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Abstract 
Immunodeficiencies make up a large group of diseases characterized by heterogeneous clinical 
manifestations, including life-threatening infections, autoimmunity, chronic inflammation, allergy 
and malignant diseases. They are classically divided in primary (PID) and secondary (SID) 
immunodeficiencies and they can be caused by monogenic defects or be secondary to exogenous 
factors, malignant or non-malignant diseases. In the last 20 years, accelerating progress has been 
made in identifying new forms of PIDs thanks to the advances of molecular and genetic 
characterizations. These disorders are either diagnosed early in life or even later, in adults. It is 
estimated that 1-2% of the population might be affected with any type of the whole PID 
spectrum. 
 

Immune cell characterization, particularly by flow cytometry techniques, has extensively showed 
its importance in the clinical management of patients presenting immune deficiencies with 
quantitative cell defects, as well as in the understanding of the immune system. It has already 
improved the classification of immunological diseases, as well as contributed to improve 
treatment efficacy and follow-up. Recently, mass cytometry techniques have been used for 
diagnostic purposes, significantly increasing the breadth and depth of the functional and 
phenotypic characterization of a patient’s immune cells, in comparison to traditional flow 
cytometry techniques. These advancements are driven by the great increase in measurable 
parameters provided by mass cytometry, which allows for all major known immune cell 
populations and subpopulations to be characterized with a single analysis. 
 

The major contribution of this research resides in directly testing the functional activity and 
response of a patient's immune cells to different stimuli. The highly multiparametric nature of 
mass cytometry allows for both a broad and in depth characterization of the functional immune 
response using only a minimal volume of a patient's blood (1 mL) with results available within 
one day, thus drastically improving time to diagnosis. In addition to having a proportional and 
phenotypic characterization of a patient's immune cells, identifying the functionally abnormal 
cell population(s) will provide the clinicians with an even better understanding of their patient's 
immunological defect. Interpretation of the mass cytometry results along with the patient's 
clinical data will allow for the identification of signatures associated with specific immunological 
defects, new classes of immunodeficiencies and therapies that are best adapted to a specific class 
of an immunological disorder, hence improving the diagnosis and the benefits for 
immunocompromised patients. 
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1 Introduction

“Intellectual work is an act of creation. It is as if the mental image that is studied over
a period of time were to sprout appendages like an ameba - outgrowths that extend in all
directions while avoiding one obstacle after another - before interdigitating with related
ideas.”

— Santiago Ramon y Cajal

This master’s thesis focuses on providing a new in depth characterization of the hu-
man immune system in health and diseased states. The complexity of nature governing
us pushes research to be more precise and have an increased depth in its observation
in order to increase our comprehension of life. The approach presented in this work
employs advanced analytical laboratory procedures and data analysis methods that are
applied to our current understanding of the immune system. The goal is to better char-
acterize immunodeficiencies at the molecular level of a patient’s immune cells with the
final goal of offering better diagnosis tools that could lead to an improved clinical man-
agement of patients through more appropriate treatments and follow-up care.

This project aims to develop a mass cytometry profiling assay for single-cell func-
tional analysis of immune cells from patients at the CHUV with suspected immunod-
eficiencies. This analysis will complement the phenotypic immune cell characterization
currently performed by the CHUV-IAL diagnostics lab and provide a distinct readout of a
patient’s functional immune profile. In addition to the evaluation of immune cell lineage
markers, chemokine receptors and activation markers, cell specific expression of differ-
ent cytokines will provide an important readout of either ongoing immune activation
or the capacity of a patient’s immune cells to respond to stimuli that include Pathogen
Associated Molecular Patterns (PAMPs). These functional responses will be compared
to those of healthy donors to allow for a comparative bioinformatics analysis of poten-
tial immunological defects. Initial analysis focused globally on leucocytes, followed by
a directed analysis of myeloid dendritic cells to provide insights into the strength of this
approach. It is anticipated that this analysis will identify signatures and highlight molec-
ular mechanisms associated with specific immune cells in health and diseased states. It
will thus provide the basis for a strong analysis pipeline to be used in further transla-
tional research work. To give an insight of molecular immunological profiles that can be
detected with this analysis pipeline, a group of 15 clinically immunocompromised pa-
tients were compared to a group of 15 healthy donors.

This chapter will first give a general overlook of the immune system and immunode-
ficiencies. Finally, the last part of this chapter will give an insight into the different tech-
nologies available and used in this work for in-depth characterization of immune cells.
These advanced technological progresses allow for increased insights into the determi-
nation of cells’ properties, including cellular gene regulation and intracellular molecular
signalling pathways.

1.1 The Immune System

Having a vital function in all other organs, the immune system ensures the essential
function of maintaining the human body’s homeostasis, positioning itself at the conver-
gence point of systemic regulation. Indeed, being able to distinguish the self from the
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non-self or from the abnormal self allows a thorough defence against microorganisms,
foreign substances, products of damaged cells and abnormal cells growths (rejection of
tumours). What’s more, while fulfilling this task the immune system should ignore nor-
mal healthy cells, harmless molecules or symbiotic microorganisms, which would other-
wise lead to unwanted consequences.

In order to achieve its function, the immune system employs numerous actors and
effectors that play key roles as biological guardian of the organism. As it will be dis-
cussed below, different cells, proteins (e.g. signalling molecules, receptors, transcription
factors), physical (e.g. epithelia, mucosa) and chemical (e.g. low pH) barriers are of an
extreme importance to guarantee an adequate response against infections and in rejec-
tions of tumours. It is important to mention that there is a constant battle driven by the
immune system in order to counter the harmful infections continually present in the envi-
ronment. However, for immunologically healthy hosts, persistent signs of inflammation
are uncommon and disappear as soon as the foreign agent is removed.

Thereby, there are clinically three main host’s manifestations of a dysfunctional im-
mune system, that are immunodeficiency, autoimmunity, or allergy. Each of those can be
explained by an unbalance in the physiological immune homeostasis, either by a defect
in the activation of the system, or by an overactivation of it.

1.1.1 Overview

The main characteristics of the immune system is that it is systemic, so that its actors
can evoke mechanisms of host defence in any tissues, migrating through blood or lym-
phatic vessels. The innate immunity is in the first place to detect the initial triggers, and
is also phylogenetically the oldest guard of plants and insects. It will then initiate the im-
mune assault, while activating in parallel the adaptive immunity that will act in a second
phase within days after the infection begins. This more complex mechanism of defence
is more specialized and requires much more sophisticated cells and tissue structures (re-
ceptors, antibodies, specialized lymphoid tissues, cytokines), which have evolved only
in vertebrates. The advantage of an effective, powerful and safe immune response is to
have not only positive signals that amplify the response, but also to have control mech-
anisms. Indeed, these should prevent a loss of control which would drive to self injuries
either by the extent of the reaction generated or by setting of self antigens recognitions
to destruction. The homeostasis needed to guarantee a fair balance between the accelera-
tion of an immune response and the brake mechanisms to avoid collateral damage is fine
and has to be conscientiously regulated.

Figure 1 offers a general overview of the interactions between the innate and the adap-
tive immunity, how they are acting in respect to each other. Some of the most important
steps of this coordinated response will be further explain in the following chapters.

The main actors involved in the immune response are briefly presented and described
in figure 2. This work will mainly focus on the cellular elements of the immune response,
with their associated cytokines and chemokines, whose function is explained below. Al-
most all of the circulating cells of the immune system are derived from hematopoietic
stem cells (HSCs) in the bone marrow. Their differentiation and regulation rely on growth
factors and cytokines stimulations (1).
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In order to achieve a coordinated and well regulated immune response, immune cells
interact with one another and with other host cells by secreting cytokines. This family
of proteins is able to act on the growth and differentiation potential of cells, to activate
them as well as to ensure their migration among tissues through the blood circulation or
lymphatic vessels. The major proinflammatory cytokines of innate immunity are TNF,
IL-1, IL-6, IL-12, IL-15, IL-18 and IFN-g. The major anti-inflammatory cytokines are IL-10
and TGF-b. Their functions and characteristics can be found in figure 3.

1.1.2 Innate Immunity

The innate immunity, or native immunity, is able to develop within hours after the
infection occurs. Antimicrobial peptides (AMPs), complement molecules and sentinel
cells, such as macrophages, dendritic cells (DCs) or mast cells, are located in the blood,
in the different epithelia or mucosa surfaces of the organism or in any other organs to re-
spond directly when pathogenic microorganisms break the barrier and invade the host.
Invading microorganisms are directly detected through some of their repeated patterns
shared by classes of microbes, called pathogen-associated molecular pattern molecules
(PAMPs). Damaged cells are detected through the repeated and conserved pattern of
endogenous molecules released, called damage-associated molecular pattern molecules
(DAMPs). The fact that those receptors are constitutive (germline encoded in all cells),
they exist before that the infection takes place, and do not need a primary contact with an
invader to be effective (unlike adaptive immunity receptors). This allows to trigger a fast
and effective response that is sufficient to eradicate most of the infections the organism is
confronted with. However, they do not allow a fine recognition of different microbes and
see a limit in its efficacy by more virulent pathogens. Furthermore, their limited diver-
sity is illustrated by the less than 100 of different types of invariant receptors that have
been discovered in this family of pathogen recognition receptors (PRRs), while the two
receptors present in the adaptive immunity can contain up to millions of variations of
each and recognize more than 10 million different microbial molecules. That is why the
adaptive system is also essential in the defence against microorganisms..

The different PRRs, their ligands, the different innate immune cells, with their char-
acteristics, as well as blood proteins playing a significant role in the innate immunity
response will now be discussed. It is also important to mention that innate immunity
contains a lot of redundancy, and that many actors have the same effect. This protects
against microbes that achieve to block one defence pathway, as other mechanisms of de-
fence will be activated and the microorganisms will be nevertheless combated.

