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Abstract

Many species are able to learn to associate behaviors with rewards as this gives
fitness advantages in changing environments. Social interactions between pop-
ulation members may, however, require more cognitive abilities than simple
trial-and-error learning, in particular the capacity to make accurate hypotheses
about the material payoff consequences of alternative action combinations. It is
unclear in this context whether natural selection necessarily favors individuals
to use information about payoffs associated to non-tried actions (hypothetical
payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop
an evolutionary model where individuals are genetically determined to use ei-
ther trial-and-error learning or learning based on hypothetical reinforcements,
and ask what is the evolutionarily stable learning rule under pairwise symmet-
ric two-action stochastic repeated games played during lifespan. We analyze
through stochastic approximation theory and simulations the learning dynamics
on the behavioral timescale, and derive conditions where trial-and-error learning
outcompetes hypothetical reinforcement learning on the evolutionary timescale.
This occurs in particular under repeated cooperative interactions with the same
partner. By contrast, we find that hypothetical reinforcement learners tend to
be favored under random interactions, but stable polymorphisms can also obtain
where trial-and-error learners are maintained at a low frequency. We conclude
that specific game structures can select for trial-and-error learning even in the
absence of costs of cognition, which illustrates that cost-free increased cognition
can be counterselected under social interactions.

Keywords: evolution of cognition, evolutionarily stable learning rules,
exploration-exploitation trade-off, repeated games, social interactions,
trial-and-error learning.

INTRODUCTION

Many species have a learning ability because this allows an individual to adapt,
within its lifespan, to the currently fitness-relevant features of its environment
(e.g. by tracking the location of food patches; Charnov, 1976; Mcnamara and
Houston, 1985; Shettleworth et al., 1988). Hence, learning is likely to provide a
selective advantage (Johnston, 1982; Stephens, 1991; Mery and Kawecki, 2002;
Wakano et al., 2004; Dunlap and Stephens, 2009). One of the simplest ways
of learning an action is through trial-and-error (Thorndike, 1911; Bush and
Mostelller, 1951). This consists in trying different actions, experiencing the
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rewards associated to each action, and repeating more often the actions yielding
higher rewards (or, equivalently, avoiding actions that yield negative payoffs,
or punishments). For example, rats in the Skinner box learn that pressing a
lever is associated with obtaining food, and various instances of reinforcement
learning in other mammals, birds, fish, and insects have been demonstrated
(Shettleworth, 2009; Dugatkin, 2010).

Although trial-and-error is the main paradigm for describing the learning
of actions in animals (Dickinson, 1980; Shettleworth, 2009; Dugatkin, 2010),
it cannot solve all decision problems. With this behavioral rule, an individual
has to physically try (or experience) an action to get the knowledge of the
reward (or payoff) associated to it. In other words, information gathering and
action choice cannot be dissociated. Inherent to this type of learning is thus the
problem of balancing exploration and exploitation (Arnold, 1978; Mcnamara
and Houston, 1985; Shettleworth et al., 1988; Krebs et al., 1993; Sutton and
Barto, 1998; Achbany et al., 2006). The individual needs to try various actions
in order to identify the good ones, but must also exploit at some point the
information gathered during exploration. The balancing problem (or trade-off)
comes in because an individual who does not explore enough risks to miss highly
rewarding actions. On the other hand, an individual who explores too much and
disregards small rewards (always searching for best options) risks to not get any
payoff at all.

Faced with the exploration-exploitation dilemma, one is tempted to ask:
in the course of learning, are there other ways than trial-and-error to get in-
formation about the payoff of an action? One can distinguish at least two
non-mutually exclusive ways of obtaining information about the material con-
sequences of actions without explicitly expressing them. First, an individual
can use social information: it may observe conspecifics’ actions and their conse-
quences, and if an action tried by conspecifics is seen to be followed by positive
consequences, the observer will subsequently have a greater probability of choos-
ing that action (Schlag, 1998; Laland, 2004; Kendal et al., 2009). Second, an
individual can use environmental cues to deduce information about the value
of different actions. This may be achieved via belief-based learning, i.e. by
representing in one’s mind the outcome of alternative actions, which has been
extensively studied as a model of human cognition (Feltovich, 2000; Camerer,
2003; Chmura et al., 2012). Further, it has been argued that chimpanzees, and
different large-brained bird species are capable of forming beliefs to solve cog-
nitively challenging tasks (Premack and Woodruff, 1978; Emery and Clayton,
2004, 2009; Schloegl et al., 2009; Taylor et al., 2012).

