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List of abbreviations 

LIGHT: homologous to lymphotoxin, exhibits inducible expression and competes with 

HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on 

T lymphocytes 

mAb: monoclonal antibody 

GvHR: Graft versus host reaction 

CD: Cluster of differentiation  

HSV: Herpesvirus  

TNF: Tumor necrosis factor  

TNFR: Tumor necrosis factor receptor 

HVEM: Herpesvirus entry mediator 

LTβR: Lymphotoxin beta receptor 

CRD: Cysteine rich domain 

APC: Antigen presenting cells  

FDC: Follicular dendritic cell 

DC: Dendritic cell  

CTL: Cytotoxic T lymphocyte 

NK: Natural killer  
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WT: Wild type  

KO: Knock-out  

mGFP: monster green fluorescent protein  

eGFP: enhanced green fluorescent protein  

APC: Allophycocyanin 

PE: Phycoerythrin  

MHC: Major Histocompatibility Complex 

PMA: Phorbol myristate acetate 

CFSE: Carboxyfluorescein succinimidyl ester 

FF-LIGHT: Flag-Foldon-tagged soluble mouse LIGHT.  

HVEM-Ig: HVEM.mIgG2a.Fc: Herpesvirus entry mediator bound to mouse IgG2a Fc 

fragment.  

LTβR-Ig: LTβR.huIgG1.Fc: Lymphotoxin beta receptor bound to human IgG1 Fc 

fragment. 
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Abstract 

TNF/TNFR superfamily members play essential roles in the development of the 

different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II 

transmembrane protein with a C-terminus extracellular TNF homology domain (THD) 

that assembles in homotrimers and regulates the course of the immune responses by 

signaling through two receptors, the herpes virus entry mediator (HVEM, TNFSFR14) 

and the lymphotoxin β receptor (LTβR, TNFSFR3). LIGHT is a membrane bound 

protein transiently expressed on activated T cells, NK cells and immature dendritic cells 

(DC) that can be proteolytically cleaved by a metalloprotease and released to the 

extracellular milieu. The immunotherapeutic potential of LIGHT blockade was 

evaluated in vivo.  Administration of an antagonist of LIGHT interaction with its 

receptors attenuated the course of graft versus host reaction and recapitulated the 

reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-

irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or 

blockade of LIGHT interaction with its receptors slowed down the rate of T cell 

proliferation and decreased the frequency of precursor alloreactive T cells, retarding T 

cell differentiation towards effector T cells. The blockade of LIGHT/LTβR/HVEM 

pathway was associated with delayed downregulation of IL-7Rα and delayed 

upregulation of ICOS expression on donor alloreactive CD8 T cells that are typical 

features of impaired T cell differentiation. These results expose the relevance of 

LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic 

immune responses mediated by alloreactive CD8 T cells that can contribute to prolong 

allograft survival. 
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Introduction 

The TNF/TNFR superfamily members play essential roles in diverse immunological 

processes such as T cell activation, costimulation, clonal expansion and T cell 

differentiation toward effector T cells. 1, 2, 3 The therapeutic intervention with biologics 

antagonizing the TNF/TNFR interactions can theoretically influence CD4 and CD8 T 

cell activation, clonal expansion, survival and particularly the process of differentiation 

toward effector T cells. This converts these interacting pathways as susceptible targets 

for the modulation of T cell-mediated immune responses.4, 5  

Mouse LIGHT (TNFSF14) is a type II transmembrane protein of 239 amino acids with 

a C-terminal extracellular TNF homology domain (THD) that assembles as 

homotrimers capable to interact with HVEM 6 and LTβR.7, 8 There are two isoforms of 

mouse LIGHT produced by alternative splicing: an isoform without transmembrane 

domain that resides in the cytosol, and an isoform with a transmembrane domain that 

can be proteolytically processed at amino acid 84 to generate a soluble extracellular 

form of LIGHT. 6, 9 In humans, there is an additional binding partner of LIGHT, a 

soluble protein named DcR3/TR6 protein (TNFRF6B) that lacks of transmembrane 

domain.10, 11  

Mouse LIGHT displays a pattern of expression mainly restricted to activated T 

cells, NK cells and bone marrow immature dendritic cells. 6,12 Both LIGHT receptors, 

HVEM and LTβR, are expressed on hematopoietic and non-hematopoietic stromal cells, 

although the latter is not expressed on lymphoid cells.13, 14 Whereas LIGHT/HVEM 

main functional activity is a cosignaling pathway in T cells, LIGHT/LTβR interaction 

seems to be more relevant in regulating stromal/APC/T cell cross-talk.15  

Preclinical studies in mouse models of disease are required to establish the proof 

of concept for the function of a target that permits to propel clinical trials in non-human 
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primates and humans in order to validate the potential use of new biologics for the 

treatment of immune-mediated diseases. However, this demands the development of 

high quality in vivo reagents to target the molecule of interest and its interactions. Our 

group has previously shown that antibody-mediated blockade of LIGHT/LTβR 

interaction with a partial antagonist antibody of LIGHT/LTβR interaction reduced 

short-term cytotoxic allogeneic responses, although did not fully recapitulate the 

impaired cytotoxic response observed in LIGHT-deficient T cells.12 

Based on some evidences in the field of transplantation using soluble LIGHT 

receptors as fusion proteins, such as HVEM.Ig and LTβR.Ig 16,17,18 and from the 

phenotype of LIGHT-deficient mice, 19, 12, 17 we postulated that a complete blockade of 