Pattern recognition receptors (PRRs)
PRRs are fundamental receptors of different structures recognizing dangerous anti-

gens (PAMPs, DAMPs) and triggering an immune response. They are located on the
surface or in the cytoplasm of the cells, as well as in the blood circulation as soluble
molecules. The subsequent inflammation response elicited induces the release of differ-
ent mediators (e.g. cytokines, chemokines, small molecules mediators), which activate
innate immunity effectors. Different pathologies can arise when a dysfunction is present
at their antigen interface or in their downstream signalling pathways. A summary of the
most important PRR is given in figure 4.
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PRRs ligands can be from different natures. PAMPs can be mainly from four different
molecular structures: nucleic acids (e.g. single-stranded or double-stranded RNA, un-
methylated CpG DNA sequences), proteins or peptides (e.g. pilin and flagellin), lipids
(e.g. LPS, lipoteichoic acid), and carbohydrates (e.g. mannan, glucans). PAMPs usually
are life-essential molecules of the microbes and thus less susceptible to mutation. This
is a reason why innate immunity has achieved to be conserved among the evolution.
DAMPs (also called alarmins) come from endogenous damaged cells and can also be
from different nature. Those molecular patterns are summarized in figure 5.

Complement system
The complement system is an important defence mechanism of humoral innate im-

munity. Moreover, plasma proteins recognize microbial surface structures and can be
activated through three different pathways. Zymogens, which are proteases precursors,
are activated through the proteolytic activity of other proteases and thus trigger a cas-
cade that amplify itself at each step. During this process, different effector molecules
are generated. Those are able to opsonize microbial products, to act as chemoattractants
recruiting leukocytes, or to directly kill the microorganism. The complement activation
pathways are summarized in figure 6.

Hematopoietic stem cell-derived innate immune cells
Innate immune cells are mostly derived from haematopoietic myeloid or lymphoid

progenitors in the bone marrow, whereas adaptive immune cells principally come from
lymphoid haematopoietic progenitors. Their major subsets are illustrated in figure 7,
highlighting their key functions. The diversity of functions and abilities of those dif-
ferent cells are complementary in order to cover a wide variety of pathogens and to be
able to defend the host effectively against them.

Other immune actors present in blood also play an important role in the defence
against foreign organisms. Those are for example lipid mediators, peptides, amines, ni-
tric oxide, adhesion molecules (integrins, selectins) or acute phase proteins (CRP). As this
work will not focus on those molecules, their attribute and functions will not be discussed
here.

1.1.3 Adaptive Immunity

Innate immunity can show some weaknesses facing some more virulent pathogens,
due to its poor diversity of patterns recognition. However, in those situations it can al-
ready slow down the invasion and initiate the adaptive response, which will most of
the time be able to control and overcome a strong infection. Thereby, the adaptive im-
munity, or acquired immunity, distinguishes itself from the innate immunity through its
increased capabilities of defence against microbes and nonmicrobial products. The two
main cells families constituting and coordinating this more flexible system are the T and
B lymphocytes, both descending from the common lymphoid progenitor cell of the bone
marrow.

Cardinal features of the adaptive immunity
The central features that make the adaptive immunity unique are firstly its speci-

ficity and diversity. Firstly, the great variety of antigen epitopes recognized by the two
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main adaptive receptors (BCR and TCR) is made possible by the vast repertoire of im-
mature lymphocytes. Each of them presents at its surface a unique rearranged receptor
that corresponds to a specific pathogens antigen. Once this antigen is recognized, the
corresponding immature lymphocyte will undergo clonal expansion and thus provide
protection against this pathogen.

Secondly, another key feature of adaptive immunity is its ability to create a immune
long-lived memory against pathogens it has already been exposed to. Each time a pathogen
is seen by the system, it increases the promptness, its magnitude and the sensitivity of
its response. This improves the efficacy of responses against microbes that often come
across the immune system. Thirdly, the last main vital characteristic of this system is
its self tolerance. Self-controlled mechanisms get rid of the lymphocytes that build re-
sponses against antigens belonging to the own self. An inappropriate preservation of
self-tolerance is the first step to a wide variety of autoimmune diseases.

Antigen presentation
One of the most important mechanism which the adaptive immune system relies on is

the presentation of antigens by antigen-presenting cells (APCs) to lymphocytes. Indeed,
this is a way that front-line cells or any other cells of the organism have to communi-
cate with the immune cells and inform them about the protein content of their cytosol
or extracellular environment. Thanks to this method, the immune cells constantly have
an overview over the state of each cell, being thus able to detect if a cell gets infected,
presents malignant changes or has sampled pathogens from its surroundings. The many
different functions of antigen-presenting cells are broad and will not be discussed in de-
tails in this work. However, the main molecules expressed at their surface allowing anti-
gen presentation are part of the major histocompatibility complex (MHC or HLA) family.
This includes the class I MHC (containing HLA-A, HLA-B and HLA-C), synthesized and
expressed on all nucleated cells, and the class II MHC (consisting on HLA-DR, HLA-DQ
and HLA-DP), which are constitutively expressed only on dendritic cells, B lymphocytes,
macrophages, thymic epithelial cells, and a few other cell types.

Other HLA-independent presentation molecules include the CD1 molecule (present-
ing glycolipid components and glycosphingolipids, recognized by NKT cells), MHC class
I-related chains A (MICA) and B (MICB) recognized by gdT cells.

Initiation and development of adaptive immune responses
As shown in figure 1 and explained above, dendritic cells (DCs) situate themselves

at the convergence point between the innate and adaptive immunity. Indeed, they dis-
play the antigens that they have captured to the naive T lymphocytes in the T cell rich
areas of regional lymph nodes. On one hand, myeloid DCs capture those antigens in the
organs where they reside (above all in the epithelia), and on the other hand, plasmacy-
toid DCs may sample antigens in the bloodstream. By getting in contact with microbial
products and other cytokines such as TNF, DCs are activated and mature into potent
antigen-presenting cells (APCs). This maturation goes together with a modification of
their surface molecules. They start to express high levels of CCR7, a receptor specific for
the two chemokines CCL19 and CCL21 that are produced in lymphatic vessels as well as
in the T cell rich areas of lymph nodes. Therefore, those DCs displaying microbial prod-
ucts travel through the lymphatic system to the regional lymph nodes where they will
present their captured antigens to the naive T lymphocytes (which also express CCR7
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and therefore also circulate to the same zone where DCs are attracted to in the lymph
node).

During their maturation, DCs increase their expressions of MHC molecules and cos-
timulators of T cell activation (B7-1, B7-2, ICAM-1, IL-12). Hence, when they will be put
in contact with naive T lymphocytes they will be able to activate them and trigger the
adaptive immunity. It is also important to mention that the meeting between DCs and
naive T lymphocytes also take place in the absence of infection or inflammation. In fact,
DCs continually sample their surroundings in the different tissues and bring those harm-
less antigens to the lymph nodes. The difference is that by expressing self-antigens they
will not express co-activating molecules of T lymphocytes. This will nonetheless cause
either the death of self-reacting naive T lymphocytes, their inactivation or their differ-
entiation into regulatory T cells. This is a significant process that stop autoimmunity by
maintaining self-tolerance.

There is likewise another way of initiating the adaptive immune response. Indeed,
some antigens travel directly through the lymph vessels and arrive in their soluble form
into the regional lymph nodes. There, those cell-free antigens travel through conduits
of fibroblast reticular cell (FRC) that are located between the sinuses and traverse the
lymph node cortex. Then, they are captured by the interdigitated processes of resident
DCs, taken up by macrophages or by B cells. DCs will display their antigens to T cells,
while macrophages will present them to resident B cells in the follicles.

We commonly divide the adaptive immunity in two types: the humoral and the cell-
mediated immunity. By cell-mediated immunity it is meant the type of adaptive im-
munity that is mediated by T lymphocytes. Its three main objectives are to stimulate
phagocytes in order to enhance the destruction of microorganisms (by CD4+ helper T
lymphocytes), to kill infected or malignant cells (by CD8+ cytotoxic T lymphocytes) and
thirdly to prevent an uncontrolled immune response by inhibiting the response (by CD4+
regulatory T cells, Treg). Humoral-mediated immunity involves B lymphocytes, which is
complementary to the cell-mediated immunity as it can target other types of microorgan-
isms, as for example extracellular pathogens or toxins. Humoral means that it is mediated
by antibodies that are found in the blood and other mucosal secretions. B lymphocytes
differentiate into plasmocytes, which are the cells capable of secreting different classes of
antibodies.

Antibodies
Antibodies, or immunoglobulins, are basically the same molecule as the already dis-

cussed BCR present at the B cell surface. The only difference is that they have lost their
transmembrane exon by alternative splicing in order to become soluble and be able to cir-
culate freely in secretions or blood circulation. Their main mechanisms of action are the
neutralization or opsonization of microbial products, NK cells sensitization, mastocytes
and eosinophils sensitization, and complement activation.

Synthesis of innate and adaptive immunity
The fundamental differences between innate and adaptive immunity are the ability of

adaptive effectors to specifically recognize pathogens, increase the specificity and affinity
to those antigens while creating an immune memory. Furthermore, what is particularly
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interesting to observe is the great interdependence between innate and adaptive immu-
nity. Even if fundamentally different mechanisms are present to detect antigens and co-
ordinate the immune response, each of those two immune arms needs the other one in
order to fulfill a suitable response against danger. Indeed, when virulent pathogens can-
not be contained and mastered only by innate immunity, adaptive immunity is there as
a backup. It is a real synergy between those two subsystems, regulating human body
homeostasis.

Having an effective immune response also means that regulatory mechanisms have
to exist to avoid a loss of control of those inflammatory reactions and to regain immune
homeostasis once the danger has been eradicated. Different ways of preventing an over-
response exist at different levels. Regulatory cells, inhibitory receptors and molecules as
well as apoptotic destiny or destruction are the different ways to achieve it. It should be
considered as important as powerful tools to eradicate microbes in order to avoid auto-
destruction of host tissues.

Evolution has provided crucial tools to fight against microbes from our environment,
foreign substances, dysregulated cells that turn into tumours. However, as it will be
discussed later, this strong arms can undergo dysregulations and when they are not op-
timally controlled, diseases occur like immunodeficiencies, autoimmunity or allergy.

1.1.4 Immune Cells Molecular Characterization

Immune cells populations are defined using cell-surface markers, especially cluster
of differentiation (CD) molecules. Each defined surface molecule has its corresponding
CD number. Those surface molecules can have diverse biological functions, acting for
instance as receptors (e.g. CD21 is a receptor for the C3d complement molecule), co-
receptors (e.g. CD3 acts as a coreceptor for the TCR), or antigen presenting peptides (e.g.
CD1c presents non-peptid antigens to T lymphocytes). The combination of different dis-
criminative markers thus define cells from a specific population and allows clustering
cells according to their phenotypic resemblance. The different functions, cells expression
and molecular structure of CD molecules involved in this work are synthesized in figure8.