Two lines of evidence suggest that belief-based learning could give a selec-
tive advantage over trial-and-error learning and that this is relevant to animal
learning. First, in the field of animal behavior, it is often argued that natu-
ral selection should favor individuals who reason about their environment in a
Bayesian fashion, because Bayesian learning (which is equivalent to belief-based
learning, Fudenberg and Levine, 1998) leads to individuals having a correct
representation (or belief) of the distribution of the states of the world (McNa-
mara et al., 2006; Trimmer et al., 2011). This has been extensively studied
empirically in the context of individual decision problems, for example when
an animal tries to learn about the quality of food patches (Lima, 1984; Lut-
tbeg and Warner, 1999; van Gils et al., 2003; for a review, see Valone, 2006).
The second line of evidence suggesting that belief-based learning may perform
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better than trial-and-error comes from the theoretical literature on learning in
games. Belief-based learning leads to the optimal solution (Nash equilibrium)
in several types of social interactions (Hofbauer and Sandholm, 2002), while
trial-and-error learning (studied under different specific forms) can lead to non-
optimal outcomes in the same social interactions (Stephens and Clements, 1998;
Macy and Flache, 2002; Izquierdo et al., 2007). Since empirical evidence sug-
gests that many social behaviors, such as cooperation, mate choice, or conflict
through the winner and loser effects may involve learning (Dugatkin and Reeve,
2000; Dugatkin, 2010), it is relevant to understand the conditions under which
belief-based learning for social interactions can be favored by natural selection.

While the evolution of both learning and social interactions have been ex-
tensively studied on their own (e.g. Maynard-Smith, 1982; Boyd and Richerson,
1988; Rogers, 1988; Feldman et al., 1996; Hofbauer and Sigmund, 1998; McEl-
reath and Boyd, 2007; Borenstein et al., 2008; Rendell et al., 2010; Kempe
and Mesoudi, 2014) there are surprisingly few studies that study the evolu-
tion of learning for social interaction dilemmas. For instance, many studies
on the evolution of social learning have focused on individual decision prob-
lems. This is well exemplified by the social learning tournament (Rendell et al.,
2010), where the tasks individuals need to learn to perform are individual deci-
sion problems, and not social interactions (so that individuals were not playing
frequency-dependent games). Further, the studies that do investigate learn-
ing in games, generally assume that individuals face only a producer-scrounger
game (Hamblin and Giraldeau, 2009; Arbilly et al., 2010; Dubois et al., 2010;
Katsnelson et al., 2011). For instance, Hamblin and Giraldeau (2009) show that
the Relative-payoff sum (RPS), a simple variant of trial-and-error learning, can
be the evolutionarily stable learning rule under the conditions of a producer-
scrounger game. Arbilly et al. (2010, 2011) demonstrate that a simple learning
rules can co-exist with a more complex learning rule in a producer-scrounger
environment. However, results from game theory suggest that the game faced
by population members should change for learning to be really useful (Heller,
2004). This may explain why evolutionary ecologists have found it difficult for
learning to evolve initially in the producer-scrounger game (Dubois et al., 2010;
Katsnelson et al., 2011), and investigation of the evolution of learning rules when
the game itself is changing appear to be lacking.

Previous results have also been divergent on whether trial-and-error learning
or a more sophisticated learning rule should be favored by selection. Interest-
ingly, both the models of Hamblin and Giraldeau (2009) and Arbilly et al. (2010,
2011) suggest that simple learning rules can coexist with more complex learn-
ing rules. By contrast, Josephson (2008) models the competition between a
continuum of rules going from the linear operator to rules using hypothetical
payoffs, and confirms results from game theory that rules of the belief-based
type, that put higher weight on hypothetical payoffs, are evolutionarily stable
most of the time. It thus remains unclear under what ecological conditions one
should expect to observe simple or complex learning, and more work is needed to
understand the selection pressures on learning mechanisms in situations where
individuals can experience different games during their lifespan.