LIGHT interaction with its receptors would contribute to achieve a more suitable 

pharmacological control of the allogeneic immune response. LIGHT blockade on T 

cells would impede its interaction with LTβR or HVEM on DC and therefore would 

hinder their maturation, 19,20, 21, 22 as well as would prevent T/T cell collaboration 

through LIGHT/HVEM interactions that would contribute to maintain T cell survival 

during T cell expansion and differentiation. 23, 24, 25, 26 To confirm this hypothesis, we 

characterized a set of anti-LIGHT antibodies raised in LIGHT-deficient mice and chose 

one of them that fully blocked the binding of soluble LTβR or HVEM to membrane 

LIGHT.  

We demonstrated that efficient blockade of both HVEM/LIGHT and 

LTβR/LIGHT interactions attenuated the allogeneic immune response in a mouse model 

of graft versus host reaction and fully recapitulated the reduced cytotoxic phenotype of 

allogeneic LIGHT-deficient T cells. This study points to LIGHT as a suitable target for 

a better immunotherapeutic control of cytotoxic responses in transplantation.    
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Results 

Clone 3D11 is a neutralizing anti-LIGHT antibody that efficiently blocks its 

receptor-binding site 

To demonstrate the in vivo impact of LIGHT interaction with its receptors in the course 

of the allogeneic immune response, an antagonist mouse anti-mouse LIGHT 

monoclonal antibody (clone 3D11, mouse IgG2b, k) was raised in LIGHT-deficient mice 

immunized with LIGHT-transduced cells.  

The 3D11 antibody selectively bound NIH 3T3 cells expressing a GFP:LIGHT 

fusion protein, in which GFP was fused to the intracellular N-terminus of mouse 

LIGHT, but did not recognize control NIH 3T3 cells expressing GFP only (Figure 1A, 

upper panel). The binding specificity was confirmed by pre-incubation of clone 3D11 

with recombinant FF-LIGHT, which blocked the ability of 3D11 to bind LIGHT-

transduced cells (Figure 1A, lower panel).  

We next evaluated whether the anti-LIGHT mAb would prevent the interaction 

of mouse LIGHT expressed on cells with its receptors HVEM and LTβR. The 3D11 

antibody antagonized the binding of sLTβR.Ig and sHVEM.Ig to mouse LIGHT-

transduced cells down to background staining levels, similar to those obtained with 

isotype-matched control immunoglobulins (Figure 1B). The binding of anti-LIGHT 

mAb to LIGHT transduced cells was inhibited by FF-LIGHT at close to stoichiometry 

ratio assuming a monomeric antibody mass of 150 kDa  and two recognition sites per 

antibody and 67.5 kDa for the FF-LIGHT trimer and three epitopes per molecule (at EC 

50, 0.625 µg of antibody neutralized 1 µg FF-LIGHT) (Figure 1C).  

We also assessed the binding avidity of the Fc fragment of anti-mouse LIGHT 

antibody to the activating and inhibiting mouse FcγR by surface plasmon resonance. 

The avidity constant (KD = Kd/Ka) for CD64 (FcγRI) and CD16.2 (FcγRIV) was 84 µM 
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and 9.9 µM, whereas for CD16 (FcγRIII) and CD32 (FcγRIIB) was 0.41 µM and 0.23 

µM respectively (Figure 1C).  

We conclude from these results that 3D11 recognizes specifically mouse LIGHT 

but also fully inhibits the interaction of LIGHT with its receptors (HVEM and LTβR). 

 

LIGHT protein expression is transiently detected upon polyclonal activation of T 

cells  

As it occurs for some other members of the TNF superfamily ligands such as CD40L or 

human LIGHT, its expression is only transient on activated T cells, 13, 27 and 

visualization of this transient expression in vitro requires the presence of the 

fluorochrome-labeled antibody throughout the course of activation. 12 In C57BL/6 

splenocytes stimulated for 5 h with PMA plus ionomycin, LIGHT expression was 

specifically detected with anti-LIGHT (3D11) antibody (Figure 2A), in line with results 

obtained previously with another anti-mouse LIGHT antibody. 12 Mouse LIGHT was 

only detected on activated CD4 and CD8 T cells, but not on resting T lymphocytes 

(Figure 2A). As expected for a specific staining, pre-incubation of the antibody with a 

molar excess of Flag-Foldon LIGHT abolished the staining of activated CD4+ and CD8+ 

T cells, respectively (Figure 2B).  

 

Antibody mediated blockade of the LIGHT/LTβR/HVEM pathway recapitulates 

the attenuated cytotoxic allogeneic response of LIGHT-deficient T cells. 

LIGHT is required for lymph node hypertrophy in response to antigen immunization 28, 

for T cell differentiation towards effector T cells in the course of an allogeneic immune 

responses 29, 19 and for anti-tumor immunity. 18, 30 Due to the lack of well-characterized 

anti-LIGHT antibodies, the therapeutic potential of modulating LIGHT has remained 
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elusive because selective blockade of LIGHT cannot be properly achieved with soluble 

HVEM.Ig or LTβR.Ig fusion proteins that both bind several ligands.  

