–38 and the PROFILE (Prospec-
tive Observation of Fibrosis in the Lung Clinical Endpoints) study 
in the United Kingdom39,40. The latter is the largest prospective 
cohort study of incident IPF with over 550 patients recruited, all of 
whom were naïve for antifibrotic therapy at the time of inclusion.

Genetic phenotyping
Two large genome-wide association studies (GWAS) have identi-
fied several common genetic variants associated with susceptibil-
ity to IPF and risk of disease progression. The genes identified are 
involved in host defence, cell-cell adhesion, and DNA repair41,42. 
A single nucleotide polymorphism (SNP) in the promoter region 
of the MUC5B gene, encoding a mucin involved in airway host 
defence43, is significantly associated with sporadic and familial 
IPF44 and, paradoxically, with improved survival45. This MUC5B 
promoter polymorphism is not associated with lung fibrosis in 
scleroderma or sarcoidosis and thus appears to be specific to IPF46. 
Similarly, several SNPs conferring susceptibility to IPF have been 
identified within the TOLLIP locus42. The TOLLIP gene encodes 
for a protein with reduced expression in patients with IPF and that 
regulates part of the innate immune system mediated by Toll-like 
receptor and TGF-β signalling pathways. Surprisingly, the minor 
allele rs5743890 in TOLLIP appears to be protective against the 
development of IPF but when present tends to be associated with 
increased mortality.
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Table 1. Comparison of mortality risk scoring systems in idiopathic pulmonary fibrosis.

Variables Predictive value Advantages (+)/disadvantages (-)

Composite 
physiologic index 
(CPI)25 

DLCO, % pred  

FVC, % pred  

FEV1, % pred  
 
 
Correlation with morphologic 
extent:  
CPI = 91.0 – (0.65 x DLCO) 
– (0.53 x FVC) + (0.34 FEV1) 

More accurate predictor 
of mortality than individual 
functional variables

+ : corrects for confounding effects of 
emphysema 
 
 
- : retrospective data; measurement 
variability in DLCO; not yet been replicated

du Bois et al. model26 Age (0–8 pts) 

24-week history of 
respiratory hospitalisation 
(0 or 14 pts) 

FVC, % pred (0–18 pts) 

24-week change in FVC 
(0–21 pts)

1-year mortality risk  
Examples of total score:  
•   0–4 pts: > 2% 
•   22–29 pts: 10–20% 
•   38–40 pts: 40–50% 
•   > 50 pts: > 80%

+ : easily and reliably evaluable; 
longitudinal variables 
 
 
- : assessed in cohorts with only mild to 
moderate physiological impairment at 
baseline and with exclusion of severe 
emphysema 

Gender-Age-
Physiology (GAP) 
model27 

Gender (0–1 pts) 

Age (0–2 pts) 

FVC, % pred (0–2 pts) 

DLCO, % pred (0–3 pts)

Cumulative mortality at 
1, 2, and 3 years  
Examples of 1-year 
mortality risk:  
Stage I (0–3 pts): 6% 
Stage II (4–5 pts): 16% 
Stage III (6–8 pts): 39%

+ : externally validated; GAP calculator as 
add-on tool* 
 
 
- : retrospective data; possible referral bias 
(academic centres); tends to overestimate 
risk

Longitudinal GAP 
model28 

Gender (0–1 pts) 

Age (0–4 pts) 

FVC, % pred (0–15 pts) 

24-week relative change in 
FVC (0–12 pts) 

DLCO, % pred (0–23 pts) 

Respiratory hospitalisation  
(last 24 weeks) (0 or 14 pts)

1- and 2-year mortality 
risk  
Examples of 1-year 
mortality risk:  
•   0–10 pts: < 2% 
•   27–34 pts: 10–20% 
•   43–45 pts: 40–50% 
•   55–60 pts: ≥ 80%

+ : longitudinal risk assessment; 
prospective data 
 
 
- : no external validation 

CT-GAP model29 Gender 

Age 

FVC, % pred  

Quantitative CT fibrosis 
score 

Cumulative mortality at 
1, 2, and 3 years  
→ Accuracy comparable 
to that of the original GAP 
model 
Examples of 1-year 
mortality risk:  
Stage I (0–3 pts): 5% 
Stage II (4–5 pts): 19% 
Stage III (6–8 pts): 43%

+ : alternative model when DLCO 
unmeasurable or not available; externally 
validated 
 
 
- : retrospective data; requires expertise in 
quantification of CT disease extent

Abbreviations: DLCO, diffusing capacity of carbon monoxide; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 second; CT, computed 
tomography; % pred, % predicted; pts, points. 
*GAP calculator for more precise estimation of risk available at www.annals.org

Studies based on familial IPF have identified rare genetic variants 
in genes encoding surfactant proteins, including surfactant protein  
C (SFTPC) and A2 (SFTPA2), and in several genes linked to tel-
omere function, such as TERT (which encodes for telomerase reverse 
transcriptase, a component of the telomerase complex responsi-
ble for maintaining telomere length47). Short telomere length as 
well as evidence of lung parenchymal remodelling and epithelial  

dysfunction have been identified in asymptomatic first-degree rela-
tives of familial IPF patients and may represent the earliest stages of 
IPF48. Even in the absence of TERT polymorphisms, short telomeres 
in peripheral blood mononuclear cells (PBMCs) or in AECs are also 
frequently found in IPF patients and portend a poorer prognosis47,49. 
This suggests that both genetic variants and environmental factors 
such as cigarette smoke play a role in telomere shortening.
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Table 2. Candidate molecular biomarkers in idiopathic pulmonary fibrosis.

Biomarkers Potential role Comments Ref.

Genetic MUC5B promoter SNPs Predisposition, 
prognosis

rs35705950 (minor allele): increased susceptibility, 
improved survival;  
rs5743890 (minor allele): reduced susceptibility, 
reduced survival

43–45

Genetic TOLLIP SNPs Predisposition, 
prognosis

42

Genetic SFTPC, SFTPA2 Predisposition 47

Genetic Telomere-related genes 
(TERT, TERC, DKC1, RTEL1) 

Predisposition Short telomeres in leucocytes associated with 
reduced survival

47

Genetic Telomere length Predisposition, 
prognosis

47,49

Transcriptional Lung or peripheral blood 
gene expression profiles 

Diagnosis, prognosis Example: LYCAT mRNA expression in leucocytes 
correlated with lung function and survival

51–56

Epigenetic Lung or peripheral blood 
miRNAs expression profiles 

Diagnosis, prognosis, 
therapeutic targets

Example: Antifibrotic downregulated miRNAs: miR-29, 
Let-7d;  
profibrotic upregulated miRNAs: miR-21, miR-154

64–69

Blood proteins Surfactant proteins (SP-A, 
SP-D)

Diagnosis, prognosis Increased levels predictors of worse survival 71,72

Blood proteins KL-6/MUC1 Diagnosis, prognosis Increased levels predictors of worse survival and 
higher risk of AE

73,82

Blood proteins cCK18 Diagnosis Higher levels in IPF but no association with disease 
severity or outcome

34,35

Blood proteins CCL18 Prognosis Baseline concentration > 150 ng/ml associated with 
higher mortality

74

Blood proteins CXCL13 Prognosis Elevated levels associated with PH, AE, and worse 
survival

75,76

Blood proteins Anti-HSP70 IgG Prognosis IgG positivity associated with functional decline and 
worse survival

34,35

Blood proteins Periostin Prognosis Higher levels in IPF and correlation with disease 
progression

77

Blood proteins Fibulin-1 Diagnosis, prognosis Elevated levels in IPF and correlation with disease 
progression

78

Blood proteins MMP-1, MMP-7 Diagnosis, prognosis Higher levels associated with disease progression and 
worse survival 

79,80

Blood proteins IL-8, ICAM-1 Prognosis High concentrations associated with worse survival 80

Blood proteins LOXL2 Prognosis Higher levels associated with increased risk for 
disease progression

81

Blood proteins ECM- neoepitopes Prognosis Increased concentrations associated with disease 
progression and rate of increase predictor of survival

40

BALF proteins S100A9 protein Diagnosis Significantly higher levels compared to controls and 
other fibrotic ILDs

86

Blood cells Fibrocytes Prognosis Elevated circulating fibrocytes associated with early 
mortality

83

Blood cells Semaphorin 7a+ Tregs Prognosis Increased Sema 7a+ expression on circulating Tregs 
associated with rapidly progressive IPF

84

Lung 
microbiome

Members of Staphylococcus 
and Streptococcus genera

Prognosis Association with disease progression but causal link 
not established

38

Lung 
microbiome

Total bacterial burden Prognosis Independent predictor of decline in lung function and 
mortality but causal link not established

106

Abbreviations: AE, acute exacerbation; BALF, bronchoalveolar lavage fluid; cCK18, caspase-cleaved cytokeratin-18; CCL18, CC-chemokine ligand 18; 
CXCL13, C-X-C motif chemokine 13; DKC1, dyskeratosis congenital 1 or dyskerin; ECM, extracellular matrix; HSP, heat shock protein; ICAM-1, intercellular 
adhesion molecule-1; IL-8, interleukin-8; ILDs, interstitial lung diseases; KL-6/MUC1, Krebs von den Lungen-6/Mucin 1; LOXL2, lysyl oxidase-like 2; LYCAT, 
lysocardiolipin acyltransferase; miRNAs, microRNAs; MMP, matrix metalloproteinases; MUC5B, mucin 5B; PH, pulmonary hypertension; SFTPA2, surfactant 
protein A2 gene; SFTPC, surfactant protein C gene; RTEL1, regulator of telomere elongation helicase 1; SNPs, single nucleotide polymorphisms; TERC, 
telomerase RNA component; TERT, telomerase reverse transcriptase; TOLLIP, Toll-interactive protein; Tregs, regulatory T cells.
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The biological role of the various genetic variants in the patho-
genesis of IPF has yet to be fully determined. Interestingly, an 
exploratory post hoc study conducted in a subgroup of patients 
participating in a multi-centre randomised control trial of  
N-acetylcysteine treatment for IPF suggests that genetic polymor-
phisms may play a role in determining N-acetylcysteine treatment 
response50. This remains to be confirmed in a prospective clinical 
trial.

