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Abstract

The nature of deep-crustal, intermediate and deep-focus earthquakes and their

relation to metamorphic reactions is a topic of debate. Here we seek to better

understand a possible link between the earthquake process and metamorphism

by analyzing the mechanism of ongoing deep-crustal earthquakes. We focus on

a region in the Himalayas with observed seismicity at depths expected to experi-

ence active eclogite-facies metamorphism and dehydration reactions. There are

few permanent seismic stations in the region, therefore we use waveform data

from a temporary seismic array deployment. We find two earthquakes with

magnitude and station coverage adequate for moment tensor inversion. For a

given earthquake we estimate its seismic full moment tensors (and magnitude)

together with uncertainties using all available waveforms. For the largest earth-

quake (Mw 3.7) we obtain a best-fitting moment tensor and uncertainties that

show a double-couple with a tensional crack component. In the context of geo-

logical records that document similar processes, and of laboratory experiments

conducted at spatial scales that are 5-6 orders of magnitude smaller, this mecha-

nism may be related to dehydration-driven stress changes triggering slight crack

opening, and ambient stresses favoring slip along a fault.
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1. Introduction1

The occurrence of earthquakes in the lower crust and upper mantle is well2

documented in earthquake catalogues and in geological observations. Their3

physical mechanisms, however, are not well understood as the host rock at such4

depths is expected to be ductile rather than brittle (e.g., Frohlich, 1989; Green5

& Houston, 1995; Prieto et al., 2013). Numerous observations of exhumed pseu-6

dotachylite, a type of glass that can form from frictional heating during rapid7

faulting, provide evidence of ancient earthquakes in the lower crust (e.g., Aus-8

trheim et al., 1997; Andersen et al., 2008; Hawemann et al., 2018). Based on9

petrological observations in the field (e.g., in the Norwegian Caledonides; Aus-10

trheim et al., 1994, 1997) these earthquakes have been interpreted in connec-11

tion with eclogitization, a process in which rocks undergo mineralogical phase12

changes and up to 15% densification. This process can involve dehydration re-13

actions, and is also proposed to occur in subducted oceanic crust, and to cause14

part of the globally observed intermediate-depth seismicity (e.g., Hacker et al.,15

2003).16

The Himalaya collision zone, where the India plate underthrusts the Ti-17

betan plateau at a rate of ca 2 cm/yr, provides a unique and modern setting18

for studying seismicity together with metamorphism. Receiver function studies19

for the region show that the India plate lower crust reaches depths of 55-80 km20

(Schulte-Pelkum et al., 2005; Nábělek et al., 2009; Wittlinger et al., 2009); and a21

combined geophysical-petrological model suggests that the crust at these depths22

is partially hydrated and is expected to experience active eclogitization through23

dehydration reactions (Hetényi et al., 2007). Earthquakes have also been de-24

tected in the same area and depth range by a temporary seismic broadband25

array (Monsalve et al., 2006). Furthermore, the crustal root of Tibet is the only26

place on Earth where deep-crustal earthquakes can be studied in the continen-27

tal lithospheric context. Here we analyze the mechanisms for these earthquakes28

and their possible relation to metamorphic dehydration reactions.29

On much smaller scales, laboratory experiments also aim to explain lower-30
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crustal, intermediate and deep-focus earthquakes by subjecting rocks to sim-31

ilar temperature and pressure conditions, studying their mineralogical phase32

changes and analyzing their acoustic emissions. In this context, three physical33

mechanisms are usually considered: (1) Transformational faulting, where minor34

cracks, which open during metamorphic densification of the rock, evolve into35

shear-bands and then form a fault zone (e.g., Green et al., 1990); (2) Dehydra-36

tion embrittlement, in which pore fluid pressure increases to cause mechanical37

failure of the rock (e.g., Green & Houston, 1995; Okazaki & Hirth, 2016; Hacker38

et al., 2003; Jung et al., 2004); (3) Thermal runaway, in which a shear instability39