In this paper, we aim to relax previous assumptions and ask whether trial-
and-error is sufficient to learn in social interactions, or whether a more sophisti-
cated belief-based learning rule will necessarily be selected for. To address this
question, we study the competition between two forms of reinforcement learn-
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ing rules. The first is standard trial-and-error reinforcement learning (Bush and
Mostelller, 1951; Rescorla and Wagner, 1972; McNamara and Houston, 1987;
Bernstein et al., 1988; Erev and Roth, 1998; Stephens and Clements, 1998;
Amano et al., 2006; Hamblin and Giraldeau, 2009), while the second rule we
call hypothetical reinforcement learning, a terminology borrowed from Camerer
and Ho (1999) where individuals can use “hypothetical reinforcements”. Here,
individuals are assumed to have the ability to infer foregone payoffs given the
actions of partners and the state of the environment (either via social observa-
tion of other interactions or active reasoning/mental simulation), and reinforce
actions according to these hypothetical payoffs.

In order to assess whether learning based on hypothetical reinforcements
provides a selective advantage over trial-and-error learning, we study the evo-
lutionary stability of trial-and-error and hypothetical reinforcement learning in
the simplest possible social situation where the environment can change, i.e. in
a situation of pairwise social interactions with only two actions. Our approach
is very similar to the one of Josephson (2008), because we use the framework
of Camerer and Ho (1999) to capture learning rules that rely either on trial-
and-error or on hypothetical reinforcements. In such a setting, genuine environ-
mental fluctuations (where learning is necessary) correspond to the fact that the
games faced by individuals change with time; in particular, the ESS of these var-
ious games have to be different, and we will study exhaustively the cases where
the environment switches between the Prisoner’s Dilemma, the Hawk-Dove (a
form of producer-scrounger game), and a Coordination game. These three games
have been previously studied on their own to capture respectively cooperation
(e.g. costly production of a public good), conflict (e.g. fighting for territories)
and coordination problems (e.g. collective hunting) in nature (Dugatkin and
Reeve, 2000) and it is likely that animals of the same species may confront all
of these games within their lifespan. We also analyze two ways of forming pairs
of opponents from the population. In the first one, each individual is randomly
paired with only one partner with which it interacts for the entire interaction
period. In the second matching scheme, there is random matching at each time
step so the individuals learn to play against the whole population. Because the
underlying model is stochastic, we use, when possible, a deterministic approx-
imation to analyze the equations and then compare the analytical results to
individual-based simulations.

The paper is organized as follows. In the next section (section “Model”),
we present the biological assumptions behind our model, we formalize trial-
and-error and hypothetical reinforcement learning, and we describe how natu-
ral selection on these learning rules can be approximated analytically. Then,
we present analytical and simulation results for the evolution of these learning
rules under our two matching schemes, different types of games, and different
learning rates (sections “Results: one-shot matching” and “Results: repeated
matching”). Finally, we summarize and discuss the results (section “Summary
and discussion”).
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MODEL

Setting the Stage

Population

We consider a haploid population of constant size N . The main life cycle stages
are the following. (1) Each individual interacts socially with others for T time
periods. (2) Each individual reproduces according to its gains and losses in-
curred during social interactions. (3) All individuals of the parental generation
die and N individuals from the offspring generation are randomly sampled to
form the new adult generation.

Repeated game affected by environmental fluctuations

During stage (1), individuals play a game at each time period t = 0, 1, 2, . . . , T ,
where the game that is played is determined by some environmental state ω,
which is an element of the set Ω of environmental states. The environment may
include any factor that alters the payoffs associated to actions taken by indi-
viduals. We assume that the environmental process follows an ergodic Markov
chain (Karlin and Taylor, 1975), and denote by µ(ω) the stationary probability
that state ω obtains.

