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Abstract 

There is no consensus regarding optimal dosing of vancomycin in term or preterm neonates. 

Various available dosing recommendations are based on age, kidney function and/or body weight 

to define a starting dose. Our objectives were (i) to develop a comprehensive population PK model 

of vancomycin in a large cohort of neonates and (ii) to evaluate and compare the performances of 

current dosing approaches with respect to target attainment, using simulations based on our model. 

This will serve the purpose to recommend the best dosing approaches among existing regimens in 

the early and later phases after treatment initiation as a complementary approach to therapeutic 

drug monitoring (TDM).   

A total 405 neonates provided 1831 vancomycin concentrations measured during routine TDM. A 

one-compartment model with linear elimination incorporating covariates such as age, kidney 

function and body weight was developed (NONMEM®). The final model was applied to simulate 

in our population vancomycin exposure resulting from 20 dosing guidelines identified in the 

literature. Proportions of patients within and above target exposure were used as a performance 

measure. Target attainment meant area under the curve/minimal inhibitory concentration 

(AUC24/MIC) ratio of 400-700 h and trough concentration of 10-20 mg/L, both on days 1 and 7. 

Most current vancomycin dosing regimens fail to ensure target attainment in a majority of 

neonates. Insufficiently dosed regimens should be avoided, especially in centers with widespread 

coagulase negative Staphylococci. Adding a loading dose to simple regimens is best recommended 

to increase the proportion of early target attainment. Complex regimens seem to marginally 

improve exposure.  

Optimisation of efficacy while minimizing toxicity of vancomycin in neonates is needed. The 

application of a simple dosing regimens like NNF7 or the Neofax Hi-Dose regimens, with a 25 

mg/kg loading dose for severe infections, or the SmPC regimen should be recommended to ensure 

the highest proportion of target attainment after 24 hours. TDM should then be carried out, to 

account for residual unexplained variability in vancomycin elimination.  

Funding: This work has been partially supported by the Swiss Association of Administration 

Pharmacists and of Hospital Pharmacists (GSASA). Eric Giannoni is supported by the Leenaards 

Foundation. 
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Introduction 

Vancomycin, a glycopeptide antibiotic, is frequently administered to neonates for nosocomial 

Gram positive infections. [1] It is subject to important interindividual pharmacokinetic (PK) 

variability, mostly explained by variations in renal function and volume of distribution (V) in 

neonates. This might lead to either poor antibacterial coverage or concentration-dependent 

nephrotoxicity. [2, 3] Emergence of vancomycin resistant strains has become a major concern, 

emphasizing the need for adequate vancomycin exposure. Therapeutic drug monitoring (TDM) of 

vancomycin is largely justified in this population, but requires a certain turnaround time. [4, 5] By 

definition, it cannot be used for initial dosage decisions, which can only rely on appropriate 

guidelines.  

Several PK models have already described factors that mostly influence vancomycin clearance 

(CL) in neonates, [6] such as body weight (WT), serum creatinine (SCr), gestational age (GA), 

postnatal age (PNA) or postmenstrual age (PMA). Various dosing recommendations have been 

issued, but most of them were not validated prospectively, and there is at present no consensus 

about the most appropriate initial dosage regimen for vancomycin. Recent observations report that 

current dosing guidelines often result in subtherapeutic plasma levels in neonates considering 

trough concentrations (Cmin). [7, 8] Model-based algorithms are increasingly called to improve 

dosing decisions in neonates. [9, 10] 

The objectives of this study were (i) to develop enhanced comprehensive population PK model of 

vancomycin in a large cohort of neonates and (ii) to perform model-based simulations to evaluate 

and compare the performance of current dosing guidelines with respect to target attainment. Dose 

recommandations reported in the literature, provided by international neonatal guidelines, or used 

in tertiary care neonatal intensive care units (NICUs) throughout Switzerland were evaluated and 

compared. We aimed to address current concerns for increased bacterial resistance and to facilitate 

harmonization of neonatal dosing regimens, with the goal of enhancing efficacy while minimizing 

toxicity of vancomycin in neonates.  

 

Materials & Methods 

Population 

Our study retrospectively included all neonates with at least one plasma vancomycin determination 

admitted consecutively in the NICU of Lausanne University Hospital over a time period of 10 

years (from December 2006 to April 2016). Neonates with missing information on drug 

administration or sampling times or unclear dose schedule were excluded. For all patients, sex, 

GA, PNA, birth weight (BW), small for gestational age status (SGA), WT at sampling time, Apgar 
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score at 1 and 5 minutes, umbilical arterial and venous pH, serum creatinine (SCr) and exposure 

to antenatal steroids were recorded. PMA was defined as the sum of GA and PNA.  

Vancomycin measurements were retrieved using the NICU clinical information system 

(MetaVision®, iMDsoft, Massachussetts, USA) and the local TDM database. Vancomycin was 

always administered intravenously over 1 hour using an infusion pump (DPS Orchestra, 

Fresenius). Initial vancomycin dosage was 10-15 mg/kg in most cases, with further dosing guided 

by TDM (either at 4 and 12 hours following the 1st dose or at trough under steady-state conditions). 

Concentrations were measured at the discretion of NICU physicians, based on recommendations 

of clinical pharmacologists.  

Serum vancomycin concentrations were determined by fluorescent polarization immunoassay 

(FPIA, Cobas Integra 400 Plus, Roche Diagnostics). Lower limits of detection and quantification 

of the method were 0.74 and 3.2 mg/L respectively (coefficient of variation (CV) for imprecision 

was 1.9-4.1%). SCr concentrations were measured by the Jaffe Gen. 2 compensated method 

(Cobas 8000 / c702, Roche Diagnostics) standardized according to IDMS-traceable method. This 

retrospective study was approved by the local ethics committee of Vaud. 

 

Development of Population Pharmacokinetic Model 

A population PK analysis was performed using non-linear mixed effect modelling (NONMEM® 

version 7.3, ICON Development Solutions, Ellicott City, MD, USA) to characterize vancomycin 

exposure over time in a large neonatal population. Details about methods are provided in 

Supplemental material. Based on existing models of vancomycin in neonates, only covariates 

deemed relevant for dosage adjustment were considered, namely GA, PNA, PMA, SCr, gender, 

small for gestational age (SGA), Apgar and antenatal steroids. An allometric scaling with current 

WT was implemented on CL and V [11], while the effect of GA, PNA, PMA and gender were 

tested on both parameters. SCr, SGA, antenatal steroids were tested on CL only. Although the 

impact of co-medications on vancomycin CL has been shown in some PK model, they were not 

investigated in the present study as they were not considered relevant for dosage adjustment.  