develops following local heating due to viscous creep (e.g., Kelemen & Hirth,40

2007; John et al., 2009; Braeck & Podladchikov, 2007).41

In this study we estimate seismic moment tensors for the two largest earth-42

quakes beneath the Himalayas, at about 70 km depth, that were recorded during43

a temporary seismic array deployment. In our analysis we use the earthquake44

waveforms to find a best-fitting focal mechanism by performing a grid search45

over the full space of moment tensors. We analyze the moment tensor uncer-46

tainties to discern among mechanisms such as the double-couple, cracks, and47

isotropic. The methodology has proven successful in source discrimination and48

for a range of seismic sources and settings including tectonic, volcanic, and nu-49

clear tests (Alvizuri & Tape, 2016; Alvizuri et al., 2018; Alvizuri & Tape, 2018).50

We find that our moment tensor solutions show non-double-couple components.51

We analyze the results in terms of seismic source models, and discuss them in52

the context of metamorphic dehydration reactions in the lower crust.53

2. Data and Method54

2.1. Seismological data55

2.1.1. Data collection56

Our study area in the Himalayas is sparsely populated, and there are few57

permanent broadband seismic stations available. We therefore focus on data58

from two temporary seismic array deployments in the Himalayas; the HImalaya59
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Nepal Tibet Seismic Experiment (HIMNT) which operated 27 three-component60

broadband seismic stations between 2001-2003 in Eastern Nepal and South-61

Central Tibet (Sheehan, 2001) (Figure 1), and the Geodynamics ANd Seismic62

Structure of the Eastern-Himalaya Region (GANSSER) array which deployed63

38 stations in 2013-2014 in Bhutan (Swiss Seismological Service (SED), 2013).64

The two arrays shared similar goals of studying seismicity, seismotectonics and65

lithospheric structure of the Himalayas.66

2.1.2. Seismic event catalogs67

A total of 1649 local earthquakes were detected by the HIMNT array, of68

which 538 were relocated (Monsalve et al., 2006) (Figure 1). From the relo-69

cated events we identified 39 events below 50 km depth with magnitudes M>170

and epicenters within the array. In order to find events suitable for moment ten-71

sor analysis we inspected the signal-to-noise-ratio in their waveforms, performed72

preliminary moment tensor inversions, and verified station coverage. We found73

that only the two largest events, with magnitudes M<4 and depths of 68 and74

76 km, are suitable candidates for moment tensor analysis (Figure 1). In com-75

parison with the moment tensor estimates by de la Torre et al. (2007), which is76

restricted to the deviatoric moment tensor, we search the space of full moment77

tensors. Within the GANSSER catalog (Diehl et al., 2017) only the 2013-06-0678

earthquake at 76 km depth fit our depth criteria, but it has insufficient azimuthal79

coverage (gap>180◦). We therefore focus our study on the main event in South80

Tibet near East Nepal, and present solutions for the smaller event there in the81

Supplementary Material.82

2.1.3. Preparation of waveform data83

Our main event is relatively deep, relatively small, it generated surface waves84

discernible primarily on the transverse component, and in some stations its body85

waveform amplitudes are relatively larger toward higher frequencies. For our86

main result we used 33 traces recorded at 13 different stations, with vertical and87

radial component P-waves filtered between 0.4-0.8 Hz, and transverse compo-88
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nent surface waves filtered between 0.04-0.06 Hz.89

2.1.4. Seismic structure models for the region90

Our moment tensor method involves comparing observed with synthetic seis-91

mograms derived from a given wavespeed model. We consider two layered92

models, one for East Nepal and one for South Tibet, that were obtained us-93

ing HIMNT data and joint inversion of hypocenters and wavespeed (Monsalve94

et al., 2006). The two models differ by less than 1 percent wavespeed at shal-95

lower depths (above 55 km), and differ primarily in their Moho which deepens96

from East Nepal to South Tibet by 15 km. The earthquakes in this study have97

hypocenters beneath South Tibet, and their raypaths towards seismic stations98

at the surface span this zone of transitional wavespeeds and Moho depths. Given99

