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Data collection and research methodology represents a critical part of the research 
pipeline. On the one hand, it is important that we collect data in a way that maximises 
the validity of what we are measuring, which may involve the use of long scales with 
many items. On the other hand, collecting a large number of items across multiple scales 
results in participant fatigue, and expensive and time consuming data collection. It is 
therefore important that we use the available resources optimally. In this work, we 
consider how the representation of a theory as a causal/structural model can help us to 
streamline data collection and analysis procedures by not wasting time collecting data for 
variables which are not causally critical for answering the research question. This not 
only saves time and enables us to redirect resources to attend to other variables which 
are more important, but also increases research transparency and the reliability of theory 
testing. To achieve this, we leverage structural models and the Markov conditional 
independency structures implicit in these models, to identify the substructures which are 
critical for a particular research question. To demonstrate the benefits of this 
streamlining we review the relevant concepts and present a number of didactic examples, 
including a real-world example. 

Imagine you want to estimate the effect of a therapeutic 
treatment on depressive symptoms, and how this effect 
may be mediated via another variable, say, therapeutic al
liance. One might suspect that these variables are linked 
through a complex causal web involving multiple other fac
tors - but which of these other factors are necessary, in 
terms of data collection, for estimating the main effect of 
interest? Collecting too many variables increases the cost 
and time required to complete data collection, having an 
impact on participant fatigue (Lavrakas, 2008) as well as 
draining valuable project resources. Conversely, collecting 
too few may render the results of the statistical tests in
valid. In this manuscript, we describe how to identify those 
variables which are strictly necessary to arrive at unbiased 
answers to pre-specified questions. Of course, other inter
ests may influence data collection (such as subsequent ap
plications and usage), but knowing what is strictly neces
sary allows one to make more informed decisions about 
what to include. 
In this paper, we argue that the data collection and re

search project methodology can be optimized by specifying 
the causal structure underlying a theory in graphical form. 
Using rules from the structural modeling framework, one 

can then use the graph to identify variables or scales which 
are either causally necessary or which can be omitted from 
the data collection process. This liberates resources to ei
ther improve the quality of the remaining scales (e.g., by us
ing scales with a more comprehensive set of items), and/or 
to reduce participant fatigue by shortening the duration of 
a questionnaire and using these resources to increase the 
overall sample size. Indeed, concerns about inadequate sta
tistical power are growing in response to the replication cri
sis (Aarts et al., 2015; Baker et al., 2020; Correll et al., 2020; 
Sassenberg & Ditrich, 2019), and researchers are thus en
couraged to make sure they have sufficient data to estimate 
the effects of interest. 
Furthermore, even if a researcher decides not to un

dertake any analyses (perhaps they are not able to collect 
data, for whatever reason) the process of reflecting a theory 
graphically nonetheless helps with transparency, repro
ducibility, and the meaningfulness of subsequent interpre
tation. Psychology has been accused of being ‘not even 
wrong’ (Scheel, 2022) on the basis that the theories are too 
vague to be adequately tested. By reflecting our theories in 
a graphical form, we thus improve the clarity and reduce 
the one-to-many relationship between our theories and our 
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statistical models. Translating our theories to graphs also 
forces researchers to think carefully about the underlying 
process, and the concomitant implications for data collec
tion. The specification can then be made explicit, prereg
istered (Nosek et al., 2018), and compared unambiguously 
against other work. This, in turn, facilitates more precise 
replication by subsequent researchers, as well as a clearer 
understanding of the relationships between the hypotheses 
being tested and the assumptions and theory which under
pin the model specification and results (Grosz et al., 2020; 
Haslbeck et al., 2021; Navarro, 2021). 
In this work we show how four related concepts - con

ditional independencies, Markov Blankets, projection, and 
causal identification - can be used to judiciously shrink the 
number of variables required to answer a research ques
tion, without impacting downstream analyses and without 
impacting the congruity of the model with the underlying 
theory. The process is not data-driven and is not the same 
as seeking model ‘parsimony’ - our approach does not fun
damentally change the complexity of the underlying 
processes reflected by the ‘full’ model. Instead, using a set 
of rules which are consistent with the assumptions of the 
original graph being specified, our initial graphical repre
sentation can be reduced to focus in on the effects we re
ally care about. Thus whilst the complexity of the statistical 
model reduces, it does so without introducing any addi
tional simplifying assumptions beyond those which already 
existed in the original theory. 
The techniques are relevant to a broad range of problems 

amenable to specification in graphical form. For example, 
the didactic examples given by Rohrer (2018) involve health 
problems and work satisfaction, genetics and child’s de
pressiveness, or educational attainment and income. Ad
ditionally, social psychologists interested in complex, me
diated processes and multiple baseline control variables 
could also benefit from the proposal presented here. To this 
end, as well as providing a set of experimental results to 
demonstrate the performance characteristics in a general 
and non-domain-specific way, we also provide an example 
application to a graph used in organizational behavior 
(Spurk & Abele, 2010). Our hope is that researchers can use 
the techniques presented in this work to optimize their data 
collection and analysis in a more transparent way which is 
tailored specifically to the particular relationships of inter
est. 
We begin by motivating the specification of our theories 

in graphical form. Then, we introduce the relevant statis
tical/structural concepts needed to understand the process 
for reducing this model. We then walk through a number 
of didactic examples, comparing an assumed ‘real-world’ 
or Data Generating Process (DGP) against the minimal re
quired model for estimating a set of causal effects of in
terest. We also provide the associated multiple linear re
gression models where a single regression model can be 
used to provide the same information, and present a real-
world example. In supplementary, we also provide simu
lation results to demonstrate that the approach does not 
introduce bias, and in some cases can improve model fit 
and reduce standard error. Finally, in the supplementary we 

also provide the code for an automatic tool for reducing 
the graph (along with a description of the associated algo
rithm). The code for reproducing the simulations as well as 
the automatic tool are provided here: https://github.com/
matthewvowels1/minSEM. 

Terminology and Conceptual Overview     

In this work, we assume that psychologists/researchers 
are principally concerned with estimating a particular 
causal effect (e.g., the effect of treatment on an outcome). 
Indeed, this goal aligns with the causal nature of psycho
logical theories (which, in general, describe causal 
processes), as well as the goal to design and implement ef
fective interventions which improve peoples’ lives. As such, 
we assume that a researcher wishes to test a particular hy
pothesis which concerns a (causal) effect size of interest. 
We will refer to a number of objects which deserve to be 

defined up-front. In Figure 1 we present examples of these 
objects for reference. Firstly, we assume that there exists 
some (potentially highly complex) real-world Data Gener
ating Process (DGP). According to our existing theories, we 
wish to model this DGP in such a way that we are able to 
meaningfully represent it. One option for doing so involves 
the use of Structural Equation Models (SEMs). SEM provides 
us with a powerful and popular (Blanca et al., 2018) sta
tistical framework to unambiguously reflect and test causal 
theories and relationships (Grosz et al., 2020; Pearl, 2009; 
Rohrer, 2018; Vowels, 2021; Wright, 1921, 1923). In partic
ular, the SEM can be represented in an intuitive graphical 
(and therefore visual) way, thereby specifying our domain 
knowledge about the DGP. 
The graphical representation of the theory, which we 

will refer to as the graphical or structural model, can be 
used early on in the research pipeline to inform the data 
collection methodology, by helping us specify which con
structs we need to measure. Furthermore, early specifica
tion of a statistical model helps us with preregistration and 
research transparency (Wagenmakers et al., 2012). Such 
transparency is increasingly important in the fields of psy
chology and social science, where attention has been drawn 
to numerous problems with theory testing, research 
methodology, and analytical practice (Aarts et al., 2015; 
Flake & Fried, 2019; Gigerenzer, 2018; Marsman et al., 
2017; McShane et al., 2019; Scheel et al., in press; Vowels, 
2021). 
As we will discuss, we will apply the rules of a type of 

graphical model known as a Directed Acyclic Graph (DAG) to 
the graphical representations of our SEM. These rules are 
actually more general than those specific to SEM, because 
whilst SEM assumes linear relationships between variables, 
the rules we use are applicable to problems with almost ar
bitrarily non-linear relationships. Using these rules, and in 
combination with a Research Question expressed as a set of 
target causal effects of interest, we can reduce its complex
ity (which we refer to as the Reduced SEM) without sacri
ficing our ability to estimate what we care about for a par
ticular research question or hypothesis. This reduced model 
then determines which variables we are required to collect 
data for. In some cases, we may not need to use the typical 
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Figure 1. Top level terminology.    
Note. We assume (left) there exists a real-world causal Data Generating Process (DGP), which we wish to model using a structural model. This structural model can be represented 
graphically (see SEM graph for the DGP in the figure). Using our proposed approach, this SEM can be simplified in such a way that does not jeopardise the estimation of a particular 
(causal) effect size which is of interest to our research. For example, we may be interested in estimating path coefficients/effects , , and  in a mediation model. Finally, the effect 
sizes may be estimated using straightforward regression models. 