 

Model evaluation 

The predictive performance of the final model was assessed by standard validation techniques (see 

Supplemental material). An external dataset of 78 neonates was used for model evaluation (Table 

2).  
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Comparison of previously published population PK models 

In order to compare our model with previously published analyses, available neonatal PK models 

for vancomycin were reviewed. [6, 12] The criteria for comparison were similar demographic 

characteristics and intermittent administration, whereas models based on different populations or 

performed with patient under extracorporeal membrane oxygenation were excluded. Papers 

lacking proper model description were excluded too. Details about model selection are available 

in Supplemental material. Each selected model was used to predict vancomycin concentrations 

using the external dataset employed to validate our model. Accuracy (bias) and precision 

(variability) of prediction with respect to actual observations were estimated through mean 

prediction error (MPE) and root mean squared error (RMSE), respectively and compared to our 

model.  

 

Simulations to evaluate and compare current dose recommendations: 

Vancomycin dosing regimens in neonates were retrieved from international guidelines, from 

published dosing algorithms and from the 9 tertiary care NICUs (NICU-CH 1 to 9) of Switzerland. 

The selected dosing guidelines are summarized in Table 1. [13-23] A dosing algorithm directly 

derived from our model (based on WT, SCr and PMA and allowing dosing intervals of 4, 6, 8, 12, 

24 and 48 hours) that selected dose and dosing interval to maximize the probability of target 

attainment was also simulated, to establish the best possible dosing performance ideally 

achievable. 

The final model for vancomycin with covariates was applied to the original dataset to predict 

concentrations over 7 days of treatment following each dosage regimen. AUC24 was derived by 

numerical integration in NONMEM® over the first 24 hours and after 7 days of treatment (assumed 

to have reached the steady-state). Trough concentrations (Cmin) were also predicted at similar 

timepoints. The primary measure for efficacy and safety was the ratio of AUC24 over MIC 

(minimal inhibitory concentration), currently considered as the gold standard determining efficacy 

and safety. A MIC of 1 mg/L was considered by default, corresponding to the cutoff most usually 

determined for vancomycin-sensitive pathogens. Minimal target was defined as AUC24/MIC > 400 

h [1]. An AUC24/MIC >700 h was considered as the upper threshold, based on studies observing 

increased nephrotoxicity with AUC24 above 700 – 800 mg · h/L in adult and pediatric patients, 

respectively [24, 25]. Frymoyer et al recently demonstrated that a Cmin of 10 mg/L, more 

conveniently assessed in clinical settings, was associated with a high probability to achieve an 

AUC24/MIC ≥ 400 h. Cmin was therefore considered as a secondary marker of efficacy, with a target 

interval of 10- 20 mg/L. [26] Tkachuk et al although observed in a review that lower Cmin of 6 -10 

mg/L may be able to achieve AUC24/MIC > 400 h. [27] Proportions of neonates found within and 

above target exposure (AUC24/MIC 400 h to 700 h and > 700 h, respectively) were calculated for 

each of the tested regimens. Similar proportions were computed as well as for a trough 
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concentration target (Cmin of 10 – 20 and > 20 mg/L, respectively). As a sensitivity analysis to 

further enhance reproducibility of results, the same simulations were carried out with the externally 

validated model from Frymoyer et al. [26] 

Results 

Analysis Dataset 

Out of the 1947 vancomycin concentrations collected from 409 patients, 116 samples and 4 

patients were excluded. A total of 1831 vancomycin concentrations and 405 patients were thus 

included in the analysis to develop the population PK model, with a median of 4.5 concentrations 

per patient. Patients demographics of the dataset for model building and external validation are 

detailed in Table 2. Raw observations are available as Supplementary material in Figure 4.  

 

Developed Population PK Model 

Vancomycin concentrations were best described with a one-compartment model. The allometric 

exponent describing the influence of WT on CL was estimated to be 1.4 (structural model) and 

0.438 (final model), which significantly improved the model compared to the classic value of 0.75 

(OF=-332; p<0.001) in the structural model. The allometric exponent of V was estimated to 1.05, 

not significantly different from the literature value of 1 (OF=-2.8), at which it was then fixed.  

[28] The age dependency of CL was best described using a sigmoid Emax function representing a 

maturation function (MF), in which MF=(PMAHILL)/(PMAHILL + T50
HILL) with T50 of 46.4 weeks 

representing the PMA when 50% of maturation of CL has been reached, and a Hill coefficient of 

3.54 (OF=-515; p<0.001). This MF best describes maturation of kidney function in neonates, 

since PMA includes GA (development during pregnancy) but also PNA (postnatal maturation). 

The inclusion of SCr using an inverse function further improved the description of concentration 

data (OF=-307; p<0.001), in line with vancomycin being mainly excreted through the kidneys. 

The final model is summarized in Table 3.  

 

Model evaluation 

The parameter estimates of the final population PK model were within the bootstrap 95% CI and 

differed less than 3% from the median bootstrap parameters, indicating the acceptability of the 

model. The structural, final model parameters and bootstraps results are presented in Table 3 (and 

Table 4 in Supplementary material), goodness of fit plots in Figure 5, results of pcVPC in Figure 

1, and normalized prediction error (NPDE) in Supplemental material (Figure 6). The external 

validation showed a small and unsignificant bias of 0.01 (CI95%: -0.05;0.07) in the individual 

predictions, with an imprecision of 37%.  
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Comparison of previously published population PK models 

Seventeen out of twenty-two PK models initially identified were excluded according to our 

criteria. Included models and their PK parameter estimates used for comparison are reported in 

Table 5 (in Supplemental material). [16, 26, 29, 30]. The models from Frymoyer et al, Mehrorta 

et al and Kimura et al had a negligible or non significant bias with a mean prediction error of -

0.05 (IC 95%:-0.10;-0.01), 0.01 (-0.03;0.04) and 0.06 (0.00;0.13) respectively, and a precision of 

29%, 19% and 40% respectively. Our model had a mean prediction error of 0.01 (IC 95%: -

0.05;0.07) and a precision of 37%. Considering the validity of our model, we kept it for simulation 

studies. Frymoyer et al model was further used to test the reproducibility of results, since it also 

used a MF and was externally validated. Comparison of observed concentrations versus individual 

predictions using our final model or Frymoyer et al model is available in Figure 9 (Supplemental 

material).  