With the novel anti-LIGHT antibody, we addressed in mice whether blockade of 

the LIGHT/LTβR/HVEM pathway could attenuate the course of graft versus host 

reaction in a semiallogeneic adoptive transfer model of alloreactivity. To that aim, 

CB6F1 (F1) recipient mice adoptively received either F1 splenocytes (control), or 

semiallogeneic B6 splenocytes (to induce graft versus host reaction), or LIGHT-

deficient B6 splenocytes (to induce graft versus host reaction in the absence of LIGHT 

on transferred cells). Mice adoptively transferred with semiallogeneic B6 splenocytes   

were treated with 3D11 (mouse anti-mouse LIGHT, isotype IgG2b) or with an isotype 

control mouse IgG2b. Nineteen days after the adoptive transfer, at the peak of the acute 

phase of the disease, the absolute number of host cells residing in the thymus, bone 

marrow and spleen was evaluated as a readout measurement of graft versus host 

reaction severity. 31, 32 As expected, normal host cell numbers were found in F1 mice 

receiving F1 splenocytes, but almost all hematopoietic host cells were rejected 19 days 

after transfer of semiallogeneic B6 splenocytes. An equally efficient rejection of 

hematopoietic host cells was observed in the bone marrow, thymus (total and double-

positive thymocytes) and spleen, i.e. in primary and secondary lymphoid tissues (Figure 

3A-D). Transfer of LIGHT-deficient B6 splenocytes still lead to host cell rejection, but 

with reduced severity compared to wild type (p<0.005), and the same was true when 

endogenous LIGHT was blocked with 3D11 upon transfer of wild type B6 splenocytes 

into F1 recipients (Figure 3). No significant differences were found between the latter 

two conditions.   

These results suggest that LIGHT blockade recapitulates the attenuated cytotoxic 

phenotype of LIGHT-deficient alloreactive T cells in F1 recipients, pointing to the 
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relevance of LIGHT for the control of cytotoxic responses during the course of the 

allogeneic immune responses. 

 

Blockade of LIGHT impairs allogeneic T cell proliferation almost as efficiently as 

its genetic ablation 

To understand why LIGHT inhibition reduced the severity of the allogeneic 

cytotoxic response, we monitored the proliferative capacity of CFSE-labeled donor 

alloreactive B6 splenocytes transferred into F1 recipient mice, in the presence or 

absence of genetic deficient LIGHT or immune therapeutic inhibition of LIGHT. Three 

days after the adoptive transfer of donor splenocytes, percentages of precursors (PF) and 

proliferation indexes (PI) were measured for CFSE-labeled donor CD4+ and CD8+ T 

cells. The PF and PI were reduced in the presence of the anti-LIGHT antagonist 

antibody compared to treatment with the control antibody (Figure 4). Moreover, the 

reduction achieved with the anti-LIGHT antibody was comparable to that obtained 

using LIGHT-deficient B6 donor cells (Figure 4).  

These results indicate that the functional blockade of LIGHT retards clonal 

expansion of alloreactive T cells.   

 

LIGHT inhibition delays differentiation of alloreactive CD8+ T cells towards 

effector cells 

Since LIGHT inhibition partially reduced proliferation indexes and precursor 

frequencies of donor alloreactive CD4+ and CD8+ T cells, we investigated whether T 

cell differentiation toward effector T cells had also been hampered. For this purpose, we 

monitored expression levels of costimulatory (BTLA, HVEM, ICOS) and 

differentiation (IL-7Rα, KLRG-1) molecules on host and donor CD4+ and CD8+ T cells 
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at five and ten days after the semiallogeneic adoptive transfer of unfractionated parental 

B6 splenocytes into non-irradiated F1 recipient mice. 

During a viral infection, CD8 T cell differentiation toward short-lived effector T 

cells and memory precursor cells can be tracked with IL-7Rα (CD127) and KLRG-1 

surface markers. 33 IL-7Rα is the receptor for the homeostatic cytokine IL-7 whereas 

KLRG-1 is a membrane glycoprotein with a C-type lectin domain and one 

immunoreceptor tyrosine-based inhibitory motif (ITIM) expressed in NK subsets, 

effector and memory T cells. 34,33 KLRG-1 and CD127 (IL-7Rα) distinguish different 

stages of CD8 T cell differentiation at the peak of the response, just before the 

contraction phase, in which 95% of responding CD8 T cells are short-lived terminal 

effector cells (IL-7Rαlow, KLRG-1hi).33 KLRG-1 is however downregulated again 

during the contraction phase. 35 The expression of IL-7Rα was down-regulated on donor 

alloreactive CD4+ T cells in all experimental groups at day 5 after the adoptive transfer. 

This was also true for donor CD8+ T cells in the presence of LIGHT, but not for CD8+ T 

cells in conditions of genetic or pharmacologic impairment of LIGHT: in those cases, a 

fair percentage of IL-7Rα-positive CD8+ T cells was still observed at day 5, that were 

however gone at day 10 post transfer (Figure 5A), suggesting that differentiation 

towards effector CD8 T cells was delayed in the absence of LIGHT. 

KLRG-1 expression was negative in all groups at day 5 post-adoptive transfer. 