Transcriptional phenotyping
Whole RNA microarray analysis of lung tissue from patients 
with different ILDs has identified disease-specific gene expres-
sion signatures that permit UIP to be identified from non-UIP 
samples51,52. Furthermore, the comparison of lung gene expres-
sion profiles of patients with stable or rapidly progressive IPF has  
identified 134 transcripts sufficiently upregulated or downregu-
lated in the progressive IPF group to distinguish stable from pro-
gressive disease53. Similarly, analysis of the peripheral blood  
transcriptome in IPF has identified genes differentially expressed 
between IPF patients and healthy controls and also between those 
with mild and severe disease54,55. For example, mRNA expres-
sion of lysocardiolipin acyltransferase (LYCAT), a cardiolipin- 
remodelling enzyme, in PBMCs of IPF patients appeared to be 
strongly correlated with lung function parameters and survival56.

The identification of these diagnostic or prognostic gene expression 
signatures is a first step towards the development of molecular tests 
that could be applied to bronchoscopy samples or peripheral blood, 
thus allowing less invasive approaches to the diagnosis of IPF and 
earlier identification of individuals at risk of rapid progression.

Epigenetic and microRNA regulation phenotyping
DNA methylation57,58, histone modifications59,60, and noncoding 
microRNAs (miRNAs)61 are epigenetic mechanisms identified as 
contributing to differences in gene expression observed in IPF. 
These regulatory mechanisms are influenced by various factors 
including environmental exposures (cigarette smoke and infection), 
genetic profile, sex, and ageing62. A genome-wide DNA methylation 
analysis of lung tissue identified 2130 significantly differentially 
methylated regions in IPF samples compared to controls, of which 
about a third were associated with significant changes in gene 
expression, including genes identified as IPF-associated common 
genetic variants63. Thus, dysregulated gene expression in the IPF 
lung appears to result from complex interactions between genetic 
and epigenetic factors.

miRNAs influence protein expression by binding to mRNA. Aber-
rant expression of miRNAs has been described in the pathogen-
esis of many cancers. Lung tissue miRNA profiling identified 
significantly increased64 or decreased65 levels of several regulatory 
miRNAs in IPF patients, thereby distinguishing the normal lung 
from the IPF lung and rapidly progressive from slowly progressive 
disease66. TGF-β seems to play a critical role in the upregulation of 
profibrotic miRNAs and downregulation of antifibrotic miRNAs67. 

For example, the direct inhibition of let-7d expression by TGF-β 
in AECs is associated with epithelial to mesenchymal transition 
and collagen deposition68. Similarly, several circulating miRNAs 
appear to be differentially expressed in the serum of IPF patients67. 
Moreover, the expression levels of miR-21, miR-155, and  
miR-101-3p in serum seem to be correlated with FVC and HRCT 
features of IPF69. Interestingly, in mice, intravenous injection of 
synthetic miR-29 during bleomycin-induced pulmonary fibrosis  
restored endogenous miR-29 function and was followed by decreas-
ing collagen expression and reversal of pulmonary fibrosis70.  
These changes in miRNA expression in IPF patients suggest that 
they play an important regulatory role in lung fibrosis and may rep-
resent potential diagnostic and prognostic biomarkers as well as  
therapeutic targets.

Protein and cell biomarkers
A growing number of studies have sought to identify protein- and 
cell-based predictors of IPF disease behaviour. Elevated serum 
levels of several proteins have been associated with worse progno-
sis in IPF, including surfactant protein A (SP-A) and D (SP-D)71,72, 
mucin 1 (KL-6/MUC1)73, CC-chemokine ligand 18 (CCL18)74, 
C-X-C motif chemokine 13 (CXCL13)75,76, periostin77, fibulin-178, 
matrix metalloproteinases MMP-1 and MMP-779,80, interleukin-8 
(IL-8), intercellular adhesion molecule (ICAM)-180, and lysyl 
oxidase-like 2 protein (LOXL2)81. Elevated baseline serum levels 
of KL-6/MUC1 also appear to predict the risk of future acute 
exacerbation82. Similarly, some circulating cells have been associ-
ated with worse survival. Among cellular markers of rapidly pro-
gressive IPF are elevated circulating fibrocytes83 and semaphorin 
7a+ regulatory T cells (Tregs)84.

Serial measurements of serum ECM protein fragments generated 
by MMP activity in 189 IPF patients recruited in the PROFILE 
cohort identified increased serum concentrations of these protein 
fragments in IPF patients compared to controls. More importantly, 
increasing neoepitope concentrations were associated with disease 
progression, and the rate of change over 3 months of 3 of these 
MMP-degraded ECM proteins predicted survival40. These results 
suggest that serial longitudinal measurement of circulating proteins 
have potential for use as prognostic or theragnostic biomarkers.

Studies based on lung tissue or bronchoalveolar lavage fluid 
(BALF) analysis have also identified some candidate diagnostic  
and prognostic biomarkers of IPF, including αvβ6 integrin85, 
S100A9 protein86, and soluble annexin V87.

The value of these protein or cell biomarkers as diagnostic or prog-
nostic factors in IPF needs to be further assessed. Furthermore, inte-
grating validated molecular variables in multivariate risk prediction 
models could improve their accuracy in predicting outcomes in  
IPF. In view of this, Richards and colleagues formulated the per-
sonal clinical and molecular index (PCMI), integrating sex, FVC 
% predicted, DL

CO
 % predicted, and MMP-7 serum concentration, 

which accurately predicted mortality in their validation cohort80. 
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Two other prediction models integrating SP-A and SP-D levels or 
MMP-7, SP-A, and KL-6/MUC1 levels have shown improved pre-
dictability of mortality compared with clinical predictors alone71,88.

Metabolic phenotyping
Metabolomics is the systematic analysis of the complete set of 
metabolites (the metabolome) within a biological system under 
given conditions. This approach offers the potential for a bet-
ter understanding of dysregulated metabolic pathways underly-
ing numerous diseases, including airway diseases such as asthma, 
chronic obstructive pulmonary disease (COPD), and cystic 
fibrosis89. Dysregulated metabolic mechanisms have also been 
highlighted in the pathogenesis of IPF. Increased levels of lactic 
acid in IPF lung tissue compared with controls appear to play a 
role in myofibroblast differentiation via a pH-dependent acti-
vation of TGF-β90. Recently, a metabolomic assay by Xie and 
colleagues demonstrated that augmented aerobic glycolysis, medi-
ated by upregulated glycolytic enzymes, including PFKFB3, 
represented an early and sustained event during myofibroblast  
differentiation91. More importantly, PFKFB3 inhibition mitigated 
myofibroblast differentiation and dampened the profibrotic phe-
notypes of myofibroblasts isolated from IPF lungs. These data  
suggest that glycolytic reprogramming is important in the patho-
genesis of lung fibrosis and therefore represents a potential therapeutic  
target. More research is needed in the field of metabolomics 
to clarify the role of these dysregulated pathways of cellular  
metabolism in the pathogenesis of IPF and to integrate them with 
available genetic, epigenetic, transcriptomic, and proteomic data.

Environmental and host factors
Smoking history has long been described as a prevalent risk factor 
for the development of IPF92, including familial IPF93, and is 
associated with a worse survival94. Some other environmental 
and occupational exposures, including wood, mineral, and metal 
dusts, agriculture, and livestock, have also been associated with 
IPF, although a formal causal link has not been established95. 
Furthermore, air pollution may also play a role in the pathogenesis 
of IPF. A recent study reported a significantly higher risk of acute 
exacerbation of IPF with increased ozone and nitrogen dioxide 
exposure over the preceding 6 weeks96.