 

Simulations to evaluate and compare current dose recommendations 

Results of the simulations of the 20 different dosing regimen are summarized in Figures 2 and 3. 

Considering early exposure on 1st day, the median proportion of patients with an AUC24/MIC in 

the defined target across all regimens was 42% (IQR: 28-69%). The median proportion of 

AUC24/MIC above 700 and under 400 was 1% (IQR: 0 – 3%) and 52% (IQR: 29-71%), 

respectively. The median proportion of patients with a Cmin between 10-20 mg/L was 32% (IQR: 

24 - 45%), while it was 9% (IQR 5 – 20%) for a Cmin under 5 mg/L and 12% (IQR: 1 - 27%) for a 

Cmin over 20 mg/L.  

Janssen et al dosing algorithm [15] provided the best exposure on day 1 (73% within target and 

20% over). The SmPC regimen ranks close with 71% within target (0.25% over). The NNF7 and 

Neofax (Hi-Dose) brought 69 % of the patients in the defined target, with 1-2% of patients above 

700 mg·h/L. The flat 15 mg/kg every 8 h used in our hospital achieved a close performance (65% 

within target and 30% over). The highest proportion of patients with a Cmin between 10 – 20 mg/L 

was produced by the Dutch children formulary, the SmPC, NICU-CH3 and regimen of Neofax 

(Hi-Dose) with respectively 58, 53, 51 and 50% within the therapeutic target.  

Regarding exposure after 7 days, the median proportion of patients with an AUC24h/MIC in the 

defined target was 48% (IQR: 43-52%). The median AUC24/MIC above and under target were 

20% (IQR: 8 - 25%) and 32% (IQR: 19-43%), respectively. The best regimens were Grimsley et 

al, Neofax (Hi-Dose), Capparelli et al and NNF7 with respectively 66, 57, 57 and 56% within 

target. The median proportion of Cmin in the defined target was 38% (IQR: 32 - 41%), while it was 

8% (IQR 6 – 19%) for a Cmin under 5 mg/L and 24% (IQR: 7 - 36%) for a Cmin over 20 mg/L. The 
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guidelines issued from Grimsley et al ranked first followed by the Neofax (Hi-Dose), and NICU-

CH6 (Hi-Dose) with respectively 51, 48 and 46% of patients brought within the therapeutic target. 

Using our model to simulate a best case scenario, exposure could be further improved to reach 

optimal exposure in 94% of patients (day 1) and 73% (day 7). A supplemental file with the latter 

model-based regimen is provided. Adding a loading dose of 25 mg/kg to the NNF7 regimen also 

significantly improved exposure on 1st day, with 77% patients within target and 15% over. Finally, 

simulations carried out with Frymoyer et al model similarly demonstrated suboptimal exposures 

with most regimens (Figure 7 and 8 in Supplemental material). Final ranking was slightly different, 

the dosing regimens of Janssen et al and of our center (NICU-CH7) were best on day 1, while 

NICU-CH6 (Hi-Dose), Neofax (Hi-Dose), one of Lexicomp’s regimen (Hi) and NNF7 were best 

after 7 days (according to AUC24/MIC).  

 

Discussion 

The problematic adequacy of current dosing regimens of vancomycin to reach therapeutic targets 

in neonates has already been emphasized. [7-9] Despite numerous authors urging for revision of 

current guidelines, a consensual, optimized regimen is still not available and actual practice 

remains largely dominated by heterogenous and empirical approaches. [31] 

The results of this study illustrate the large diversity in vancomycin dosage regimens used and 

confirm that most recommended regimens will not ensure adequate antimicrobial coverage, 

considering targets for AUC24/MIC of 400 to 700 h or a Cmin between 10 and 20 mg/L. These 

results further support the need for global harmonization and optimization of vancomycin dosing 

regimens in neonates, to prevent both the development of bacterial resistance and the occurrence 

of nephrotoxicity resulting from overexposure. An overall lower ability to achieve Cmin targets was 

observed, probably explained by the incomplete overlap between Cmin and AUC24/MIC in this 

population. Indeed, it was recently shown that the target AUC24/MIC attainment could be reached 

with Cmin between 6-10 mg/L. AUC24/MIC remains the gold standard for efficacy. [27] 

Coagulase negative Staphylococcus (CoNS) is a leading pathogen in neonatal sepsis, accounting 

for the majority of central line-associated nosocomial sepsis episodes. [32] In our NICU, 

vancomycin is administered for empirical treatment of hospital-acquired late-onset sepsis, and for 

target treatment of methicillin-resistant CoNS (MRSE) and Staphylococcus aureus (MRSA). 

Therapeutically, CoNS are challenging due to the large proportion of methicillin-resistant strains 

and increasing numbers of isolates with reduced susceptibility to glycopeptides. [33] According to 

EUCAST, the median MIC distribution for MRSE is 2 mg/L (range 0.5 – 4 mg/L), higher than for 

MRSA, and is drawing attention to the need for adequate exposure to avoid the emergence of 

resistant strains. 
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The therapeutic window for vancomycin has not been defined specifically in neonates and has 

been extrapolated from adult studies. An AUC24/MIC ≥ 400 h (for a MIC of 1 mg/L), widely 

accepted as the best predictor of vancomycin efficacy for MRSA infection, was chosen as the cut-

off for efficacy. [1] The upper boundary for target window was based on studies observing 

increased nephrotoxicity with AUC24 above 700 mg·h/L in adult and pediatric patients [24, 25], 

considered a reasonable threshold by recent data. [34] 

Rapidly reaching therapeutic window according to AUC24/MIC has been associated with better 

outcome in adults [35]. As already mentioned, adding a loading dose allows the attainment of 

therapeutic window and steady-state more rapidly. For instance, a loading dose of 25 mg/kg 

implemented into the NNF7 regimen increased from 69 to 77% the proportion of patients in the 

target concentration range after 24 hours of treatment. SmPC, Janssen et al and Frank Shann 

recommend a loading dose, which should be considered in all neonates with severe infection.  