SEM estimation techniques to answer our research ques
tions, and a simple multiple regression model may suffice. 
However, it is worth emphasising that this work is not con
cerned with the estimation of the coefficients themselves, 
but rather how we can use the graphical modeling rules to 
simplify the representation of a theory, and in turn stream
line our data collection and study design. 

Motivation  

In this section we provide two principal motivations for 
our proposed approach: Statistical power, and model un
der- or mis-specification. In light of these motivations, we 
then provide a top-level overview of our proposal. 

Statistical Power and Model Specification      

Psychological research is frequently underpowered 
(Crutzen & Peters, 2017; Maxwell, 2004; Vankov et al., 
2014), and the theory and analysis are often poorly speci
fied (Grosz et al., 2020; Rohrer, 2018; Scheel, 2022; Scheel 
et al., in press; Vowels, 2021). The studies are underpow
ered to the extent that the sample sizes are insufficient to 
test a target hypothesis. For example, for a minimum as
sumed true effect size of interest, it is generally recom
mended that enough data are collected to yield a power of 
80%, meaning that there is an 80% probability that we will 
find a statistically significant result (at a given threshold 
such as 0.05) (Gelman et al., 2021). Researchers are thus en
couraged to ensure that their studies are adequately pow
ered, and have been encouraged to do so for some time 
(Sedlmeier & Gigerenzer, 1989; Vankov et al., 2014). How
ever, depending on the complexity of the theory under test, 
researchers may need to measure a large number of con
structs, each with a large number of items. For example, de
pending on the format, the IPIP-NEO Big 5 inventory con
tains between 120-300 items (Goldberg, 1999; Goldberg et 
al., 2006) and therefore takes considerable time to com
plete. Besides the associated cost and time required to mea
sure constructs using such comprehensive scales, the par
ticipants may also experience fatigue, lowering the quality 
of the responses (Lavrakas, 2008). 
The second problem of under-specification has 

prompted meta-researchers to describe research in psy
chology as ‘not even wrong’ (Scheel, 2022). That is to say, 
if the theories are too vague to be specified unambiguously, 

then it is not clear what it is that any particular statistical 
test is actually testing. If we are considered with under
standing the real-time process of dyadic support, for in
stance, we might need to develop a statistical model which 
can capture the intricacies of back-and-forth, multi-modal 
(verbal, para-verbal, non-verbal) interactions between 
partners. Without unambiguously reflecting the complexity 
of the process in our statistical model, it is not clear what a 
typical model in psychology (e.g., a multiple linear regres
sion model) is really doing for us. The structural represen
tation of this process can be a helpful aid to understand (a) 
what data we need to collect, and (b) whether the data can 
even be collected in principle (the acquisition of real-time, 
multi-modal data may in some cases be infeasible). 
Furthermore, a single theory may admit multiple statis

tical models, each of which tests something slightly dif
ferent but all of which are valid given the malleability of 
the underlying theory. Few psychological theories make it 
clear which variables are necessary to include as control 
variables, for instance. And yet, the inclusion of different 
control variables can have a large impact on the resulting 
parameter estimates, and it is not usually clear how these 
control variables are chosen or how they relate to the tested 
theory (Cinelli et al., 2020; Hullman et al., 2022; Vowels, 
2021). As an example, in medical studies older patients may 
be more likely to choose medication over surgery, but also 
be less likely to recover. This makes age a key confounder 
that must be controlled/adjusted for to evaluate the treat
ment effects. However, perhaps there exist other, less ob
vious confounders which we have not collected and which 
we can therefore not adjust for. Some variables may need 
to be controlled for but be unattainable, some may be in
consequential (and can be omitted without consequence), 
and still others may actually be detrimentally biasing the 
model. In order to determine which control variables 
should or should not be included, and to therefore avoid 
what is known as structural misspecification (Vowels, 
2021), researchers need to somehow formalise their theo
ries. 

The Proposed Solution    

With respect to statistical power, there exists a need for 
compromise - maximising the quality of a survey such that 
it measures all that we need, at a sufficient level of quality, 
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for a sufficient number of participants. Of course, we ac
knowledge that there often exist multiple goals for studies 
in which new data will be collected - they may have either 
confirmatory or exploratory research questions, or both; 
they may wish to compare and contrast multiple competing 
hypothesized structures; they may want to ‘future-proof’ 
the study, such that additional variables are collected with 
a view that they may be necessary for answering research 
questions which are not yet specified. 
At the same time, and in order to correctly specify a 

model with respect to a psychological theory, it is impor
tant that psychologists consider not only the structure be
tween the primary constructs central to their theory, but 
also the full data-generating process (DGP) which leads to 
a set of observations. The theory can then be translated 
into a graphical/structural model which reflects this DGP, 
which we can use to make sure we are not missing variables 
which are key to answering a particular research question. 
The process of deriving a structural model from our theory 
has been previously discussed by Rohrer (2018) and others 
(Kline, 2005; Loehlin & Beaujean, 2017), and we do not de
scribe the procedure in this work, but note that the graphi
cal framework (more about this in later sections) makes the 
process quite intuitive. 
The advantages of reflecting the theory unambiguously 

in a structural model include reproducibility (it is clear 
what exactly is being tested) and an increase in the inter
pretability and validity of the resulting effect sizes. Rather 
than the effect sizes being arbitrary consequences of ad hoc 
models loosely connected to theory, they reflect specific 
causal effects within a fully specified structural/causal 
process. Whilst the causal validity of effect sizes estimated 
using these models still depends on whether a number of 
strong assumptions hold (e.g., whether the hypothesized 
structure is correctly specified with respect to the actual, 
real-world structure), the transparent specification of the 
model makes subsequent criticisms and revisions more pre
cise. The task of translating our theories may also highlight 
possible weaknesses in the theory, or call attention to pos
sibly insurmountable difficulties for data collection. For in
stance, theories which involve dynamic processes that un
fold at irregular intervals over time may require very 
specific, expensive, and challenging data collection proce
dures (Hilpert et al., 2019). Identifying the specifics of such 
challenges in advance could save a lot of wasted time and 
effort. 
Unfortunately, the task of identifying all relevant vari

ables will likely implicate a large number of secondary vari
ables (such as demographics and other theoretically related 
constructs), and thus require longer questionnaires. The 
problems of statistical power, comprehensive scale inven
tories, and the need to collect a broad range of variables 
and constructs relevant to our theory puts a lot of pressure 
on researchers to find a suitable ‘Goldilocks’ design, and 
one or multiple methodological facets are likely to be com
promised as a consequence. As such, after the specification 
of the full DGP, we should examine the resulting model to 
identify possible shortcuts in the data collection process. 
Indeed, and as we will show, even if a variable or construct 

is relevant to a particular causal process, it may not be 
required for the actual analysis. To know this, however, 
the variable needs to be transparently situated in a causal 
model for us to understand whether it is essential for an
swering a target research question, or not. 
Once the structure of the DGP is fully specified, and as 

we will describe in detail below, we are able to identify es
sential substructures which are sufficient for testing our 
intended hypotheses. The substructures, by definition, ex
clude certain variables. Thus, if we can identify these sub
structures in advance of data collection, we may be able to 
significantly reduce the number of constructs we need to 
measure. Indeed, in example 2i in Figure 4 below, we show 
that it is possible to reduce the number of variables/con
structs by two thirds, although this depends on how much 
of the causal process we are interested in testing. It goes 
without saying that any simplification must be done care
fully. Indeed, the potential consequences of any resultant 
model misspecification can be severe, and includes heav
ily biased parameter estimates which are almost impossi
ble to meaningfully interpret (Hullman et al., 2022; Vowels, 
2021). However, there are no requirements for researchers 
to ‘go all the way’ with the simplification, and the proposal 
is flexible insofar as the degree of desired reduction can 
be determined by the researcher and their specific require
ments. 
We thus advocate that researchers consider the DGP up

front, before the data collection stage. Such prespecifica
tion in the form of a structural (or, as we will present, 
graphical) model represents a beneficial step in terms of 
preregistration and transparency, helps researchers distill 
their theories into testable models, thereby increasing the 
validity and meaningfulness of downstream statistical in
ference and results interpretations, and provides us with an 
opportunity to ‘prune’ the structure to optimize for statis
tical power during data collection. 