Gastroesophageal reflux (GER) is highly prevalent in IPF, 
though often asymptomatic, and confers an increased risk of 
microaspiration97. Anti-acid treatment in IPF has been associated 
in retrospective data with decreased radiologic fibrosis, longer 
survival, and smaller decrease of FVC at 30 weeks98,99. Despite 
growing evidence suggesting that GER and silent microaspiration 
might play a role in the pathogenesis of IPF, there is, to date, no 
confirmation that this association is causative. Consequently, the 
recently updated international guidelines on IPF treatment main-
tained a conditional recommendation for the use of anti-acid 
therapy100. A prospective randomised controlled trial is needed to 
further assess the role of GER and microaspiration in IPF and con-
firm the effectiveness of anti-reflux therapy. 

Infectious processes may play a role in the initiation, progression, 
or exacerbation of IPF. Viral infections, particularly human herpes 
viruses (HHVs), including herpes simplex virus type 1 (HSV-1), 
Epstein-Barr virus (EBV), cytomegalovirus (CMV), HHV-7, and 
HHV-8, have been associated with IPF in several studies101. Whether 
this association is causative has not yet been proven. HHVs have the 
potential to induce endoplasmic reticulum stress and apoptosis102; 
it is therefore hypothesised that viral infection may act as a cofac-
tor in the development of IPF through the reactivation of latent 
HHVs within the alveolar epithelium following exposure to a 
first injury103. Furthermore, a recent study found increased copy 
numbers of EBV and CMV DNA in BALF of IPF patients and, to 
a lesser extent, in first-degree asymptomatic relatives of familial 
IPF patients48. Thus, enhanced HHV replication may trigger epi-
thelial cell stress and participate in disease initiation. A small clini-
cal trial of ganciclovir in individuals with severe IPF with positive 
EBV-IgG serology showed a modest improvement in surrogate 
markers of disease progression104. It has recently been reported that 
influenza infection may also play a role in lung fibrosis by pro-
moting collagen deposition via αvβ6 integrin-mediated TGF-β 
activation in epithelial cells105.

Recent data also suggest a putative role for bacteria and lung 
microbiome in IPF. An analysis of the COMET study showed an 
association between progression of IPF and the presence of  
specific members within the Staphylococcus and Streptococcus 
genera in BALF38. Similarly, Molyneaux and colleagues found an 
increased bacterial load, consisting particularly of Haemophilus,  
Streptococcus, Neisseria, and Veillonella spp., in BALF of IPF 
patients compared to healthy smokers, nonsmokers, and patients 
with moderate COPD106. More importantly, the total bacterial 
burden was an independent predictor of decline in lung function 
and mortality. Whether these differences in lung microbiome are 
a cause or consequence of IPF is unknown. A clinical trial of  
12 months of co-trimoxazole in addition to standard treatment in 
181 patients with fibrotic idiopathic interstitial pneumonia (about 
90% of whom had IPF) showed a reduction in mortality but 
did not slow functional decline107. The exact role of viruses and  
bacteria in the pathogenesis of IPF has yet to be determined and 
the potential for antiviral or antibiotic treatments requires further 
evaluation.

Conclusion
Currently available therapies for IPF are of limited efficacy, and 
the prognosis associated with the condition remains poor. Recent 
advances in our understanding of the complex interrelated mech-
anisms underlying fibrosis in the lung are encouraging and pave 
the way towards an integrated approach to diagnosis, stratifica-
tion, and treatment. It is becoming increasingly clear that genetic 
polymorphisms, whole blood transcriptomic profile, and lavage 
microbiome all predict groups of patients with differing disease 
behaviour and outcomes and potentially variable responses to 
treatment. Furthermore, prospective longitudinal cohort studies 
have started to identify blood biomarkers that have the potential 
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to be used as early measures of treatment response. Considerable 
further research is required to deliver personalised medicine for  
IPF into the clinic, but at least now there is light at the end of  
what has been a very long tunnel.

Competing interests
Cécile Daccord does not have competing interests to report. Toby 
Maher has no declarations directly related to this manuscript. He 
has, however, received industry-academic research funding from 
GlaxoSmithKline R&D, UCB, and Novartis and has received 
consultancy or speakers fees from Apellis, Bayer, Biogen Idec, 

Boehringer Ingelheim, Dosa, GlaxoSmithKline R&D, Galapagos, 
Novartis, ProMetic, Roche, Sanofi-Aventis, and UCB.

Grant information
Cécile Daccord is supported by Ligue Pulmonaire Vaudoise, 
Service de pneumologie CHUV, and Fonds de perfectionnement 
CHUV. Toby M Maher is supported by an NIHR Clinician Scientist 
Fellowship (NIHR Ref: CS-2013-13-017) and receives additional 
infrastructure support from the Royal Brompton NIHR funded 
biomedical research unit. 

The funders had no role in study design, data collection and  
analysis, decision to publish, or preparation of the manuscript.

References F1000 recommended

1.	 Hutchinson J, Fogarty A, Hubbard R, et al.: Global incidence and mortality of 
idiopathic pulmonary fibrosis: a systematic review. Eur Respir J. 2015; 46(3): 
795–806. 
PubMed Abstract | Publisher Full Text 

2.	 Vancheri C, Failla M, Crimi N, et al.: Idiopathic pulmonary fibrosis: a disease 
with similarities and links to cancer biology. Eur Respir J. 2010; 35(3): 496–504. 
PubMed Abstract | Publisher Full Text 

3.	  King TE Jr, Bradford WZ, Castro-Bernardini S, et al.: A phase 3 trial of 
pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014; 
370(22): 2083–92. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

4.	  Richeldi L, du Bois RM, Raghu G, et al.: Efficacy and safety of nintedanib in 
idiopathic pulmonary fibrosis. N Engl J Med. 2014; 370(22): 2071–82. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

5.	 Gonzalez de Castro D, Clarke PA, Al-Lazikani B, et al.: Personalized cancer 
medicine: molecular diagnostics, predictive biomarkers, and drug resistance. 
Clin Pharmacol Ther. 2013; 93(3): 252–9. 
PubMed Abstract | Publisher Full Text | Free Full Text 

6.	 Pathak RR, Davé V: Integrating omics technologies to study pulmonary 
physiology and pathology at the systems level. Cell Physiol Biochem. 2014; 
33(5): 1239–60. 
PubMed Abstract | Publisher Full Text | Free Full Text 

7.	 Woodcock HV, Maher TM: The treatment of idiopathic pulmonary fibrosis. 
F1000Prime Rep. 2014; 6: 16. 
PubMed Abstract | Publisher Full Text | Free Full Text 

8.	 Raghu G, Collard HR, Egan JJ, et al.: An official ATS/ERS/JRS/ALAT statement: 
idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and 
management. Am J Respir Crit Care Med. 2011; 183(6): 788–824. 
PubMed Abstract | Publisher Full Text 

9.	 Hutchinson JP, Fogarty AW, McKeever TM, et al.: In-Hospital Mortality after 
Surgical Lung Biopsy for Interstitial Lung Disease in the United States. 2000 to 
2011. Am J Respir Crit Care Med. 2016; 193(10): 1161–7. 
PubMed Abstract | Publisher Full Text 

10.	  Ryerson CJ, Urbania TH, Richeldi L, et al.: Prevalence and prognosis 
of unclassifiable interstitial lung disease. Eur Respir J. 2013; 42(3): 750–7. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

11.	  Tomassetti S, Wells AU, Costabel U, et al.: Bronchoscopic Lung Cryobiopsy 
Increases Diagnostic Confidence in the Multidisciplinary Diagnosis of 
Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2016; 193(7): 745–52. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

12.	 Maher TM, Wells AU, Laurent GJ: Idiopathic pulmonary fibrosis: multiple causes 
and multiple mechanisms? Eur Respir J. 2007; 30(5): 835–9. 
PubMed Abstract | Publisher Full Text 

13.	 Wuyts WA, Antoniou KM, Borensztajn K, et al.: Combination therapy: the future 
of management for idiopathic pulmonary fibrosis? Lancet Respir Med. 2014; 
2(11): 933–42. 
PubMed Abstract | Publisher Full Text 

14.	 King TE Jr, Pardo A, Selman M: Idiopathic pulmonary fibrosis. Lancet. 2011; 
378(9807): 1949–61. 
PubMed Abstract | Publisher Full Text 

15.	 Ahluwalia N, Shea BS, Tager AM: New therapeutic targets in idiopathic 
pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. Am J 
Respir Crit Care Med. 2014; 190(8): 867–78. 
PubMed Abstract | Publisher Full Text | Free Full Text 

16.	  Bagnato G, Harari S: Cellular interactions in the pathogenesis of interstitial 
lung diseases. Eur Respir Rev. 2015; 24(135): 102–14. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

17.	 Wolters PJ, Collard HR, Jones KD: Pathogenesis of idiopathic pulmonary 
fibrosis. Annu Rev Pathol. 2014; 9: 157–79. 
PubMed Abstract | Publisher Full Text | Free Full Text 

18.	 Selman M, Pardo A: Revealing the pathogenic and aging-related mechanisms 
of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir 
Crit Care Med. 2014; 189(10): 1161–72. 
PubMed Abstract | Publisher Full Text 