Interestingly, prescribing 15 mg/kg every 8 hours without adjustment to PMA nor SCr, brings a 

majority of neonates within target on day 1, but will lead to overexposure after several days of 

treatment. Using the simple dosing regimen issued from the SmPC for vancomycin (i.e. a loading 

dose of 15 mg/kg, a maintenance dose of 10 mg/kg, every 12 hours for a PNA < 7 days and every 

8 hours for a PNA > 7 days) puts 71% of patients within target, with <1% over it at 24 h. These 

results rank close to the complex dosage adjusments from Janssen et al (73%), NNF7 (69%) or 

Neofax Hi-Dose (69%). Of note, the Neofax (Hi-Dose) and NNF7 regimens are stratified 

according to PMA and/or PNA, using up to seven categories. The complex dosing algorithm from 

Janssen et al [15] includes 19 levels based on PNA and WT following a loading dose. All these 

regimens are thought to provide adequate drug levels in up to 69 % of patients on the first day of 

treatment. Overstratification of neonates characteristics appears therefore pointless to reduce 

unexplained variability of vancomycin PK. 

After 7 days, the proportion of exposure predicted within the target was globally low according to 

our simulations. Grimsley et al regimen [16] was the most performant to achieve adequate 

exposure in 66% of neonates, followed by Neofax (Hi-Dose), Capparelli et al and NNF7 for 

approximately 56-57% of cases. Neofax (Hi-Dose) and NNF7 regimens also brought 

approximately 20% of patients over the target, except for the regimens of Grimsley et al and 

Capparelli et al based on SCr that led to potentially less toxic exposures (6-10%). Janssen et al 

dosing algorithm brought 42% of patients within the target in terms of AUC24/MIC and 25% over 

it. A major drawback of the latter regimen for steady-state is the absence of integration of SCr as 

a covariate. Furthermore, its complexity only marginally improves exposure.  

Finally, only few dose regimens allow maintaining drug concentrations within the targets from the 

start of the treatment over several days. High doses at treatment start induce overexposure after 

one week of treatment, due to drug accumulation or induced nephrotoxicity and inversely too low 
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doses underexpose neonates on the first days of treatment. This advocates for performing TDM at 

several timepoints in cases requiring ≥ 3 days of vancomycin treatment.  

A dosing strategy of vancomycin in neonates should be based on the combination of GA and PNA 

(i.e. PMA) [36] but also SCr, as these parameters take into account the evolution of body 

composition, hence of volume of distribution and renal function. Discarding most low-dose 

regimens and adding a loading dose to a simple table-based regimen appears sufficient to optimize 

early exposure, in the absence of apparent renal failure. Based on these results, we would 

recommend to use rather simple dosing regimens like NNF7 or the Neofax (Hi-Dose) regimens, 

with a 25 mg/kg loading dose for severe infections, or the SmPC regimen, to ensure the highest 

proportion of target attainment after 24 hours. In our opinion, TDM before the fourth dose should 

still be carried out, to account for residual unexplained variability in vancomycin elimination 

(notably maturation). 

While prospective validation of these optimized algorithms remains needed, efforts should be put 

to update guidelines recommending low-dose vancomycin and move to a consensus to decrease 

variability in terms of doses, dosing interval and total daily doses observed so far. [31] 

In a constructed best-case scenario tool derived from our model (available as Supplemental file), 

aiming to reach the therapeutic interval of 400 – 700 h, it was possible to bring a higher proportion 

of patients (94% and 73% on day 1 and 7, respectively), similarly to the recently published model-

based algorithm Neo-Vanco of Frymoyer et al [9] (and available at: http://neovanco.insight-

rx.com/neo-vanco/). Model-based approach appears as a tailored option to account for the 

important variability among the neonatal population and increase the proportion of adequate 

exposure. Still, adequate exposure in everyone may not be attained in all children, especially after 

7 days, further stressing the need for TDM. A model-based dosing algorithm for continuous 

vancomycin administration was already prospectively evaluated in neonates and increased 

exposure from 41 to 72% in a French cohort. [10] Switching from intermittent to continuous iv 

infusions is considered as an option to reduce variability in concentration, but precludes the use of 

the iv line for most others medications.  

This study has several assets and limitations. Our pharmacokinetic analysis used the largest ever 

cohort of term and preterm neonates exposed to vancomycin, to our knowledge. Apart from WT 

and age uniformatly used to adjust dosage regimens, it reinforces the need to integrate SCr in 

dosage adjustment to avoid vancomycin accumulation due to renal dysfunction. AUC24/MIC at an 

early stage and after 7 days of treatment were evaluated in a large number of dosing regimens, 

including recently published ones. The main limitations of our study are the retrospective design 

of our data collection and the lack of prospective validation of the newly proposed regimens. In 

addition, potential biases related to the problematic performance of the Jaffé SCr assay method 

and of vancomycin measurement were not accounted for during model building [37]. The omission 

http://neovanco.insight-rx.com/neo-vanco/
http://neovanco.insight-rx.com/neo-vanco/
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of potential effects of comedications in the model is another limitation, calling for its cautious 

application to support dosage decisions in patients receiving e.g. NSAIDs or diuretics. [38] 

In conclusion, the comparison of  20 different algorithms indicates that most current regimens are 

suboptimal to reach the AUC24/MIC predefined target of 400 – 700 h or Cmin of 10 – 20 mg/L in 

neonates. The low-dosed regimens should definitely be discarded, especially in centers harboring 

methicillin-resistant CoNS. Complex regimens comprising many levels of dose stratification do 

not seem useful, and are not suitable in the clinical setting. Using NNF7 or Neofax Hi-Dose 

regimens with a loading dose appears as a commendable option for severe infections, as it 

significantly improves early exposure, as well as the SmPC regimen, that ranks close in terms of 

early target attainment. Model-based approaches emerge as another promising option, as it allows 

first dose individualization. TDM before the fourth dose should still be carried out, to account for 

residual unexplained variability in cases of ≥ 3 days of therapy. Prospective work, such as 

NeoVanc, an European ongoing trial, will help better defining concentration-effect relationships 

against Gram positive pathogens and confirm or help recommending optimal vancomycin dosing 

regimens based on clinically relevant outcomes. 
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Figure 1 Prediction-corrected Visual Predictive Check of the final model with vancomycin prediction-

corrected concentrations (circles) and median prediction corrected concentrations (solid line) and 95% 

confidence interval (semi-solid line). Grey fields represent the model-based percentile 90% confidence 

interval. 
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(a) 
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(b) 

Figure 2: Results of simulated dosing regimens according to the AUC24 (a) and Cmin (b): the semi-solid 

lines represent the lower and upper boundary of the therapeutic AUC24 target of 400 – 700 mg · h/L (a) or 

Cmin target of 10 – 20 mg/L (b). Boxes represent the median and interquartile range of AUC24 or Cmin for 

vancomycin according to the regimen after 24 hours of treatment (top) and at steady-state (bottom). 