Once an immune cells phenotypic recognition has been made, it is possible to look
at the functional state of each cell. Activation markers (e.g. HLA-DR, CD69), cytokines
expression (e.g. IL-1, TNFa), phosphorylation states of intracellular signalling pathways
(e.g. STAT transcription factor) or cell division markers (e.g. Ki67) are markers of cell
activation. It is thus possible to identify differences in the activation state of a patient’s
cells in comparison to healthy donors. It is also possible to evaluate the response of a
person to vaccine, or the impact of other exogenous factors (e.g. infections, treatments)
on the different cells populations.

Figure 9 provides a non-exhaustive overview of the expression and non-expression of
molecules at the surface of the major known immune cells subsets. Depending on the
combination of those proteins, immune cells families are isolated and characterized.

CD45 marker allows to differentiate the granulocytes neutrophils and eosinophils
(CD45-CD66b+) from all other leucocytes (CD45+CD66b-). CD3 is used to differenti-
ate T lymphocytes from other leucocytes. Then, to further divide T cells, CD4, CD8,
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CD27, TCRgd,CCR7, CD45RA and CD45RO are the most appropriated markers to iso-
late CD4+ T lymphocytes, CD8+ T lymphocytes, TCRgd T cells and NKT cells subsets
(2). B cells are characterized by CD19, CD45 and CD45RA markers expression. Their
subsets can be further down-clustered with CD21 and CD27. NK cells are characterized
by the absence of CD3 marker and expression of CD7 and CD56 (3). CD16 will be uti-
lized to subcluster this family, identifying NK cells sub-populations that have the ability
to respond to antibody-coated cells (4). Dendritic cells are characterized by the absence
of CD3, CD7, CD14, CD19, CD20, CD56 and CD66b markers, while expressing HLA-DR
surface molecule. To identify myeloid dendritic cells within DCs CD11c is used, further
identifying conventional mDC with CD1c and inflammatory mDC with CD16. Plasma-
cytoid dendritic cells are defined within DCs with CD123 (5). Monocytes are CD11c+,
CD33+ and HLA-DR+. CD14 and CD16 are used to differentiate between classical, in-
flammatory and non-classical monocytes (6). Finally, basophils express CD123 and are
distinguished from pDCs by their lack of HLA-DR.

Once the major cell populations have been identified, it is possible to go even deeper
and be more precise in the definition of subsets in each population. As this work will
mainly focus on dendritic cells phenotypes, activation state and response to exogenous
stimuli, figure 10 illustrates for the three major DCs subpopulations their main surface
molecules, PRRs, expressed genes and the downstream cytokines released.

1.2 Immunodeficiencies

Immunodeficiencies are a large group of diseases characterized by heterogeneous
clinical manifestations. An increased susceptibility of life-threatening infections can be
observed in patients presenting an immune deficiency, as well as autoimmune and chronic
inflammation disorders, allergy and malignant diseases (7), (8), (9). This great variety of
manifestations reflects the wide spectrum of activity of the immune system in maintain-
ing biological homeostasis.

Immune deficiencies are divided into primary and secondary entities. About 300 pri-
mary immunodeficiencies (PID) caused by monogenic defects are known, whereas sec-
ondary immunodeficiencies (SID) can be caused by exogenous factors (e.g. infections,
drugs), or other primary disease conditions, such as the nephrotic syndrome (7).

Red flags during clinical evaluation of a patient should encourage to search for an
immunodeficiency. It is the case if the patient presents four or more infectious episodes
each year that need an antibiotic therapy (e.g. otitis, bronchitis, sinusitis), if recurrent
infections or infections that need a prolonged antibiotic therapy are noted, when two or
more severe bacterial infections occur (osteomyelitis, meningitis, septicemia, cellulitis),
when two or more pneumonia radiologically are proven in a period of three years, when
the familial medical history is positive for a primary immunodeficiency, and finally for
any infections with unusual localisation, or with an unusual pathogen.

1.2.1 Primary Immunodeficiencies

In the last 20 years, accelerating progress has been made in identifying new forms
of PIDs thanks to the advances of molecular and genetic characterizations (10). These
disorders are either diagnosed early in life or even later, in adults. It is estimated that
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1-2% of the population might be affected with any type of the whole PID spectrum (11).

PID classification
The general classification of PID first identifies the type of immunity that is affected

(e.g. innate or adaptive immunity) or if it is a problem within the downregulators of im-
mune responses. Then, the different primary immune deficiencies diseases are grouped
according to their mechanism. Figure 11 highlights the main types of PID, giving some
disease examples belonging to each class. This classification orients the clinical approach
when an immunodeficiency is suspected, based on immunological knowledge. For in-
stance, opportunistic infections (such as recurrent infections by Candida), as well as re-
current viral infections, indicate that a problem exists in the adaptive cell-mediated im-
munity, involving T lymphocytes, those cells being the normal protectors against such
infections. However, recurrent infections of the respiratory tract would rather suggest a
defect in the humoral immunity, involving B lymphocytes. Finally, invasive bacterial in-
fections indicates a problem in the innate immunity, opening as differential diagnosis, for
instance, an asplenia, defects in Toll-like receptor signalling or complement deficiencies
(12).

Other classifications exist, amongst all the IUIS Phenotypic Classification for Primary
Immunodeficiencies, grouping PID by pathogenesis and giving more precise clinical fea-
tures (13). This classification can be easily used at the bedside, correlating clinical find-
ings to differential diagnosis.

Clinical manifestations
As mentioned above, clinical manifestations have a high diversity and PIDs can mimic

various diseases, thus delaying the diagnosis. First, PIDs can increase the susceptibility to
infections and allow opportunistic infections. Increased sinopulmonary infections, gas-
trointestinal infections, septic arthritis, bacterial meningitis and sepsis can be at the front
line and should make suspect an underlying immunodeficiency.

Second, autoimmunity can be another manifestation of a PID. Autoimmune haemolytic
anemia (AIHA), immune thrombocytopenia (ITP), rheumatoid arthritis, vitiligo, vasculi-
tis, systemic lupus erythematous or inflammatory bowel disease can be consequences of
an immune defect and can affect up to one out of four patients (14). The pathogenesis
linking autoimmunity with immunodeficiency is not completely understood, but it could
outline a defect in the regulatory mechanisms of the immune response. Third, allergic re-
actions can also be a manifestation. It can present itself as a difficulty to control asthma
for example, food or other materials allergies, as recurrent or complicated sinusitis/otitis,
or even as eczema. Finally, malignant disorders are also linked to PIDs. There is a higher
susceptibility to develop non-Hodgkin lymphomas, as well as other gastric cancers.

Diagnosis
Different paraclinical exams are available to diagnose an immune deficiency. Sim-

ple routine checks can be perform to look for indirect signs of PID. Blood cell counts
(neutrophil, lymphocyte and eosinophil counts) can reveal a cells population deficiency.
Chest x-ray can be used to evaluate the thymic shadow as well as costochondral junc-
tions; bone x-ray allows the evaluation of metaphyseal ends and can show abnormalities
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in the context of a syndromic immunodeficiency (e.g. cartilage hair hypoplasia).

Then, as soon as an immune deficiency disease is suspected, immunoglobulins serum
levels should be analysed as it could highlight an hyper- or hypo-globulinemia. When
a suspicion of chronic granulomatous disease is made, dihydrorhodamine fluorescence
assay and nitroblue tetrazolium assay can be made to look at the reactive oxygen species
produced by neutrophils. The complement system can be functionally evaluated by dos-
ing the activity of different proteins involved in the classic and alternative complement
pathways. Those proteins are CH50, AP50 or MBL50. Immunonephelometry can dose
quantitative antigens fractions C3 and C4. Levels of regulatory proteins of the comple-
ment pathways can also be determined, as well as the fragments of complement systemic
activation (sC5b-9 and Bb). Then, asplenia could be sought through abdominal ultra-
sonography. Finally, phenotyping the different lymphocytes subfamilies with cytometry
techniques can also be performed and bring to light abnormal absolute or relative cell
counts (12).

Making a precise diagnosis of immunodeficiency can result to be very difficult in
cases of non-straightforward immune cells alterations. Complementary examinations
are essential to define the type of the immune deficiency, as the clinical features are often
not specific and only makes us suspect such a disorder. For instance, identifying a quanti-
tative cell defect in a severe combined immunodeficiency (SCID) can be easily done with
flow cytometry, clearly outlying the differentiation defect leading to the lack of a specific
population. However, in other cases, a simple immune cell analysis does not allow a
precise characterization of the deficiency. When genes or molecules regulating immune
cell functions are affected, simple immunophenotyping studies can return normal results
and deeper analyses are needed to identify the immune problem(s). Those analysis using
mass cytometry and bioinformatics techniques are the main point of this work and will
be described later. It is supposed to unveil new immune deficiencies that could not be
revealed until now, looking at the unclear immune signatures that cannot be classified
actually.

Management approaches
The management of patients suffering for a primary immunodeficiency mainly de-

pends on the type of immunodeficiency present. General concepts are presented here
(sources: (15)). It goes hand in hand with a prompt vigilance of all organs to detect asso-
ciated autoimmune, malignant or other disorders.

Firstly, a special attention in the prevention and treatment of infections should be
made in order to avoid complications and sequelas. Viral infections (e.g. EBV, VZV
and adenovirus) should be screened periodically and regular vaccination should be per-
formed. A proper dental care should be insured, in order to avoid buccal infections and
gateway to systemic breach. Then, immunocompromised patients respond not as well
as immunocompetent persons to antibiotherapy. It is hence important to adjust the dosis
and duration of treatment in this group of patients in order to guarantee a safe recovery
and avoid re-infection. Usual antibiotics dosis can be doubled or tripled, depending on
the situation.

Antibioprophylaxis can also be considered, as for instance azithromycin (16). Fur-
thermore, depending on the immune deficiency, other antibiotics can be prescribed to
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avoid opportunistic microorganisms infections like Pneumocystis jirivecii. In this case, co-
trimoxazol can be given three times a week. In the case of an increased susceptibility to
mycobacterias, like in the MSMD, prophylaxis against Mycobacterium can also be given.