19.	 Wuyts WA, Agostini C, Antoniou KM, et al.: The pathogenesis of pulmonary 
fibrosis: a moving target. Eur Respir J. 2013; 41(5): 1207–18. 
PubMed Abstract | Publisher Full Text 

20.	 Ley B, Collard HR, King TE Jr: Clinical course and prediction of survival in 
idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011; 183(4): 431–40. 
PubMed Abstract | Publisher Full Text 

21.	 Maher TM: Beyond the diagnosis of idiopathic pulmonary fibrosis; the growing 
role of systems biology and stratified medicine. Curr Opin Pulm Med. 2013; 
19(5): 460–5. 
PubMed Abstract | Publisher Full Text 

22.	 du Bois RM, Weycker D, Albera C, et al.: Forced vital capacity in patients with 
idiopathic pulmonary fibrosis: test properties and minimal clinically important 
difference. Am J Respir Crit Care Med. 2011; 184(12): 1382–9. 
PubMed Abstract | Publisher Full Text 

23.	 Richeldi L, Ryerson CJ, Lee JS, et al.: Relative versus absolute change in forced 
vital capacity in idiopathic pulmonary fibrosis. Thorax. 2012; 67(5): 407–11. 
PubMed Abstract | Publisher Full Text 

24.	  du Bois RM, Albera C, Bradford WZ, et al.: 6-Minute walk distance is an 
independent predictor of mortality in patients with idiopathic pulmonary 
fibrosis. Eur Respir J. 2014; 43(5): 1421–9. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

25.	 Wells AU, Desai SR, Rubens MB, et al.: Idiopathic pulmonary fibrosis: a 
composite physiologic index derived from disease extent observed by 
computed tomography. Am J Respir Crit Care Med. 2003; 167(7): 962–9. 
PubMed Abstract | Publisher Full Text 

26.	  du Bois RM, Weycker D, Albera C, et al.: Ascertainment of individual risk of 
mortality for patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care 
Med. 2011; 184(4): 459–66. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

Page 10 of 13

F1000Research 2016, 5(F1000 Faculty Rev):1046 Last updated: 31 MAY 2016

http://www.ncbi.nlm.nih.gov/pubmed/25976683
http://dx.doi.org/10.1183/09031936.00185114
http://www.ncbi.nlm.nih.gov/pubmed/20190329
http://dx.doi.org/10.1183/09031936.00077309
http://f1000.com/prime/718391827
http://www.ncbi.nlm.nih.gov/pubmed/24836312
http://dx.doi.org/10.1056/NEJMoa1402582
http://f1000.com/prime/718391827
http://f1000.com/prime/718391829
http://www.ncbi.nlm.nih.gov/pubmed/24836310
http://dx.doi.org/10.1056/NEJMoa1402584
http://f1000.com/prime/718391829
http://www.ncbi.nlm.nih.gov/pubmed/23361103
http://dx.doi.org/10.1038/clpt.2012.237
http://www.ncbi.nlm.nih.gov/pmc/articles/3577635
http://www.ncbi.nlm.nih.gov/pubmed/24802001
http://dx.doi.org/10.1159/000358693
http://www.ncbi.nlm.nih.gov/pmc/articles/4396816
http://www.ncbi.nlm.nih.gov/pubmed/24669297
http://dx.doi.org/10.12703/P6-16
http://www.ncbi.nlm.nih.gov/pmc/articles/3944742
http://www.ncbi.nlm.nih.gov/pubmed/21471066
http://dx.doi.org/10.1164/rccm.2009-040GL
http://www.ncbi.nlm.nih.gov/pubmed/26646481
http://dx.doi.org/10.1164/rccm.201508-1632OC
http://f1000.com/prime/718097842
http://www.ncbi.nlm.nih.gov/pubmed/23222877
http://dx.doi.org/10.1183/09031936.00131912
http://f1000.com/prime/718097842
http://f1000.com/prime/725931501
http://www.ncbi.nlm.nih.gov/pubmed/26562389
http://dx.doi.org/10.1164/rccm.201504-0711OC
http://f1000.com/prime/725931501
http://www.ncbi.nlm.nih.gov/pubmed/17978154
http://dx.doi.org/10.1183/09031936.00069307
http://www.ncbi.nlm.nih.gov/pubmed/25439569
http://dx.doi.org/10.1016/S2213-2600(14)70232-2
http://www.ncbi.nlm.nih.gov/pubmed/21719092
http://dx.doi.org/10.1016/S0140-6736(11)60052-4
http://www.ncbi.nlm.nih.gov/pubmed/25090037
http://dx.doi.org/10.1164/rccm.201403-0509PP
http://www.ncbi.nlm.nih.gov/pmc/articles/4299574
http://f1000.com/prime/725379286
http://www.ncbi.nlm.nih.gov/pubmed/25726561
http://dx.doi.org/10.1183/09059180.00003214
http://f1000.com/prime/725379286
http://www.ncbi.nlm.nih.gov/pubmed/24050627
http://dx.doi.org/10.1146/annurev-pathol-012513-104706
http://www.ncbi.nlm.nih.gov/pmc/articles/4116429
http://www.ncbi.nlm.nih.gov/pubmed/24641682
http://dx.doi.org/10.1164/rccm.201312-2221PP
http://www.ncbi.nlm.nih.gov/pubmed/23100500
http://dx.doi.org/10.1183/09031936.00073012
http://www.ncbi.nlm.nih.gov/pubmed/20935110
http://dx.doi.org/10.1164/rccm.201006-0894CI
http://www.ncbi.nlm.nih.gov/pubmed/23912190
http://dx.doi.org/10.1097/MCP.0b013e328363f4b7
http://www.ncbi.nlm.nih.gov/pubmed/21940789
http://dx.doi.org/10.1164/rccm.201105-0840OC
http://www.ncbi.nlm.nih.gov/pubmed/22426899
http://dx.doi.org/10.1136/thoraxjnl-2011-201184
http://f1000.com/prime/718199153
http://www.ncbi.nlm.nih.gov/pubmed/24311766
http://dx.doi.org/10.1183/09031936.00131813
http://f1000.com/prime/718199153
http://www.ncbi.nlm.nih.gov/pubmed/12663338
http://dx.doi.org/10.1164/rccm.2111053
http://f1000.com/prime/13356022
http://www.ncbi.nlm.nih.gov/pubmed/21616999
http://dx.doi.org/10.1164/rccm.201011-1790OC
http://f1000.com/prime/13356022


27.	 Ley B, Ryerson CJ, Vittinghoff E, et al.: A multidimensional index and staging 
system for idiopathic pulmonary fibrosis. Ann Intern Med. 2012; 156(10): 684–91. 
PubMed Abstract | Publisher Full Text 

28.	  Ley B, Bradford WZ, Weycker D, et al.: Unified baseline and longitudinal 
mortality prediction in idiopathic pulmonary fibrosis. Eur Respir J. 2015; 45(5): 
1374–81. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

29.	  Ley B, Elicker BM, Hartman TE, et al.: Idiopathic pulmonary fibrosis: CT and 
risk of death. Radiology. 2014; 273(2): 570–9. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

30.	 Salisbury ML, Xia M, Zhou Y, et al.: Idiopathic Pulmonary Fibrosis: Gender-Age-
Physiology Index Stage for Predicting Future Lung Function Decline. Chest. 
2016; 149(2): 491–8. 
PubMed Abstract | Publisher Full Text 

31.	  Kolb M, Collard HR: Staging of idiopathic pulmonary fibrosis: past, present 
and future. Eur Respir Rev. 2014; 23(132): 220–4. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

32.	 Win T, Lambrou T, Hutton BF, et al.: 18F-Fluorodeoxyglucose positron 
emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is 
reproducible: implications for future clinical trials. Eur J Nucl Med Mol Imaging. 
2012; 39(3): 521–8. 
PubMed Abstract | Publisher Full Text 

33.	 Win T, Thomas BA, Lambrou T, et al.: Areas of normal pulmonary parenchyma 
on HRCT exhibit increased FDG PET signal in IPF patients. Eur J Nucl Med Mol 
Imaging. 2014; 41(2): 337–42. 
PubMed Abstract | Publisher Full Text | Free Full Text 

34.	  Ley B, Brown KK, Collard HR: Molecular biomarkers in idiopathic 
pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2014; 307(9): L681–91. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

35.	 Spagnolo P, Tzouvelekis A, Maher TM: Personalized medicine in idiopathic 
pulmonary fibrosis: facts and promises. Curr Opin Pulm Med. 2015; 21(5): 
470–8. 
PubMed Abstract | Publisher Full Text 

36.	 Huie TJ, Moss M, Frankel SK: What can biomarkers tell us about the 
pathogenesis of acute exacerbations of idiopathic pulmonary fibrosis? Am J 
Physiol Lung Cell Mol Physiol. 2010; 299(1): L1–2. 
PubMed Abstract | Publisher Full Text 