At day 10, a KLRG-1-positive population of alloreactive CD8+ T cells emerged that was 

more prominent in experimental groups where LIGHT contribution  was genetically or 

pharmacologically compromised (WT to F1, isotype control, 13%; WT to F1 anti-

LIGHT 3D11; 24.6%; LIGHT KO to F1, isotype control; 23.3%) (Figure 5A). This 

could be interpreted as a delayed entry of CD8+ T cells in the contraction phase in the 

absence of LIGHT. 
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Unlike naïve T cells, which are ICOS (inducible costimulatory molecule) 

negative, the expression of ICOS was upregulated at day 5 on most donor alloreactive 

CD8+ T cells in isotype-treated F1 mice. However, in the absence of LIGHT, there was 

still a fraction of ICOS- donor CD8 T cells at day 5 (14.4% in isotype-treated controls 

versus 32.3% and 33.7% in anti-LIGHT-treated and LIGHT-deficient donor cells, 

respectively), but not anymore at day 10 (Figure 5B), again pointing at delayed 

maturation of effector CD8+ T cells in the absence of LIGHT.  

BTLA and HVEM expression were reciprocally regulated in donor CD4+ and 

CD8+ alloreactive T cells, after T cell activation and T cell expansion. Expression of 

BTLA is increased while that of HVEM was decreased. No significant changes in 

different surface markers were seen on donor alloreactive CD4+ T cells when 

experimental groups were compared to control (Figure 5B).  

Overall, these results suggest that LIGHT is required on allogeneic CD8+ T cells 

to accelerate their differentiation.  
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Discussion 

An increasing number of monoclonal antibodies, and to a lesser extent recombinant 

proteins, enter the clinical practice and provide novel therapeutic strategies for the 

treatment of immune related diseases. This may dramatically change in the near future 

the management and prognostic of these diseases. In the years to come, treatment of 

chronic and devastating diseases to which only palliative treatments are available will 

improve thanks to the substitution and complementation of chemical-based 

conventional therapy by biological-based approaches with therapeutic proteins.4, 36, 37 

The understanding of how TNFSF and TNFRSF molecules contribute to the 

development of the immune response in different models of disease is essential for 

translation of the research findings into clinical practice. As members of the 

TNF/TNFRSF family control the absolute number of effector T cells and modulate the 

speed of the T cell differentiation process, they dictate the frequency of memory T cells 

that subsequently develop into long-lived memory T cells. 4, 36  

The process of T cell activation, costimulation, clonal expansion and 

differentiation towards effector T cells offers potential checkpoints for immune 

intervention. T cell activation with no or inefficient costimulation leads to functional 

inactivation, unresponsiveness or impaired T cell differentiation. 38,39, 40 Therapeutics 

targeting the CD28/CTLA4/CD80/CD86 costimulatory pathway, which is dominated by 

members of the Immunoglobulin superfamily, have had a major impact on the control 

of allogeneic responses. CTLA4.Ig that blocks CD28 interaction with CD80 and CD86, 

and/or inhibition of CD40/CD40L is the most successful hits that target costimulation in 

the field of preclinical transplantation. 41, 42, 43,44 CTLA4.Ig (belatacept) has already been 

introduced in the clinic setting as a maintenance treatment that efficiently prevents 

rejection while reducing the metabolic side effects of conventional drugs 45). The 
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treatment with CTLA4.Ig is particularly effective at low precursor frequency of 

alloreactive T cells that needs multiple rounds of division to reach a threshold effective 

to drive rejection.46 However, CD8+ T cell-mediated rejection that is resistant to 

costimulation blockade remains an unbridgeable barrier that requires alternative 

strategies aiming at targeting CD8 T cell differentiation that is independent of CD4 

helper cells. 47, 48  

In a previous report with a partial antagonist of the LIGHT/LTβR interaction, 

short-term cytotoxic response was attenuated although to a lesser extent than seen in 

LIGHT deficient mice. 12 Using a murine model of GvHR, in which host hematopoiesis 

is attacked by donor cytotoxic CD8 T cells, we now provide evidence that a fully 

antagonist antibody of LIGHT/HVEM and LIGHT/LTβR pathway, can down-modulate 

T cell responses to the same extent as that seen in LIGHT-deficient T cells. Since in 

vitro binding of LTβR to LIGHT inhibits competitively HVEM recognition of LIGHT 

when both receptors are expressed on the same cell, the blockade of LTβR/LIGHT by 

the anti-LIGHT antibody is likely to be more critical than blockade of HVEM/LIGHT. 

This may explain why this novel antibody (clone 3D11) fully recapitulates the 

phenotype of LIGHT deficient T cells while a previous reported antibody (clone 10F12) 

did not to achieve the same protective effect as that observed in LIGHT deficient T cells 

due to its partial inhibition of the LIGHT/LTβR interaction. 12 

LIGHT has been proposed by several authors as a target for immunotherapy. 49, 

50,5, 26, 4, 51 Nevertheless the development of a specific anti-LIGHT reagent has been 

complicated until recently due to the difficulty to generate active recombinant mouse 

LIGHT with productive binding affinity for its receptor and functional biological 

activity. 52 The description, functional evaluation and validation of this anti-LIGHT 

antibody opens up many possibilities to study the role of LIGHT and define its 
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therapeutic potential in preclinical murine models of immune-related diseases 

(transplantation, tumor immunity and autoimmune diseases) 18, 26, 53, 54, 17, 55, as well as 

in other pathologies in which LIGHT has been implicated: pulmonary fibrosis 

subsequent to chronic lung inflammation and idiopathic pulmonary fibrosis diseases 56, 