Intravenous immune globulin therapy can be considered amongst all in B cell im-
munodeficiencies, combined immunodeficiencies or in other immune dysregulations.
Specialized immune globulins injections for CMV, VZV or RSV can also be evaluated
to strengthen the patients’ defence against those pathogens.

Finally, in the most extreme cases, an immune reconstitution can be considered. It
is usually the last step in the treatment approach, or reserved to the most severe PID
presentations. It includes an hematopoietic cell transplantation (HCT) (17), gene therapy
(18) or thymic transplant in a DiGeorge syndrome (19) or forkhead box N1 (FOXN1)
deficiency (20).

1.2.2 Secondary Immunodeficiencies

Secondary immunodeficiencies (SIDs) are far more common than PIDs. There are
several external conditions that can lead to decreased immune competences by affecting
any arm of immunity. Malnutrition, drugs, metabolic diseases, environmental conditions
or infectious diseases can induce an immunodeficiency. Physiological conditions as ex-
treme ages (newborn and advanced age) can also be accompanied by a decrease in the
host immune defences (21).

The general principle for the management of SIDs is to cure or eradicate the under-
lying condition that causes immune dysfunction. When this elimination is not possible,
then prophylaxis against infections and other measures (e.g. vaccination, antibioprophy-
laxis) as discussed for PIDs can be undertaken to limit the risk of severe infections that
can lead to permanent functional losses. As this work will not focus on those conditions,
no further details will be given.

1.3 Immunophenotyping

Immune cell characterization has extensively showed its importance in the clinical
management of patients, as well as in the understanding of not only immunological dis-
eases, with their classification and treatment, but also in other specialties like oncology
or infectiology (22), (23), (24), (25), (26). The key technique to be able to analyse the phe-
notype and activation state of immune cells is using immunophenotyping methods. This
chapter will outline the general principles of immunophenotyping, from the laboratory
techniques used to bioinformatics methods available to handle the huge amount of data
gathered with cytometric methods.

1.3.1 Cytometric methods

Cytometry is the art of measuring and acquiring cells properties, that is to bring to
light the different molecules expressed and displayed by cells, as well as their cytoplas-
mic content. To reveal the content and the appearance of a cell, different approaches can
be used. Nowadays single-cell mass cytometry techniques have shown indispensable
new contributions in the diagnosis of immunocompromised patients allowing a deep in-
sight in the proteomics of any cells. The great increase in measurable parameters that can
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be seen at once in a cell provides a fast and large immune system screening in order to
get rapidly a picture of the phenotypic aspect of the different patient’s leukocytes. Fur-
thermore, the implementation of this recent technique has also brought new prospects in
the understanding of various functional states that might be impaired in immunocom-
promised hosts.

Flow cytometry
The well-established flow cytometry technology (FACS) using fluorescent staining of

cellular proteins allows for a reliable quantitative and qualitative characterization of dif-
ferent immune cell population in order to study their relative and absolute abundance
(27), (28), (29). FACS techniques are well positioned in assisting the clinician in his diag-
nosis of immunological pathologies, hence identifying abnormal levels of different im-
mune cells populations in the blood (30), (31).

Any type of tissues cells can be analysed with this technique, giving a quick overview
of the cells content and phenotypes in a wide variety of organs: bone marrow, cere-
brospinal fluid, blood, urine and any other solid organ. In fact, this method is already
routinely used in many different clinical specialities, like immunology, oncology or haemoa-
tology. Its strength resides also in its standardized use in diagnostics, high rate of cells
analysis and capability of sorting cells. However, when the need comes of inspecting
more parameters in a single cell, it becomes challenging to evaluate over 12-15 markers
due to the compensations needed to correct for the overlap in the fluorescence spectra
of the different fluorophores used and autofluorescence. This is particularly problematic
when an in deep immune cells profiling is sought.

Mass cytometry
Single-cell mass cytometry (CyTOF) techniques have been applied recently to en-

hance phenotypic and functional understanding of immune impairments (32), (33). It
is a technique that locates itself between flow cytometry and mass spectrometry. More
than 40 cell markers can be profiled in parallel with this innovative technology thanks to
the detection of pure rare earth metal isotopes, amongst all from the lanthanides group
(e.g. europium, neodymium, gadolinium, holmium), conjugated to antibodies that are
detected by an inductively coupled plasma (ICP) mass spectrometer.

The way mass cytometry works is as follows. Metal-chelating polymers are loaded
with pure rare earth metal isotopes and then covalently attached to the antibodies. Those
metals are normally not found in normal biological systems. Therefore, each isotope
will correspond to a specific extra- or intracellular cell marker that will then be possi-
ble to detect. Cells are washed to remove unbound antibodies, then the cell suspension
is introduced into the mass cytometer that atomizes and ionizes the cells. A radio fre-
quency quadrupole ensures the filtration to remove all low mass elements that are nor-
mally present in biological samples (carbon, nitrogen, and other elements with an atomic
mass smaller than 80 Da). Finally, each isotope reaches a time-of-flight (TOF) detector,
which allows a quantitative isotopes signature for each cell of our sample (32). Data are
finally stored into a flow cytometry standard (fcs) file and can be analyzed by manual
gating and by unsupervised analysis software packages. Figure 12 summarizes the dif-
ferent steps required for data acquisition.
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Recently, mass cytometry techniques have been applied for diagnostic purposes, pro-
viding a significant increase in the breadth and depth of the proportional and phenotypic
characterization of a patient’s immune cells, in comparison to traditional flow cytometry
techniques. These advancements are driven by the great increase in measurable param-
eters provided by mass cytometry which allows for all major immune cell populations
and subpopulations to be characterized with a single analysis. It brings undoubtedly the
prospect of improved diagnosis and therapies for immunodeficiencies and autoimmune
diseases.The main drawbacks of mass cytometry are its impossibility to sort and collect
cells as in flow cytometry due to the fact that each cell is destroyed when passing through
the instrument. Furthermore, the speed of data acquisition is also lower than using FACS
techniques (34).

A single-cell mass cytometry panel consisting of 35 different metal isotope conjugated
antibodies is currently being used by CHUV diagnostics department to provide an in
depth immunological profile patients’ immune cells. Suspected immunodeficiency, non-
response to a vaccine or autoimmune diseases are the primary criteria for the use of this
new diagnostic tool. Prior to the accreditation of this assay in Switzerland, an extensive
cross-validation study between flow and mass cytometry was performed by the Service
of Immunology and Allergy of the CHUV, showing a strong statistical correlation be-
tween these two analytical methods, which also appeared to be the case in the literature
(35). This reinforces the validity of using the increased analysis power of mass cytometry.

Thanks to this technique, it is thus possible to compare various samples in different
stimulation conditions. The process from blood samples to computable substantial data
requires meticulous attention and management of data measurement variations. Prepa-
ration of blood samples should be standardized between the different experimental con-
ditions in order to avoid unwanted bias. In a similar manner to flow cytometry, acqui-
sition through mass cytometer can also induce a certain variability due to instrument
performance variations over time that can induce signal intensity fluctuations. To face
this challenge, barcoding of samples can be used, which also reduces the number of cy-
tometer runs and spares conjugated antibody reagents used for staining cells (36).

1.3.2 Data pre-processing

The data measured by mass cytometry are transformed into numerical values in order
to be stored in a standardized file format called flow cytometry data file standard (FCS).
Each event (meaning each cell analysed) has its parameters stored one after the other in
a list called data set. It can be conceptualised as a large matrix containing for each cell all
its parameters measured. The first step of data pre-processing is therefore a matter of im-
porting the database in the programmed desired for further use. Different softwares can
handle FCS files. The ones that are going to be used in this work are Cytobank, FlowJo,
R, and Matlab. The two first ones are the most adequate to perform manual gating and
isolate cells subsets manually.

As it has been mentioned above, an important challenge that has to be face is instru-
ments’ performance variations from one run to another, and as well after calibration or
cleaning. In general, the instrument’s sensitivity decreases in relation with the acquisition
time. A proposed method that showed encouraging results is the so-called normalization
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method with bead standards. This consists of providing quality assurance by correcting
short-term and long-term signal fluctuations to get cleaner, better interpretable biologi-
cal differences. To face this challenge, polystyrene beads standards linked with a com-
bination of heavy metal isotopes are added to each cell suspension ready to be passed
through the cytometer. Then, when comparing samples, the beads are spotted and their
mean intensity is calculated and will serve as the reference to re-adjust and normalize
the measurements obtained from the stained antibodies. This makes it possible to con-
sistently compare different data acquired over a large period of time, taking into account
the cytometer’s variations in its measurements, as well to quantify the instrument’s per-
formance (37).

Before starting unsupervised analysis, normalized mass cytometry acquired data also
have to be transformed. Indeed, it is known that signals measurements of cellular molecules
by flow cytometry follows a normal logarithmic distribution. When comparison of large
distances are wished, it is important to scale transformed the data. Hence, performing a
linear transform to a logarithmic scale is essential in flow cytometry data processing to
get an entire overview of data distribution according to each of their parameters intensity.
When it is desirable to handle zero and negative values, hyperbolic inverse sine (arcsinh)
transform is used, as logarithms of negative values are not allowed. Moreover, it allows
for the data distribution to be more symmetric, reduce calculation bias for large numeri-
cal distances that are not experimentally significant, thus increasing the interpretation of
data around zero value allowing comparisons (38), (39).

Then, the next step in data pre-processing consists in cleaning the data set. Events
corresponding to single cells are conserved through a gating strategy to remove events
containing abnormal DNA content including cellular debris (e.g. dead cells) with low
levels of DNA or cell doublets with elevated DNA intensity. After accomplishing this
exercise, barcoded samples are separated into individual sample datasets using distinct
isotopic markers chosen to define each sample.

Once these pre-processing steps have been achieved to isolate cells from patients and
healthy donors into single FCS files, primary analysis is based on standard gating prac-
tices manually separating major known immune cell populations. This method relies
on our current phenotypic understanding of immune cells. Once this first step has been
achieved, unsupervised analysis of individual populations allows for an unbiased eval-
uation of potential differences between different sets of samples (i.e. healthy donors and
patients). Secondary analysis procedure is driven on all cells, directly analyzing them
with semi- or unsupervised clustering methods. The large variety of surface proteins on
human leucocytes provides many different possibilities to isolate cell populations. In-
deed, no fully standardized immunophenotyping exists, even if suggestions are made to
find a consensus, especially in manual gating (2). Once the desired populations in each
sample has been semi-automatically isolated, the downstream analysis of this second ap-
proach can begin.