For example, one can consider an environment in which individuals play
alternatively two games, e.g. a Prisoner’s Dilemma and a Hawk-Dove game;
the set of environmental states is then Ω = {Prisoner’s Dilemma, Hawk-Dove}.
In this example, one could set µ(Prisoner’s Dilemma) = µ(Hawk-Dove) = 1/2,
meaning that it is as if we toss a fair coin at each time t to determine the game
to be played. If the current environmental state is ω = Prisoner’s Dilemma,
then all individuals in the population will have to choose between cooperating
and defecting.

More generally, we consider that all the games in Ω consist of the same
number of actions, say m (in our previous example we had m = 2). Hence, in
every period of time, each organism in the population chooses its action from
a fixed finite set of actions A = {1, . . . ,m}, and we denote by ωt the game
played at time t, which is a random variable. The action taken by individual
i at time t is also a random variable denoted by ai,t (we will allow individuals
to use probabilistic action choice) and the action profile in the population is
at = (a1,t, . . . , aN,t) (this is the collection of the actions of all individuals in the
population at time t). The payoff to individual i at time t when it takes action
ai,t and the game is ωt is denoted πi(ai,t,a−i,t, ωt), where a−i,t is the action
profile of the remaining individuals in the population (all individuals excluding
i).

With this, the mean payoff obtained by individual i during the whole se-
quence of interactions is

Πi =
1

T

T∑
t=1

πi(ai,t,a−i,t, ωt), (1)

which is taken as its number of offspring produced during stage (2) of the life
cycle (i.e. fecundity).
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Learning Actions

In order to evaluate the fecundity, Πi, of individual i, we need to predict the
sequence of actions taken by individuals in the population. We assume that
actions are learned and we now present a model of learning that takes both
trial-and-error and hypothetical reinforcement learning into account.

Action choice

Our way of modeling learning is shared by many previous studies and relies
upon two components: (1) dynamic preferences for action, and (2) a rule for
choosing action given preferences (Harley, 1981; Camerer and Ho, 1999; Leslie
and Collins, 2005; Ho et al., 2007; Hamblin and Giraldeau, 2009; Arbilly et al.,
2010, 2011). Specifically, we let individuals have preferences or motivations for
actions, which they update through the repeated play of the game. For each
action a in its behavioral repertoire A, individual i has an associated motivation
Mi,t(a) that represents how much action a is valued by i. Thus, the collection of
motivations can be thought as the state of the organism (Enquist and Ghirlanda,
2005; Niv, 2009) and we assume that action a is chosen at time t by individual
i with probability

pi,t(a) =
exp[λMi,t(a)]∑
k∈A exp[λMi,t(k)]

. (2)

This is a standard choice rule (Anderson et al., 1992; McKelvey and Palfrey,
1995; Fudenberg and Levine, 1998; Camerer and Ho, 1999; Ho et al., 2007;
Arbilly et al., 2010, 2011), where the action that has the highest motivation is
chosen with the greatest probability. The parameter λ ∈ [0,∞) represents the
sensitivity of an animal to its motivations. If λ is near 0, the animal is not
very reactive to its motivations and has a tendency to explore (because pi,t(a) is
close to 1/m). If λ is high, we have a “greedy” animal, taking almost surely the
action that has the highest motivation (if action a∗ has the highest motivation,
pi,t(a

∗) is close to 1, see Dridi and Lehmann (2014) and references therein for
more justifications underlying the use of equation 2).

Motivations

The motivations of an individual are updated after each interaction stage. In
order to achieve this updating, we use a special case of the model of Camerer
and Ho (1999) and its application to stochastically varying environments (Dridi
and Lehmann, 2014). Individual i starts off with some initial preferences over
actions at time t = 1 given by the initial motivations Mi,1(a) for all actions a.
We assume that the motivation Mi,t+1(a) for action a of individual i at time
t+ 1 (for t ≥ 1) is given by

Mi,t+1(a) =
t

t+ 1
φi,tMi,t(a) +

1

t+ 1
{gi + (1− gi)1(a, ai,t)}πi(a,a−i,t, ωt). (3)

Equation 3 can be seen as a weighted average of the previous motivation Mi,t(a)
and of the new payoff πi(a,a−i,t, ωt). In the first term, the motivation Mi,t(a)
is weighted by φi,t ≥ 0, a memory parameter, or learning rate, that indicates
the relative importance of the last motivation as opposed to the current payoff
(note that φi,t can change as a function of time and also has an initial value φi,1,
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possibly genetically determined). This first term is also weighted by t/(t + 1),
which entails that the previous motivation is weighted according to the number
of interactions that have occurred up to time t.