57, skin fibrosis 58) and bone destruction through osteoclastogenesis.59 This tool will 

offer advantages over the classical approaches of using LTβR.Ig recombinant fusion 

protein, because LTβR.Ig blocks LTαβ/LTβR in addition to LIGHT/LTβR/HVEM.51 

Administration of anti-LIGHT antibody in the above-mentioned disease models will 

help to clarify the contribution of LIGHT/LTβR/HVEM to the overall disease 

protection observed when using LTβR.Ig fusion protein. Conclusions drawn from 

results obtained with LTβR.Ig fusion proteins may need to be revisited because most 

studies utilized LTβR.Ig with a non-mutated Fc fragment of human IgG1 that binds with 

relatively high affinity to mouse FcγRIV, the main receptor implicated in ADCC 

(antibody-dependent cellular cytotoxicity), 60, 61 conferring this molecule with the 

potential to deplete cells expressing LTβR ligands. Based on the avidity binding data of 

3D11 antibody to distinct FcγR and particularly to FcγRI and FcγRIV and to a lesser 

extent to FcγRIII, this antibody apart from neutralizing LIGHT interactions with its 

receptors, it may also contribute to some extent to antibody-dependent cellular 

cytotoxicity.  

In this work, we took advantage of a mouse model of alloreactivity in which 

adoptive transfer of parental B6 splenocytes into F1 recipients (BALB/c × B6) induce 

an allogeneic response mediated by donor CD8 cytotoxic cells that eliminate host 

hematopoiesis (graft versus host reaction).  Donor CD4 T cells directly recognize host 

MHC class II alloantigens on host APC and provide cognate help to host B cells that 

experience transient expansion and autoantibody production. These activated B cells, as 
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well as the host hematopoietic compartment, are soon attacked by activated B6 donor 

CD8 T cells that recognize host allogeneic MHC class I alloantigens and differentiate 

toward cytotoxic T cells with the help provided by donor B6 CD4 T cells. 62, 32 In this 

mouse model, a reduced index of proliferation and precursor frequency of CD4 and 

CD8 T cells was observed after either pharmacological blockade or genetic ablation of 

LIGHT that correlated with impaired T cell expansion and differentiation towards 

effector T cells measured in an in vivo short-term assay of T cell proliferation tracked 

with CFSE. These observations were associated with a reduced cytotoxic activity 

against host F1 cells in a long-term in vivo assay evaluated at the peak phase of the 

acute graft versus host reaction, 19 days after the adoptive transfer. This indicated that 

the cytotoxic activity of alloreactive T cells was reduced in the absence of LIGHT. 

These results are in line with the first phenotypic description of LIGHT KO T cells that 

denoted an alteration in allogeneic T cell proliferation in these mutant mice due to a 

defect on IL-2 secretion by CD4 T cells. This impaired production of IL-2 would 

perturb clonal expansion and the help provided to CD8 T cells to promote T cell 

division and differentiation towards effector T cells. 19, 12  

In the context of dendritic cell activation and maturation for proper costimulation, the 

majority of members of the TNFSF ligands (CD40L, LTαβ, LIGHT, TL1a, CD40L, 

OX-40L, and 4-1BBL), are molecules transiently expressed or highly upregulated upon 

T cell activation that would interact with the corresponding TNFR partner molecule on 

APC. These activated APCs would costimulate T cells, promote their division, survival 

and differentiation. 2 CD40L, along with LTαβ and LIGHT, are molecules transiently 

expressed in the early phase of T cell activation that differentially contribute to the 

licensing of DC through interaction with CD40 and LTβR respectively. LTαβ/LTβR 

and CD40/CD40L interactions appear to be the most relevant, while LIGHT provides a 
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second layer of regulation. 20,63,64,65,21,22 Between LIGHT/LTβR and LIGHT/HVEM, the 

predominant interaction is the former, because LTβR outcompetes HVEM due its 

higher affinity for LIGHT 12. Indirectly, LTβR signaling in stromal cells is also 

important for maintaining the integrity of lymphoid tissue, which is indispensable for 

the development of the immune response. 51,19, 64 Indeed, LIGHT/LTβR interaction 

modulates lymph node hypertrophy by activating stromal cells expressing LTβR to 

release chemokines, upregulate adhesion molecules and thus attract tissue-derived 

dendritic cells to the draining lymph nodes. 28   

IL-7Rα and KLRG-1 are reciprocally modulated on CD8 T cells as they 

differentiate towards effector CD8 T cells in viral infection models. Combination of 

these two markers permits to follow the process of T cell differentiation. 66,33 The 

absence of LIGHT (LIGHT-deficient T cells or antibody blockade of LIGHT) leads to 

delayed downregulation of IL-7Rα and delayed upregulation of ICOS cells at day 5 

after the adoptive transfer, suggesting that T cell differentiation was hampered in donor 

alloreactive CD8 T cells in the late phase of T cell activation and clonal expansion. 

Moreover, T cell differentiation toward effector cells is associated with accumulation of 

KLRG-1high short-lived effector cells (SLECs) in the setting of transplantation and the 

initiation of the contraction phase runs parallel with downregulation of KLRG-1. 35 The 

increased percentage of KLRG-1high SLECs in the absence of LIGHT compared to non-

treated WT donor T cells was also in line with a defect in T cell differentiation, because 

CD8 T cells in the absence of LIGHT entered the contraction phase with a certain delay.   