1.3.3 Bioinformatics methods using R programming

In order to be able to interpret the relevant information of this large amount of data
produced by the CyTOF analysis, some essential tools in bioinformatics are required (40),
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(41). This new discipline was born with the need of analyzing large data produced by ge-
nomics (42). Nowadays, it finds its application in many other biological fields, situating
itself at the converging point of biology, computer science, mathematics and statistics.
Therefore, this will be the key point of the analyses.

Indeed, powerful methods exist in R programming, amongst all using Bioconduc-

tor packages, to highlight cell subsets characteristics in high dimensional mass cytom-
etry data (43), (44), (45). It provides different tools to analyze and help interpret multi-
dimensional large datasets. Supervised, semi-supervised and unsupervised cells cluster-
ing methods are suitable and available for this data processing (38). For instance, Flow-
SOM package allows its user to visualize the data, as well as building a minimal spanning
tree and a meta-clustering (46). Once the metaclustering is performed, different possibil-
ities of analysis pipelines are conveniently available: manually down-clustering, visual
representation with dimensionality reduction (47) and intra-clusters properties evalua-
tion with a differential analysis (38). Clustering algorithms allow for the separation of
specific cell populations based on their phenotypic and/or functional profiles, as shown
in figure 13.

Different algorithms and functions are used in this work. The main ones are now
going to be detailed.

Heatmaps
Heatmap is a powerful way to visualize median marker intensities to compare be-

tween different variables and samples. For instance, it gives a quick graphical overview
of marker expression in a cell population compared to others, representing this intensity
in a pixels matrix as colors. It facilitates thus the visualization and comparison of values
from multiple samples.

Self-organizing maps and minimal spanning trees
Events in high-dimensional data sets are challenging to cluster without neglecting the

multidimensionality, as it is often done by manual two-dimensional gating. Clustering is
the art of organizing and grouping events according to their protein expression profiles
similarities. To achieve this task, different algorithms exist using different mathematical
approaches, such as k-means clustering. The choice of the method influence the results
and can bring bias or create irrelevant subsequent biological interpretations when inade-
quate (48).

FlowSOM clustering approach, an opensource R package, has shown superior per-
formances, allowing a good clusters separation comparable to manual gating, and fast
runtimes in comparison to different other clustering methods. Therefore, it makes it suit-
able for large multi-dimensional datasets analysis (40). It relies on the building of a self-
organizing map, which is a type of artificial neural network, using competitive learning.
Using Euclidean distance, a vector is compared to already existing nodes (initially ran-
domly assigned with points from the dataset), and the best matching unit (e.g. the clos-
est node) is selected. It creates a two-dimensional interdependent nodes representation
of the multi-dimensional data, allowing a clustering according to the high-dimensional
similarities of each event (49). Then, a minimal-spanning tree is built, which allows a
visual representation of the obtained clusters. It links the closest clusters together, in a
way that the sum of the different connections from a node is minimal (46).
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t-distributed stochastic neighbor embedding (tSNE) algorithm
tSNE algorithm creates a low dimensional map from a high dimensional space. Simi-

larity matrix is built from distance matrix, based on Euclidean distance and local density.
Then, it maps the different points of the dataset in lower dimensions using student’s
t-distribution. By dimension reduction, the Kullback-Leibler divergence (or relative en-
tropy, which is the measure of dissimilarity between two probability distributions) is
minimized, in order to get a final two dimensional map displaying each point next to
its nearest neighbours, according to higher dimensional proximity. It is thus a nonlinear
dimension reduction algorithm, able to capture non-linear relationships between points
of the dataset. This makes it different from conventional principal component analysis
based on covariance matrices, which assumes linear relationships between parameters.

Then, to get the visual representation of this dimensional reducted high dimensional
single-cell data, a scatter plot displaying all events (or cells) is represented using viSNE.
Therefore, as discussed above, the distance in the two dimensional space between to
points reflects the Euclidean distance in the high-dimensional space. An additional di-
mension can be represented by colouring each cell according to their clusters that they
have been assigned to with FlowSOM for instance, or according to the expression level of
different markers intensities (22). The main drawback of viSNE is the so-called ”crowd-
ing problem” (22). Not all events can be mapped as it would saturate the visual repre-
sented field.

Differential analysis
Once different clusters have been defined and isolated, a differential analysis to eval-

uate inter-clusters variability can be undertaken. Classical statistical methods are not
appropriated and optimal to handle non-normal distributed data, and usually do not in-
corporate random effects in their designs. However, data acquired by single-cell mass
cytometry can present those two characteristics.

First, variations among individuals do exist, which add a random effect in the mea-
surements. To handle this, linear mixed models integrate random effects and are ap-
propriated. In this way, this model can be used when comparing markers expression
between different cell populations. Second, the acquired data do not necessarily follow
a normal distribution, as they can contain binary values or counts. Furthermore, when
handling proportions with lower cell counts, the uncertainty of the calculations is higher.
Generalized mixed models are suitable to handle the non-normal distribution of data, as
for instance using a logistic regression as binomial distribution. Those models are also
able to catch a randomly distribution due to inter-individuals evaluation. This can there-
fore be used to compare cell populations proportions (38), (50).

2 Methodology

2.1 Patients and controls

Patients with suspected immunodeficiencies (n = 15) have been selected. They pre-
sented higher susceptibility to infections and at the request of their personal physician,
their blood was sent to the diagnostics laboratory of immunology for a quantitative anal-
ysis of their immune cells. More clinical information or demographical information are
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not known. Control subjects (n = 15) were healthy donors from the laboratory or volun-
teers from the CHUV hospital occupation consultation. There were 11 women and 5 men
who were of matched age with the selected patients.

2.2 Data acquisition

2.2.1 Blood preparation

Blood samples of the above mentioned patients (P) and healthy donors (HD) have
been processed and analysed. The first step was to prepare, stimulate, fix and freeze
them. In total, 2x 200 µL are used for each patient and healthy donor, separated into tube
A and tube B. 5 healthy donor samples and 5 patient samples are processed together, as
they are batched and barcoded, as explained below.

Blood stimulation and incubation
Whole blood will be stimulated with LPS, at the concentration of 200 ng/mL, and

R848, at the concentration of 1 µg/mL, in the tube B. On the other hand, tube A will
consist of unstimulated blood. Both tubes received golgi plug at a concentration of 1
uL/mL and were left in incubation for 4 hours at 37�C, without agitation.

Fixation and freeze
Then, in order to freeze and keep the samples stables during all blood samples ac-

quisition, both tubes for each patient and HD were treated with SMART tube stabilizer
(280 µL per well) and let incubate for 10 minutes at room temperature. Then, they were
directly put on ice and freeze at -80�C for at least 1 hour.

2.2.2 Blood thawing, staining and analysis through mass cytometer

Thawing and red blood cells lyse
Frozen blood was thawed in water at 10�C and then red blood cells were lysed with

4 mL thaw-lyse buffer diluted 1’000 times in DDWater. A 10 minute incubation at room
temperature was followed by a 600xg centrifuge for 7 minutes at room temperature. Fi-
nally, supernatant was discard and cells were washed with 1 mL of phosphate-buffered
saline (PBS) containing 0.02% saponin.

CD45 and palladium barcoding
In order to use multiplexing during mass cytometry acquisition, barcoding of the

samples was used using CD45 and isothiocyanobenzyl-EDTA (palladium) to chemically
conjugate the fixed cells. CD45 antibodies linked to different heavy metal isotopes were
used to code and batch 5 different samples together, whereas two isotopes of palladium
are used to code the unstimulated and stimulated conditions. Batching and barcoding
samples together are important to reduce variability between the different cytometer ac-
quisitions. Furthermore, it allows to save on the amount of antibodies used for the down-
stream staining. This is why this approach has been chosen in this work.

The heavy metal isotopes used with CD45 marker were yttrium-89, praseodymium-
141, platinum-194, platinum-195, and platinum-198. The staining in 50 µL PBS-saponin
solution lasted 30 minutes at room temperature in agitation.
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Then, after washing the cells, palladium barcoding with palladium-104 (Pd-104) and
palladium-108 (Pd-108) isotopes was performed by suspending the cells in a 80 µL dimethyl
sulfoxide (DMSO) solution containing the corresponding Pd isotope at 400 nM for 30
minutes at 4�C. Pd-104 corresponds to the unstimulated (US) condition, and Pd-108 cor-
responds to the stimulated (S) condition. After those first 30 minutes of incubation, the
solutions were quenched using 400 µL CSM and incubated for 10 more minutes at 4�C.

Finally, the samples were pooled together in a patients tube and another healthy
donors tube. Those two tubes will be processed in parallel and will not be mixed to-
gether. After a washing with 1 mL CSM, they are re-suspended in 1 mL CSM, ready for
the next processing step.

90% granulocytes withdrawal
As the analysis will not focus specifically on the granulocytes, which constitute the

major part of peripheral blood leukocytes, 90% of them were removed to save antibod-
ies and decrease the later acquiring time through mass cytometry. Therefore, 100 µL of
sample were taken from the suspension and kept aside. A column for magnetic cells sep-
aration, using magnetic anti-CD15 antibody beady, was used to specifically deplete the
granulocytes from the sample. Thus, the cells were suspended in a mix containing 2.5
µL beads and 97.5 µL CSM, and were incubated during 15 minutes at 4�C. Then, they
were washed and re-suspended in 500 µL CSM and they were passed through the mag-
netic column. Once all the suspension had passed through, the column was washed with
1 mL CSM, and the new suspension put together with the formerly kept aside 100 µL
suspension, which let at the end only 10% of the total granulocytes.

Extracellular staining
The cells were re-suspended in the antibody staining mix diluted in CSM, for a final

volume of 50 µL. The mix of antibodies used with their corresponding bound heavy
metal isotopes are shown in figure 14, for a total incubation time of 30 minutes at room
temperature in agitation. Then, there were washed and fixed with 2.5% PFA and let
incubate for 5 minutes at room temperature in order to permeabilize the cells and allow
a further intracellular staining. 1 mL of CSM-S were used to wash the cells and maintain
the permeabilization that had been done.