Background  

In this section, we introduce a number of relevant tech
nical concepts for reducing our structural models. In gen
eral, we assume that the model is being specified in graph
ical form as a path model, or a Structural Equation Model 
(SEM), where directed paths/arrows correspond with causal 
links. As we mention above, the techniques we use are 
more general than the SEM framework, and come from the 
graphical models literature. A number of existing resources 
discuss the implications of changes in causal structures 
on statistical estimation. For example, Matthew J. Vowels 
(2021) discusses the problems that arise due to misspeci
fication of causal models, and notes the potential to focus 
on specific effects within a causal process; and Cinelli, For
ney, and Pearl (2020) provide a laconic summary of how to 
choose control variables such that the choice does not in
duce bias in our parameter estimation. Unfortunately, these 
resources do not discuss the possibility of reducing our 
SEMs to the most simple model which can still yield unbi
ased estimates of (possibly multiple) causal effects. 
To best communicate our approach, we begin with a brief 

review of the relevant background. We aim to review four 
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related concepts in particular: causal identification, con
ditional independence, Markov Blankets, and projection. 
Briefly, identification is the goal of isolating causal from 
non-causal statistical dependencies, and, when possible, 
facilitates the estimation of causal effects. It relies on con
ditional independencies, which describe how statistical de
pendencies arise due to the underlying causal process, and 
how conditioning on these variables enables us to isolate or 
disentangle different sources of dependence. Markov blan
kets show that, through the use of conditional independen
cies, we can completely isolate an entire substructure in 
a graph, thereby making it clear that not all variables are 
necessarily required for a particular research question. Fi
nally, projection enables us to combine/reduce the number 
of paths. This is particularly true in the case of mediation, 
where a mediator can be excluded entirely if the researcher 
is not interested in estimating the mediation per se. 
Interested readers are encouraged to consult useful re

sources by Hünermund and Bareinboim (2021; Cinelli et 
al., 2020; Kline, 2005; Koller & Friedman, 2009; Loehlin & 
Beaujean, 2017; Pearl, 2009; Pearl et al., 2016; Peters et al., 
2017; Vowels et al., 2022). In terms of notation, we use 
(or, e.g.  etc.) to denote a random variable, and bold 
font  (or, e.g.  etc.) to denote a set of random vari
ables. We use the symbols  and  to denote statistical 
independence and statistical dependence, respectively. For 
linear systems, such statistical dependence may be identi
fied using correlation, but the majority of our discussions 
are general and non-parametric. We use directed arrows to 
denote a directional structural/causal dependence, and 
(or ) for a single (or set of) unobserved variable(s). 1 

For example, in SCM terminology  indi
cates that A is some general function  of  and . Here, 

 tells us that  is also a function of exogenous ran
dom process . Indeed, it is this  which prevents the 
relationship between  and  and  from being deter
ministic. Structural Equation Models (SEMs), on the other 
hand, assume that all endogenous variables are the result 
of a linear weighted sum of others, such that 

. Here, the s are structural para
meters (also called path coefficients or effect sizes) which 
we wish to estimate. The walrus-shaped assignment oper
ator  tells us that the left hand side is a structural out
come of the right hand side; the equations are not intended 
to be rearranged and there is very much a directional rela
tionship involved. 
As we construct system of equations representing our 

SEM (or, indeed, our SCM) it is often convenient to repre
sent these relationships graphically/visually. For example, 
consider the following set of (linear) structural equations: 

Figure 2. A set of demonstrative graphs.      
Note. This figure provide a number of example graphical models. Solid black lines indi
cate causal dependencies, dashed red lines indicate statistical dependence, parallel red 
bars indicate a ‘break’ in statistical dependence (example (e)), boldfont indicates a set 
of variables, and the letter  is reserved to denote unobserved variables. 

These can be represented simply as the mediation model 
depicted in black, solid arrows in Figure 2(a). The variables 

 are generally not included unless they are statistically 
dependent. Of course, they frequently are dependent in 
psychology, and this may be denoted using a curved, bidi
rected edge, as between variables  and  in Figure 2(c), 
or by explicitly including the relationship as in Figure 2(d). 
Such relationships can, of course, also be included in the 
system of equations comprising the SEM. Note that, as a re
sult of the causal structures present in the DGP, there are 
induced a number of statistical dependencies indicated in 
Figure 2 by the red dashed lines. By induced statistical de
pendency, we mean that the variables are correlated, or, 
more generally, statistically dependent, by consequence of 
the causal relationships between the variables in the under
lying causal process. 

The Data Generating Process     

It is worth maintaining conceptual separation between: 
(1) the process occurring in the real world, which we con
sider to be the true Data Generating Process (DGP), (2) Our 
SEM, which we generally want to sufficiently capture the 
process in the real world, and (3) the specification of a mul
tiple linear regression. Note that (1) and (2) do not have to 
match precisely. Indeed, when we create our SEM we ex
pect it to be a significant simplification of the real-world 
process, but it needs to be somewhat consistent with the 
true process (and the degree to which this is achieved is one 
of the primary aims of our research). If it is not sufficiently 
consistent, we might deem it to be misspecified, and it will 
not yield meaningful statistical estimates. 

Note that the theory we discuss is applicable to models with latent constructs (such as factor or measurement models), as well as those 
without (such as path and structural models), and generalises beyond linear models. The theory we discuss is part of the general Struc
tural Causal Modeling (SCM) and Directed Acyclic Graph (DAG) frameworks (Pearl, 2009). Path models and SEMs both represent a subset 
of the family of SCM and DAG models, where the functional relationships between variables are assumed to be linear. In other words 
SCMs and DAGs make no assumptions about whether one variable is an arbitrarily complex function of another (strictly, there are excep
tions to this, as discussed by Maclaren & Nicholson, 2020). 

1 

Prespecification of Structure for the Optimization of Data Collection and Analysis

Collabra: Psychology 5

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/9/1/71300/772275/collabra_2023_9_1_71300.pdf by guest on 16 July 2024

https://collabra.scholasticahq.com/article/71300-prespecification-of-structure-for-the-optimization-of-data-collection-and-analysis/attachment/148419.png?auth_token=xkgpNrDLLX2LywifUK-P


For example, if we have a strong theory that the true 
DGP can be adequately represented by a fully mediated 
process , then we would be advised to employ 
an SEM which is consistent with this structure. By consis
tent we mean that the model we use facilitates the unbiased 
estimation of the parameters of interest, and that these es
timated parameters correspond with something meaningful 
in the real-world (e.g., causal effects sizes).2 One option we 
have is to specify everything about our theory explicitly us
ing an SEM, and this can be done in graphical form to aid 
formalisation. However, what we aim to show is that if we 
are primarily concerned with a subset of parameters (vis a 
vis all path coefficients in the model), then in some cases we 
can significantly reduce the complexity of our model with
out affecting the consistency of our resulting model. In the 
case of the full mediation, it is interesting to note, for ex
ample, that including a direct path in the SEM (in addition 
to the indirect effect) does not bias our estimates of the in
direct path parameters. This is because the direct path will 
have an estimated effect of zero if it does not exist in the 
real-world, and its inclusion does not influence the value 
of the coefficient estimated for the indirect path. This is 
an example of how increasing the complexity of the SEM 
does not necessarily result in ‘disagreement’ or misspeci
fication with respect to the SEM and the real-world DGP. 
In contrast, failing to include a direct path which does ex
ist in the real-world DGP, can affect the resulting path esti
mates. As such, in some cases assumptions which simplify 
the graph can be more ‘dangerous’ than those which in
crease the complexity of the graph, and it is especially im
portant any simplification be done with care to avoid bias
ing the estimates of the remaining path coefficients. 
Finally, note that the effect sizes of interest in the final 

SEM can be estimated using multiple regression. Indeed, 
the specification of an SEM using the popular lavaan R li
brary (Rosseel, 2012) follows a very similar syntax to that 
used to estimate each path using the lm regression library. 
Note that this may not always be possible, particularly if 
one needs to estimate latent factors. However, we provide 
the equivalent regression syntax to highlight the equiva
lence between the techniques, and to show that even if a 
structural model is used to specify the DGP, it may be possi
ble to use a straightforward linear regression model for the 
actual estimation. 