Whiskers represent the 2.5 and 97.5 percentiles. Detailed dosing regimens are available in Table1. 

Regimens with a loading dose are tagged with #. On the right of each figure is represented results from 

simulations of NNF 7 and Neofax Hi-Dose regimens with a 25 mg/kg loading dose and the best-case 

scenario 
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(a) 
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(b) 

Figure 3 Proportion of patients within or over targets according to AUC24 (a) and Cmin (b): The 

proportion of patients with a therapeutic exposure of 400 – 700 mg · h/L for AUC24 (a) or 10 – 20 mg/L for 

Cmin (b) is represented in plain dark gray. The proportion of patients with exposure over 700 mg · h/L for 

AUC24 or 20 mg/L for Cmin is represented with light gray stripes. Regimens with a loading dose are tagged 

with # . Detailed dosing regimens are available in Table 1.  
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Reference 
GA 

(week) 

 PMA  

(week) 

PNA 

(day) 

Current 

weight (kg) 
Creatinine 

Loading 

dose 

(mg/kg) 

Dose (mg/kg) 
Interval 

(h) 

SmPC [19]  
 < 7   15 10 12 

      ≥ 7     " " 8 

Lexicomp (SCr) [21] 
≥ 29 

 

 
 

 < 0.7 

mg/dL - 
15 12 

Nelson (2015)  ≥ 29  
 

 0.7-0.99 - 20 24 

Redbook (2015) ≥ 29  
 

 1.0-1.29 - 15 24 
 ≥ 29  

 
 1.3-1.59 - 10 24 

 ≥ 29  
 

 ≥ 1.6 - 15 48 
 < 29  

 
 < 0.5 - 15 12 

 < 29  
 

 0.5-0.79 - 20 24 
 < 29  

 
 0.8-1.09 - 15 24 

 < 29  
 

 1.1-1.39 - 10 24 
 < 29  

 
 ≥ 1.4 - 15 48 

      > 60       - 15 8 

Lexicomp (WT) [21]  
 ≤  7   < 1.2    - 15 24 

Redbook (2009)  
 ≤  7   1.2-1.99    - " 18 

NICU-CH2 (Aarau)  
 ≤  7   ≥ 2.0    - " 12 

  
 > 7   < 1.2    - " 24 

  
 > 7   1.2-1.99    - " 12 

      > 7   ≥ 2.0     - " 8 

Lexicomp Hi (WT) [21]   ≤ 28  < 1.2  - 15 18 

Redbook (2009)   < 7 1.2-2   - " 12 
   < 7 > 2  - " 8 
   ≥ 7 1.2-2   - " 8 

      ≥ 7 > 2   - " 6 

British National Formulary (2014-15) 
[20] 

< 29   

  - 
15 24 

NICU-CH1 (Bern/St-

Gallen)  
 29 - 35   

  - 
" 12 

    > 35        - " 8 

Neofax Lo-Dose  (Hi-Dose)# 

[13] 
 < 30  ≤ 14   

  - 

10 (or 15 Hi-

Dose) 
18 

Harriet Lane 2012  < 30  > 14     - " (or  "  Hi-Dose) 12 

Sanford   30-36 6/7  ≤ 14     - " (or  "  Hi-Dose) 12 
  30-36 6/7  > 14     - " (or  "  Hi-Dose) 8 
  37-44 6/7  ≤ 7     - " (or  "  Hi-Dose) 12 
  37-44 6/7  > 7     - " (or  "  Hi-Dose) 8 

    ≥ 45        - " (or  "  Hi-Dose) 6 

Neonatal Formulary [14] 

(NNF7) 
 < 30   

  - 
20 24 

  30-33 6/7   
  - " 18 

  34-37 6/7   
  - " 12 

  38-44 6/7   
  - 15 8 

  ≥ 45   
  - 10 6 

Frank Schann [22]           25 15 8 

Dutch Children Form [23]  
 < 7   < 2.5     - 10 12 

  
 ≥ 7   < 2.5     - 10 8 

  
 < 7   ≥ 2.5     - 8 6 

  
 7-28 ≥ 2.5     - 12 6 

      ≥ 28   ≥ 2.5      - 15 6 

Janssen et al [15]  
 0-7   ≤ 0.7     16 5 8 

  
 0-7   0.7-1.0     16 7 8 
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 0-7   1.0-1.5     16 9 8 

  
 0-7   1.5-2.5     16 7.5 6 

  
 0-7   > 2.5     16 9 6 

  
 8-14 ≤ 0.7     20 7 8 

  
 8-14 0.7-1.0     20 9 8 

  
 8-14 1.0-1.5     20 12 8 

  
 8-14 1.5-2.5     20 10 6 

  
 8-14 > 2.5     20 12 6 

  
 14-28   ≤ 0.7     23§ 8 8 

  
 14-28   0.7-1.0     23§ 14 8 

  
 14-28   1.0-1.5     23§ 15 8 

  
 14-28   1.5-2.5     23§ 13 6 

  
 14-28   > 2.5     23§ 15 6 

  
 > 28   < 2.5     18 8 6 

  
 > 28   2.5-5.0     24 10 6 

  
 > 28   5.0-10.0     27 13 6 

      > 28   > 10.0      30 15 6 

Grimsley et al [16]  

   

< 30 

µmol/L 
- 20 8 

  
   30-39 - 20 12 

  
   40-49 - 15 12 

  
   50-59 - 12 12 

  
   60-79 - 15 18 

          ≥ 80 - 15 24 

Capparelli et al [17]  

   

≤ 0.6 

mg/dL 
- 15 12 

  
   0.61-0.99 - 20 24 

  
   1.0-1.29 - 15 24 

  
   1.3-1.69 - 10 24 

          ≥ 1.7 - 15 48 

McDougal et al [18]  < 27     - 18 36 
  27-30 6/7     - 16 24 
  31-36 6/7     - 18 18 