Intracellular staining
The next step was the intracellular staining, using the antibody mix shown in figure

14. The intracellular antibody mix diluted in CSM-S for a final volume of 50 µL was used
to re-suspend the cells. A 30 minutes incubation at 4 degrees took place before the next
wash.

Iridium staining and data acquisition through mass cytometer
Finally, an iridium staining was performed to mark cellular DNA. Hence, the cells

were mixed with a solution containing 450 µL CSM-S, 1 µL iridium and 1.6% PFA. The
final sample was then passed through the mass cytometer for data acquisition.
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2.3 Data processing

2.3.1 Data pre-processing

Preprocessing of FCS files
Once the different FCS files have been acquired through the mass cytometer, a bead

normalization is undertaken in order to get rid of signal variability, using the bead nor-
malization package from nolanlab written in Matlab. During CyTOF acquisition, differ-
ent calibration beads have been used, that are Cerium-140, Europium-151 and -153, and
Lutetium-175. Manual gating in each beads domain is undertaken, and the events situ-
ating themselves at the intersection of the different gates will be interpreted as the beads
by the program, and their intensity will be used as normalization reference. The Matlab
code creates new FCS files with the initial data without the events corresponding to the
gated beads.

Cleaning the data set and separating the barcoded samples
In order to separate the acquired FCS files, containing batched samples, into different

file representing each sample for each condition individually, FlowJo has been used for
the gating and the exportation of the new single FCS files. During this pre-processing
step, it has also been used to clean the dataset and remove the cell debris, doublets or
other noisy events that will not be interpreted as a single cell. Figure 15 shows the gating
strategy (illustrated by healthy donors 1 to 5) to achieve the individualization of each
condition for each healthy donor or patient. Moreover, the gating into stimulated and
unstimulated cells only shows the use of 104 as a barcoding marker, and not 108 for
instance. This underscores the importance of using both 104 and 108 barcoding markers
for unstimulated and stimulated conditions since there is not a clean separation between
some of the populations including healthy donor 5.

Manual gating strategy
Their are two further approaches in the bioinformatical analysis pipeline. The first

one consists of utilizing all cells data and drive semi-unsupervised clustering approaches,
as explained below. In this case, the FCS files created in the last step are sufficient and
no further pre-processing is required. However, the second approach consists of gating
manually the major known immune cells populations, and drive an unsupervised clus-
tering algorithm for each of the isolated populations, to identify sub-families. There are
some opinions that fully unsupervised clustering methods might not be optimal and have
to be used with extreme caution as statistical relationships predominate above biological
relevant data. Thus, to explorate the different approaches and compare their accordance,
manual gating has been performed in this work. Then, it has focused on the myeloid
dendritic cells subpopulation to drive further unsupervised clustering algorithms and
differential analysis to compare between the different conditions and the different sub-
populations.

Thus, figure 16 shows the manual gating strategy used to isolate the major known
immune cells populations, using Cytobank software. It should be mentioned that the
presented gating strategy for the separation of NK cells was not optimal and due to a
reduced staining of CD7 in some patient samples (NK cells being CD3-/CD7+/CD56+).
Generally, the NK cells can be isolated directly from the CD3- cell population by their
expression of CD7 and elevated expression levels of CD56. Here, the gating strategy
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in figure 16 for NK cells showed sequentially the removal of: CD3+ T cells, CD19+ B
cells, CD14+ monocytes and HLA-DR+ dendritic cells, and removal of CD123+ basophils
before gating on the NKG2+ NK cells.

2.3.2 Bioinformatical analysis pipeline

As said earlier, the analysis has been driven on two populations of cells. The first one
was on all of the cells, whereas the second one was on the manually gated myeloid den-
dritic cells subset. The bioinformatical analysis was done using R programming and its
different packages available for high dimensional biological data analysis. Many are pro-
vided by Bioconductor, an open source platform for bioinformatics. The general pipeline
is the same for those two subsets analysis. Different comparisons will then be possible
with the manually or unsupervised clustering methods, comparing each population (e.g.
healthy donors and patients) between each other, or comparing between each of the con-
dition (e.g. unstimulated or stimulated) for each of the cell populations.

Another important notice is that the data have been transformed before driving any
clustering or other analytical method. Hyperbolic inverse sine (arcsinh) has been applied
with a cofactor 5. This has been made in order to have a more symmetric distribution
between the different markers intensities measured and to make them comparable to
each other. This is specially important when clustering or other differential analysis have
to be made. This analysis pipeline and the R code have been greatly inspired by (38).

Immune cells populations clustering
FlowSOM and ConsensusClusterPlus libraries have been used in order to identify

cells populations based on their similarities regarding some chosen surface markers.
Those methods have been preferred to others as they have been considered as the most
efficient in terms of speed of calculation and performance in a comparison of different
clustering algorithms (40). Clustering surface markers have been set based on biological
considerations, choosing the markers that can best discriminate the different cells popu-
lations. Those are represented in figure 17, being different when looking and clustering
all the cells or only the mDCs subpopulation.

After having built the minimal spanning tree using FlowSOM, a further metaclus-
tering step is performed using ConsensusClusterPlus algorithm. This has as an effect
to group once again by similarities the 100 nodes identified by FlowSOM into only 20
groups, and assign to each cell its group affiliation.

Immune cells populations visualization and further cluster merging
The two-dimensional visual representation of the cells is obtained using tSNE algo-

rithm, and the package in R programming called Rtsne. It is possible then to add a third
dimension colouring each cell of the obtained tSNE graph according to the cluster it has
been assigned with ConsensusClusterPlus. Then, a heatmap is generated in order to vi-
sualize the different molecular properties of the different populations.

Finally, in the case of automatically analysing all of the cells together, a last cluster-
ing step is done to merge some of the identified 20 clusters into reduced known immune
cells populations. This is done manually, based on the heatmap obtained showing the
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expression of the different surface markers of each population.

It is important to mention that all of those clustering steps are done looking at all
cells together, that means mixing healthy donors and patients cells. This is done in order
to get more robustness when assigning a family to a cell, as more cells are constituting
the reservoir for the clustering. However, when a visualization is made, healthy donors
can be separated from patients, as well as stimulated conditions can be separated from
unstimulated conditions. Once all cells have been classified, it is possible to perform
differential analysis to compare the populations and conditions between each other.

Differential analysis
As mentioned earlier when talking about the available bioinformatic approaches to

statistically compare groups, a right statistic model has to be chosen. In this work, two
major statistical models are used, and significance was determined for a p-value < 0.05,
obtained with a t-test to test the null hypothesis. In both cases, it is essential to take into
account the inter-individual variations that should not be considered as pathological dif-
ferences. Therefore, the two models will have to consider a random effect depending on
the number of samples analysed and the corresponding overdispersion.

Statistical tests will be driven on a large high dimensional data, comparing each
marker expression for each sub-population, between different groups. However, some
of the results emerging from this large statistical analysis will be significant by chance.
That is why those false positive have to be consider. A method proposed is to use the false
discovery rate (FDR) approach with corresponding adjusted p-value to multiple testing
proposed by Benjamini and Hochberg in 1995 (51). A FDR of 5% is used in this work.

When comparing proportions of population sizes, a binomial distribution is not ade-
quate to model the dispersion of the data. Therefore, a generalized linear mixed model
(GLMM) was performed using logistic function as a binomial distribution. On the other
hand, when comparing intensities of marker expression between cell populations, a bi-
nomial distribution is adequate. Thus, to take into account the random effect from inter-
individuality, the linear mixed model (LMM) was used. Those two models are available
in the package lme4 provided by the CRAN project.

3 Results

3.1 All cells analysis

The first results presented give a rough idea about the data, in order to screen for data
quality. A barplot showing for each sample and for each condition the cells events allows
to have a main idea on the consistency in the size of each of them. It is represented in
figure 18.

The next figure has been constructed to identify the statistically most discriminating
surface markers for all the cells, that is the markers that present the highest variability in
each sample. The score is called non-redundancy score (NRS) and it is based on a prin-
cipal component analysis. The markers presented on the left have a greater NRS, which
means that they might be more discriminating that the ones on the right of the graph. The
resulting graph is shown on figure 19. It should be noted that this graph does not take
into account biological relevant markers, it is only based on a statistical point of view
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and it should therefore not be taken as an absolute truth. However, when comparing it
to the markers that had been selected for their biological significance in distinguishing
the prevalent immune cell populations (see figure 17), it is reassuring that most of those
chosen situate themselves on the left part of the graph.

3.1.1 Cells populations clustering

FlowSOM minimal spanning tree is represented on figure 20. Once it is obtained, as
said earlier, ConsensusClusterPlus undertakes a further meta-clustering to merge those
100 clusters into 20. As a result, the heatmap shown in figure 21 is obtained, displaying for
each cluster the median intensity of its markers expressions. Based on this heatmap, the
final manual down-clustering step was performed, and the heatmap of figure 22 shows
the expression intensities for each of the known and identified immune cells popula-
tions. Remaining cells debris identified, antibodies aggregations or abnormal clusters
have been removed (as for example cluster 14 on figure 22.

3.1.2 Cells populations visualization

Figure 23 shows the obtained tSNE plot of the data, where each cell is coloured accord-
ing to its meta-cluster that has been assigned. Figure 24 represents the known identified
major immune cells populations. Figure 25 allows a quick overview of the populations
stratified by samples, in order to detect a possible lack of one of the population in a
sample. The tSNE plot of healthy donors (containing both unstimulated and stimulated
conditions) was compared to the tSNE plot of the patients group (also containing un-
stimulated and stimulated conditions), which is shown in figure 26. Finally, once the
clustering was over, a comparison of the proportions between this automatic clustering
method and the manual one was performed. The figure 27 shows the obtained resulting
graphs.

3.1.3 Differential analysis

Before starting the differential analysis, different heatmaps have been made to have
an overview of the expression of different activation markers and cytokines expressions
in each of the groups and conditions. Figure 28 represents the intensities of the activation
markers screened for each of the groups and conditions, whereas figure 29 represents the
cytokines expressions.