Identification and Disentangling Statistical     
Influence  

Identification concerns whether or not, for a given 
graph, the causal effect we are interested in is actually es
timable from the observed data, even in the absence of 
an experiment (Huang & Valtorta, 2006; Shpitser & Pearl, 
2008). In the case where the full graph is given and there 
are no unobserved confounders, all causal effects are tech

nically identifiable from the data. This means that there ex
ists a mathematical expression which expresses the causal 
effect(s) of interest as a function of the observed statistical 
associations. If a causal effect is identifiable, it may be 
possible to estimate it with only a fraction of all the ob
served variables. Furthermore, if researchers are only inter
ested in estimating a single path coefficient in a structural 
model, it may not be necessary to run the full SEM estima
tion process, and instead researchers can run a multiple re
gression (possibly employing machine learning techniques) 
to directly estimate the effect of interest (van der Laan & 
Rose, 2011; Vowels et al., 2021). 
In the case where researchers are interested in the es

timation of multiple paths (for example, in a mediation 
model), one can choose either to undertake a series of 
multiple regression analyses (and we provide examples of 
this below), or to estimate them simultaneously using the 
SEM estimation framework. In both cases, however, all ef
fects of interests must fulfil the requirements for identifi
cation. In other words, the estimation multiple causal ef
fects (e.g., from treatment to mediator and from mediator 
to outcome) requires that all effects can be identified from 
the data, which is obviously entails more stringent require
ments than does the estimation of only one of these paths. 
A detailed description of how to use identification is be

yond the scope of this paper, but we describe below how 
to isolate/disentangle statistical influence using the condi
tional independency properties below. For now, let us con
sider the case where we are interested in estimating only 
one path coefficient / causal effect - the rules generalize 
to multiple coefficients. Consider the graphs in Figure 2(g) 
and (h). Graph (g) represents the canonical Randomized 
Control Trial setup, where  represents some treatment, 
some outcome, and  some set of covariates which help to 
explain the outcome . In this graph, the covariates  are 
independent of treatment  because of the random assign
ment of treatment. Such a structure means the only sta
tistical dependence that exists between the treatment and 
the outcome is a result of the treatment itself. This statisti
cal dependence is thus equivalent to the causal dependence 
we are interested in. As such, the effect can be directly es
timated by comparing the outcome under different treat
ments. Note that one may still wish to consider  too - it 
can be used to explain additional variance in  in order to 
tighten the estimate of the treatment effect. In other words, 
the inclusion of these variables may reduce the standard er
rors associated with a particular causal effect size estimate. 
In contrast, in observational studies patients may select 

their own treatment, and graph Figure 2(h) is more appro
priate. For instance, if age is one of the covariates, older 
patients may prefer medication and have a lower chance of 
recovery, whilst younger patients may prefer surgery and 
have a higher chance of recovery. Thus, if we wish to esti

For the estimation task itself, we can either use the SEM estimation framework (and estimate all the included paths), or alternatively, we 
can derive a set of equivalent regression equations. 
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mate the causal influence of treatment  on the outcome , 
we cannot simply compare the outcomes of the two treat
ment groups, but now also need to somehow adjust or ‘con
trol’ for the additional statistical dependence that exists 
between  and  which results from the ‘backdoor’ non-
causal path . This is non-causal because there 
is no directed path between  and  via  (the arrow points 
from  to , not the other way around). Knowing the rules 
of conditional independencies described below, we will be 
able to isolate the causal effect of interest such that the 
remaining statistical dependence between  and  corre
sponds with the causal dependence we actually wish to es
timate. 
Note that we will use the term control variables to mean 

variables which we wish to adjust for to identify causal ef
fects of interest, and which would otherwise leave an open
ing for non-causal, statistical association. For example, the 
set of variables  in Figure 2(h) could be considered to be a 
set of relevant control variables which enables us to get un
biased estimation of the effect of treatment  on the out
come . However, it is worth considering that a set of con
trol variables itself may comprise a complicated structure 
in its own right, and we consider two cases in the examples 
section below. 

Conditional Independencies   

The visual graphs provide us with a way to directly read 
off the conditional independency structure of the model. 
Conditional independencies tell us whether the inclusion of 
additional information changes anything about our knowl
edge. For instance, consider the (illustrative) fully mediated 
model Testosterone  Bone Length  Height. This model 
tells us that, in the absence of a direct path from Testos
terone to Height, if we already know someone’s Bone 
Length, knowing their Testosterone in addition changes 
nothing about their likely height. In other words, no more 
of the statistical dependency between Testosterone and 
Height is left to explain once Bone Length is known. Equiv
alently, if we condition our knowledge on Bone Length, 
Testosterone is rendered conditionally independent of 
Height. Indeed, if a linear regression is used to estimate 
the effect of Testosterone on Height, but we include Bone 
Length as a control variable, the coefficient on Testosterone 
will tend towards zero. This is a useful example which high
lights the importance of a consideration for structure and 
the associated conditional independencies - if we do not al
ready know that the process is fully mediated, we might in
correctly arrive at the conclusion that Testosterone is unre
lated to Height. 
If our graph Testosterone  Bone Length  Height is a 

sufficient representation of the process in reality, and if the 
statistical relationships hold in the data we observe, then 
the graph is also said to be Markovian (i.e., the ‘Markov con

dition’ holds). In fact a Markovian graph is simply a graph 
for which its implied conditional independencies hold in 
the data it is being used to model. Conversely, if their exists 
one or more unobserved variables which we have failed to 
include in our model, and which influence the statistical 
dependencies in our data such that the Markov condition 
no longer holds, the graph is said to be semi-Markovian. If 
we suspect a graph is semi-Markovian because of the pres
ence of some unobserved confounder(s), we should do our 
best to update our graph and include this unobserved fac
tor, so that the rules apply to our (now Markovian) model. 
If we find this unobserved variable is necessary for identifi
cation, but we simply cannot collect data for it (it might not 
be an easily measurably factor), then it may not be possible 
to estimate the causal effects of interest.3 Whether or not 
a causal effect of interest is identifiable is important to un
derstand early on, because it may determine the feasibility 
of the study. This is another reason why a graphical specifi
cation of a theory can be useful. 
We can use conditional independencies to isolate causal 

from non-causal statistical dependence (the task of identi
fication described above), as well as to identify which vari
ables we need to include or exclude in our SEM. Starting 
with the example in the full mediation model of Figure 2(b), 
we see that variable  cannot contain information about 
which does not already ‘pass’ through . Therefore, if we 
already know , knowing  tells us nothing more about 
than we already knew. This renders  statistically indepen
dent of  given , which can be expressed as: . 
This is known as a conditional independence statement, be
cause it tells us which sets of variables are independent 
of each other given a set of conditioning variables. It is 
worth noting that when we run a regression (logistic or oth
erwise) we are estimating some expected outcome condi
tioned on some set of predictors. Running the regression 
to estimate  (i.e., the expected value of , con
trolling for  and ) from data generated according to a 
fully mediated DGP will result in the same consequences as 
above: the fact we have included  means that the impor
tance given to  will be zero (notwithstanding finite sam
ple deviations). Clearly, therefore, an understanding of the 
structure is absolutely crucial for constructing the regres
sion models (Vowels, 2022). For instance, if  is a treatment 
variable and we do not recognise  as a mediator, the in
clusion of  in the model will result in a negligible coeffi
cient estimate for  which may well mislead us to think the 
treatment is ineffective. 
To generalise this result to other graph structures, it is 

worth committing some rules to memory. If a graph con
tains these two substructures: 

One might consider sensitivity analysis as a means to quantify the extent to which a causal effect can be explained by unobserved third 
variables (Díaz & van der Laan, 2013). 
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then knowing/conditioning on  renders  and  statisti
cally independent. Of course, without this conditioning, , 
, and  are all statistically dependent. These two graphs 

are known, respectively, as a chain and a fork. One can start 
to write the complete list of conditional independencies 
which are implied by both of these two graphs is: 