that the South Tibet model is more representative of the hypocenter zones, and100

the small wavespeed differences between models at shallower depths, we chose101

this model in our final results. Seismic attenuation also varies from east Nepal102

to south Tibet, and we adapted the velocity model with attenuation values103

estimated with HIMNT data (Sheehan et al., 2013); this structural model is104

deduced from a joint inversion of hypocenters and velocities. Given the vari-105

ability of local Moho depths from receiver function analyses (Schulte-Pelkum106

et al., 2005), we cannot rule out that the hypocenter of our main event at 76 km107

depth is in the uppermost mantle, but we consider this event as part of the108

crustal seismicity between about 60-70 km depth (Figure 1).109

2.2. Full moment tensor methodology110

The seismic moment tensor M is a 3×3 symmetric matrix that characterizes111

a seismic source such as an earthquake within the Earth. A moment tensor M112

can be expressed in terms of its eigenvalues Λ = [λ1, λ2, λ3] and a rotation113

matrix U as Λ = U[Λ]U−1. The source type of M is the normalized eigenvalue114

triple Λ = Λ̂/‖Λ̂‖. The source types for all moment tensors make up the115

fundamental lune representation on the unit sphere (Tape & Tape, 2012). In116

order to compare probabilities for source types for a given event, we use an117
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equivalent representation of the lune on a rectangle with coordinates (v, w),118

discussed in the next section.119

Our inversion method involves performing a complete search over the full pa-120

rameter space of moment tensors (lune longitude, lune latitude, strike, dip, and121

rake) including magnitude and depth. We use a version of the cut-and-paste122

code (Zhao & Helmberger, 1994; Zhu & Helmberger, 1996; Zhu & Ben-Zion,123

2013) that was recently changed with a geometric parameterization for moment124

tensors and their uncertainty quantification (Alvizuri & Tape, 2016; Silwal &125

Tape, 2016; Alvizuri et al., 2018). For each moment tensor in the parameter126

space, synthetic seismograms are computed using a frequency-wavenumber ap-127

proach (Zhu & Rivera, 2002) with a 1D (layered) Earth model, and then these128

seismograms are compared with observed waveforms via a misfit function. For129

details, see Alvizuri et al. (2018).130

2.3. Decomposition into physical mechanisms131

Following the discussion in Tape & Tape (2013) we consider two seismic132

source models for the earthquake analyzed here. In the classical model from133

Aki & Richards (1980) and elucidated by Dufumier & Rivera (1997), a source134

is described as (perhaps oblique) slip on a planar fault, with two parameters135

characterizing the source type being the Poisson ratio ν and the angle α =136

6 (N,S) between the normal vector N and slip vector S. With this model137

we find that the Poisson ratios for the main event are not well constrained,138

and therefore we do not pursue this analysis further. In the crack-plus-double-139

couple (CDC) model which was introduced by Minson et al. (2007) a source is140

described as a crack tensor plus a double-couple tensor. The two parameters141

that characterize the CDC model are the azimuth φ on the lune and the crack142

fraction ζ which relate to the moment tensor as (Tape & Tape, 2013)143

M(φ, ζ) = (cos ζ)D + (sin ζ)K(φ) (1)

where 0 ≤ ζ ≤ π/2, D is a double-couple tensor, and K(φ) is a crack tensor. The144

angle φ is the azimuth of crack tensors on the lune boundary (counterclockwise145
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from top), and ζ provides a measure of double-couple (ζ = 0◦) versus crack146

(ζ = 90◦) tensors. We seek to gain insight into the source model by analyzing147

the ensemble of moment tensors evaluated in our grid search. For any given148

event, our algorithm computes a probability density for source types p = p(v, w)149

which represents the probability at every source-type location. Using p we then150

sample the ensemble of all moment tensor solutions for a given event with the151

rejection method (e.g., Tarantola, 2005), and use the samples to calculate the152