In summary, the data presented here provide evidence for the therapeutic use of 

LIGHT inhibitors to dampen immune responses via attenuation of donor allogeneic 

CD8 T cell responses.       
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Material and Methods 

Animals 

Eight to twelve weeks-old female C57BL/6 (H-2b, B6, CD45.2), BALB/c (H-2d), 

CB6F1 (BALB/c × C57BL/6 F1) mice (H-2d/b) and LIGHT-deficient mice (LIGHT-/-) 

backcrossed more than fifteen generations onto C57BL/6 background were bred at the 

animal facility of the University of Leon (Spain).19 All experiments with rodents were 

performed in accordance and following animal protocols specifically approved for the 

Ethical Committee for Animal Research of the School of Veterinary Medicine 

(University of Leon), the Animal Welfare Committee of University of Alcala de 

Henares (Madrid) and followed the European Guidelines for Animal Care and Use of 

Laboratory Animals. 

 

Monoclonal antibodies and surface plasmon resonance  

LIGHT-deficient mice were immunized intraperitoneally with 0.25 ml of a 1:1.2 

mixture of 5-10 × 106 of GFP-tagged mouse LIGHT transduced into NIH-3T3 cells  in 

Freund’s Incomplete Adjuvant (Sigma). 12 Six weeks after the priming immunization, 

mice received an intravenous booster injection of LIGHT-transduced cells in saline. The 

immortalization of mouse B cells with myeloma cell line X63 Ag8.653 was previously 

described 67 and supernatants of the heterohybridomas secreting rat monoclonal 

antibodies were tested ten days after for their specificity against LIGHT transduced cells 

by flow cytometry.  

Flag-Foldon-tagged soluble mouse LIGHT (FF-LIGHT) 68, soluble FF-control 

protein (FF-Ctrl) and LTβR.human IgG1.Fc (LTβR.Ig) were produced and purified as 

previously reported. 69 Recombinant mouse HVEM.mouse IgG2a.Fc (HVEM.Ig) 
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produced in insect cells was a gift from Genentech. Commercially available mouse 

IgG2a and human IgG1 were used as matched isotype control for the recombinant 

proteins.  

For the screening of anti-LIGHT antibodies displaying antagonist activity and 

therefore capable to prevent LIGHT interaction with its receptors, 2.5 × 105 LIGHT-

transduced NIH-3T3 cells were incubated with a saturating amount of isotype matched 

control or anti-mouse LIGHT mAbs for 30 min at room temperature (2 µg/ml). In the 

presence of competitor antibody, cells were then further incubated for 2 h at 37ºC with 

an optimal dilution of either HVEM-Ig (5 µg/well) or LTβR-Ig (1 µg/well) in a final 

volume of 100 µl. After a washing step, the reaction was developed with the appropriate 

biotinylated conjugates (biotinylated rat anti-mouse IgG2a isotype specific mAb, clone 

R19-15, BD Biosciences or mouse anti-human IgG Fc fragment, Jackson 

ImmunoResearch), followed by allophycocyanin-coupled to streptavidin.  

The BIACORE 3000 system, sensor chip CM5, surfactant P20, amine coupling 

kit containing N-hydroxysuccinimide (NHS) and N-Ethyl-N’-dimethylaminopropyl 

carbodiimide (EDC), were from BIACORE (Upsala, Sweden). All biosensor assays 

were performed with HEPES-buffered saline (HBS-EP) as running buffer (10 mM 

HEPES, 150 mM sodium acetate, 3 mM magnesium acetate, 3.4 mM EDTA and 

0.005% surfactant P20, pH 7.4). The different compounds were dissolved into running 

buffer. 70  

FcγRI (CD64), FcγRIIB (CD32), FcγRIIIA (CD16) and FcγRIV (CD16.2) were 

immobilized at 50 µg/ml in formate buffer, pH 4.3 by injection onto the EDC/NHS-

activated surface of a CM5-type sensor chip until a signal of approximately 6000 RU 

was obtained. Free activated sites of the matrix were saturated by injection of 20 µL 

of ethanolamine hydrochloride pH 8.5. All the binding experiments were carried out at 
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25°C with a constant flow rate of 30 µl/min. Different concentrations of mouse anti-

LIGHT (clone 3D11) were injected for 3 min followed by a dissociation phase of 3 min. 

The sensor chip surface was regenerated after each experiment by injection of 20 µl of 

10 mM NaOH. 

The kinetic parameters were calculated using the BIAeval 4.1 software on a 

personal computer. Global analysis was performed using the simple Langmuir binding 

model. The specific binding profiles were obtained after subtracting the response signal 

from the channel control (ethanolamine) and from blank buffer injection. The fitting to 

each model was judged by the reduced chi square and randomness of residue 

distribution. 