37.	 Naik PK, Bozyk PD, Bentley JK, et al.: Periostin promotes fibrosis and predicts 
progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung 
Cell Mol Physiol. 2012; 303(12): L1046–56. 
PubMed Abstract | Publisher Full Text | Free Full Text 

38.	  Han MK, Zhou Y, Murray S, et al.: Lung microbiome and disease 
progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. 
Lancet Respir Med. 2014; 2(7): 548–56. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

39.	 Maher TM: PROFILEing idiopathic pulmonary fibrosis: rethinking biomarker 
discovery. Eur Respir Rev. 2013; 22(128): 148–52. 
PubMed Abstract | Publisher Full Text 

40.	 Jenkins RG, Simpson JK, Saini G, et al.: Longitudinal change in collagen 
degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the 
prospective, multicentre PROFILE study. Lancet Respir Med. 2015; 3(6): 462–72. 
PubMed Abstract | Publisher Full Text 

41.	  Fingerlin TE, Murphy E, Zhang W, et al.: Genome-wide association study 
identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet. 2013; 
45(6): 613–20. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

42.	  Noth I, Zhang Y, Ma SF, et al.: Genetic variants associated with idiopathic 
pulmonary fibrosis susceptibility and mortality: a genome-wide association 
study. Lancet Respir Med. 2013; 1(4): 309–17. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

43.	  Roy MG, Livraghi-Butrico A, Fletcher AA, et al.: Muc5b is required for airway 
defence. Nature. 2014; 505(4783): 412–6. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

44.	  Seibold MA, Wise AL, Speer MC, et al.: A common MUC5B promoter 
polymorphism and pulmonary fibrosis. N Engl J Med. 2011; 364(16): 1503–12. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

45.	  Peljto AL, Zhang Y, Fingerlin TE, et al.: Association between the MUC5B 
promoter polymorphism and survival in patients with idiopathic pulmonary 
fibrosis. JAMA. 2013; 309(21): 2232–9. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

46.	 Stock CJ, Sato H, Fonseca C, et al.: Mucin 5B promoter polymorphism is 
associated with idiopathic pulmonary fibrosis but not with development of 
lung fibrosis in systemic sclerosis or sarcoidosis. Thorax. 2013; 68(5): 436–41. 
PubMed Abstract | Publisher Full Text 

47.	  Kropski JA, Blackwell TS, Loyd JE: The genetic basis of idiopathic 
pulmonary fibrosis. Eur Respir J. 2015; 45(6): 1717–27. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

48.	  Kropski JA, Pritchett JM, Zoz DF, et al.: Extensive phenotyping of individuals 
at risk for familial interstitial pneumonia reveals clues to the pathogenesis 

of interstitial lung disease. Am J Respir Crit Care Med. 2015; 191(4): 417–26. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

49.	  Stuart BD, Lee JS, Kozlitina J, et al.: Effect of telomere length on survival 
in patients with idiopathic pulmonary fibrosis: an observational cohort study 
with independent validation. Lancet Respir Med. 2014; 2(7): 557–65. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

50.	  Oldham JM, Ma SF, Martinez FJ, et al.: TOLLIP, MUC5B, and the Response to 
N-Acetylcysteine among Individuals with Idiopathic Pulmonary Fibrosis. Am J 
Respir Crit Care Med. 2015; 192(12): 1475–82. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

51.	  Selman M, Pardo A, Barrera L, et al.: Gene expression profiles distinguish 
idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir 
Crit Care Med. 2006; 173(2): 188–98. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

52.	  Kim SY, Diggans J, Pankratz D, et al.: Classification of usual interstitial 
pneumonia in patients with interstitial lung disease: assessment of a machine 
learning approach using high-dimensional transcriptional data. Lancet Respir 
Med. 2015; 3(6): 473–82. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

53.	  Boon K, Bailey NW, Yang J, et al.: Molecular phenotypes distinguish 
patients with relatively stable from progressive idiopathic pulmonary fibrosis 
(IPF). PLoS One. 2009; 4(4): e5134. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

54.	  Yang IV, Luna LG, Cotter J, et al.: The peripheral blood transcriptome 
identifies the presence and extent of disease in idiopathic pulmonary fibrosis. 
PLoS One. 2012; 7(6): e37708. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

55.	  Meltzer EB, Barry WT, Yang IV, et al.: Familial and sporadic idiopathic 
pulmonary fibrosis: making the diagnosis from peripheral blood. BMC Genomics. 
2014; 15(1): 902. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

56.	  Huang LS, Mathew B, Li H, et al.: The mitochondrial cardiolipin remodeling 
enzyme lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis. 
Am J Respir Crit Care Med. 2014; 189(11): 1402–15. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

57.	  Sanders YY, Ambalavanan N, Halloran B, et al.: Altered DNA methylation 
profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012; 
186(6): 525–35. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

58.	  Huang SK, Scruggs AM, McEachin RC, et al.: Lung fibroblasts from patients 
with idiopathic pulmonary fibrosis exhibit genome-wide differences in DNA 
methylation compared to fibroblasts from nonfibrotic lung. PLoS One. 2014; 
9(9): e107055. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

59.	  Coward WR, Watts K, Feghali-Bostwick CA, et al.: Defective histone 
acetylation is responsible for the diminished expression of cyclooxygenase 2 
in idiopathic pulmonary fibrosis. Mol Cell Biol. 2009; 29(15): 4325–39. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

60.	 Coward WR, Watts K, Feghali-Bostwick CA, et al.: Repression of IP-10 by 
interactions between histone deacetylation and hypermethylation in idiopathic 
pulmonary fibrosis. Mol Cell Biol. 2010; 30(12): 2874–86. 
PubMed Abstract | Publisher Full Text | Free Full Text 

61.	 Dakhlallah D, Batte K, Wang Y, et al.: Epigenetic regulation of miR-17~92 
contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care 
Med. 2013; 187(4): 397–405. 
PubMed Abstract | Publisher Full Text | Free Full Text 

62.	  Yang IV, Schwartz DA: Epigenetics of idiopathic pulmonary fibrosis. Transl 
Res. 2015; 165(1): 48–60. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

63.	  Yang IV, Pedersen BS, Rabinovich E, et al.: Relationship of DNA methylation 
and gene expression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 
2014; 190(11): 1263–72. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

64.	 Milosevic J, Pandit K, Magister M, et al.: Profibrotic role of miR-154 in pulmonary 
fibrosis. Am J Respir Cell Mol Biol. 2012; 47(6): 879–87. 
PubMed Abstract | Publisher Full Text | Free Full Text 

65.	 Pandit KV, Corcoran D, Yousef H, et al.: Inhibition and role of let-7d in idiopathic 
pulmonary fibrosis. Am J Respir Crit Care Med. 2010; 182(2): 220–9. 
PubMed Abstract | Publisher Full Text | Free Full Text 

66.	  Oak SR, Murray L, Herath A, et al.: A micro RNA processing defect in rapidly 
progressing idiopathic pulmonary fibrosis. PLoS One. 2011; 6(6): e21253. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

67.	  Cui H, Xie N, Thannickal VJ, et al.: The code of non-coding RNAs in lung 
fibrosis. Cell Mol Life Sci. 2015; 72(18): 3507–19. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

68.	  Yang G, Yang L, Wang W, et al.: Discovery and validation of extracellular/
circulating microRNAs during idiopathic pulmonary fibrosis disease 
progression. Gene. 2015; 562(1): 138–44. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