The first, , means that  is not statistically indepen
dent of  (because  causes ), the second means that 
is not statistically independent of  (because  causes 
through ), and so on. Importantly, both of the graphs in 
Eq. 2 imply the same set of conditional independencies, and 
therefore there is no way to tell them apart using statistical 
dependencies alone.4 Alternatively, if a graph is structured 
as follows: 

we have what is known as a collider. Unlike the examples in 
Eq. 2, variables  and  are actually already independent 
such that . A collider is also depicted in Figure 2(e), 
and the parallel vertical red lines depict the ‘break’ in sta
tistical dependence between  and . Furthermore, con
ditioning on  in this structure actually induces statistical 
dependence between  and  - a phenomenon known as 
explaining away (Pearl, 2009; Pearl et al., 2016). A corre
sponding list of conditional independency statements for 
this collider is therefore: 

Variables are known as ancestors of downstream descen
dants if there exists a directed path between the variables. 
A direct descendent is also called a child, and the direct as
cendant is called a parent. Note that conditioning on de
scendants of the variable  in the two graphs depicted in 
Eq. 2 can partially render  and  independent (because 
it essentially contains critical information from  via ). 
Similarly, conditioning on a descendent of the collider vari
able  in Eq. 4 can also render variables  and  partially 
dependent. Of course, two variables are either dependent 
or not, and the partial terminology is used here to com
municate that the effect of conditioning is not as strong as 
would be the case using  itself, as opposed to one of its 
descendants. We can actually test for these conditional in
dependencies using conditional independence tests (which, 
in the linear Gaussian setting are essentially partial corre
lations). These tests can then be used to discover the under
lying structure in the data - a task known as causal discov
ery, for which many methods exist (Vowels et al., 2022). 
Finally, returning to Figure 2(h), which was discussed 

above in relation to estimating the effect of treatment  on 
outcome  given some confounders , we know that for 
the substructure , we can achieve  in 

order to essentially simulate the structure of the graph for 
the RCT in Figure 2(g). In other words, by conditioning on 

 we ‘block the backdoor’ path of confounding statistical 
dependence which ‘flows’ from treatment to outcome by 
conditioning on . This leaves only the one statistical path, 
which is also the causal path we care about. In this case, the 
statistical dependence is equivalent to the causal depen
dence we wish to estimate. Thus, we have used conditional 
independency rules to isolate the causal statistical depen
dencies, and disentangle them from the non-causal statis
tical dependencies. 

Markov Blanket   

The conditional independency rules introduced above 
can be used to define a Markov Blanket. Essentially, the 
blanket constitutes a set of variables which yield condi
tional independence between variables ‘within’ the blanket, 
and those outside it. The notion of a Markov Blanket con
firms the idea that not all variables are necessarily needed 
to estimate or identify a particular causal effect. The impli
cation of this is that if we have knowledge of a set of condi
tioning variables, other variables which are causally ‘down
stream’ of these conditioning variables become effectively 
‘disconnected’ from those which are upstream.5 

Consider Figure 2(f) which depicts a Markov blanket 
around variables  and . The underlined variables , , 
and  constitute the Markov blanket - knowing or condi
tioning on these variables renders  and  independent of 
variables  and , which are outside of the blanket. 
An SEM model can be reduced in size to comprise only 

the variables and paths necessary to estimate set of paths 
of interest. Considering, again, Figure 2(f), if we are only 
interested in the path coefficients proximal to the variables 

 and , we do not need variables  or , thus reducing 
the number of estimated paths from ten (if we include the 
paths from unobserved ) to five. We discuss more oppor
tunities below. 

Projection  

A cause-effect relationship can often be broken down 
into smaller and smaller subdivisions, until one starts talk
ing about the effect of one molecule on the next to explain 
a simple game of billiards. As per Figure 3, each subdivision 
of the cause-effect relationships between  and  could be 
represented as a mediating path with an infinite number 
of intermediate mediating paths. By consequence of the 
Markov assumption (described above) it is thankfully not 
necessary to model all these intermediate mediators, and it 
suffices to abstract to the key ‘beginning and end points’. 

Given that the chain and the fork are yield statistically equivalent data, it is worth considering the implications for testing for mediation 
structures. 

It is possible to have variables which fall into the set of defining Markov blanket variables but which do not need to be explicitly condi
tioned on. This can occur, for example, in the presence of a collider structure which may already render upstream variables (which are 
outside of the blanket) as statistically independent of those within the blanket, without conditioning (recall that conditioning on a col
lider can open up an otherwise ‘closed’ path. 
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Figure 3. An illustration of ‘infinite mediation’.      
Note. This figure illustrates that between any two cause-effect pairs, there exists an al
most infinitely decomposable chain of intermediate mediators. 

For instance, it is not necessary to know the intermediate 
position and velocity of a billiard ball (assuming these are 
well known), but it may be important to know when/if it 
changes course following a collision. One can, for example, 
reduce  simply to  (Glymour, 2001, p. 
40). Of course, if one is specifically interested in a mediat
ing variable then one can collect the relevant data and ex
plore the process (such examples are provided below). Some 
reductions may yield an intractably blunt abstraction, or, 
in the extreme, a form of infinite causal regress (e.g. re
gressing all first causes to our birth or the beginning of 
time), and one might instead consider more modest exam
ples, such as whether a treatment is mediated by some psy
chological mechanism(s). In this case, one can nonetheless 
reduce the problem (via projection) to an estimation of the 
total effect of treatment on the outcome, thus aggregating 
the intermediate direct and indirect effects and thereby re
ducing the complexity of the graphical representation. 

Reducing SEMs - Worked Examples      

In the previous section we reviewed four concepts which 
we will use for simplifying our SEMs without introducing 
bias into our effect estimates: (1) causal identification, (2) 
conditional independencies, (3) Markov Blankets, and (4) 
projection. In order to demonstrate these various tech
niques, we will walk through a number of examples which 
are presented in Figure 4. For each example, we specify (a) 
a full DGP as our starting point which we assume to be true 
and complete (‘Full DGP’ in Figure 4), (b) a set of causal ef
fects of interest, that must be identifiable for subsequent 
estimation (‘Research Question’ in Figure 4), (c) a mini
mal SEM (denoted Reduced in Figure 4), and (d) syntax for 
the R lm() function for a multiple regression. Five example 
DGPs are shown in Figure 4. Again, whilst we are not con
cerned with the estimation itself, note that one can choose 
to either use the SEM framework to estimate all the path 
coefficients in the resulting model, or one can undertake 
(possibly multiple) regressions to arrive at the same goal. 
In both cases, the graphical representation of the theory is 
what enables us to reduce the model in a way which does 

not invalidate the subsequent analysis (as well as increas
ing transparency, helping us to think more deeply and con
cretely about the causal process, etc.). 
In practice, the graphical representation of our DGP will 

be developed using domain knowledge and/or causal dis
covery techniques (Glymour et al., 2019; Vowels, 2021; 
Vowels et al., 2022). For now, we provide general examples 
with a view to demonstrating the ways in which the con
cepts reviewed above can be used to reduce our SEM. Sim
ilarly, in practice the set of paths of interest will be de
termined by our research questions and our hypotheses. 
Note that it may be possible to simplify SEMs bearing in 
mind other techniques which are applicable to linear mod
els (such as instrumental variables) (Bollen, 2018), but we 
focus on those techniques reviewed above because they are 
generally applicable to a much broader family of problems. 
Finally, it is worth remembering that if a set of variables 
and paths are not needed for the SEM, then we also do not 
need to collect these variables to begin with, thus saving 
additional time and expense which could be used to, for 
example, collect more samples of the variables that really 
matter. Note that some variables may not strictly be nec
essary for the estimation of the effect but may nonetheless 
be worthwhile including. For example, proximal causes of 
an outcome which do not interfere with our estimation of 
other desired causes can be used to increase the precision/
tightness of our estimates (Cinelli et al., 2020). 
Unobserved variables and/or latent constructs may also 

be integrated into the specification of the graph. In terms of 
the planning, these objects can be considered in the same 
way as other observed variables, at least insofar as they re
late to the estimation of the causal dependence we are in
terested in. One may find, for example, that the existence of 
certain unobserved variables fundamentally preclude iden
tification (i.e., the estimation of the target effect), perhaps 
because they induce a backdoor/confounding path between 
the ‘treatment’ and the outcome. Conversely, one may find 
that either certain unobserved variables, or particular la
tent constructs are not necessary for the identification of 
the target effect. We later consider a number of worked ex
amples involving unobserved variables (Examples 3 and 4). 
To motivate the examples, we will attempt to describe 

semi-plausible DGPs for psychological processes, but note 
that these examples are likely to be overly simplistic, and 
are only intended to illustrate the process. We will discuss 
each of the examples in Figure 4 in turn. Finally, in the sup
plementary material we also provide simulation results for 
DGPs 2-5 in Figures A1-A3.6 