φ and ζ distributions.153

3. Results154

3.1. Moment tensor and uncertainty analysis155

We show the results for our main event in Figures 2–3 (Figure S1 summarizes156

the grid search for the best-fitting depth). The grid search for the best-fitting157

moment tensor in Figure 2 reveals a mechanism with magnitude Mw 3.7 at158

a depth of 76 km. The waveforms in Figure 2 show synthetic seismograms159

(red lines), computed for the best-fitting mechanism, in comparison with the160

observed seismograms (black lines). The amplitude difference at some stations161

(e.g. DINX, BUNG) could use some improvements, and considering that this162

event is relatively small, deep, and our knowledge of the structure at such depths163

is limited, as discussed in Section 2, the overall similarity between observed and164

synthetic shows a degree of success in our estimates.165

A summary uncertainty analysis for our estimated moment tensor is shown in166

Figure 3, and a more detailed version which includes the best-fitting mechanisms167

and orientation for each source type, and a confidence parameter for source types168

(Tape & Tape, 2016) is shown in Figure S2. The best-fitting moment tensor169

is represented by the beachball in Figure 3a, a lune plot showing waveform fit170

(variance reduction) by source type is shown on Figure 3b, and a probability171

density p(v, w) for source types is shown on Figure 3c. The best-fitting solution172

on the lune (Figure 3b) is at (γ, δ) = (−5◦, 17◦), where (γ, δ) represent the173

longitude (CLVD) and latitude (ISO) coordinates on the lune. The variation of174
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waveform misfit reveals a crescent-shape region above the double-couple with175

similar-fitting mechanisms. The probability density p(v, w) (Figure 3c) shows a176

similar but broader crescent shape. This result is calculated by considering all177

moment tensor orientations within each cell, therefore the most probable source178

type does not necessarily coincide with the best-fitting source type. In our case,179

the most probable solution lies at (γ, δ) = (22◦, 26◦).180

3.2. Analysis of source models181

Figure 4 provides a starting point for interpreting the physical source model182

for our moment tensor solution. This figure shows the probability densities183

for the angles φ and ζ in equation [1]. For comparison, the black curves show184

the same angles but calculated analytically for a homogeneous distribution of185

moment tensors (Tape & Tape, 2015). For an ideal seismic source with a simple186

and well-defined source type (e.g., a pure crack), the histograms for φ and ζ187

would show well defined peaks above the homogeneous distribution. Our results188

show a range of crack tensors between azimuths φ = −35◦ and ζ = 145◦ above189

the homogeneous distribution that provide similar fitting solutions, as also seen190

in Figure 3c. Then, in comparing the relative amounts of double-couple versus191

crack tensors, the population of ζ peaks at about 25◦ away from the double-192

couple. Figures 3–4 are complementary except Figure 3 also describes the spread193

of our solution compared to the homogeneous distribution for moment tensors.194

4. Discussion195

4.1. Interpretation196

Our seismic source analysis for the deep Himalayan earthquake reveals a197

range of similar-fitting moment tensors with a tensional crack component. In198

the context of the India lower crust beneath southern Tibet, this mechanism199

may be related to metamorphic reactions, during which water is expelled from200

the host rock through dehydration reactions. The dehydrated water in the pores201

then incrementally increases the fluid pressure and reduces the normal stress.202
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With time, the pores connect to open a fracture, along which slip is favored203

by ambient differential stresses (Jung et al., 2004). This mechanism also works204

for relatively small amounts of fluid release, as soon as the amount of fluid205

exceeds the available pore volume. The initiation of the fluid escape is proposed206

based on field observations of dehydration veins in the Ligurian Alps (Plümper207

et al., 2017). Chemical heterogeneities of those rocks at the grain level cause208

dehydration reactions to initiate at specific sites at micrometer scales which,209

with varying fluid pressure, grow into vein networks across up to the meter210

scale (Plümper et al., 2017). This mechanism is similar to our interpretation211

for the India lower crust beneath southern Tibet.212

Assuming a strong and dry lower continental crust, stress pulses after earth-213

quakes in the upper crust could induce aftershocks in the lower crust and trigger214