    ≥ 37        - 15 12 

NICU-CH3 (Chur)           - 15 12 

NICU-CH4 (Basel)  < 30     - 15 24 
  30-37 6/7     - " 18 

    ≥ 38        - " 12 

NICU-CH5 (Geneva) < 27      - 15 24 
 27-34 6/7     - " 18 
 35-42 6/7     - " 12 

  ≥ 43          - " 8 

NICU-CH6 (Zürich / Luzern)# < 30  
< 15     

- 
10 (or 15 Hi-

Dose) 
18 

  < 30  ≥ 15     - " (or  "  Hi-Dose) 12 
  30-37  < 15     - " (or  "  Hi-Dose) 12 
  30-37  ≥ 15     - " (or  "  Hi-Dose) 8 
  ≥ 37  < 8     - " (or  "  Hi-Dose) 8 

    ≥ 37  ≥ 8       - " (or  "  Hi-Dose) 12 

NICU-CH7 (Lausanne)           - 15 8 
§ if PNA 21-28 days then loading dose = 26 mg/kg; # 2 regimens according to severity of infection (Lo-Dose / Hi-Dose) 

 
Table 1 Evaluated dosing regimens for intermittent vancomycin: Intermittent vancomycin dosing 

regimens for neonates as retrieved from international guidelines [13, 14, 19-23], published dosing 

algorithm for neonates [15-18] retrieved from a literature review and dosing regimens used in 9 Swiss 

NICUs (NICU-CH 1 to 7).   
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 Dataset for model building Dataset for model validation 

  Median IQR min-max Median IQR; min-max 

No. of subjects 405 - - 78 - 

No. of vancomycin concentrations 1831 - - 112 - 

Median vancomycin dose per kg [mg/kg] 13.7 10.0-16.1 2.0-222.2 11.4 7.4-16.9;2.5-42.8 

No. of vancomycin samples per patient 4.5 2.0-6.0 1.0-19.0 1.4 1-2;1-4 

Time after dose [h] 8.8# 4.0-12.0 0.02-64 60 41.3-72.0;17.8-455 

Gestational age [weeks] 29 26.7-34.9 24-42.1 29 27-33;25-42 

Preterm (N) 331 26.4-30.7 24-36.9 68 7.0-31.4;24.6-36.1 

Full term (N) 74 38.1-40.3 37-42.1 10 38.1-39.9;38-42 

Birth weight [g] 1050 790-2170 462-4330 1040 883-1550;540-4810 

No. of male [%] 231 (57%) - - - - 

Apgar at 1 min 5 2-8 0-10 - - 

Apgar at 5 min 8 6-9 0-10 - - 

Postnatal age [days] 12.3* 5-14 0-146 14 7.0-16.8;3-27 

Postmenstrual age [weeks]  32 28.3-36.5 24.6-61.0 31 29.0-34.4;26.3-43.6 

Weight at drug administration [g] 1100 800-2170 462-5660 1145 868-1618;570-4900 

Serum creatinine [µmol/L]§ 54 31-68 5-276 46¶ 35.0-61.0;21.0-174 

No. small for gestational age (SGA) 88 (22%) - - 37 (47%) - 

* 65% had a PNA ≥ 7 days; § for missing values of SCr, closest available measure was carried forward or backward within a 48 h interval before or following 

vancomycin concentrations measurements; # 785 concentrations were at peak (between 0–4 h after the end of infusion), 882 between 4h – 12h after the end of 
infusion, 139 between 12 – 24h and 25 after 24 hours. ¶ Enzymatic method 

 

Table 2: Population demographics of the dataset used for model building and simulations and for 

model validation: median of the population is reported with interquartile range (IQR) and minimum and 

maximal values. Postmenstrual age equals gestational age plus postnatal age. Three missing values of SCr 

values. 
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  Structural model Final model 

Parameter Estimate RSE(%) Estimate  RSE(%) BSV(%) RSE(%) 

CL (L/h) 0.0517 3 0.273 17 22.6 8 

V (L) 0.631 2 0.628 2 - - 

θWT 1.4 4 0.438 18 - - 

T50 - - 46.4 - - - 

Hill  - - 3.54 14 - - 

θSCr - - 0.473 15 - - 

σprop (CV%) 0.28 7 0.236 6 - - 

σadd (CV%) 2.35 13 1.98 12 - - 

CL: clearance, V: volume of distribution of a patient of 1.0 kg, the rounded median population body weight 

(WTmedian), σprop: exponential residual error, σadd: additive residual error, θWT: effect of body weight expressed as 
(WT/WTmedian)

θWT, θSCr: effect of SCr expressed as (SCrmedian/SCr)θSCr; T50: value of PMA when 50% of 

maturation of CL has been reached and Hill: slope of sigmoid model described in the maturation function MF = 

(PMAHILL)/(PMAHILL + T50HILL),  
SCrmedian = 54 µmol/L, RSE = relative standard error of the estimate defined as SE estimate/estimate, expressed 

as a percentage (SE estimate directly retrieved  from the NONMEM output file), BSV = between-subject 

variability.  

Final model: 

 
 

 

 
Which means that for a patient of 2.0 kg, PMA 34 weeks, SCr 40 µmol/L, vancomycin CL is 1.78 L/min. For 

instance, the influence of an increase of 1 kg on CL will be : +0.34 L/min (CL: 2.12 L/min), an increase in 1 

week of PMA on CL: +0.14 L/min  (CL: 1.91 L/min), an increase of 50 µmol/L of SCr on CL: -0.57 L/min (CL: 
1.21 L/min). 

  

Table 3: Parameter estimates for the structural and final pharmacokinetic model: according to the 

final model, for a patient of 2.0 kg, PMA 34 weeks, SCr 40 µmol/L, vancomycin CL is 1.78 L/min. For 

instance, the influence of an increase of 1 kg on CL will be : +0.34 L/min (CL: 2.12 L/min), an increase 

in 1 week of PMA on CL: +0.14 L/min  (CL: 1.91 L/min), an increase of 50 µmol/L of SCr on CL: -0.57 

L/min (CL: 1.21 L/min). 