The second term can be termed the increment, or reinforcement to the mo-
tivation. It has weight 1/(t + 1) and depends on the payoff πi(a,a−i,t, ωt) of
action a when all other individuals in the population play a−i,t and the game is
in state ωt at time t. The expression 1(a, ai,t) is an indicator function, which is

1(a, ai,t) =

{
1, if ai,t = a,

0, otherwise,
(4)

i.e. if individual i takes action a at time t, then 1(a, ai,t) = 1. We see that
if 1(a, ai,t) = 1, the numerator of the second term of equation 3 reduces to
πi(a,a−i,t, ωt). If, on the other hand, individual i does not play a at time t,
then the numerator of the second term reduces to giπi(a,a−i,t, ωt).

The parameter gi weights the ability of an individual to infer the payoffs of
unchosen actions (non-realized or foregone payoffs) and reinforce motivations
accordingly. If gi = 0, the individual is not able to infer non-realized payoffs
and thus only reinforces actions according to realized payoff. In this case we
obtain a rule in the form of the linear operator model of Bush and Mostelller
(1951) (see Electronic Supplementary Material, ESM 1, equation 1.3). We will
call this Trial-and-error Reinforcement learning (TR). By contrast, if gi = 1, the
payoffs associated to unchosen actions are always perfectly inferred. This will
be called Hypothetical Reinforcement learning (HR), where individuals have the
capacity to access information about non-realized payoffs. When an hypotheti-
cal reinforcement learner plays action a at time t, it reinforces not only action a
but also all other actions according to the payoffs they would have yielded (see
ESM 1). In other words, the learner can observe a posteriori the payoff it would
have obtained, had it chosen another action, given its opponent’s current ac-
tion. This information about foregone payoffs may come from reasoning about
the environment, or from observing interactions involving other individuals. A
well-studied special case of HR obtained when φi = 1 and gi = 1 is belief-based
learning, where the motivations represent expected payoffs given the history of
play by individual i’s opponents (Brown, 1951; Fudenberg and Levine, 1998;
Feltovich, 2000; Hofbauer and Sandholm, 2002; Hopkins, 2002; Camerer, 2003;
Chmura et al., 2012; see also ESM 1).

Note that the motivations of all actions are updated by individual i after
each time t. Consequently, a hypothetical reinforcement learner [with gi = 1],
who observes foregone payoffs, computes as many payoffs as there are available
actions (m), at each time t. On the other hand, a trial-and-error learner [with
gi = 0] has a much lighter computational task because it computes only the
payoff of the action it actually took. Thus, we will postulate in the analysis
below that the cost of additional computations will affect the fitness of HR by
an amount k.

Evolutionary Analysis

Parameter Space

Equations 2–3 define the learning dynamics of individual i for action a. Our
aim is to investigate the co-evolution of trial-and-error and hypothetical rein-
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forcement learning under these dynamics. To that aim, we consider that the
parameter gi is the genotype of individual i, and that individuals in the popu-
lation can use only two learning rules, TR with gi = 0, or HR with gi = 1. We
investigate the following cases.