 

Flow cytometry  

Mouse anti-mouse LIGHT (3D11, mouse IgG2b) and mouse IgG2b isotype control 

(MPC-11, Biolegend) mAbs were labeled with Hilyte-Fluor 647 according to the 

manufacturer’s protocol (Anaspec Inc). CD4 (GK1.5), CD8α (53-6.7), Ly6G (1A8), 

CD19 (6D5), ICOS (7E.17G9), CD127 (IL-7Rα, A7R34), and killer cell lectin-like 

receptor subfamily G, member 1 (KLRG-1, MAFA) mAbs were all purchased from 

Biolegend (USA). To distinguish hematopoietic cells of donor parental B6 and host F1, 

cells from distinct hematopoietic compartments were stained with FITC-conjugated 

anti–H-2d (SF1-1.1) and Alexa 647-conjugated anti-H-2b (AF6-88.5). Rat monoclonal 

antibodies anti-mouse BTLA (CD272, clone 4G12b) 71 and anti-mouse HVEM (CD250, 

clone 10F3) 29 were produced and labeled in house and used in this study.   

Fc gamma receptors were blocked by incubating cell suspensions with 2 µg/ml 

of blocking anti-FcγR	
  (rat IgG2b anti-FcγRII/III mAb, clone 2.4G2) before staining with 

fluorochrome-labeled antibodies. 72 Dead cells were excluded from the acquisition gate 
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by staining with propidium iodide. Samples were acquired on a Cyan 9 cytometer 

(Beckman Coulter, Miami, FL, USA) and data analysis was performed using WinList 

version 7.0 (Verity Software House, Topsham, ME, USA). 

 

In vitro polyclonal T cell activation to induce LIGHT expression 

Naïve C57BL/6 splenocytes were polyclonally activated in vitro with Phorbol Myristate 

Acetate (PMA, 100 ng/ml) plus ionomycin (500 ng/ml) or were left untreated for 5 h at 

37 ºC. The transient expression of LIGHT was analyzed on resting and polyclonally 

activated T cells (2 × 105 cells / well) stained with 1 µg/well of Hylite 647-labeled anti-

LIGHT mAb (clone 3D11) or Hylite 647-labeled isotype-matched mouse IgG2b (MPC-

11) during the time of incubation, using a lineage cocktail to gate out all cells with 

phagocytic phenotype (CD19+ Ly6G+ CD11c+) that take up the antibody unspecifically.  

 

In vivo proliferative assay of CFSE-labeled donor alloreactive T cells 

70 × 106 of B6 WT or LIGHT-deficient unfractionated splenocytes were labeled with 5 

µM carboxyfluorescein diacetate succinmidyl ester (CFSE) and adoptively transferred 

into non-irradiated F1 recipients, according to Lyons et al. 73 The day of the adoptive 

transfer, recipient mice were treated with 1 mg (~40 mg/kg) of isotype-control (mouse 

IgG2b) or mouse anti-mouse LIGHT (3D11) mAb. Three days later, the Proliferative 

Index (PI) and Precursor Frequency (PF) of alloreactive CD4+ and CD8+ T cells were 

determined by deconvoluting and analyzing the reduced CFSE fluorescence using the 

ModFit LT 4.1 version (Verity software, ME). PI, is a measure of the increase in cell 

number over the course of the assay. PF returns the fraction of cells in the initial 

population that responded to the stimulus by proliferating. The location of each 

generation of cells is represented by a unique peak color. 
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In vivo murine model of Graft versus Host Reaction  

Naïve C57BL/6 donor splenocytes (70 × 106 cells) were intravenously transferred into 

recipient F1 mice that were treated intraperitoneally at day 0 with 1 mg/mouse of anti-

LIGHT (3D11) or isotype mouse IgG2b control antibody. In a third experimental group, 

F1 recipient mice were inoculated with 70 × 106 splenocytes from LIGHT-deficient 

mice in B6 background and treated with 1 mg isotype control. Finally, a syngeneic 

control group was included in which 70 × 106 syngeneic F1 splenocytes were injected 

into non-irradiated F1 recipients. The absolute number of hematopoietic cells in primary 

and secondary lymphoid organs was recorded nineteen days after the adoptive transfer. 

 

Statistical analysis  

Collected data from experimental and control groups were analyzed using Graph Pad 

prism Version 5. Statistical significance was assessed using the non-parametric Mann-

Whitney t test or Student´s t test with Welch´s correction to compare the means among 

groups. A p value less than 0.05 was considered statistically significant.	
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Figure legends 
 

Figure 1: Effective blockade of LIGHT/LTβR and LIGHT/HVEM interactions 

using a mouse anti-mouse LIGHT monoclonal antibody 

2.5 × 105 NIH-3T3 cells transduced with GFP-tagged murine LIGHT (blue solid lines) 

or GFP-transduced NIH-3T3 cells (red solid lines) were incubated with a mouse anti-

mouse LIGHT mAb 3D11. After an incubation step, antibody binding was revealed 

with biotinylated rat anti-mouse IgG2b followed by allophycocyanin-coupled 

streptavidin (A, upper panel). To further demonstrate the specificity of the anti-LIGHT 

mAb, 1 µg/well of Hilyte 647-labeled anti-LIGHT mAb alone (blue solid line) or 1 

µg/well Hilyte 647-labeled anti-LIGHT mAb preincubated with 2 µg/well FF-LIGHT 

fusion protein (red solid line) were added to LIGHT-GFP transduced NIH 3T3 cells (A, 

lower panel). 