Example 1: Mediated Treatment     

Starting with the first example depicted in Figure 4, let 
us begin by considering what this graph could possibly rep
resent. Variable  could be an outcome (e.g. depressive 

We omit simulations for DGP 1 because it represents a reduction of the other examples, and so including it is somewhat redundant. 6 
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Figure 4. Finding the reduced model.     
Note. This figure presents a number of examples for taking the full ‘true’ Data Generating Process (DGP) and finding the reduced graph and minimal linear/logistic regression re
quired to answer a given research question. 

symptoms) for a therapy , the effect of which is mediated 
by therapeutic alliance . The set  represents covariates 
that influence the choice of therapy modality as well as 
the likelihood of recovery, and includes factors such as age, 
gender, history of mental health problems, and so on. Fi
nally, variable  could represent a personal attitude which 
influences the choice of treatment but which does not in
fluence whether the person recovers. 
For this example, let us assume that our research ques

tion concerns estimation of the efficacy of treatment on the 
outcome, i.e., . The reduced model (denoted in Fig
ure 4 as Reduced) requires three fewer paths to estimate 
this effect. Firstly, if we are not interested in the particulars 
of the mediated path  then we do not need to 
include , or to therefore collected data for 
(afforded by the projection concept reviewed above). Sec
ondly, even though there exists a spurious/confounding/
backdoor path , we do not need to estimate the 
actual path  so long as we include the path . 
The inclusion of  facilitates identification of the principal 
effect of interest . Note that in this case we do not 

have to use SEM for the estimation procedure. Indeed, in 
this example we are not interested in the path coefficients 
linking  to  either, even though these paths must be in
cluded to acknowledge the dependence that  has on  and 
to block the backdoor path. Given we are only interested in 
the path from  to , we can simply run a multiple regres
sion, using  as control variables and restricting interpre
tation to the coefficient on . Note that the resulting lm() 
syntax contains only the two necessary components as pre
dictors -  and the set of control variables . 
Finally, we do not need to include  in the model (nei

ther do we need to collect data for ) because it is not nec
essary for the causal identification of the target causal ef
fect of interest. Adding the path  into the model is 
superfluous to the effect we are interested in.7 

Example 2: Structured Controls     

The first graph with structured controls is given as ex
ample 2 in Figure 4. We can consider the meaning of vari
ables , and  to be the same as in Example 1, that is 
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attitude, treatment, treatment-outcome mediator, and out
come, respectively. The difference now is that we also have 
a mediation child , an outcome child , and a structured 
set of control variables , and . If, as indicated in ex
ample 2i, we are only interested in estimating the effect of 

 on  then, as in the first example, we can ignore  and 
. Similarly, we can also exclude  and  for our reduced 

model, as their existence in the DGP does not change the 
principal relationship we are interested in. 
There still exists a backdoor path through the control 

variables , and , and so we need to understand 
which of the associated variables and paths to include in 
our reduced model to adjust for this spurious path. There 
exist the following options which block this path: , 

, and . Note that  is not an 
option by itself because this would leave the path through 

 open. Note also that we do not need to estimate 
the path  because we are not interested in this ef
fect. Thus, overall, our initial/complete model reduces to 
the estimation of only two paths (reduced from ten), as in 
the previous example. The linear regression also remains 
equivalent. 
If our research question involved the estimation of the 

mediation, as in example 2ii in Figure 4, then the only 
change to the model needs to be the inclusion of the me
diation . The linear regression now involves 
two stages to decompose the problem into two sets of paths 
(one from , and the other comprising the paths 

 and ). 

Example 3: Colliding Controls     

One might be forgiven for thinking that the safest thing 
to do with a set of control variables is to always include 
them in the model to make sure we are blocking the back
door paths. In the previous example, for instance, we could 
just play it safe by including . However, example 3 
in Figure 4 shows that some putative control variables may 
include collider structures. Let us consider that variables , 
, and  are class-size, math exam score, and language 

exam score, respectively.  represents a mediator such as 
whether a student does their homework,  represents So
cial Economic Status (SES) - perhaps children with higher 
SES attend schools with smaller class sizes and have bet
ter grades overall -  represents an unobserved attribute of 
intelligence  a measured attribute of intelligence, and 
musical ability. 
Based on example 3i we are interested in the effect of 

class size on math exam score. It might be tempting to in
clude the paths concerning the other related scores (such as 
language score, or musical ability). In the case of musical 
ability, we could include the paths  with
out causing any problems, but it doesn’t actually help us 
estimate the effect we are interested in. Indeed, the collider 
structure  prevents any backdoor information 

affecting our estimation of , so we do not need 
these paths for causal identification. Another collider exists 
between , and even though the structure 
is the same, the fact that  is unobserved means we cannot 
and should not include  in the model. Indeed, if  were 
to be included (without  as  is unobserved) we would 
induce a spurious path linking  to  through  and . 
Thus, whilst these might appear to be tempting control 
variables which we might think would, at best increase pre
cision and at worst do nothing, in fact they should not be 
included owing to the collider structure with an unobserved 
variable. 
We have no need to include paths relevant to  or 

in our model. Including the path  may improve the 
precision of our desired estimate, but it is not necessary. 
The partial mediation through , if not part of our research 
question, does also not need to be included. The only path 
we have to be concerned about is , and we can 
deal with the induced statistical path by simply including 
the path . In this case, the the reduced model con
tains two paths, whilst the full model (including the unob
served paths) involves thirteen. The corresponding linear 
regression is equally simple, and only includes  and  as 
predictors. 
If we are interested in the partial mediation of class size, 

homework, and math exam score, then we can simply aug
ment the reduced model from example 3i to include this ad
ditional structure. The linear regression also changes to ac
commodate the estimation of the additional paths, as with 
example 2ii. 

Example 4: Simple Unobserved Confounding      

The fourth example is relatively straightforward. Here, 
, and  could represent relationship satisfaction, part

ner support, and communication style, respectively, where 
the unobserved confounder  between support and com
munication. The unobserved confounder induces a non-
causal statistical dependence between  and  through , 
and the reduced model therefore needs to include the path 

. The linear regression, similarly, needs only  and 
 as predictors. 

Example 5: Longitudinal Dyadic Effects      

The final example concerns a longitudinal dyadic 
process, whereby variables for  relationship satisfaction 
for two individuals  and  are collected at three time
points, but there exist intermediate opportunities where 
confounding could occur. This confounding could repre
sent, for example, shared stressful events. The target causal 
effects involve all of the ‘actor effects’ (that is, autocorre
lation in each individual’s variables which results in sim
ilar values across consecutive timepoints), as well as two 
partner effects from  and a ‘concurrent’ effect 

Indeed, its inclusion can even increase the standard errors on the effect of  because it makes it ‘harder’ to disentangle the vari
ance in  that stems from  and the residual variation of  which is also contained in . 
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Figure 5. Real-world example graph.    
Note. Real-world example graph adapted from Spurk and Abele (2010). 

.8 This example demonstrates when the use of 
SEM may be less complicated than undertaking a series of 
multiple regression tasks; our research question concerns 
the estimation of six separate causal effects, all of which 
have to be identified. 
We do not need to estimate the paths , so long as 

we include the path , which enables us to block the 
backdoor path from  to  via  and thereby identify the 
effect . For the same reasons, we do not need to 
estimate the path . In this example, we are not able 
to make any data collection savings (i.e., we need to collect 
all variables), even though some of the path coefficients are 
not needed for estimation of the principal causal effects of 
interest. 

Real World Example    

To motivate the application of the techniques to non-
synthetic examples, we have chosen a graph adapted from a 
paper published in the domain of business psychology and 
organizational behaviour. The graph is shown in Figure 5, 
and was presented to test the relationship between person
ality (‘P’ in the graph), and salary (‘S’). First, let us con
sider the model required in the case where our research 
question solely concerns . The only non-causal path 
from personality to salary, assuming the graph shown in 
Figure 5, is via gender: . The reduced graph 
is shown in Figure 6i. In this case, the simple regression 

 would suffice, and the graphical representation 
of the SEM would be . Once again, it is only 
possible to confirm this if we already have a representation 
of our model which enables us to identify the required con
trol variables. 
In the original work (Spurk & Abele, 2010), the re

searchers were specifically interested in a double-media

tion by occupational self-efficacy (‘OSE’) and career ad
vancement goals (‘CAG’), which represent the first set of 
mediating variables, and working hours (‘WH’) which rep
resents a second mediation of the effect of personality on 
salary. In this case, all variables are required for the analy
sis, and no savings can be made at the data collection stage, 
but we can nonetheless reduce the number of paths to be 
estimated. The reduced graph is shown in Figure 6ii. Identi
fying this reduced solution by eye is already becoming chal
lenging, and automated tools (such as the one provided in 
supplementary material) are helpful in ensuring the reduc
tion is correct. In addition, identifying the set of multiple 
regressions which can yield unbiased estimates of each of 
the target paths is also quite involved, and this example 
demonstrates how the SEM estimation framework might 
provide a more convenient alternative. In any case, it can 
be seen that six out of a total of 24 paths were not required. 

Discussion  

We have provided a number of didactic examples show
ing that if we are presented with a specific question regard
ing a relatively complex process, we can simplify our SEMs 
considerably. The simplification process takes advantage of 
a number of graphical rules, and does not introduce any ad
ditional assumptions to those which already apply to the 
full model. Furthermore, researchers are also free to choose 
whether they actually wish to estimate all the path coeffi
cients using SEM framework itself, or whether a multiple 
regression would be more straightforward. Indeed, in cases 
where only a single causal effect needs to be estimated, one 
might consider using the graphical representation first, and 
then estimating it using a multiple regression instead. In 
this work we provided both the graphical representation of 
the SEM that one needs to estimate in order to answer a re

Even though the causal framework does not strictly admit simultaneity (there must be some time delay between the case and the effect), 
we assume that this concurrence is permitted according to the data collection procedure (i.e., within wave three, partner  can influence 
partner  with some arbitrary time delay which is not distorted by the otherwise cross-sectional nature of the data collection methodol
ogy). 
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Figure 6. Reduced real-world example graph.     
Note. Reduced real-world example graphs for the real-world DGP assumed in Figure 5. Bold black lines are those key to a multiple-mediation research question, whereas red dashed 
lines are those that may be excluded from a graphically specified SEM without affecting the estimation of the target paths. 

search question relating to one or more causal effects, as 
well as the equivalent multiple regression equation(s). 
In one of the demonstrative examples, an SEM with up

wards of thirteen paths was reduced to only two. The simu
lation results provided and discussed in the supplementary 
material highlight unsurprising improvements in adjusted 
model fit metrics (unsurprising because simpler models are 
penalised less than complex models according to such met
rics). Importantly, note that the simplification process does 
not bias the effect size estimates. 
Even without the simplification process, translating a 

psychological theory into a graph is a worthy exercise, par
ticularly when undertaken before the data collection stage. 
It helps us be transparent and unambiguous about our 
model and assumptions, increases specificity for preregis
tration, and can highlight potential methodological chal
lenges and difficulties before any resources have been ex
pended. It may even highlight cases where estimation is not 
possible, and this relates to the problem of causal identi
fication. For example, if there exists an unobserved con
founder between  and  in the graph , i.e. 

, the causal effect cannot be estimated because 
the non-causal statistical association induced by the con
founder cannot be adjusted for without access to . These 
problems can, again, be seen by an inspection of the graph, 
and it is worthwhile identifying these problems sooner 
rather than later. In practice, such problems may be com
mon, and either a researcher must do all they can to ac
count for the possible unobserved confounders, or they 
must assume that a sufficient number have been already 
collected to assume that the problem is ‘ignorable’ (Pearl, 
2009). In general, it is important to remember that the goal 
of estimating causal effects rests on a number of strong 
(and often untestable) assumptions. However, it is only by 
taking causality seriously that we can understand what 
these assumptions are and whether they are reasonable. 

Limitations  

We have used SEM throughout the text because re
searchers in psychology may be familiar with this frame
work (Blanca et al., 2018). Furthermore, if they wish/need 
to estimate latent variables, the SEM framework readily fa
cilitates this. Note, however, that SEM is generally consid
ered to be an estimation framework, rather than a means 
to graphically represent one’s causal theory. Furthermore, 
SEM usually assumes linear (or at least pre-specified) func
tional relationships between variables. Fortunately, and as 
we briefly discussed earlier, all the rules and techniques 
discussed in this work belong to a broader class of graphical 
model known as Directed Acyclic Graphs (DAGs). DAGs do 
not make assumptions about the parametric (e.g., normally 
distributed vs. non-parametric) form of the variables, nor 
about the functional (linear vs. non-linear) form relating 
variables. This means that when one uses our proposed 
method to construct and subsequently simplify a graphical 
structure, they can also consider themselves to be working 
directly with a DAG. If the researcher then wishes to avoid 
making assumptions about the functions and distributions, 
they do not have to use the SEM framework to do the es
timation, but can instead use non-parametric regression or 
machine learning techniques (a discussion about which is 
beyond the scope of this paper). Indeed, another reason 
that we provide the multiple regression syntax is because 
its specification can be generalized relatively straightfor
wardly to non-parametric settings. For example, the speci
fication of the regression  relates to the estima
tion of , which is the conditional expectation of 

 given  and . The conditioning set given on the right 
hand side of the tilde in the regression syntax, or the right 
hand side of the conditional expectation, are the variables/
predictors in the regression which are being used to iden
tify the causal effect(s) of interest, and this can be done in 
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both linear parametric as well as non-linear, non-paramet
ric settings. 
The reduction which is achievable depends on the re

search questions being asked, as well as the requirements 
of the researcher. We foresee that some researchers may 
wish to collect more variables than are strictly required for 
identification to future-proof their datasets, thereby facili
tating the testing of currently unspecified hypotheses. The 
collection of extra variables can not only provide the oppor
tunity for researchers to answer potentially unforeseen re
search questions, but it also enables researchers to include 
‘hedge’ variables, in cases where the theory specification 
is uncertain and researchers do not want to risk variable 
omission. Indeed, if the researcher is contending with mul
tiple hypothesized graph structures, they may wish to avoid 
putting all their eggs in one basket by collecting only the 
smallest set of variables relevant for one particular graph 
and one particular research question. By ‘over-collecting’ 
variables, they may also open up opportunities to under
take causal discovery - a data driven approach to the vali
dation of putative causal structures. Without the extra vari
ables, researchers would be somewhat stuck with what they 
have. 
Finally, researchers should be mindful that the success 

of the approach rests on the degree of correct specification 
achieved when the DGP model is constructed. However, this 
limitation applies to all statistical approaches which con
cern the estimation of interpretable / causal effects, and 
this approach does not alleviate the consequences of model 
misspecification. Furthermore, reducing model complexity 
may reduce the precision of the estimation because less 
explanatory power may be available to estimate an effect. 
This is evidenced by a review of the simulation results for 
the -values in the supplementary material. This downside 
is somewhat offset by the possibility that, with a simpler 
model, a larger sample size may be acquired for equivalent 
cost. For example, if the simplification process indicates 
that a number of constructs with large inventories are no 
longer required, we may gain back significant data collec
tion time which can be put towards the recruitment of more 
participants. Such possibilities therefore enable us to in
crease statistical power for estimating the effects we really 
care about. Furthermore, the specification of larger mod
els increases the chances of misspecification (simply put, in 
the specification of larger graphical models, there is more 
opportunity for error). Reducing the model and being spe
cific and less ambitious about the number of primary effect 
sizes of interest (as opposed to wishing to estimate as many 
effects as possible) increases the likelihood that, at the end 
of the project, we have estimated something meaningful. 

Related Options   

It is worth noting that other approaches for streamlining 
data collection and reducing study cost, such as the tools 
for the development of short-form scale design (Greer & 
Liu, 2016; Smith et al., 2012) and planned missingness de
sign (Wood et al., 2018). In the case of the former, re
searchers can use statistical techniques to identify reduced 
scale designs which provide similar performance in terms 
of certain scale quality measures, such as validity. In the 
case of the latter, there are a number of planned missing
ness techniques which enable researchers to amortize data 
collection cost over the course of a longitudinal design, or 
to leverage statistical associations to compensate for fore
seen missing data. These methods differ significantly from 
our proposal, and can even be used in combination with 
ours. Specifically, the short-form scale design approaches 
are motivated by the fact that there may exist redundant in
formation in a scale which is already represented by other 
items (or combinations, thereof). In contrast, our approach 
is concerned with the assumptions about and formal spec
ification of the causal structure of data generating process 
itself, and does not concern redundancies in the scales used 
to measure the constructs/variables within this structure. 
The data generating process can therefore be considered in
dependently of scale-item redundancy. Similarly, planned 
missingness techniques include split form designs (Raghu
nathan & Grizzle, 1995) which split large questionnaires 
into multiple smaller blocks, each of which is completed by 
participants at different stages of a longitudinal design. Al
ternatively, multiple imputation provides researchers with 
a way to leverage statistical associations to compensate for 
instances of missing data. Again, in contrast with our pro
posal, this approach does not consider the opportunities al
ready implicit in the specification of our theory. 

Conclusion  

In summary, graphical representations of our theories 
provide us with an opportunity to encode our domain 
knowledge about a particular phenomenon of interest. In 
this paper we showed that, by using graphical modeling 
rules (in particular, the concept of conditional independen
cies), we can significantly shrink the required causal struc
tural model without affecting the validity of the associ
ated estimates, thereby reducing the required sample size 
and enabling us to redirect resources and funds towards the 
collection of variables which are critical to answering the 
questions we care about. 
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Appendix: Simulation Results    

The purpose of the simulation is to illustrate the dif
ferences in , Root Mean Squared Error of Approximation 
(RMSEA), Comparative Fit Index (CFI), Mean Absolute Error 
(MAE) and p-values, between two models which differ in 
complexity but which are otherwise correctly specified 
(with respect to the true, underlying DGP. It is worth noting 
that  is known as an ‘absolute’ fit index, and is not ad
justed for model complexity. A lower  value indicates bet
ter fit and provides a measure of how much our sample co
variance matrix differs from our fitted covariance matrix. In 
contrast, RMSEA adjusts for the model complexity (favour
ing model parsimony), and here a lower value is preferred. 
Finally, CFI is not adjusted for model complexity, and 
higher values are preferred. For more information on these 
metrics, readers are pointed towards works by Maruyama 
(1998; Hoyle & Panter, 1995). 
It is important to note that under these conditions (and 

when researchers use the process/tools presented in this 
work), the causal effect size estimates are unbiased regard
less of whether the full model or the reduced models are 
used. As such, even though the use of these tools can have 
an effect on the standard errors (and therefore also the 
-values and null-hypothesis significance testing), it does 
not affect the large-sample performance of the model. In
deed, this is evidence in the lower four plots of Figure A1, 
which confirm that the choice of model does not affect the 
effect size estimates (all are unbiased). Nonetheless, it is 
important to understand the possible impact on the var
ious model metrics to understand that two different cor
rectly specified models can yield different finite-sample be
haviours. These differences are discussed in more detail in 
this section. 
Simulation results for DGP examples 2-5 in Figure 4 are 

shown in Figures A1-A3. We use the sem function in the 
lavaan library (Rosseel, 2012) to estimate a single target ef
fect for each variant. For the MAE and the p-values, we pro
vide results for a single effect of interest. For example, for 
the DGP research question 2ii in Figure 4, we specify the 
SEM models given in the ‘Full DGP’ and ‘Reduced’ columns 
and generate MAEs and -values for the total effect of  on 
. Similarly, for DGP research question 3ii, we specify the 

SEM models given in the ‘Full DGP’ and ‘Reduced’ columns, 
and generate MAEs and -values for the total effect of 
on . Finally, for example 5, we specify the SEM models 
given in the ‘Full DGP’ and ‘Reduced’ columns, and gener
ate MAEs and -values for the total effect of  on . 
For each of the example DGPs, we generate data across 

a range of sample sizes (10-200), and for each sample size 
we undertake 100 simulations. The results of these 100 sim
ulations are used to derive means and standard deviations 
for each of the metrics, thus allow us to compare the results 
when specifying the full DGP model compared with the re
duced models. 
Starting with the results for the model fit metrics  in 

Figure A1, we see that for DGPs 2-4 the reduced models 
have better fit (lower  indicates better fit). This comes as 
no surprise because here the complexity of the model im

pacts our ability to reduce error for the path coefficients we 
are estimating (reducing the degrees of freedom). For simi
lar reasons, it is also not surprising that the differences for 
the full and reduced models for DGP 5 were not different 
- the reduced model did not differ greatly in its reduction 
of complexity. In this sense, reducing the complexity of the 
model can have an effect on the resulting , in such a way 
that yields a value which is considered desirable (of course, 
in practice we should specify theories based on more than 
just the resulting fit-statistics). 
In Figure A1 we provide estimates for the target effect 

size ‘Coefs’, on top of the true effect size ‘True Coef’. Im
portantly, the results confirm that the simplification 
process does not bias the estimates - all model variants cor
rect estimate the effect size. 
Results for CFI (higher is better) and RMSEA (lower is 

better) are shown in Figure A2. Once again, the smaller 
models are preferred and yield higher CFI values. This again 
comes as a consequence of the complexity of the larger 
models and the concomitant impact on estimation. This 
notwithstanding, as the sample size increases, the results 
converge fairly quickly. The RMSEA results indicate a great 
improvement with the use of the reduced models, particu
larly for smaller sample sizes. This is not surprising beacuse 
RMSEA is an adjusted metric, and so the results are consis
tent with the expectation that lower RMSEA values are as
sociated with smaller models. 
Finally, the p-values and MAEs for the target effect size 

estimates are shown in Figure A3. For DGP 2 (top left plot), 
the -values are higher for the reduced model than the 
complete model. This is consistent with the expectation 
that the inclusion of more variables can help increase the 
precision of our estimates. Indeed, in general we expect 
that the inclusion of variables into a structural equation 
model will reduce the standard error and, by the mathemat
ical expressions relating these quantities, also reduce the 
p-values. However, this is only reliably the case if the model 
is correctly specified, and the reason it happens is because 
we are able to partial out the variance more completely. For 
example, consider the graph . Here,  has 
two causes, but let’s say that we actually only care about 
the link . In this case we have two options: create 
an SEM which includes  (in addition to the 
link), or create an SEM which does not. Note, however, that 
the inclusion of  can help us estimate  be
cause it partials out variance in  which, in a finite sample, 
might otherwise be attributable to . Unfortunately, in 
practice it may not be as simple as this, because every time 
we include a new variable and a new path, we also increase 
the chances that we incorrectly specify the graph. Thus, 
whilst the option to reduce standard error by the inclusion 
of more paths is perhaps still a good thing to consider/un
derstand in general, doing so requires us to be more and 
more confident that our specification is correct as we in
clude more and more paths in our model. 
Returning to the examples in the figure, the reduced 

model in DGP 2i only includes two effects of the outcome 
, which is  and . However, other more proximal vari

ables  and  exist, and their inclusion would improve the 
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quality of the estimate. In this case,  and  would be dou
bling as both control variables (adjusting for the backdoor 
path from  to , as well as variables which aid in preci
sion (Cinelli et al., 2020). Note also that the standard devia
tion of these p-values is higher, indicating greater variation 
across simulations. This increased variance also results in a 
higher MAE, which is also evidence in the DGP2 - MAE plot 
in Figure A3 (third row, first column). Thus, even though 
the effect size estimates will be unbiased (owing to correct 
specification of the reduced model with respect to the full 
DGP), the removal of explanatory variables can impact the 
precision of the estimates. In order to compensate for this, 
one can choose to retain variables which have explanatory 
power so long as their inclusion does not contradict the full, 
underlying model. DGP 2 represents a useful example inso
far as variables  and  can be included (optionally in ad
dition to ), to help explain the effect of  on . 
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Figure A1. Simulation    and Coefficient Estimation Results.     
Note. Averages and standard errors over 100 simulations with varying sample sizes for  and estimated coefficient values for data generated from Data Generating Processes (DGPs) 
2-5 in Figure 4. 
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Figure A2. Simulation CFI and RMSEA Results.      
Note. Averages and standard errors over 100 simulations with varying sample sizes for Comparative Fit Index (CFI) and Root Mean Squared Error of Approximation (RMSEA) for data 
generated from Data Generating Processes (DGPs) 2-5 in Figure 4. 
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Figure A3. Simulation p-value and MAE Results.      
Note. Averages and standard errors over 100 simulations with varying sample sizes for p-values and Mean Absolute Error (MAE) for data generated from Data Generating Processes 
(DGPs) 2-5 in Figure 4. 
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