Page 11 of 13

F1000Research 2016, 5(F1000 Faculty Rev):1046 Last updated: 31 MAY 2016

http://www.ncbi.nlm.nih.gov/pubmed/22586007
http://dx.doi.org/10.7326/0003-4819-156-10-201205150-00004
http://f1000.com/prime/725324762
http://www.ncbi.nlm.nih.gov/pubmed/25614172
http://dx.doi.org/10.1183/09031936.00146314
http://f1000.com/prime/725324762
http://f1000.com/prime/718448516
http://www.ncbi.nlm.nih.gov/pubmed/24927326
http://dx.doi.org/10.1148/radiol.14130216
http://f1000.com/prime/718448516
http://www.ncbi.nlm.nih.gov/pubmed/26425858
http://dx.doi.org/10.1378/chest.15-0530
http://f1000.com/prime/718464822
http://www.ncbi.nlm.nih.gov/pubmed/24881076
http://dx.doi.org/10.1183/09059180.00002114
http://f1000.com/prime/718464822
http://www.ncbi.nlm.nih.gov/pubmed/22258710
http://dx.doi.org/10.1007/s00259-011-1986-7
http://www.ncbi.nlm.nih.gov/pubmed/23942907
http://dx.doi.org/10.1007/s00259-013-2514-8
http://www.ncbi.nlm.nih.gov/pmc/articles/3890564
http://f1000.com/prime/718891183
http://www.ncbi.nlm.nih.gov/pubmed/25260757
http://dx.doi.org/10.1152/ajplung.00014.2014
http://www.ncbi.nlm.nih.gov/pmc/articles/4280147
http://f1000.com/prime/718891183
http://www.ncbi.nlm.nih.gov/pubmed/26132817
http://dx.doi.org/10.1097/MCP.0000000000000187
http://www.ncbi.nlm.nih.gov/pubmed/20472711
http://dx.doi.org/10.1152/ajplung.00155.2010
http://www.ncbi.nlm.nih.gov/pubmed/23043074
http://dx.doi.org/10.1152/ajplung.00139.2012
http://www.ncbi.nlm.nih.gov/pmc/articles/3532583
http://f1000.com/prime/718371982
http://www.ncbi.nlm.nih.gov/pubmed/24767767
http://dx.doi.org/10.1016/S2213-2600(14)70069-4
http://www.ncbi.nlm.nih.gov/pmc/articles/4142525
http://f1000.com/prime/718371982
http://www.ncbi.nlm.nih.gov/pubmed/23728868
http://dx.doi.org/10.1183/09059180.00000913
http://www.ncbi.nlm.nih.gov/pubmed/25770676
http://dx.doi.org/10.1016/S2213-2600(15)00048-X
http://f1000.com/prime/718000223
http://www.ncbi.nlm.nih.gov/pubmed/23583980
http://dx.doi.org/10.1038/ng.2609
http://www.ncbi.nlm.nih.gov/pmc/articles/3677861
http://f1000.com/prime/718000223
http://f1000.com/prime/718246330
http://www.ncbi.nlm.nih.gov/pubmed/24429156
http://dx.doi.org/10.1016/S2213-2600(13)70045-6
http://www.ncbi.nlm.nih.gov/pmc/articles/3894577
http://f1000.com/prime/718246330
http://f1000.com/prime/718201298
http://www.ncbi.nlm.nih.gov/pubmed/24317696
http://dx.doi.org/10.1038/nature12807
http://www.ncbi.nlm.nih.gov/pmc/articles/4001806
http://f1000.com/prime/718201298
http://f1000.com/prime/10416956
http://www.ncbi.nlm.nih.gov/pubmed/21506741
http://dx.doi.org/10.1056/NEJMoa1013660
http://www.ncbi.nlm.nih.gov/pmc/articles/3379886
http://f1000.com/prime/10416956
http://f1000.com/prime/718012176
http://www.ncbi.nlm.nih.gov/pubmed/23695349
http://dx.doi.org/10.1001/jama.2013.5827
http://www.ncbi.nlm.nih.gov/pmc/articles/4545271
http://f1000.com/prime/718012176
http://www.ncbi.nlm.nih.gov/pubmed/23321605
http://dx.doi.org/10.1136/thoraxjnl-2012-201786
http://f1000.com/prime/725419777
http://www.ncbi.nlm.nih.gov/pubmed/25837031
http://dx.doi.org/10.1183/09031936.00163814
http://www.ncbi.nlm.nih.gov/pmc/articles/4849867
http://f1000.com/prime/725419777
http://f1000.com/prime/725233098
http://www.ncbi.nlm.nih.gov/pubmed/25389906
http://dx.doi.org/10.1164/rccm.201406-1162OC
http://www.ncbi.nlm.nih.gov/pmc/articles/4351594
http://f1000.com/prime/725233098
http://f1000.com/prime/718460705
http://www.ncbi.nlm.nih.gov/pubmed/24948432
http://dx.doi.org/10.1016/S2213-2600(14)70124-9
http://www.ncbi.nlm.nih.gov/pmc/articles/4136521
http://f1000.com/prime/718460705
http://f1000.com/prime/725764681
http://www.ncbi.nlm.nih.gov/pubmed/26331942
http://dx.doi.org/10.1164/rccm.201505-1010OC
http://www.ncbi.nlm.nih.gov/pmc/articles/4731723
http://f1000.com/prime/725764681
http://f1000.com/prime/10145
http://www.ncbi.nlm.nih.gov/pubmed/16166619
http://dx.doi.org/10.1164/rccm.200504-644OC
http://www.ncbi.nlm.nih.gov/pmc/articles/2662988
http://f1000.com/prime/10145
http://f1000.com/prime/725512515
http://www.ncbi.nlm.nih.gov/pubmed/26003389
http://dx.doi.org/10.1016/S2213-2600(15)00140-X
http://f1000.com/prime/725512515
http://f1000.com/prime/718489783
http://www.ncbi.nlm.nih.gov/pubmed/19347046
http://dx.doi.org/10.1371/journal.pone.0005134
http://www.ncbi.nlm.nih.gov/pmc/articles/2661376
http://f1000.com/prime/718489783
http://f1000.com/prime/717949905
http://www.ncbi.nlm.nih.gov/pubmed/22761659
http://dx.doi.org/10.1371/journal.pone.0037708
http://www.ncbi.nlm.nih.gov/pmc/articles/3382229
http://f1000.com/prime/717949905
http://f1000.com/prime/722187691
http://www.ncbi.nlm.nih.gov/pubmed/25318837
http://dx.doi.org/10.1186/1471-2164-15-902
http://www.ncbi.nlm.nih.gov/pmc/articles/4288625
http://f1000.com/prime/722187691
http://f1000.com/prime/718369725
http://www.ncbi.nlm.nih.gov/pubmed/24779708
http://dx.doi.org/10.1164/rccm.201310-1917OC
http://www.ncbi.nlm.nih.gov/pmc/articles/4098083
http://f1000.com/prime/718369725
http://f1000.com/prime/717952703
http://www.ncbi.nlm.nih.gov/pubmed/22700861
http://dx.doi.org/10.1164/rccm.201201-0077OC
http://www.ncbi.nlm.nih.gov/pmc/articles/3480526
http://f1000.com/prime/717952703
http://f1000.com/prime/718872909
http://www.ncbi.nlm.nih.gov/pubmed/25215577
http://dx.doi.org/10.1371/journal.pone.0107055
http://www.ncbi.nlm.nih.gov/pmc/articles/4162578
http://f1000.com/prime/718872909
http://f1000.com/prime/1163483
http://www.ncbi.nlm.nih.gov/pubmed/19487460
http://dx.doi.org/10.1128/MCB.01776-08
http://www.ncbi.nlm.nih.gov/pmc/articles/2715818
http://f1000.com/prime/1163483
http://www.ncbi.nlm.nih.gov/pubmed/20404089
http://dx.doi.org/10.1128/MCB.01527-09
http://www.ncbi.nlm.nih.gov/pmc/articles/2876687
http://www.ncbi.nlm.nih.gov/pubmed/23306545
http://dx.doi.org/10.1164/rccm.201205-0888OC
http://www.ncbi.nlm.nih.gov/pmc/articles/3603596
http://f1000.com/prime/718358400
http://www.ncbi.nlm.nih.gov/pubmed/24746870
http://dx.doi.org/10.1016/j.trsl.2014.03.011
http://www.ncbi.nlm.nih.gov/pmc/articles/4182166
http://f1000.com/prime/718358400
http://f1000.com/prime/723349395
http://www.ncbi.nlm.nih.gov/pubmed/25333685
http://dx.doi.org/10.1164/rccm.201408-1452OC
http://www.ncbi.nlm.nih.gov/pmc/articles/4315819
http://f1000.com/prime/723349395
http://www.ncbi.nlm.nih.gov/pubmed/23043088
http://dx.doi.org/10.1165/rcmb.2011-0377OC
http://www.ncbi.nlm.nih.gov/pmc/articles/3547095
http://www.ncbi.nlm.nih.gov/pubmed/20395557
http://dx.doi.org/10.1164/rccm.200911-1698OC
http://www.ncbi.nlm.nih.gov/pmc/articles/2913236
http://f1000.com/prime/11944957
http://www.ncbi.nlm.nih.gov/pubmed/21712985
http://dx.doi.org/10.1371/journal.pone.0021253
http://www.ncbi.nlm.nih.gov/pmc/articles/3119674
http://f1000.com/prime/11944957
http://f1000.com/prime/725527247
http://www.ncbi.nlm.nih.gov/pubmed/26026420
http://dx.doi.org/10.1007/s00018-015-1939-6
http://www.ncbi.nlm.nih.gov/pmc/articles/4550527
http://f1000.com/prime/725527247
http://f1000.com/prime/725370973
http://www.ncbi.nlm.nih.gov/pubmed/25725128
http://dx.doi.org/10.1016/j.gene.2015.02.065
http://f1000.com/prime/725370973


69.	  Li P, Li J, Chen T, et al.: Expression analysis of serum microRNAs in 
idiopathic pulmonary fibrosis. Int J Mol Med. 2014; 33(6): 1554–62. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

70.	  Montgomery RL, Yu G, Latimer PA, et al.: MicroRNA mimicry blocks 
pulmonary fibrosis. EMBO Mol Med. 2014; 6(10): 1347–56. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

71.	 Kinder BW, Brown KK, McCormack FX, et al.: Serum surfactant protein-A is a 
strong predictor of early mortality in idiopathic pulmonary fibrosis. Chest. 
2009; 135(6): 1557–63. 
PubMed Abstract | Publisher Full Text | Free Full Text 