metamorphic reactions (Jamtveit et al., 2018). However, based on combined215

thermo-kinematic and petrological model by Hetényi et al. (2007), the lower216

crust in our study location appears partially hydrated, and the dehydration217

reactions may have favored triggering the earthquake analyzed here.218

4.2. Comparison to laboratory experiments219

To date there is no laboratory experiment yet with partially hydrated rocks220

simulating the continental lower crust. Our results do not compare with the221

recent laboratory experiments by Shi et al. (2018) where they use dry samples222

and argue for shear-bands evolving into a fault zone; in fact, the choice of using223

dry samples in their experiments appears to be motivated by the natural samples224

used in Hacker et al. (2000), which are from a region in the northern part of225

Tibet, about 600 km farther north from our study area, and not underthrusted226

by the India plate.227

Another recent experiment by Incel et al. (2017) uses partially hydrated228

(lawsonite) samples, but they note that dehydration does not play a role in229

triggering acoustic emissions during mineralogical reactions, as evidenced by230

the remaining lawsonite phase in the assemblage. Hence, the authors argue231

for transformational faulting induced through grain-size reduction. Moreover,232
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dehydration in those experiments occurred at much higher temperatures (800233

◦C) than the expected temperature in the India lower crust (ca. 600-650 ◦C).234

The closest laboratory conditions to our setting is that by Ferrand et al.235

(2017), where they use hydrated samples representative of an oceanic subduction236

context, and where not only dehydration embrittlement, but dehydration driven237

stress-transfer causes failure. Dehydration embrittlement in a subduction zone238

context was also demonstrated in a numerical model of coupled dehydration239

and deformation (Brantut et al., 2017) . Similar processes, in particular volume240

decrease (densification) reactions favoring triggering of dynamic shear failures,241

could also operate in the India lower crust.242

4.3. Comparison with the geological record243

The Mw 3.7 earthquake we describe would correspond to ca. 10 cm slip on244

a roughly few kilometers long, several ten-meters wide zone. These dimensions245

are comparable to natural outcrops of eclogitized rocks associated with paleo-246

earthquakes on Holsnøy Island (Austrheim et al., 1996). Although the water247

content in the rocks differs between the current Himalayan and the former Cale-248

donian contexts, the former being partially hydrated and the latter being dry,249

the similar rupture sizes may be controlled by the mechanical strength of the250

lower crust.251

4.4. Additional remarks252

We cannot be sure that the primary expression of eclogitization produces253

the tensional crack component observed in our results. Indeed, a more logical254

mechanism that accommodates densification and volume decrease is a collapsing255

crack, or transformational faulting, as proposed by Green et al. (1990). Such256

processes, however, could operate on longer time scales and hence not cause257

earthquakes at all, or occur as smaller events. Within our focus depths beneath258

South Tibet, the magnitudes and depths of such events would preclude their full259

moment tensor analysis. On the other hand, patterns in their occurrence may260
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reveal further insights into the process. This will be investigated in a separate261

study using several earthquake catalogues.262

In any moment tensor analysis, as in our study, several factors may produce263

non-double-couple artefacts, including curved faults, and 3D structure varia-264

tions, such as anisotropy and heterogeneities near the source region, that are265

not accounted for with a 1D layered model (e.g., Kawasaki & Tanimoto, 1981;266

Frohlich et al., 1989; Julian et al., 1998; Burgos et al., 2016). Future moment267

tensor analysis with refined 3D velocity models for the region may provide ad-268

ditional insight.269

Finally, we cannot rule out that the earthquake at hand occurred in the270

uppermost mantle, even though the dehydration reactions occurred in the lower271

crust. The hypocenter is close to the Moho, and stress changes following the272

dehydration reactions may cause failure in the nearby mantle rocks instead of273

the lower crust, depending on their respective rheologies.274

5. Conclusions275

We present a full moment tensor and uncertainty analysis for a Mw 3.7276

earthquake 76 km beneath Himalaya, within a region expected to experience277

metamorphism through eclogitization reactions. The best-fitting moment tensor278

is between a double-couple and a tensile crack. Its uncertainty analysis shows a279