(1) We consider two special values of φi,t, the learning rate, that differ in
terms of the behavioral equilibrium they produce and the extent to which they
relate to existing learning mechanisms. Standard belief-based learning (Camerer
and Ho, 1999) is obtained in our model when φi = 1, which entails that a
constant amount of noise is included in its dynamics. We could not analyze
mathematically the learning dynamics under this condition, so in order to obtain
analytical insight, we studied an “unperturbed” version of belief-based learning,
which is obtained when φi,t = (1/t) + 1. This particular value of φi,t does
not result in a loss of generality: it is only a mathematical device used to
make the analysis tractable (see ESM 2 for details), and one can show that
the unperturbed version of belief-based learning (when φi,t = (1/t) + 1) can
be recovered from the original version with noise (when φi = 1), by making λ
very large. One of our goals in this paper is to see whether the study of the
unperturbed dynamics can help us understand the original perturbed dynamics.
The two values of the learning rate are studied in the following order. First,
we study the case φi,t = (1/t) + 1, where analytical results can be derived
about the learning behavior (see next section). For this special value of the
learning rate, we obtain a special version of TR, which we call Pure Trial-and-
error Reinforcement (PTR), and a special version of HR, which we call Pure
Hypothetical Reinforcement (PHR). These names follow from the fact that, at
a behavioral equilibrium, individuals will express essentially only pure actions.
Second, we use a constant value φi = 1 for the learning rate, which entails that
individuals are likely to be more exploratory at a behavioral equilibrium and are
likely to express mixed actions. For this value of the learning rate, we obtain a
special version of TR, which we call Exploratory Trial-and-error Reinforcement
(ETR), and a special version of HR, which we call Exploratory hypothetical
reinforcement learning (EHR), where the latter strategy corresponds to belief-
based learning of the game theory literature, a learning procedure that relies
on Bayesian updating of beliefs (Fudenberg and Levine, 1998). The ETR rule
is related to the linear operator model, a simple learning algorithm that has a
long tradition in the study of animal behavior and has been used to describe
the dynamics of instrumental learning in various species (ESM 1, equation 1.3;
Bush and Mostelller, 1951; Rescorla and Wagner, 1972; McNamara and Houston,
1987; Bernstein et al., 1988; Stephens and Clements, 1998; Amano et al., 2006;
Hamblin and Giraldeau, 2009).

In ESM 1, we provide more details on the dynamics of the motivations
(equation 3) of these learning rules, and in our analysis we always consider
competition between TR and HR under the same learning rate.

(2) We assume pairwise interactions and we analyze two matching rules.
First, in what we call one-shot matching, individuals are randomly paired at
the beginning of the game (t = 1) and each pair interacts for the whole duration
of the game (until time T and reproduction). Second, we consider repeated
matching, where individuals are re-matched during each stage game, i.e. indi-
viduals meet different partners at each time t.

(3) All games consist of two actions (m = 2), that is, individuals play 2× 2
symmetric games. This means that, at each time t, individuals play one out of
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three types of games: a Prisoner’s Dilemma (PD), a Hawk-Dove game (HD), or a
(pure) Coordination Game (CG); i.e. the set of games is Ω = {PD,HD,CG}, and
the stationary distribution of games thus satisfy µ(PD) + µ(CG) + µ(HD) = 1.
These three games are instances from the three possible categories of 2 × 2
games (the PD is a game with a dominant action, the HD is a type of “anti-
coordination” game, and the CG is a special coordination game, Weibull, 1997,
Chap. 1). The four possible payoffs for game ω are real numbers and are written
Rω, Sω, Tω, and Pω, where ω ∈ {PD,CG,HD}. For instance, when the game is
ω, player 1 plays action 2, and player 2 plays action 1, then player 1 obtains Tω
and player 2 obtains Sω. Table 1 describes the payoffs to each player for every
possible combination of actions.

Stochastic approximation

Although equations 2–3 describe a bona fide learning process, this is a non-
homogeneous multidimensional Markov process that is very difficult to analyze
(see fig. 1). It is thus necessary to approximate it in order to obtain analytical
results, which is useful to form an intuition about behavioral dynamics. We
were able to perform such an analysis only under the one-shot matching scheme
and when the learning rate φi,t takes the dynamic value φi,t = (1/t) + 1.