72.	 Barlo NP, van Moorsel CH, Ruven HJ, et al.: Surfactant protein-D predicts 
survival in patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse 
Lung Dis. 2009; 26(2): 155–61. 
PubMed Abstract 

73.	 Yokoyama A, Kondo K, Nakajima M, et al.: Prognostic value of circulating KL-6 
in idiopathic pulmonary fibrosis. Respirology. 2006; 11(2): 164–8. 
PubMed Abstract | Publisher Full Text 

74.	  Prasse A, Probst C, Bargagli E, et al.: Serum CC-chemokine ligand 18 
concentration predicts outcome in idiopathic pulmonary fibrosis. Am J Respir 
Crit Care Med. 2009; 179(8): 717–23. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

75.	  Vuga LJ, Tedrow JR, Pandit KV, et al.: C-X-C motif chemokine 13 (CXCL13) 
is a prognostic biomarker of idiopathic pulmonary fibrosis. Am J Respir Crit 
Care Med. 2014; 189(8): 966–74. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

76.	  DePianto DJ, Chandriani S, Abbas AR, et al.: Heterogeneous gene expression 
signatures correspond to distinct lung pathologies and biomarkers of disease 
severity in idiopathic pulmonary fibrosis. Thorax. 2015; 70(1): 48–56. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

77.	 Naik PK, Bozyk PD, Bentley JK, et al.: Periostin promotes fibrosis and predicts 
progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung 
Cell Mol Physiol. 2012; 303(12): L1046–56. 
PubMed Abstract | Publisher Full Text | Free Full Text 

78.	  Jaffar J, Unger S, Corte TJ, et al.: Fibulin-1 predicts disease progression 
in patients with idiopathic pulmonary fibrosis. Chest. 2014; 146(4): 1055–63. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

79.	  Rosas IO, Richards TJ, Konishi K, et al.: MMP1 and MMP7 as potential 
peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med. 2008; 
5(4): e93. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

80.	  Richards TJ, Kaminski N, Baribaud F, et al.: Peripheral blood proteins predict 
mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012; 
185(1): 67–76. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

81.	  Chien JW, Richards TJ, Gibson KF, et al.: Serum lysyl oxidase-like 2 levels 
and idiopathic pulmonary fibrosis disease progression. Eur Respir J. 2014; 43(5): 
1430–8. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

82.	  Ohshimo S, Ishikawa N, Horimasu Y, et al.: Baseline KL-6 predicts increased 
risk for acute exacerbation of idiopathic pulmonary fibrosis. Respir Med. 2014; 
108(7): 1031–9. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

83.	  Moeller A, Gilpin SE, Ask K, et al.: Circulating fibrocytes are an indicator of 
poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 
2009; 179(7): 588–94. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

84.	  Reilkoff RA, Peng H, Murray LA, et al.: Semaphorin 7a+ regulatory T cells are 
associated with progressive idiopathic pulmonary fibrosis and are implicated 
in transforming growth factor-β1-induced pulmonary fibrosis. Am J Respir Crit 
Care Med. 2013; 187(2): 180–8. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

85.	  Saini G, Porte J, Weinreb PH, et al.: αvβ6 integrin may be a potential 
prognostic biomarker in interstitial lung disease. Eur Respir J. 2015; 46(2): 
486–94. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

86.	 Hara A, Sakamoto N, Ishimatsu Y, et al.: S100A9 in BALF is a candidate 
biomarker of idiopathic pulmonary fibrosis. Respir Med. 2012; 106(4): 571–80. 
PubMed Abstract | Publisher Full Text 

87.	  Buckley S, Shi W, Xu W, et al.: Increased alveolar soluble annexin V 
promotes lung inflammation and fibrosis. Eur Respir J. 2015; 46(5): 1417–29. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

88.	 Song JW, Do KH, Jang SJ, et al.: Blood biomarkers MMP-7 and SP-A: predictors 
of outcome in idiopathic pulmonary fibrosis. Chest. 2013; 143(5): 1422–9. 
PubMed Abstract | Publisher Full Text 

89.	  Nobakht M Gh BF, Aliannejad R, Rezaei-Tavirani M, et al.: The metabolomics 
of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers. 
2015; 20(1): 5–16. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

90.	  Kottmann RM, Kulkarni AA, Smolnycki KA, et al.: Lactic acid is elevated in 
idiopathic pulmonary fibrosis and induces myofibroblast differentiation via 
pH-dependent activation of transforming growth factor-β. Am J Respir Crit Care 
Med. 2012; 186(8): 740–51. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

91.	  Xie N, Tan Z, Banerjee S, et al.: Glycolytic Reprogramming in Myofibroblast 
Differentiation and Lung Fibrosis. Am J Respir Crit Care Med. 2015; 192(12): 
1462–74. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

92.	 Baumgartner KB, Samet JM, Stidley CA, et al.: Cigarette smoking: a risk factor 
for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997; 155(1): 242–8. 
PubMed Abstract | Publisher Full Text 

93.	 Steele MP, Speer MC, Loyd JE, et al.: Clinical and pathologic features of familial 
interstitial pneumonia. Am J Respir Crit Care Med. 2005; 172(9): 1146–52. 
PubMed Abstract | Publisher Full Text | Free Full Text 

94.	 Antoniou KM, Hansell DM, Rubens MB, et al.: Idiopathic pulmonary fibrosis: 
outcome in relation to smoking status. Am J Respir Crit Care Med. 2008; 177(2): 
190–4. 
PubMed Abstract | Publisher Full Text 

95.	 Taskar VS, Coultas DB: Is idiopathic pulmonary fibrosis an environmental 
disease? Proc Am Thorac Soc. 2006; 3(4): 293–8. 
PubMed Abstract | Publisher Full Text 

96.	  Johannson KA, Vittinghoff E, Lee K, et al.: Acute exacerbation of idiopathic 
pulmonary fibrosis associated with air pollution exposure. Eur Respir J. 2014; 
43(4): 1124–31. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

97.	 Savarino E, Carbone R, Marabotto E, et al.: Gastro-oesophageal reflux and 
gastric aspiration in idiopathic pulmonary fibrosis patients. Eur Respir J. 2013; 
42(5): 1322–31. 
PubMed Abstract | Publisher Full Text 

98.	  Lee JS, Ryu JH, Elicker BM, et al.: Gastroesophageal reflux therapy is 
associated with longer survival in patients with idiopathic pulmonary fibrosis. 
Am J Respir Crit Care Med. 2011; 184(12): 1390–4. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

99.	 Lee JS, Collard HR, Anstrom KJ, et al.: Anti-acid treatment and disease 
progression in idiopathic pulmonary fibrosis: an analysis of data from three 
randomised controlled trials. Lancet Respir Med. 2013; 1(5): 369–76. 
PubMed Abstract | Publisher Full Text | Free Full Text 

100.	  Raghu G, Rochwerg B, Zhang Y, et al.: An Official ATS/ERS/JRS/ALAT 
Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An 
Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med. 2015; 
192(2): e3–19. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

101.	 Molyneaux PL, Maher TM: The role of infection in the pathogenesis of 
idiopathic pulmonary fibrosis. Eur Respir Rev. 2013; 22(129): 376–81. 
PubMed Abstract | Publisher Full Text 

102.	 Lawson WE, Crossno PF, Polosukhin VV, et al.: Endoplasmic reticulum stress in 
alveolar epithelial cells is prominent in IPF: association with altered surfactant 
protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol 
Physiol. 2008; 294(6): L1119–26. 
PubMed Abstract | Publisher Full Text 

103.	 Kropski JA, Lawson WE, Blackwell TS: Right place, right time: the evolving role 
of herpesvirus infection as a “second hit” in idiopathic pulmonary fibrosis. Am 
J Physiol Lung Cell Mol Physiol. 2012; 302(5): L441–4. 
PubMed Abstract | Publisher Full Text | Free Full Text 

104.	 Egan JJ, Adamali HI, Lok SS, et al.: Ganciclovir antiviral therapy in advanced 
idiopathic pulmonary fibrosis: an open pilot study. Pulm Med. 2011; 2011: 
240805. 
PubMed Abstract | Publisher Full Text | Free Full Text 

105.	  Jolly L, Stavrou A, Vanderstoken G, et al.: Influenza promotes collagen 
deposition via αvβ6 integrin-mediated transforming growth factor β activation. 
J Biol Chem. 2014; 289(51): 35246–63. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

106.	 Molyneaux PL, Cox MJ, Willis-Owen SA, et al.: The role of bacteria in the 
pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir 
Crit Care Med. 2014; 190(8): 906–13. 
PubMed Abstract | Publisher Full Text | Free Full Text 

107.	  Shulgina L, Cahn AP, Chilvers ER, et al.: Treating idiopathic pulmonary 
fibrosis with the addition of co-trimoxazole: a randomised controlled trial. 
Thorax. 2013; 68(2): 155–62. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