localized population of low-misfit moment tensors away from the double-couple,280

and its source type probability density shows a broad region of solutions.281

In the context of geophysical and petrological models of the India lower crust,282

which suggest the crust there is partially hydrated and undergoes metamorphic283

dehydration reactions, it is plausible that our estimated focal mechanism is re-284

lated to dehydration embrittlement. This process is also observed in laboratory285

experiments with hydrated rocks, although with different rock compositions.286

This result agrees with the hypothesis that dehydration embrittlement changes287

the mechanical properties of the crust, and extends the depth of the brittle rup-288

ture domain to that of the deepest hydrated phases (Raleigh & Paterson, 1965;289
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Jung et al., 2004).290

Our result focuses on a single event in the deep continental crust. Other291

mechanisms, such as dehydration embrittlement, transformational faulting, and292

thermal runaway, may apply to other contexts. The prevailing mechanism of293

intermediate and deep-focus earthquakes depends on the actual pressure, tem-294

perature and water-content conditions. In the India lower crust, the presence of295

water in the host rock is key and leads to the interpretation of a dehydration-296

related seismic event.297

Several phenomena related to eclogitization, for example the accommodation298

of overall volume decrease, occur over time scales that preclude seismological299

analyses. Future studies, including field observations, laboratory experiments300

with different rock compositions and hydration levels, numerical studies of rock301

mechanics, as well as better constrained seismic events may further our under-302

standing.303
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Figure 1: Hypocenters (blue circles) detected during deployment of the HIMNT seismic array

(black triangles) between 2001-2003. The top and side panels show hypocenter profiles. A

total of 1649 local earthquakes were located within the HIMNT array and 538 were relocated

(Monsalve et al., 2006). Out of these we identified 39 events below 50 km depth with mag-

nitudes M>1 and epicenters within the array (green circles). The largest event in this subset

(red star) has magnitude Mw 3.7 and is the focus of this study. A second, smaller event (red

circle) is presented in the Supplementary Material. The inset highlights E. Nepal and study

area.
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labels include event time (2002-05-08T17:56:59 UTC), wavespeed model, estimated depth and
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best-fitting moment tensor and shows station distribution on the focal sphere. The observed
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The stations are ordered by increasing epicentral distance. Numbers beneath each station are

epicentral distance and back-azimuth; numbers beneath each waveform pair are the time shift,
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ratio. Waveform data from station XA.CHUK is from the Bhutan Pilot Experiment (Miller,

2002).
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Figure 3: Moment tensor uncertainty summary for the result in Figure 2. (a) The labels

include event time, wavespeed model, estimated depth and magnitude, and source-type co-

ordinates of the optimal solution; the enlarged beachball shows station distribution on the

focal sphere. (b) Waveform fit (variance reduction) plotted on the lune; regions of best-fitting

solutions are darker blue. (c) Probability density function p(v, w) for source types (v and w

are the horizontal and vertical axes). In (b)-(c) the double-couple is represented by a cross;

the gray lines separate different moment tensor regimes. The source-type coordinates for the

best fitting solution in (a) are denoted by green circles, the maximum of p(v, w) is denoted by

green squares. See text for more details, and Figures S1-S2 for further details about moment

tensors and their lune representation.
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Figure 4: Probability densities of the crack-plus-double-couple (CDC) source model for the

main event. In the CDC model each source type is represented by (a) its azimuth φ on the lune

(counterclockwise from top) and (b) the crack fraction ζ. For a double-couple moment tensor

ζ = 0◦, for a tensional or compressional crack ζ = 90◦. The angles φ and ζ are calculated

directly from the eigenvalues of the moment tensors, and for this result they were calculated

for 10000 moment tensor samples (see Fig. S3) from the posterior distribution p(v,w) (Fig.

3c). For comparison, the black curves show the same angles but calculated analytically for a

homogeneous distribution of moment tensors.
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