 

CL = θCL · (
WT

WTmedian
)
θWT

· [(
SCrmedian

SCr
)
θSCr

] · [(
PMAHill

PMAHill+ T50Hill
)] 

V = θV · (
WT

WTmedian
)
1

 



21 
 

SUPPLEMENTAL MATERIAL 

Methods 

A population PK analysis was performed using non-linear mixed effect modelling 

(NONMEM® version 7.3, ICON Development Solutions, Ellicott City, MD, USA), using a 

first order conditional estimation with interaction. One- and two-compartment models with 

linear elimination were compared. Interpatient variability was assigned on CL and V and the 

residual intraindividal variability was estimated using a combined additive and proportional 

error model. The selection of models was based on the difference of objective function value 

(OFV) and visual goodness-of-fit graphics. Considering an approximated chi-square 

distribution of the OFV, a statistical difference of OFV > 10.83 points (p < 0.001) was 

considered significant.  

The influence of continuous variables were tested using linear, exponential or power functions. 

The allometric exponent describing the influence of WT on CL was estimated, whereas the 

power function describing WT on V was fixed to 1. A maturation function with a sigmoid 

maximum effect was used to describe CL according to PMA. [11] Dichotomous covariates 

were tested using an indicator variable for the absence or presence of the variable. 

The stability of the final model was assessed by means of the bootstrap method implemented 

in Perl speak to NONMEM (PsN, version 4.8.1). [39] Median parameters values with their 

95% confidence interval (CI95%) were derived from 2000 replicates of the initial dataset and 

compared with the original estimates. Prediction-corrected visual predictive checks (pcVPC) 

were also performed using PsN-Toolkit and Xpose4 (version 4.3.5, Uppsala, Sweden) [40] by 

simulations based on the final PK estimates using 1000 individuals to calculate median 

concentration-time profile and 95% prediction intervals (PI95%). The predictive performance 

of the pharmacokinetic model was evaluated by calculation of the normalized prediction 

distribution errors (NPDEs), simulating each original observation 3000 times. The NPDEs and 

their distributions were then computed. Accuracy and precision of the model were estimated 

through mean prediction error (MPE) and root mean squared error (RMSE) using log-

transformed concentrations. [41] Eventually, an independent set of 78 premature and term 

newborns was employed for external model validation. Individual post hoc concentrations were 

derived from the final model to assess the accuracy and the precision by means of the mean 

prediction error (MPE) and the root mean squared error (RMSE), using log-transformed 

concentrations. [41] 

 

Comparison of previously published population PK models 

The inventory of vancomycin PK models were retrieved from Marsot A et al [6] and Wilbaux 

M et al. [12]. Seventeen out of the 22 neonatal PK models were excluded for the following 

reasons. The models were either based on only preterm populations [42-46], older children [47-

49], continuous infusion [50, 51] or performed with patient under extracorporeal membrane 
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[52]. Model only included weight as covariate [53], or with lacking detailed PK model 

description [54-57] were excluded as well. Lastly, one model was excluded due to unusual 

model building methodology (interindividual variability added in the last step after covariate 

analyses) [58].  

 

Results 

Initially, 1947 vancomycin concentrations were collected from 409 patients. Of these, 116 

samples and 4 patients were excluded due to inconsistencies in the reported administered dose, 

unclear dose schedule or dialysis. A total of 1831 vancomycin concentrations and 405 patients 

were finally included in the analysis, with a mean of 4.5 concentrations per patient. 

Patients demographics are detailed in Table 2. Mean GA was 29 weeks, with 74 (18%) full 

term neonates and 331 (82%) preterms. BW and WT at drug administration were available for 

all patients. The mean PNA was 12.3 days (range 0-146 days), with 65% with a PNA ≥ 7 days. 

Eighty-eight patients (22%) were SGA, with a BW inferior to percentile 10 on growth charts. 

SCr levels available within 24 hours of vancomycin administration and measurements. Thirty-

seven patients had no SCr levels available around that timeframe. For three patients, SCr levels 

were missing and replaced by the median SCr of the studied population. For the others, more 

remote SCr levels were used (range: 36 hours to 11 days). The median dose was 13.7 mg/kg 

administered every 6 to 48 hours. One patient who was accidently overdosed secondary to a 

dilution error received 222 mg/kg instead of 22 mg/kg. Regarding sampling times, 785 

concentrations were measured at peak (between 0–4 h after the end of infusion), 882 between 

4h – 12h after the end of infusion and 139 between 12 – 24h and 25 after 24 hours. Thirty-six 

patients had serum vancomycin concentration below the limit of quantification (LOQ of 3.2 

mg/L), value that were replaced by half the LOQ of 1.6 mg/L. Two observations were below 

the limit of sensitivity of the method and replaced by 0.  
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Figure 4: Vancomycin concentrations versus time after dose: raw observations for a median dose 

of 13.7 mg/kg (IQR: 10.0-16.1, range 2.0-222.2 mg/kg). 
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Figure 5: Goodness of fit plots of the final PK model: observed concentrations versus population 

predicted concentrations (A), versus individual predicted concentration (B), conditional weighted 

residual versus population predicted concentrations (C), versus time after dose (D). Smoothed lines 

are represented by dashed lines.  
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(a) 

(b) 

(c) 
 

Figure 6: Normalized prediction error (NPDE): (a) distribution of residues, (b) NPDE versus time 

and (c) NPDE versus predicted concentrations. 
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Figure 7: Results with Frymoyer and colleagues’ model of simulated dosing regimens according 

to the AUC24 (top) and Cmin (bottom): the semi-solid lines represent the lower and upper boundary 

of the therapeutic AUC24 target of 400 – 700 mg · h/L (top) or Cmin target of 10 – 20 mg/L (bottom). 

Boxes represent the median and interquartile range of AUC24 or Cmin for vancomycin according to the 

regimen after 24 hours of treatment (left) and at steady-state (right). Whiskers represent the 2.5 and 

97.5 percentiles. Detailed dosing regimens are available in Table1. Regimens with a loading dose are 

tagged with #. On the right of each figure is represented results from simulations of NNF7 and Neofax 

Hi-Dose regimens with a 25 mg/kg loading dose. 
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Figure 8: Proportion of patients within or over targets according to AUC24 (top) and Cmin 

(bottom) using Frymoyer et al model: The proportion of patients with a therapeutic exposure of 400 

– 700 mg · h/L for AUC24 (top) or 10 – 20 mg/L for Cmin (bottom) is represented in plain dark gray. 

The proportion of patients with a potentially toxic exposure is represented with light gray stripes. 