Page 12 of 13

F1000Research 2016, 5(F1000 Faculty Rev):1046 Last updated: 31 MAY 2016

http://f1000.com/prime/726359661
http://www.ncbi.nlm.nih.gov/pubmed/24676360
http://dx.doi.org/10.3892/ijmm.2014.1712
http://f1000.com/prime/726359661
http://f1000.com/prime/718883296
http://www.ncbi.nlm.nih.gov/pubmed/25239947
http://dx.doi.org/10.15252/emmm.201303604
http://www.ncbi.nlm.nih.gov/pmc/articles/4287936
http://f1000.com/prime/718883296
http://www.ncbi.nlm.nih.gov/pubmed/19255294
http://dx.doi.org/10.1378/chest.08-2209
http://www.ncbi.nlm.nih.gov/pmc/articles/2716710
http://www.ncbi.nlm.nih.gov/pubmed/20560296
http://www.ncbi.nlm.nih.gov/pubmed/16548901
http://dx.doi.org/10.1111/j.1440-1843.2006.00834.x
http://f1000.com/prime/1161000
http://www.ncbi.nlm.nih.gov/pubmed/19179488
http://dx.doi.org/10.1164/rccm.200808-1201OC
http://f1000.com/prime/1161000
http://f1000.com/prime/718312185
http://www.ncbi.nlm.nih.gov/pubmed/24628285
http://dx.doi.org/10.1164/rccm.201309-1592OC
http://www.ncbi.nlm.nih.gov/pmc/articles/4098096
http://f1000.com/prime/718312185
http://f1000.com/prime/718874172
http://www.ncbi.nlm.nih.gov/pubmed/25217476
http://dx.doi.org/10.1136/thoraxjnl-2013-204596
http://www.ncbi.nlm.nih.gov/pmc/articles/4472447
http://f1000.com/prime/718874172
http://www.ncbi.nlm.nih.gov/pubmed/23043074
http://dx.doi.org/10.1152/ajplung.00139.2012
http://www.ncbi.nlm.nih.gov/pmc/articles/3532583
http://f1000.com/prime/718389137
http://www.ncbi.nlm.nih.gov/pubmed/24832167
http://dx.doi.org/10.1378/chest.13-2688
http://www.ncbi.nlm.nih.gov/pmc/articles/4188142
http://f1000.com/prime/718389137
http://f1000.com/prime/1108562
http://www.ncbi.nlm.nih.gov/pubmed/18447576
http://dx.doi.org/10.1371/journal.pmed.0050093
http://www.ncbi.nlm.nih.gov/pmc/articles/2346504
http://f1000.com/prime/1108562
http://f1000.com/prime/13373041
http://www.ncbi.nlm.nih.gov/pubmed/22016448
http://dx.doi.org/10.1164/rccm.201101-0058OC
http://www.ncbi.nlm.nih.gov/pmc/articles/3262037
http://f1000.com/prime/13373041
http://f1000.com/prime/718163308
http://www.ncbi.nlm.nih.gov/pubmed/24177001
http://dx.doi.org/10.1183/09031936.00141013
http://f1000.com/prime/718163308
http://f1000.com/prime/718409879
http://www.ncbi.nlm.nih.gov/pubmed/24835074
http://dx.doi.org/10.1016/j.rmed.2014.04.009
http://f1000.com/prime/718409879
http://f1000.com/prime/1159975
http://www.ncbi.nlm.nih.gov/pubmed/19151190
http://dx.doi.org/10.1164/rccm.200810-1534OC
http://f1000.com/prime/1159975
http://f1000.com/prime/717971657
http://www.ncbi.nlm.nih.gov/pubmed/23220917
http://dx.doi.org/10.1164/rccm.201206-1109OC
http://www.ncbi.nlm.nih.gov/pmc/articles/3570653
http://f1000.com/prime/717971657
http://f1000.com/prime/725380886
http://www.ncbi.nlm.nih.gov/pubmed/25745053
http://dx.doi.org/10.1183/09031936.00210414
http://f1000.com/prime/725380886
http://www.ncbi.nlm.nih.gov/pubmed/22209187
http://dx.doi.org/10.1016/j.rmed.2011.12.010
http://f1000.com/prime/725624040
http://www.ncbi.nlm.nih.gov/pubmed/26160872
http://dx.doi.org/10.1183/09031936.00002115
http://www.ncbi.nlm.nih.gov/pmc/articles/4767328
http://f1000.com/prime/725624040
http://www.ncbi.nlm.nih.gov/pubmed/23715088
http://dx.doi.org/10.1378/chest.11-2735
http://f1000.com/prime/725240168
http://www.ncbi.nlm.nih.gov/pubmed/25403491
http://dx.doi.org/10.3109/1354750X.2014.983167
http://f1000.com/prime/725240168
http://f1000.com/prime/717967484
http://www.ncbi.nlm.nih.gov/pubmed/22923663
http://dx.doi.org/10.1164/rccm.201201-0084OC
http://www.ncbi.nlm.nih.gov/pmc/articles/3480515
http://f1000.com/prime/717967484
http://f1000.com/prime/725726147
http://www.ncbi.nlm.nih.gov/pubmed/26284610
http://dx.doi.org/10.1164/rccm.201504-0780OC
http://www.ncbi.nlm.nih.gov/pmc/articles/4731722
http://f1000.com/prime/725726147
http://www.ncbi.nlm.nih.gov/pubmed/9001319
http://dx.doi.org/10.1164/ajrccm.155.1.9001319
http://www.ncbi.nlm.nih.gov/pubmed/16109978
http://dx.doi.org/10.1164/rccm.200408-1104OC
http://www.ncbi.nlm.nih.gov/pmc/articles/2718398
http://www.ncbi.nlm.nih.gov/pubmed/17962635
http://dx.doi.org/10.1164/rccm.200612-1759OC
http://www.ncbi.nlm.nih.gov/pubmed/16738192
http://dx.doi.org/10.1513/pats.200512-131TK
http://f1000.com/prime/718163310
http://www.ncbi.nlm.nih.gov/pubmed/24176998
http://dx.doi.org/10.1183/09031936.00122213
http://f1000.com/prime/718163310
http://www.ncbi.nlm.nih.gov/pubmed/23471347
http://dx.doi.org/10.1183/09031936.00101212
http://f1000.com/prime/11859956
http://www.ncbi.nlm.nih.gov/pubmed/21700909
http://dx.doi.org/10.1164/rccm.201506-1063ST
http://www.ncbi.nlm.nih.gov/pmc/articles/3262030
http://f1000.com/prime/11859956
http://www.ncbi.nlm.nih.gov/pubmed/24429201
http://dx.doi.org/10.1016/S2213-2600(13)70105-X
http://www.ncbi.nlm.nih.gov/pmc/articles/4059609
http://f1000.com/prime/725637988
http://www.ncbi.nlm.nih.gov/pubmed/26177183
http://dx.doi.org/10.1164/rccm.201506-1063ST
http://f1000.com/prime/725637988
http://www.ncbi.nlm.nih.gov/pubmed/23997064
http://dx.doi.org/10.1183/09059180.00000713
http://www.ncbi.nlm.nih.gov/pubmed/18390830
http://dx.doi.org/10.1152/ajplung.00382.2007
http://www.ncbi.nlm.nih.gov/pubmed/22180659
http://dx.doi.org/10.1152/ajplung.00335.2011
http://www.ncbi.nlm.nih.gov/pmc/articles/3311513
http://www.ncbi.nlm.nih.gov/pubmed/21660226
http://dx.doi.org/10.1155/2011/240805
http://www.ncbi.nlm.nih.gov/pmc/articles/3109335
http://f1000.com/prime/723872658
http://www.ncbi.nlm.nih.gov/pubmed/25339175
http://dx.doi.org/10.1074/jbc.M114.582262
http://www.ncbi.nlm.nih.gov/pmc/articles/4271213
http://f1000.com/prime/723872658
http://www.ncbi.nlm.nih.gov/pubmed/25184687
http://dx.doi.org/10.1164/rccm.201403-0541OC
http://www.ncbi.nlm.nih.gov/pmc/articles/4299577
http://f1000.com/prime/717964789
http://www.ncbi.nlm.nih.gov/pubmed/23143842
http://dx.doi.org/10.1136/thoraxjnl-2012-202403
http://f1000.com/prime/717964789


F1000Research

2

1

Open Peer Review

  Current Referee Status:

Editorial Note on the Review Process
 are commissioned from members of the prestigious  and are edited as aF1000 Faculty Reviews F1000 Faculty

service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees
provide input before publication and only the final, revised version is published. The referees who approved the
final version are listed with their names and affiliations but without their reports on earlier versions (any comments
will already have been addressed in the published version).

The referees who approved this article are:
Version 1

, Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Cottingham,Simon P Hart
UK

 No competing interests were disclosed.Competing Interests:

, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USAPaul W Noble
 No competing interests were disclosed.Competing Interests:

Page 13 of 13

F1000Research 2016, 5(F1000 Faculty Rev):1046 Last updated: 31 MAY 2016

http://f1000research.com/channels/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty

