
Textual autocorrelation :
formalism and illustrations

François Bavaud, Christelle Cocco, Aris Xanthos
University of Lausanne

{francois.bavaud, christelle.cocco, aris.xanthos}@unil.ch

Abstract
Textual autocorrelation is a broad and pervasive concept, referring to the similarity between nearby textual units:
lexical repetitions along consecutive sentences, semantic association between neighbouring lexemes, persistence
of discourse types (narrative, descriptive, dialogal...) and so on. Textual autocorrelation can also be negative, as
illustrated by alternating phonological or morpho-syntactic categories, or the succession of word lengths.
This contribution proposes a general Markov formalism for textual navigation, and inspired by spatial statistics.
The formalism can express well-known constructs in textual data analysis, such as term-document matrices, refer-
ences and hyperlinks navigation, (web) information retrieval, and in particular textual autocorrelation, as measured
by Moran’s I relatively to the exchange matrix associated to neighbourhoods of various possible types.
Four case studies (word lengths alternation, lexical repulsion, parts of speech autocorrelation, and semantic auto-
correlation) illustrate the theory. In particular, one observes a short-range repulsion between nouns together with a
short-range attraction between verbs, both at the lexical and semantic levels.

Résumé
Le concept d’autocorrélation textuelle, fort vaste, réfère à la similarité entre unités textuelles voisines: répétitions
lexicales entre phrases successives, association sémantique entre lexèmes voisins, persistance du type de discours
(narratif, descriptif, dialogal...) et ainsi de suite. L’autocorrélation textuelle peut être également négative, comme
l’illustrent l’alternance entre les catégories phonologiques ou morpho-syntaxiques, ou la succession des longueurs
de mots.
Cette contribution propose un formalisme markovien général pour la navigation textuelle, inspiré par la statistique
spatiale. Le formalisme est capable d’exprimer des constructions bien connues en analyse des données textuelles,
telles que les matrices termes-documents, les références et la navigation par hyperliens, la recherche documentaire
sur internet, et, en particulier, l’autocorélation textuelle, telle que mesurée par le I de Moran relatif à une matrice
d’échange associée à des voisinages de différents types possibles.
Quatre cas d’étude illustrent la théorie: alternance des longueurs de mots, répulsion lexicale, autocorrélation des
catégories morpho-syntaxiques et autocorrélation sémantique. On observe en particulier une répulsion à courte
portée entre les noms, ainsi qu’une attraction à courte portée entre les verbes, tant au niveau lexical que sémantique.

Keywords: hyponymy, local variance, Markov transitions, Moran’s I , semantic scores, textual attraction, textual
dissimilarities, textual navigation, textual repulsion
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1. Introduction

Reading can be formalised as navigating among textual positions. The present contribution
indulges in conceiving text as a space rather as a time series. Borrowing concepts from spatial
statistics such as “spatial neighbourhoods” and “spatial field” enables the computation of global
and local measures of dispersion, whose comparison permits to measure the textual tendency for
short- or long-range repetition or avoidance between lexical, syntactic or semantic categories.

Standard, linear reading proceeds by left-to-right transitions from the first position to the last
one. Re-reading, zapping, switching to footnotes and references, or following hyperlinks breaks
down the linearity of reading, and generates jumps and reversals, as well as multiple navigation
possibilities. The simplest model accounting for non-linear, stochastic reading is a Markov
chain on textual positions; assuming the chain to be finite and regular (which implies some kind
of rewinding, trapping for ever the reader in the text), the long-term iterations of the process
define the weights of textual position - the stationary distribution of the Markov chain.

Comparing the field differences among two independently sampled positions (ordinary vari-
ance) versus two positions sampled according to the Markov chain (local variance) permits to
measure and test textual autocorrelation. Although Markov transitions for reading are of course
highly asymmetric in general, the corresponding ordinary and local variances depend only upon
the symmetric part of the Markov chains, defining in turn a symmetric neighbourhood around
each textual position (see equation (1)).

The aim of this paper is twofold: first, to expose a quite general formalism for textual naviga-
tion, encompassing traditional book reading, hypertext browsing, and other possibilities which
might or might not correspond to a presently existing practice. Thanks to its generality, the
mathematical apparatus makes it possible to define diverse kinds of neighbourhoods and auto-
correlation phenomena, and also to unify other important textual concepts and methods such
as hard versus soft documents, term-document matrices, web search, semantic dissimilarities,
correspondence analysis, latent semantic analysis, and multidimensional scaling.

The second part of the paper presents four illustrations of lexical, syntactic and semantic au-
tocorrelation, essentially restricted (in contrast to the above generality) to neighbourhoods of
increasing size in a single document, and limited to measuring the positional attraction and
repulsion between textual categories.

2. General formalism

Textual navigation. Consider a corpus made out of n tokens, consisting of textual units such
as words, characters, sentences, etc., and occurring at positions indexed by i, j... , taking on
values from 1 to n. Some textual positions may be more prominent than other (e.g. through
typographic or locational emphasis, or otherwise), as quantified by possibly varying relative
weights fi > 0 with

∑n
i=1 fi =: f• = 1 1.

Textual navigation is modelled by a non negative transition matrix T = (tij) (with
∑

j tij = 1),
the probability that position j will be read after position i, as intended by the author, or as

1here and in the sequel, symbol “•” denotes the summation over all values of the substituted index.

reflecting the readers effective behaviour, possibly by using hyperlinks. Linear navigation, i.e.
usual reading, obtains as the particulary case tij = 1(j = i+ 1) 2.

In the fiction of an ever-reading agent3, the position weight should reflect the long run visiting
frequency, that is fj =

∑
i fitij (stationary distribution).

Textual field, neighbourhoods and autocorrelation. Let xi be a numerical variable or textual
field characterising the token situated at i, such as the presence/absence of a term or a category,
the word length or frequency, or a “semantic score” resulting from MDS applied to a matrix of
pairwise semantic dissimilarities (see Section 3.4). Its average over the corpus is x̄ =

∑
i fixi

and its variance reads

var(x) =
∑
i

fi(xi − x̄)2 =
1

2

∑
ij

fifj(xi − xj)
2

In the latter expression, fifj is the probability of independently selecting two positions i and
j. Replacing it with fitij , the probability of reading the ordered bigram (i, j) defines the local
variance (Lebart 1969; Bavaud 2008)

varloc(x) =
1

2

∑
ij

fitij(xi − xj)
2 =

1

2

∑
ij

eij(xi − xj)
2 (1)

where eij := 1
2
(fitij + fjtji) are the components of the symmetric exchange matrix E, non-

negative and obeying
∑

i eij = fj (Berger and Snell 1957). The exchange matrix E charac-
terizes textual neighbourhoods, and enters the definition of the ratio varloc(x)/var(x), known as
Geary’s c in spatial statistics (see e.g. Cressie 1991), and reducing to the Durbin-Watson test
statistics for the linear neighbourhoods eij = 1(j = i ± 1)/(2n) (up to boundary corrections).
Moran’s I (Moran 1950) obtains as

I(x) :=
var(x)− varloc(x)

var(x)
− 1 ≤ I(x) ≤ 1

and constitutes the standard measure of spatial autocorrelation (see e.g. Cressie 1991): high
values of I(x) characterise a field x whose local variations (that is, in the range of E) are of
lesser magnitude than its overall variations across the whole corpus.

A multivariate generalisation considers the (squared) Euclidean dissimilarities Dij =
∑p

k=1(xik−
xjk)

2 = ‖xi − xj‖2 between pairs of positions located at i and j, where xik is the (conveniently
standardised) value of the k-th feature associated to i. Extending the above definitions, one
defines the inertia ∆, the local inertia ∆loc and their relative difference δ ∈ [−1, 1] as

∆ :=
1

2

∑
ij

fifjDij ∆loc :=
1

2

∑
ij

eijDij δ :=
∆−∆loc

∆
.

2here and in the sequel, 1(A) denotes the indicator function of event A, taking on the value 1 if A is true, and
0 otherwise.

3a more complete modelling, not pursued here, could consider the additional outside text state indexed by 0,
with ti0 as the probability of exiting the text at position i, and t0i as the probability of entering from the text at
position i.
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The width of neighbourhoods can be increased by considering the iterates

E(r) = (e
(r)
ij ) := ΠW r Π := diag(f) (2)

where W stands for the reversible Markov transition matrix with components

wij :=
eij
fi

=
1

2
(tij +

fj
fi
tji) .

Testing textual autocorrelation. Under the null hypothesis H0 of no textual autocorrelation,
the values xi are independent of their positions i, that is all the quantities of the form I(π(x))
are equiprobable, where π(xi) := xπ(i) is a permutation among positions. p-values obtain by
comparing the observed value I(x) to B permuted values I(π(x)) (among n! possibilities), or,
by extension, by comparing the relative difference δ to B permuted values δ(π(D)).

Under H0, the neutral or expected value of I(x) is I0 = (trace(T ) − 1)/(n − 1), which is non
zero in general. In particular, I0 = −1/(n− 1) for an off-diagonal exchange matrix.

Documents, references and hyperlinks. Documents are made of textual units occurring at
specific positions, and can be defined by the membership or indicator matrix Z = (zig) with
zi• = 1, where zig = 1 if position i belongs to document g, and zig = 0 otherwise. Soft
generalisations with zig ≥ 0 and

∑
g zig = 1, not pursued here, are also conceivable.

In all generality, a reference or a hyperlink intends to explain, clarify or detail a part (a para-
graph, a chapter or the totality) of the current document g by highlighting a part of the referenced
document h. Simple choices for representing references and hyperlinks are

• position-to-position transitions p(i → j) = tij (where i ∈ g and j ∈ h) between docu-
ments, breaking down the linear textual structure

• position-to-document transitions p(i → h) =
∑

j tijzjh
• document-to-document transitions p(g → h) = τgh, with

∑
h τgh = 1, as in the PageRank

algorithm, allowing for self- and multiple references, and fixing the case of documents
with no outlinks by allowing random jumps towards other documents (e.g. Langville and
Meyer 2006). Consistency requires the transitions between documents to result from the
addition of all positional transitions between units contained in the documents, that is

τgh =
1

ρg

∑
ij

fizigtijzjh with ρg =
∑
i

fizig (3)

In any case, ρg in (3) is the relative weight of document g, and obtains as the stationary distri-
bution of τ = (τgh), that is τ ′ρ = ρ where τ = R−1Z ′ΠTZ with R := diag(ρ).

Symmetric, normalised document-document exchange matrices ε = (εgh) obtain from the
above as εgh =

∑
ij eijzigzjh, that is ε = Z ′EZ with εg• = ρg.

Discrete document dissimilarities simply obtain as Ddoc
ij := 1

2

∑
g(zig − zjg)

2, taking on value
1 iff positions i and j refer to different documents (and 0 otherwise). The resulting inertia, local
inertia and relative difference read

∆doc =
1

2
(1−

∑
g

ρ2g) ∆doc
loc =

1

2
(1−

∑
g

εgg) δdoc =

∑
g(εgg − ρ2g)

1−
∑

g ρ
2
g

.

δdoc takes on its maximal value 1 iff ε is diagonal, that is in absence of references or hyperlinks
between different documents - in which case ∆doc only contains intra-document contributions.
Conversely, δdoc can be shown to take on its minimal value −1/(m − 1) in the “completely
hypertextual” (and completely unreadable) case consisting in systematically switching between
m documents of same weight, without any intra-document navigation.

Discrete term dissimilarities. Consider the term indicator matrix X = (xiα) with xiα = 1
if term α occurs at place i, and xiα = 0 otherwise. By construction, xi• = 1 and Dterm

ij :=
1
2

∑
α(xiα − xjα)

2 takes on the value 1 iff the terms at i and j differ, that is Dterm is the discrete
metric between terms. Proceeding as above, one finds

∆term =
1

2
(1−

∑
α

p2α) ∆term
loc =

1

2
(1− θ) δterm =

θ −
∑

α p
2
α

1−
∑

α p
2
α

where θ :=
∑

ijα eijxiαxjα is the probability that a term repetition occurs among two neigh-
bourly units. The corresponding relative difference δterm takes on its minimum value on corpora
free of lexical repetitions (within the range specified by the exchange matrix), and its maximum
value 1 on corpora made of disconnected parts, each of which repeats a same term.

Term-document matrices and their generalisations. The above formalism permits, among
other configurations, to characterise the traditional textual layout, consisting of weakly inter-
acting documents avoiding nearby term repetitions, which favours a high δdoc (lowered by the
presence of references and hyperlinks) together with a low δterm (raised by term repetitions).

Terms and documents can be directly related by marginalising over textual positions, as in the
normalised term-document matrix N := X ′ΠZ with components nαg =

∑
i fixiαzig, where

nα• =
∑

i fixiα =: pα is the relative abundance of term α, n•g = ρg, and n•• = 1.

A hierarchy of squared Euclidean distances between terms can be defined from the term-
document matrix (Bavaud and Xanthos 2005); their first members are

D0
αβ = (

1

pα
+

1

pβ
) 1(α �= β) Dχ

αβ =
∑
g

1

ρg
(
nαg

pα
− nβg

pβ
)2 . (4)

Those distances define distances between positions as Dij := Dα(i)β(j), where α(i) denotes
the term occurring at position i. Also, the above discrete term dissimilarity Dterm follows from
Dαβ = 1(α �= β); similar considerations apply to documents.

LSA, FCA, VSM and PageRank. Let us briefly make explicit a few well-known quantities
expressible within the above formalism. First, Latent Semantic Analysis results from the sin-
gular decomposition of nαg, or weighted versions of it, taking terms or documents frequencies
into account; the canonical case, Factorial Correspondence Analysis results from the singular
decomposition of nαg/

√
pαρg, or, equivalently, from the weighted classical MDS applied on

Dχ in (4).

In the Vector Space Model, the cosine similarity (
∑

α∈Q nαg)/(|Q|
√∑

α n
2
αg) constitutes the

standard (unweighted) measure of similarity between a document g and a query Q (defined as a
set of terms). The latter numerator is a measure of relevance of document g to the query Q; the
variant ρg1(

∑
α∈Q nαg ≥ 0) constitutes the basic relevance measure used in Google’s PageRank

algorithm (Langville and Meyer 2006).
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Figure 1: word lengths alternation. Left: centered Moran’s I(r)(x)− I
(r)
0 (x) for r-iterated “jump”

neighbourhoods, where I
(r)
0 (x) is the expected Moran index in absence of autocorrelation. Both I(r)(x)

and I
(r)
0 (x) are zigzagging functions of r, and so is their difference, although with a smaller amplitude.

Middle: Moran’s I [r](x) versus “window” neighbourhoods size r, together with the line depicting the
expected value I [r](x) = −0.0005. Right: autocorrelation function ACF(r) with confidence intervals,

as produced by R.

3. Case studies

As stated above, the following analyses are restricted to single documents (no hyper-links nor
references). Permutation tests have been performed, with the expected result that large enough
Moran indices and relative differences are significant at the conventional α = 5% or α = 1%
levels whenever the text size n is large enough.

Two kinds of exchange matrices are considered, namely the r-iterated neighbourhoods E(r) and
the r-sized neighbourhoods E[r], with r ≥ 1. The former results from the iteration of the basic
bilateral jump exchange matrix (section 2), corrected at the extremities, namely

e
(1)
ij = eij :=

1(j = i± 1) + 1(i = j = 1) + 1(i = j = n)

2n

producing uniform weights fi = 1/n, and whose expected values under absence of autocorre-
lation I

(r)
0 = (trace(W r)− 1)/(n− 1) exhibit a complex dependence on r.

By contrast, r-sized neighbourhoods constitute usual bilateral windows, obtained by normalis-
ing the relation “to be at maximum distance r apart” as

e
[r]
ij :=

c
[r]
ij

c
[r]
••

c
[r]
ij := 1(|j − i| ≤ r) · 1(i �= j)

whose weights f [r]
i := e

[r]
i• are smaller at the document extremities than in the bulk, with constant

expected values I [r]0 = −1/(n− 1) under absence of autocorrelation.

3.1. Word lengths alternation

In a typical text, the interlacing between functional and content words produces a tendency to
alternation between the lengths of consecutive words. That is, one expects the quantity xi =
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expected value I [r](x) = −0.0005. Right: autocorrelation function ACF(r) with confidence intervals,

as produced by R.

3. Case studies

As stated above, the following analyses are restricted to single documents (no hyper-links nor
references). Permutation tests have been performed, with the expected result that large enough
Moran indices and relative differences are significant at the conventional α = 5% or α = 1%
levels whenever the text size n is large enough.

Two kinds of exchange matrices are considered, namely the r-iterated neighbourhoods E(r) and
the r-sized neighbourhoods E[r], with r ≥ 1. The former results from the iteration of the basic
bilateral jump exchange matrix (section 2), corrected at the extremities, namely

e
(1)
ij = eij :=

1(j = i± 1) + 1(i = j = 1) + 1(i = j = n)

2n

producing uniform weights fi = 1/n, and whose expected values under absence of autocorre-
lation I

(r)
0 = (trace(W r)− 1)/(n− 1) exhibit a complex dependence on r.

By contrast, r-sized neighbourhoods constitute usual bilateral windows, obtained by normalis-
ing the relation “to be at maximum distance r apart” as

e
[r]
ij :=

c
[r]
ij

c
[r]
••

c
[r]
ij := 1(|j − i| ≤ r) · 1(i �= j)

whose weights f [r]
i := e

[r]
i• are smaller at the document extremities than in the bulk, with constant

expected values I [r]0 = −1/(n− 1) under absence of autocorrelation.

3.1. Word lengths alternation

In a typical text, the interlacing between functional and content words produces a tendency to
alternation between the lengths of consecutive words. That is, one expects the quantity xi =

“length of the word occurring at the i-th position” to exhibit a negative short-range autocor-
relation. The fact is confirmed by the two first plots in Figure 1, based upon the 2’000 first
tokens of the novel Notre-Dame de Paris by Victor Hugo, containing a total of 180’610 to-
kens. The zigzagging appearing in r-iterated neighbourhoods is generated by self-interaction
e
(r)
ii > 0 for even values of r - an expected logical artefact, although possibly confusing for the

interpretation.

In the time series formalism, the autocorrelation function at lag r is defined as ACF(r) :=
corr(xt, xt+r) (Figure 1, right). As a matter of fact, ACF(r) constitutes another avatar of Moran’s
I(x) for a particular exchange matrix, namely eij = 1(j = i ± r)/2n (up to boundary correc-
tions). Also, I(1)(x) = I [1](x) = ACF(1) by construction, with value −0.177 in the present
case (see Figure 1).

3.2. Lexical repulsion
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Figure 2: lexical repulsion. Left: relative centered inertia difference δ(r) − δ
(r)
0 for r-iterated

neighbourhoods, where δ
(r)
0 is the expected relative inertia difference in absence of autocorrelation.

Right: relative inertia difference δ[r] versus neighbourhoods size r, together with the line depicting the
expected value δ

[r]
0 = −0.0027.

Let us consider the spatial autocorrelation associated with the term dissimilarities Dterm
ij on the

n = 371 words (tokens), v = 206 being distinct (types) occurring in the Atlantic Charter text,
an official statement issued by Britain and the United States in August 1941. The relative inertia
differences are depicted in Figure 2. In any case, both plots betray the avoidance of nearby term
repetitions (i.e. for small r), as expected in the usual documents.

3.3. Parts of speech autocorrelation

The third example considers the French text Déclaration des droits de l’homme et du citoyen
(1789). Using TreeTagger, words have been classified into four part-of-speech (POS) groups,
namely nouns, verbs, adjectives and adverbs, summing to a total of n = 668 occurrences -
the other categories having been deleted. Four corresponding POS-dissimilarities matrices are
considered (see above), for instance Dverb

ij taking on the value 1 iff the pair (i, j) consists of a
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Figure 3: parts of speech autocorrelation: the four POS dissimilarities as revealed by the four
positional 668× 668 matrices Dnoun, Dverb, Dadjective and Dadverb, coded 1=black and 0=white.
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Figure 4: parts of speech autocorrelation. Relative differences δ[r] for r-sized neighbourhoods, for
nouns (top left), verbs (top right), adjectives (bottom left) and adverbs (bottom right).

verb and a non-verb, and 0 otherwise (i.e. verb and verb, or non-verb and non-verb). Dnoun,
Dadjective and Dadverb are defined similarly (see figure 3).

The corresponding relative differences, as a function of the neighbourhood size r, are depicted
in figure 4, and demonstrate a short-term repulsion between nouns together with a short-term
attraction between verbs (typically, an auxiliary verb followed by a past participle, e.g. “ont

été” or “est jugé”, or a modal verb followed by an infinitive, e.g. “peut être” or “doit obéir”).
Also, adjectives tend to repel each other in the mid-range, with the notable exception of neigh-
bours at distance two (most examples consist of pairs of adjectives linked by a conjunction, e.g.
“libres et égaux”, “naturels et imprescriptibles”, etc.). Finally, the presence of two consecutive
adverbs is very unlikely (compare also with figure 3).

3.4. Semantic autocorrelation

Semantic dissimilarities.

In ontologies such as Wordnet, let c1 ≤ c2 denote the hyponymy relation “concept c1 is an
instance of concept c2”, and let c1 ∨ c2 denote the least general concept subsuming both c1 and
c2. For instance, bicycle≤ vehicle and bicycle∨ car= vehicle for nouns, and (to
listen) ≤ (to perceive) and (to listen) ∨ (to view)= (to perceive)
for verbs.

The probability p(c) of a concept can be estimated as the relative number of words n(w) (in
some reference corpus, such as the Brown corpus) whose sense C(w) is an instance of concept
c, that is

p(c) �

∑
w n(w) 1(C(w) ≤ c)∑

w n(w)

Resnik (1995) proposes a measure of similarity between concepts c1 and c2 as

s(c1, c2) := − log p(c1 ∨ c2) ≥ 0

By construction, s(c1, c2) ≥ min{s(c1, c3), s(c2, c3)} for any triple of concepts. Also, p(c1 ∨
c2) ≥ p(c1) and p(c1 ∨ c2) ≥ p(c2), thus making the dissimilarity

D(c1, c2) := s(c1, c1) + s(c2, c2)− 2s(c1, c2) = log
p2(c1 ∨ c2)

p(c1) p(c2)
(5)

non negative.

If c1 ≤ c2, define the length of the edge joining c1 and c2 as log(p(c2)/p(c1)). In the general
case when c1 �≤ c2 and c2 �≤ c1, define the edge length between c1 and c2 as the edge length
from c1 to c1 ∨ c2 added to the length from c2 to c1 ∨ c2, with the result

log
p(c1 ∨ c2)

p(c1)
+ log

p(c1 ∨ c2)

p(c2)
= D(c1, c2)

which demonstrates that D(c1, c2) is a tree dissimilarity, and hence a squared Euclidean dis-
tance (e.g. Bavaud 2010), from which semantic coordinates can therefore be extracted by clas-
sical multidimensional scaling (MDS).

WordNet::Similarity: this Perl module, built by Pedersen et al. (2004), aims at extracting
the similarities s(ci, cj) defined above (option: “resnik”), from which the squared Euclidean
dissimilarities (5) between nouns or verbs are computed. Similarities were extracted using the
“first sense” of each concept, that is the most frequent.
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Figure 3: parts of speech autocorrelation: the four POS dissimilarities as revealed by the four
positional 668× 668 matrices Dnoun, Dverb, Dadjective and Dadverb, coded 1=black and 0=white.
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Figure 4: parts of speech autocorrelation. Relative differences δ[r] for r-sized neighbourhoods, for
nouns (top left), verbs (top right), adjectives (bottom left) and adverbs (bottom right).

verb and a non-verb, and 0 otherwise (i.e. verb and verb, or non-verb and non-verb). Dnoun,
Dadjective and Dadverb are defined similarly (see figure 3).

The corresponding relative differences, as a function of the neighbourhood size r, are depicted
in figure 4, and demonstrate a short-term repulsion between nouns together with a short-term
attraction between verbs (typically, an auxiliary verb followed by a past participle, e.g. “ont

été” or “est jugé”, or a modal verb followed by an infinitive, e.g. “peut être” or “doit obéir”).
Also, adjectives tend to repel each other in the mid-range, with the notable exception of neigh-
bours at distance two (most examples consist of pairs of adjectives linked by a conjunction, e.g.
“libres et égaux”, “naturels et imprescriptibles”, etc.). Finally, the presence of two consecutive
adverbs is very unlikely (compare also with figure 3).

3.4. Semantic autocorrelation

Semantic dissimilarities.

In ontologies such as Wordnet, let c1 ≤ c2 denote the hyponymy relation “concept c1 is an
instance of concept c2”, and let c1 ∨ c2 denote the least general concept subsuming both c1 and
c2. For instance, bicycle≤ vehicle and bicycle∨ car= vehicle for nouns, and (to
listen) ≤ (to perceive) and (to listen) ∨ (to view)= (to perceive)
for verbs.

The probability p(c) of a concept can be estimated as the relative number of words n(w) (in
some reference corpus, such as the Brown corpus) whose sense C(w) is an instance of concept
c, that is

p(c) �

∑
w n(w) 1(C(w) ≤ c)∑

w n(w)

Resnik (1995) proposes a measure of similarity between concepts c1 and c2 as

s(c1, c2) := − log p(c1 ∨ c2) ≥ 0

By construction, s(c1, c2) ≥ min{s(c1, c3), s(c2, c3)} for any triple of concepts. Also, p(c1 ∨
c2) ≥ p(c1) and p(c1 ∨ c2) ≥ p(c2), thus making the dissimilarity

D(c1, c2) := s(c1, c1) + s(c2, c2)− 2s(c1, c2) = log
p2(c1 ∨ c2)

p(c1) p(c2)
(5)

non negative.

If c1 ≤ c2, define the length of the edge joining c1 and c2 as log(p(c2)/p(c1)). In the general
case when c1 �≤ c2 and c2 �≤ c1, define the edge length between c1 and c2 as the edge length
from c1 to c1 ∨ c2 added to the length from c2 to c1 ∨ c2, with the result

log
p(c1 ∨ c2)

p(c1)
+ log

p(c1 ∨ c2)

p(c2)
= D(c1, c2)

which demonstrates that D(c1, c2) is a tree dissimilarity, and hence a squared Euclidean dis-
tance (e.g. Bavaud 2010), from which semantic coordinates can therefore be extracted by clas-
sical multidimensional scaling (MDS).

WordNet::Similarity: this Perl module, built by Pedersen et al. (2004), aims at extracting
the similarities s(ci, cj) defined above (option: “resnik”), from which the squared Euclidean
dissimilarities (5) between nouns or verbs are computed. Similarities were extracted using the
“first sense” of each concept, that is the most frequent.
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Figure 5: semantic autocorrelation. Relative inertia difference as a function of the neighbourhod size
r, for the n = 79 nouns (left) and the n = 56 verbs (right), together with the expected line

δ0 = −1/(n− 1).

Numerical investigations are based upon the Atlantic Charter text mentioned above, comprising
n = 79 noun tokens and n = 56 verb tokens. The relative inertia differences are depicted
in Figure 5. Clearly, semantically close nouns tend to repel each other at short range, while
semantically close verbs tend to attract each other - a presumably original observation, calling
for further empirical investigation on alternative corpora, as well for a linguistic interpretation.

Figure 6 exibits the MDS scree graphs. The corresponding first factorial coordinates {xiα} are
depicted in figures 7 (nouns) and 8 (verbs). Note the possibility (not pursued further) to analyse
textual semantic autocorrelation separately in each dimension α by inspecting I(xα).

Three groups of nouns appear in Figure 7, left: nouns in the north-east region (“government”,
“country”, “people”, “nation”, “labour” and “tyranny”) are subsumed (in WordNet) by the
concept of “group” or “grouping”. Nouns in the north-west region l are subsumed by the con-
cept of “attribute”, defined in WordNet as “an abstraction belonging to or characteristic of an
entity”. The third group in the south-west region contains the other nouns, whose common
hypernym is the most general concept of “entity” - the root in the nouns hierarchy.

Three groups of verbs appear as well in Figure 8, left: verbs in the south-east region (“seek”,
“desire”, “wish”, “hope”, and “want”) belong to the concept of “want”, “desire”. Verbs
in the south-west region (“deem”, “respect”, “believe” and “lighten”) are subsumed by the
concept “think”, “cogitate”, “cerebrate”. The group in the north-west region is semantically
heterogeneous, and contains the other verbs without specific common hypernyms.

4. Conclusion

In this paper, we have proposed a unified formalism for assessing and testing textual auto-
correlation, namely the tendency for values of a textual variable to be more similar (or more
different) between neighbouring units than between units at arbitrary positions in the text. In
this framework, based upon textual position, the topology of a text (or set of texts) is conve-
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Figure 5: semantic autocorrelation. Relative inertia difference as a function of the neighbourhod size
r, for the n = 79 nouns (left) and the n = 56 verbs (right), together with the expected line

δ0 = −1/(n− 1).

Numerical investigations are based upon the Atlantic Charter text mentioned above, comprising
n = 79 noun tokens and n = 56 verb tokens. The relative inertia differences are depicted
in Figure 5. Clearly, semantically close nouns tend to repel each other at short range, while
semantically close verbs tend to attract each other - a presumably original observation, calling
for further empirical investigation on alternative corpora, as well for a linguistic interpretation.

Figure 6 exibits the MDS scree graphs. The corresponding first factorial coordinates {xiα} are
depicted in figures 7 (nouns) and 8 (verbs). Note the possibility (not pursued further) to analyse
textual semantic autocorrelation separately in each dimension α by inspecting I(xα).

Three groups of nouns appear in Figure 7, left: nouns in the north-east region (“government”,
“country”, “people”, “nation”, “labour” and “tyranny”) are subsumed (in WordNet) by the
concept of “group” or “grouping”. Nouns in the north-west region l are subsumed by the con-
cept of “attribute”, defined in WordNet as “an abstraction belonging to or characteristic of an
entity”. The third group in the south-west region contains the other nouns, whose common
hypernym is the most general concept of “entity” - the root in the nouns hierarchy.

Three groups of verbs appear as well in Figure 8, left: verbs in the south-east region (“seek”,
“desire”, “wish”, “hope”, and “want”) belong to the concept of “want”, “desire”. Verbs
in the south-west region (“deem”, “respect”, “believe” and “lighten”) are subsumed by the
concept “think”, “cogitate”, “cerebrate”. The group in the north-west region is semantically
heterogeneous, and contains the other verbs without specific common hypernyms.

4. Conclusion

In this paper, we have proposed a unified formalism for assessing and testing textual auto-
correlation, namely the tendency for values of a textual variable to be more similar (or more
different) between neighbouring units than between units at arbitrary positions in the text. In
this framework, based upon textual position, the topology of a text (or set of texts) is conve-
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Figure 6: semantic autocorrelation. Scree graphs of the MDS associated to the nouns (left) and verbs
(right).
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Figure 7: semantic autocorrelation. Nouns coordinates extracted from MDS, first dimensions.

niently represented by means of an exchange matrix, which makes it possible to formalize a
wide variety of textual navigation scenarios, ranging from traditional linear reading to hyper-
textual hopping across documents. Formal relation with well-known constructs in textual data
analysis such as term-document matrices, latent semantic analysis and correspondence analysis,
or (web) information retrieval was also briefly touched upon.

This approach has been illustrated with examples pertaining to the lexical, morpho-syntactic and
semantic structure of language. In particular, a short-range repulsion for nouns together with
a short-range attraction for verbs, both at the lexical and semantic levels, has been evidenced.
This effect is yet to be confirmed on larger corpora, as well as to be given a proper linguistic
interpretation.



120	 François Bavaud, Christelle Cocco, Aris Xanthos

-0.1 0.0 0.1 0.2 0.3 0.4

-0
.4

-0
.3

-0
.2

-0
.1

0
.0

0
.1

first dimension

s
e
c
o
n
d
 d

im
e
n
s
io

n

verbs coordinates, from MDS on semantic dissimilarities

0.0 0.2 0.4 0.6
-0
.6

-0
.4

-0
.2

0
.0

0
.2

third dimension

fo
u
rt

h
 d

im
e
n
s
io

n

verbs coordinates, from MDS on semantic dissimilarities

Figure 8: semantic autocorrelation. Verbs coordinates extracted from MDS, first dimensions.

It is the authors’ belief that the proposed formalism is suitable for going beyond the traditional
representation of documents and corpora in quantitative approaches of text data, and in partic-
ular for accounting for the various types of links that may occur within or between documents.
This intuition remains to be further tested with data where such linking plays a significant role.
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