Then, the relative abundance of the clustered immune cells populations was com-
pared between the healthy donors and patients in the unstimulated condition, to see if
there was a significant difference of population abundance between those two groups.
Boxplots with jittered points are represented in figure 30. The differential analysis using
the generalized mixed model showed that the CD4+ T cells population was significantly
lower in proportion to other cells populations in the patients group compared to the
healthy donors group, with a calculated p-value of 0.0015.

The differential analysis of cytokines expression in the different immune cells popu-
lations between the patients group and the healthy donors did not find any statistically
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significant results for a p-value ¡ 0.05, neither when comparing the populations in the
unstimulated condition, nor in the stimulated condition. Boxplot with jittered points
representing the different cytokines expression in the two populations in each of the con-
ditions is represented in figure 31. However, when looking at activation markers, both
in the unstimulated and stimulated conditions there were statistically significant differ-
ences in the activation markers expressions intensities in the patients group, as illustrated
in figure 32 and 33.

3.2 Myeloid dendritic cells analysis

This part of the analysis is performed on the manually gated population of myeloid
dendritic cells. As performed for the analysis of all cells, quality control graphs are suit-
able to have a quick overview of our data during automatic clustering and analysis. Fig-

ure 34 shows the number of events present in each of the samples and conditions. The
NRS for all samples and chosen discriminative surface markers is displayed on figure 35.

3.2.1 Cells populations clustering

Figure 36 shows (A) the minimal spanning tree obtained after running FlowSOM al-
gorithm on the manually gated mDC population, and (B) the CD1c expression intensities
in each cluster which corresponds to the classical dendritic cells within the mDC pop-
ulation. The heatmap showing the markers intensities of each cluster after the Consen-
susClusterPlus algorithm is displayed in figure 37. Another representation of the median
marker and cytokines intensities among the 20 meta-clusters is given in figures 38 and 39.

3.2.2 Cells populations visualization

The tSNE graph obtained illustrating two-dimensionally the meta-clustering obtained
is illustrated in figure 40. Figure 41 displays the tSNE plots of the healthy donors com-
pared to the one of the patients, whereas figure 42 allows a quick overview of the popula-
tions stratified by samples, in order to detect a possible lack or increase of cells in one of
the population in a sample. Figure 43 focuses on the separate tSNE graph of one particu-
lar patient and a particular healthy donor.

3.2.3 Differential analysis

First, the analysis has been made over the whole set of mDCs, without considering
the clusters identified. For the activation markers, no significant differences in their ex-
pression have been detected in the unstimulated condition. In the stimulated condition,
figure 44 shows the markers that have a statistical significant difference in their expression
between the patients and healthy donors groups. When looking at the cytokines expres-
sion between healthy donors and patients, there was a statistically significant (p-value
< 0.5) decrease of IL-1b, IL-6, IL12p40 and TNFa expression in the patients group com-
pared to the healthy donors in the unstimulated condition. In the stimulated condition,
the statistically significant results are shown in figure 45.
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Now, performing the differential analysis among the 20 clusters of mDC population,
figure 46 shows the median activation markers expression intensities , whereas figure 47
shows the median cytokines expression intensities.

Then, the relative abundance of the clustered mDCs subpopulations was compared
between the healthy donors and patients in the unstimulated condition, to see if there
was a significant difference of population abundance between those two groups. The
differential analysis using the generalized mixed model is shown in figure 48, and box-
plots with jittered points are shown in figure 49.

The differential analysis of cytokines expression in the different mDC subpopulations
between the patients group and the healthy donors is shown on figure 50 for the unstim-
ulated condition, and on figure 51 for the stimulated condition. Moreover, when looking
at activation markers, both in the unstimulated and stimulated conditions there were
statistically significant differences in the activation markers expressions intensities in the
patients group, as illustrated in figure 52 and 53.

4 Discussion

4.1 All cells analysis

The first general graph obtained, figure 18, illustrating the number of cells for each
sample and condition shows a certain variability in the events present in our data. That
can have different explanations. First, there can be an intrinsic difference in the immune
cell number of each patient and healthy donor, coming from inter-individual variability
or, in cases of patients, from pathological immune cells counts. Second, it can also be
due to different loss of cells during laboratory manipulations and thus can be a result
of non-accuracy in the handling of cells. This variability should not have non-desirable
repercussions as the clustering was conducted on all cells together, that is healthy donors
and patients mixed, and the differential analysis compared proportions of populations,
as well as markers expression in each of the population. Thus, no absolute cell counts
analysis were undertaken.

Figure 19 has mostly been used to strengthen the selection of surface markers that
were used to delimit cells lineage during the automated clustering. Those markers were
chosen based on the literature, choosing the ones that were able to discriminate the best
cells populations. NRS score confirmed that most of them were statistically great dis-
criminators.

FlowSOM minimal spanning tree, illustrated in figure 20 shows already a consistent
cells clustering, as it is possible to distinguish the different major known cell populations.
Furthermore, it is also an interesting way to keep an eye on the automated clustering. In-
deed, unsupervised clustering can turn out to be dangerous in a sense that one is not
always aware of what is happening. Hence, it is primordial to get intermediate plots that
allow a semi-supervision of the analysis.

After the ConsensusClusterPlus meta-clustering to 20 final clusters, the major cells
populations could be identified in figure 21. However, the 20 clusters were not perfectly
adequate to identify all subfamilies of immune cells. Thus, a meta-clustering to a final
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number of clusters larger than 20 could be a possibility to improve the final manual clus-
tering. Indeed, if for instance subpopulations of myeloid dendritic cells were wished to
be found, it would not have been straightforward using the initial analysis of all immune
cells combined. As such, a new FlowSOM analysis should be undertaken specially on
this isolated population to focus the clustering on this subset.

Moreover, the results obtained after ConsensusClusterPlus meta-clustering in figure

21 show that some populations are biologically unrelated and irrational. This is the case
for the minor population 14 (0.023% of all cells) that most likely corresponds to an aggre-
gate of antibody, cell debris and DNA that was not eliminated in pre-filtering the data. In
any case, it has been decided to keep this population aside and not consider them in the
downstream analysis.

tSNE plots are great visual methods to get a two-dimensional representation of high-
dimensional data. The more separated are the clusters, the more discriminative has been
the clustering and is gratifying. However, there is some caution to have when interpret-
ing a tSNE plot. Moreover, this algorithm will represent two points that are really close
in the high dimension as well close in the two dimension. Thus, those points will be
represented close to each other. But, the opposite is not always correct. Two points that
are close in the two dimensional plot are not necessarily close in the high dimension. It
is thus recommended to run it a few times, taking different initial randomly disposed
points. It will then give more robustness to its interpretation. Another drawback of tSNE
is its computational time. When tSNE are stratified by samples as in figure 25, it gives a
quick look on the data and allows a rapid identification of the samples which are lacking
any major population. Comparing the tSNE plots of healthy donors and patients in fig-

ure 26, no obvious loss of population appeared in the patients group, as well as no new
populations could be identified. Finally, the comparison between immune cells popu-
lations proportions that were manually and semi-automatically obtained shows a good
concordance of those two methods, as illustrated in figure 27. There is a tendency of the
semi-automatic method to over-classify T cells into CD4+ and to under-classify them into
CD8+, compared to the manual expert gating. This can be explained by the fact that the
indium metal 113 used for CD8 also has about 10% staining in the CD4 indium 115. For
manual gating, this is easy to see and correct for, but the automatic gating has more of
a problem. This is however the only example of an antibody that stains in two metals
at once (i.e. CD8 that will have 113 and 115). Given what is known in the literature for
defining the major immune cell populations in figure 27, it can be concluded that manual
gating using the expertise of a trained immunologist is better at defining these popula-
tions. However, in general the unsupervised analysis was fast and reasonably good in
this task as well.

It is important to be aware that immunodeficiencies can clinically present themselves
with similar symptoms, but having different underlying immune deficiencies. When in-
terpreting the differential analysis results, it is essential to be aware that in this work the
patients group has been selected based uniquely on clinical criteria. The patient set being
evaluated is therefore heterogeneous with respect to their cellular phenotype. Thus, after
obtaining our results, it would be interesting to perform additional analysis to group pa-
tients according to their immune cell specific deficiencies. It is hence essential to have a
bigger dataset of patients to get significant and robust results. For instance, most immun-
odeficiencies are B cell related. When looking at the B cell populations throughout the
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patients in figure 25, it can be seen that patients 3, 4, 10 and 15 have low proportions of B
cells compared to the healthy donors and other patients. Thus, having a bigger dataset of
patients, it would be possible to cluster those different patients showing this phenotype
to drive further analysis and to try to find out why they have this decrease of B cells.

When looking at the cytokines expressions from the different cells populations, no
statistically significant results were found, even though in figure 29 it seems to be less
IL-12 in the mDCs of patients compared to healthy donors. However, in the following
section focusing on mDCs, differences will be seen. That can be a hint that a combination
of those two analysis approaches would be ideal to optimally compare the populations.
Moreover, another possibilities would have been to drive the analysis of clustering and
subpopulations identification specifically on the mDC subset, in a similar way as in the
approach using manual gating. Then, comparing the subpopulations of mDC might have
bring to light differences. However, when analysing the expression of activation markers
in the different populations as shown in figures 32 and 33, both in the unstimulated and
stimulated conditions there was a statistically significant increase in activation markers
in different immune cells populations. This might be interpreted as an over-activation
of the immune system in the patients groups in a context of permanent inflammation,
due to a disease state or a dysfunctionality in another arm of the immune system that
induces the over-activation of other cells populations. Once again, it would be interested
to group the patients according to their molecular signatures and to look for underlying
deficiencies in those cells.

This analysis provides a rapid overview of the statistical differences that are observed
in the different immune cell populations between the healthy donor and patient popu-
lations. However, interpretation of this data with the mindset of an immunologist is
required to help identify areas where unsupervised analysis is overinterpreting small dif-
ferences. For example, looking at figures 32 and 33, CD86 (B7-2 receptor) is shown to be
overexpressed in most immune cell populations of patients compared to healthy donors.
Automated analysis even noted this in T cell populations that should not significantly
express CD86. Therefore, a combination of unsupervised and supervised verification is a
necessary part of the analysis pipeline.