Regimens with a loading dose are tagged with #. Detailed dosing regimens are available in Table 1. 
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Figure 9: Observed concentrations versus individual predicted concentrations (external 

dataset): observed concentrations versus individual predicted concentrations using the external 

validation dataset for the final model (A) and Frymoyer et al model (B). Smoothed lines are 

represented by dashed lines.  
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Population pharmacokinetics analysis Bootstrap evaluation 

Parameter Estimate  RSE(%) BSV(%) RSE (%) Estimate CI95% BSV(%) CI95% 

CL (L/h) 0.273 17 22.6 8 0.271 (0.20;0.38) 22.2 (18.7;26.0) 

V (L) 0.628 2 - - 0.628 (0.61-0.65) - - 

θWT 0.438 18 - - 0.442 (0.28-0.58) - - 

T50 46.4 - - - 46.4 - - - 

Hill  3.54 14 - - 3.52 (2.58;4.44) - - 

θSCr 0.473 15 - - 0.47 (0.34;0.61) - - 

σprop (CV%) 0.236 6 - - 0.23 (0.21;0.26) - - 

σadd (CV%) 1.98 12 - - 1.97 (1.38;2.39) - - 

Abbreviations: CL: clearance, V: volume of distribution of a patient of 1.0 kg, the rounded mean population body weight (WTmedian), 
σprop: exponential residual error, σadd: additive residual error, θWT: effect of body weight expressed as (WT/WTmedian)θWT; θSCr: effect of 

SCr expressed as (SCrmedian/SCr)θSCr; T50: value of PMA when 50% of maturation of CL has been reached and Hill: slope of sigmoid 

model described in the maturation function MF = (PMAHILL)/(PMAHILL + T50HILL), SCrmedian = 45 µmol/L, RSE: Relative standard error of 

the estimate defined as SE estimate/estimate, expressed as a percentage, with SE estimate retrieved directly from the NONMEM output 

file.  BSV: Between-subject variability. CI95%: 95% confidence interval. 

Final model: 
  

Due to a significant correlation between CL and T50, the value of T50 obtained in the univariate analysis was used in the multivariate 

model and fixed. This value corresponds to the T50 found in the literature for a full term infant (T50 reached at a PMA range of 47.7–55.4 
weeks). (29)  

 
 

Table 4: Parameter estimates for the final pharmacokinetic model and bootstrap evaluation 

 
 

TVCL = θCL · (
WT

WTmedian
)
θWT

· [(
SCrmedian

SCr
)
θSCr

] · [(
PMAHill

PMAHill+ T50Hill
)] TVV = θV · (

WT

WTmedian
)
1
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  Grimsley (n=59) Mehrorta (n=134) Capparelli (n=374) Frymoyer (n=249) Kimura (n=19) Our model (n=405) 

Postnatal age (weeks) 4.1 3.8 3.9 2.7 - 2.4 

Gestational age (weeks) 29 32.7 33.5 34 24.1-41.3 29 (24 - 42) 

Postmenstrual age (weeks) - 36.5 - 39 27.1-50.4 32 (24 - 65) 

Birth weight (kg) - - - 2 - 1.05 

Weight (kg) 1.52 2.5 2 2.9 0.71-5.2 1.1 

Median SCr 49 (µmol/L) 0.6 (mg/dL) 0.7 (mg/dL) 35.4 (µmol/L) 0.2-0.9 (mg/dL) 54 (µmol/L) 

Covariates on CL WT SCr (µmol/L) WT, PMA SCr (mg/dL) WT SCr (mg/dL) WT, PMA Scr (mg/dL) WT SCr (mg/dL) WT, PMA SCr (µmol/L) 

Covariates on V WT 

Model for CL θ1 · WT / SCr 
CL = θ1 · (WT/2.5)0.75 · 

(0.42/SCr)θ2 · (PMA/37)θ3 

CL = WT · (θ1/SCr + θ2 · 
PNA · [if SCr < 0.7]  + θ3 · [if 

GA > 28] )    

CL = θ1 · (WT/2.9)0.75 · MF · 
(1/SCr)θ2  

MF = 1/(1+[PMA/T50]-Hill) 

PMA ≥ 36 : CL = θ1 · WT / 
SCr    

PMA < 36 : CL = θ2 · WT / 
SCr 

CL = θ1 · (WT/1000)θ2 · 
(SCr/60)θ3 · MF 

MF = PMAHill / (PMAHill + 
T50Hill) 

Model for V θ2 · WT V = θ4 · WT / 2.5 V1 = θ4 · WT + θ5 V = θ3 · (WT/2.9) V = θ3 · WT V = θ4 · WT 

Model for Q     Q = θ6 * WT       

Model for V2      V2 = θ7 * V1       

Final PK parameters 
θ1 = 3.56 
θ2 = 0.669 

θ1 = 0.18 
θ2 = 0.7 
θ3 = 1.4 
θ4 = 1.7 

θ1 = 0.028 
θ2 = 0.000127  
θ3 = 0.0123  
θ4 = 0.793 
θ5 = 0.01 

θ6 = 0.0334 
θ7 = 0.666 

θ1 = 0.345 
θ2 = 0.267 
θ3 = 1.75 
Hill = 4.53 
T50 = 34.8 

θ1 = 0.0344 
θ2 = 0.025 
θ3 = 0.61 

θ1 = 0.268 
θ2 = 0.438 
θ3 = 0.483 
θ4 = 0.629 
Hill = 3.57 
T50 = 46 

Residual error (type & 
value) 

add: 4.53 add: 5 prop: 14%, add : 3,4 prop: 20.5%, add: 1.3 add: 3.38 prop: 22.8%, add: 2.2 

IIV CL, V values (%) 22 18 25.3 21.8 32 16 21.6 10.9 25.8 22.3 22.6 - 

External validation - - Validation group (n = 67) Validation group (n=243) - - 

Mean prediction error 
(MPE) 

-0.29 (IC95%:-0.20;-0.38) 0.01 (IC95%: -0.03; 0.04) -0.10 (IC95%: -0.04;-0.17) -0.05 (IC95%: -0.10;-0.01) 0.06 (IC95%: 0.00;0.13) 0.01 (IC95%: -0.05;0.07) 

Root mean squared error 
(precision) 

0.563 (76%) 0.178 (19%) 0.369 (45%) 0.257 (29%) 0.339 (40%) 0.315 (37%) 

 
Table 5. Comparison of previously comparable published models 
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