(B) 2.5 × 105 LIGHT-transduced NIH-3T3 cells were pre-incubated for 30 min at room 

temperature with anti-LIGHT mAb (clone 3D11, blue solid lines) or mouse IgG2b 

isotype control (red dotted lines), then stained in the presence of the antibodies with 

LTβR-Ig (upper panel) or HVEM-Ig (lower panel). Binding of LTβR-Ig was revealed 

with biotinylated anti-hIgG and binding of HVEM-Ig was revealed with biotinylated 

anti-mouse IgG2a, both followed by allophycocyanin-coupled streptavidin. The baseline 

background staining is represented by hIgG1 Fc fragment (upper panel, black solid 

lines) to LIGHT-transduced NIH-3T3 cells or the binding of the Fc fragment mIgG2a 

(lower panel, black solid lines). The mean fluorescence intensity (MFI) is indicated in 

each plot. 

(C) Serial dilutions of anti-LIGHT mAb (clone 3D11) were preincubated with a fixed 

amount of 1 µg/well of soluble recombinant FF control (red solid line) or FF-LIGHT  
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protein (black solid line). Then, 1 × 105 LIGHT-transduced NIH-3T3 were added to the 

reaction. After a washing step, a biotinylated rat anti-mouse IgG2b conjugate was further 

incubated and developed by SA-APC. The mean fluorescence intensity (MFI) binding 

of anti-LIGHT mAb to LIGHT transduced cells in the presence of FF control or FF-

LIGHT is plotted.  

(D) The association and dissociation constant rates of 3D11 mAb binding to distinct 

immobilized mouse FcγR were calculated by surface plasmon resonance and from those 

values the equilibrium dissociation constant KD for each of them was determined.  

 

Figure 2: Mouse LIGHT is rapidly upregulated on activated T cells after 

polyclonal stimulation 

(A) Naïve C57BL/6 splenocytes (2 × 105) were left untreated or were stimulated with 

PMA (100 ng/ml) and ionomycin (500 ng/ml) for 5 h. 1 µg/well Hilyte-647-labeled anti 

mouse LIGHT (3D11) or Hylite-647-labeled isotype control mouse IgG2b were added to 

cultures during incubation in a final volume of 250 µl. A lineage cocktail to gate out 

CD19+ CD11c+ Ly6G+ cells was included in the staining. The expression of mouse 

LIGHT was then analyzed on live resting and activated CD4 and CD8 T cells.  

(B) The expression of mouse LIGHT on the surface of resting or PMA plus ionomycin 

activated CD4+ and CD8+ T cells was also determined with the anti-LIGHT antibody 

pre-incubated with Flag-Foldon LIGHT (FF-LIGHT) (2 µg FF-LIGHT per well). The 

percentage of each population is represented in each quadrant. PMA: Phorbol Myristate 

Acetate. Iono: Ionomycin.  
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Figure 3: LIGHT blockade attenuated the course of graft versus host reaction in a 

mouse model of alloreactivity 

Semiallogeneic splenocytes from C57BL/6 (70 × 106) were intravenously transferred 

into non irradiated CB6F1 recipients, which were treated with 1 mg of isotype mouse 

IgG2b control (red squares) or anti-LIGHT mAb (3D11, green triangles) at day 0. In a 

third experimental group, semiallogeneic splenocytes from LIGHT-deficient mice (70 × 

106) were injected into CB6F1 mice (orange diamonds). The fourth group represents the 

syngeneic control group, in which 70 × 106 F1 splenocytes was injected into F1 

recipients (blue circles). The absolute number of host bone marrow (A), thymocytes 

(B), double positive thymocytes (C) and splenocytes (D) was determined nineteen days 

after the adoptive transfer. Data represent a pool of three independent experiments. 

Statistical significance is indicated as follows: *p< 0.05, **p< 0.005, ***p< 0.0005, and 

ns, non-significant.  

 

Figure 4: The proliferation index and frequency of donor CD4+ and CD8+ 

alloreactive T cells is altered after LIGHT blockade or in LIGHT-deficient T cells. 

70×106 of CFSE (carboxyfluorescein diacetate succinmidyl ester)-labeled B6 WT or 

CFSE-labeled B6 LIGHT-deficient splenocytes were adoptively transferred into non-

irradiated F1 recipients and treated with 1 mg of isotype-control (mouse IgG2b) or 

mouse anti-mouse LIGHT (3D11) mAb at day 0. Three days later, the Proliferative 

Index (PI) and percentage of Precursor Frequency (PF) of donor alloreactive CD4+ and 

CD8+ T cells were determined using the ModFit LT software. Black line profile 

deconvoluted into cells that had divided once (green), twice (light violet), 3x (light 

blue), 4x (yellow), 5x (red), 6x (dark violet) and 7x or more (light green). X-axis 
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represents CFSE fluorescence on a log scale and Y axis indicates cell counts (number of 

events).  

Figure 5: Altered expression of differentiation (IL-7Rα  and KLRG-1) and 

costimulatory (ICOS) surface markers is associated with delayed donor CD8 T cell 

differentiation in the absence of LIGHT 

The pattern of expression of costimulatory and differentiation markers was assessed at 

days 5 and 10 after adoptive transfer of 70 × 106 of donor syngeneic or allogeneic B6 

WT or B6 LIGHT-deficient splenocytes into F1 recipients. Recipients were treated on 

the day of the adoptive transfer with 1 mg of isotype control mouse IgG2b or anti-

LIGHT mAb, clone 3D11. The expression of differentiation markers (A) and 

costimulatory molecules (B) was assessed by flow cytometry on host (blue lines) and 

donor (red solid lines) CD4+ and CD8+ T cells 
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