To conclude this first part of all cells analysis, only few significant differences could
be seen between the patients and the healthy donors group. It shows the importance
to go even deeper in the analysis, thus concentrating on one cell subpopulation. This
approach, as it will be shown below, will allow to bring to light relevant differences and
ideas for further analysis.

4.2 Myeloid dendritic cells analysis

The initial plots obtained, as in figure 34, to have a rough look on our data shows as
well variations in the number of cells in each sample. As mentioned above, this can be at-
tributed to a heightened immune and/or inflammatory response. A further reason could
be due to the manual gating variability that does exist. As proportions will be analysed,
it should not bias our results interpretations. On the NRS plot shown in figure 35, it is
interesting to see that the marker discriminating the most between all of the cells events
is CD1c, defining the conventional dendritic cells subset, an important mDC subfamily
that will be discussed below.
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The minimal spanning tree coloured according to the CD1c expression (figure 36)
gives the position of the clusters corresponding to the conventional dendritic cells. This is
a way to verify and semi-supervise the quality of the clustering, showing that meaning-
ful biological differences are taken into account and that the well-known subpopulations
are being detected with this approach.

Figures 38 and 39 give a direct histogram representation of the surface markers and
cytokines intensities among the 20 mDC clusters obtained with FlowSOM and Consen-
susClusterPlus. Different molecular signatures can be clearly seen between each of the
clusters. It is also possible to see that clusters 10 and 12 express a higher level of CD66b,
which is normally associated with granulocytes. Therefore, it is most likely that some
of the granulocytes have not been gated out during the initial manual gating. With re-
spect to the cytokines expression, subpopulations of mDCs can be identified that secrete
higher levels of TNFa, IL-1b, IL-12p40, or IL-6. Comparisons between the healthy donors
and patients group was therefore relevant to look for expression intensities differences
between those two populations. Furthermore, it has to be noted that those statistically
significant differences in cytokines expression could only be seen when cells were manu-
ally subdivided into separate clusters.

The heatmap shown in figure 37 is of an extreme importance to distinguish different
subpopulations. Clusters 15, 18, 19 and 20 have the phenotype of conventional dendritic
cells (CD1c+ CD16-), whereas clusters 4, 6, 9, and 12 have the phenotype of inflammatory
dendritic cells (CD1c- CD16+).

Looking at the tSNE plots stratified by samples, some patients seem to present con-
ventional DCs that have undertaken a transition from a weakly (cluster 19) to a highly
(cluster 20) activated state, like patient 01, or patient 02 for instance (represented in figure

43). Indeed, they seem to have an increased cluster 20, which present higher activated
surface molecules like HLA-DR, CD38, CD69, and CD86 (see figure 37), in comparison to
healthy donors. Looking at the mDC cytokines expression, there is a statistically signifi-
cant decrease of the expression of pro-inflammatory cytokines IL-1b, IL-6, IL-12p40, and
TNFa when they are stimulated by LPS and R848. This might indicate that those DCs
are exhausted from being constantly activated, and thus less capable of secreting pro-
inflammatory cytokines when they are stimulated. To further this investigation, TLR4
(pathogen recognition receptor - PRR - for LPS), TLR7 or TLR8 (PRRs for R848) intracel-
lular signaling pathways phosphorylation state could be investigated. This could high-
light upstream molecular defects responsible for this dysfunction.

Some functional immune cells defects have already been raised in primary immunod-
eficiencies, particularly in what concerns dendritic cells. For instance, it has already been
shown that TLR7 and 9 can present defects in CVID (52). It would thus be interesting to
see if similar findings can be highlighted in this patients groups. Another deficiency of
dendritic cell function in CVID was a deficiency in IL-12 secretion (53). This highlights
the relevance of our approach in examining immune cells populations and bringing to
light molecular and cellular mechanisms responsible for their pathological states.
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4.3 Analysis pipeline general discussion

This project shows the power of using high dimensional mass cytometry analysis in
combination with bioinformatics algorithms. Using this analysis pipeline, a better un-
derstanding of immunodeficiencies molecular and cellular mechanisms can be achieved.
This master’s thesis illustrates and justifies the place of such an approach. It is important
to keep in mind that manual gating, used in the semi-unsupervised workflow in order to
manually isolate known immune cell populations, can be subject to inter-operator vari-
ability, which would alter its reproducibility. However, the different immune cell pop-
ulations are referred to as lineages and help form a framework for the more in depth
clustering within these lineages (e.g. T cells, NK cells, B cells, monocytes). Since these
lineages are well defined, there would not be much room for inter-operator variations.
Nevertheless, aspiring to a fully automated clustering method would definitely remove
a certain subjectivity in the populations gating, as well as increase data processing speed
and analysis robustness.

Many patients suffering from any diseases in the primary immunodeficiencies spec-
trum do not have a diagnosis, or have a general diagnosis to characterize their troubles.
A likely explanation is that we have no applied the right tools for an in-depth under-
standing of the underlying causes of these diseases. However, now this approach can
help to unveil new pathophysiological mechanisms and potentially bring clarity in the
diagnosis of immunodeficiencies subtypes. Immune profiles will be discovered that will
try to be correlated with specific clinical pictures, evolution, treatment and prognosis in
order to best clinically manage immunodeficient patients. It is as well a great opportu-
nity to discover new immunodeficiencies, as well as to contribute to explain the variety of
clinical manifestations related with immunodeficiencies. Regarding the management ap-
proach of immunodeficient patients, better characterizing each immunodeficiency might
also allow to directly choose the right treatment, for example the choice of an aggressive
hematopoietic stem cell transplant therapy compared to intravenous immunoglobulins.

More differences were seen when manual gating was performed to identify the ma-
jor known immune cells before the unsupervised analysis. It shows the importance of
this method even if it relies on the expertise of the ”manual gater”. Further improve-
ments and optimisation in the automatic gating have to be made to achieve a robust,
fully objective and fast immune cells automated clustering in harmony with biological
considerations and relevancies.

As mention earlier, the patients group contained patients presenting different kind
of immunodeficiencies, as the only including condition was that they should present a
clinical suspicion of a immunodeficiency. Thus, it would be of great interest to include
patients with known mutations identified by NGS that affect specific immune cell pop-
ulations such as B cells. That way, the profile of B cells in these two patient populations
can be compared to identify the suspected immunodeficiency patients with B cells that
have a highly similar profile to the patients with a specific mutation.

In the analysis pipeline, many other analysing tools have not been used in this project
but might present as well high interest. For instance, machine learning algorithm and
other artificial intelligence approaches should also be of a great help to bring light to this
large amount of data. Those include fully automated exhaustive projection pursuit (EPP)

30



clustering (54), quadratic form (QF)-based cluster matching algorithm (55), Citrus (56),
deep learning (57), neural network (58), or other machine learning systems (59).

It is a real challenge to make sense in the analysis of such large data. Lots of infor-
mation are generated with such methods, and it is sometimes difficult to identify what is
relevant and what is not. Strong biological knowledge is essential to identify and target
results that are meaningful. For instance, it is not because a statistically significant result
is found that it means that it is biologically meaningful, and even less that it is clinically
relevant. The interpretation of this amount of results can be therefore challenging.

The main goal of this work was to set up an analysis pipeline to go deeper in the
functional analysis of immune cells. Therefore, one major limitation of this work is that
the patients analysed were not chosen with strict criteria. Only one criterion applied,
which was the clinical suspicion of presenting an immunodeficiency, without highlight-
ing an obvious quantitative cell defect. Thus, no conclusions can really be made about
the obtained results, and the population of patients should be better selected. Another
limitation is that no correlation with the clinical picture of the patients were made. This
is thus a perspective for future work on this subject, trying to exactly match a immunod-
eficiency with specific clinical pictures.

The major contribution of this research resides in directly testing the functional activ-
ity and response of a patient’s immune cells to different stimuli. The highly multipara-
metric nature of mass cytometry allows for both a broad and in depth characterization
of the functional immune response using only a minimal volume of a patient’s blood (1
mL) with results available within one day, thus drastically improving time to diagno-
sis. In addition to having a proportional and phenotypic characterization of a patient’s
immune cells, identifying the functionally abnormal cell population(s) will provide the
clinicians with an even better understanding of their patient’s immunological defect. In-
terpretation of the mass cytometry results along with the patient’s clinical data will allow
for the identification of signatures associated with specific immunological defects, new
classes of immunodeficiencies and therapies that are best adapted to a specific class of
an immunological disorder, hence improving the diagnosis and the benefits for immuno-
compromised patients.

5 Perspectives

The analysis pipeline shown in this work is just the first step towards the improve-
ment in the clinical management of immunocompromised patients. When an altered
deep immune cells profiling is observed, as it was in the conventional dendritic cells
subpopulations, the analysis can first be completed by looking at the exome of the cor-
responding patient using next generation sequencing. This molecular characterization
is thought to be essential in order to find a genetic alteration that could be responsible
for the perturbed inflammatory profile of the patients’ immune cells. Then, and this is
the main point of all translational researches, the different subtypes of alterations in the
molecular signatures of patients’ immune cells will be source of new identification of
immunodeficiency subtypes. Knowing for each biological immune deficiency subtype
which is its corresponding clinical phenotype, will allow to chose rapidly for the most
adequate treatment, as well as to know what is to expect in the clinical evolution and

31



how the medical follow-up should be adapt. In this way the condition of immunocom-
promised patients could be improved.

Better understanding the immune system is compulsory if it is desired to offer a bet-
ter medical follow up to immunocompromised patients and to rationnally develop better
therapies. However, it is not only limited to the better care of immunodeficient patients;
indeed, the central place of the immune system in the organism makes it interact with
many different other systems. Having a better molecular comprehension of it will also
offer new prospects in other medical fields.

Finally, this approach opens other analysis perspectives in looking at the different
interactions the immune system can have and its different modulators. For instance, the
interactions between the immune system and the microbiome is essential in the human
body’s homeostasis. Indeed, the innate immune system holds a close communication
with commensal organisms at the host-microbiome interface. They both influence each
other; for instance, it has been shown that myelopoiesis depends on the complexity of
the intestinal microbiota, or that ILCs owe their proper functions to commensal microbial
colonization (60). This has not been further developed in this work, but it will definitely
be an important aspect to take into account in future investigations and which may help
us understand better immunological diseases and their pathophysiology.
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