Using the above assumptions (1-3) with φi,t = (1/t) + 1 and stochastic
approximation theory (ESM 2; Benveniste et al., 1991; Benaim, 1999), we can
write a system of differential equations that describes the learning dynamics of
a given pair of individuals (i, j) in the population for the one-shot matching
model as

ṗi = pi(1− pi)λ[{pjR+ (1− pj)S}{pi + gi(1− pi)}
− {pjT + (1− pj)P}{gipi + (1− pi)}], (5)

ṗj = pj(1− pj)λ[{piR+ (1− pi)S}{pj + gj(1− pj)}
− {piT + (1− pi)P}{gjpj + (1− pj)}], (6)

where a dot accent is used to represent a time derivative, i.e. ṗi = dpi/ dt, pi is
the probability that individual i plays action 1, and pj is the probability that
individual j (the opponent of individual i) plays action 1. Since individuals can-
not detect the state ω of the game, the parameters R, S, T , and P are actually
the payoffs of the average game faced by the individuals in the fluctuating envi-
ronment (Table 4); that is, the average over the distribution µ(ω) of games. For
example when a focal individual chooses action 2 and its opponent chooses action
1, the focal obtains the average payoff T = µ(PD)TPD+µ(HD)THD+µ(CG)TCG,
and the three other payoffs R, S, and P, are similarly computed. Equations 5–
6 show that, asymptotically, the probability of playing actions is driven by the
average payoff to actions, which can be thought to determine itself a game
(equation 2.3), which we call the average game (see Dridi and Lehmann, 2014,
for more details).

In order to evaluate fitness, we assume that the learning dynamic (equa-
tions 5–6) has reached an equilibrium during an individual’s lifespan, and that
the game is played a long enough time after the equilibrium action choice has
been reached. With this, the payoffs obtained before the equilibrium is reached
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can be ignored. This is equivalent to saying that we let the time horizon, T , of
the game become very large (ideally infinite) so that the equilibrium of equa-
tions 5–6 determines the fecundity of individuals i and j. Then, the fecundity
of individual i (equation 1) is taken as the average (or expected) payoff attained
at equilibrium of learning (when T →∞). That is,

Πij = p̂i(p̂jR+ (1− p̂j)S) + (1− p̂i)(p̂jT + (1− p̂j)P), (7)

where we use the subscript j in Πij to emphasize that the fecundity of individual
i depends on its single opponent (j), p̂i is the equilibrium probability that
individual i plays action 1, and p̂j is the equilibrium probability that individual
j plays action 1 (i.e. p̂i and p̂j are the solutions of the system of equations
ṗi = 0, ṗj = 0).

Because there are two learning rules in the population (TR or HR), it is
also convenient to use the subscripts in equation 7 to identify learning rules of
interacting individuals, whereby i, j ∈ {TR,HR}. In order to use these payoffs to
investigate evolutionary dynamics, we make the customary assumption that the
population size is infinitely large so that we can use a deterministic evolutionary
model. Calling qi the frequency of learning rule i ∈ {TR,HR} in the population,
the expected reproductive output of an individual of learning rule i ∈ {TR,HR}
is then defined as

fi = α+ qiΠii + qjΠij , (8)

where α is a baseline fecundity. In the following, we call qTR ≡ q the frequency
of TR in the population (so that qHR = 1 − q is the frequency of HR). Hence,
the change in frequency ∆q of TR in the one-shot matching model over one
iteration of the life-cycle is given by the discrete-time replicator dynamics

∆q = q(1− q)
(
fTR − fHR

f̄

)
, (9)

where f̄ = qfTR +(1−q)fHR is the mean reproductive output in the population.
In the next section, we evaluate the replicator dynamics (equation 9) for three
different average games: the Prisoner’s Dilemma (PD), the Hawk-Dove game
(HD), and the Coordination game (CG) (Table 4). The details of the analysis
are provided in ESM 4. Note that we use pi and pj to denote the probability
to play action 1 when both individuals have the same learning rule (i.e. for the
interactions PTR vs. PTR and PHR vs. PHR) but we use pTR and pHR for the
interaction between a PTR and a PHR learner.

RESULTS: ONE-SHOT MATCHING

In this section, we present both analytical and simulation results for the three
average games (Prisoner’s Dilemma, Hawk-Dove, and Coordination game). For
each game, we first analyze the learning dynamics for φi,t = (1/t) + 1 (section
“Equilibrium behavior”), and use this to characterize analytically the evolu-
tionarily stable learning rule (section “ESS analysis”). For each game, we also
compare our analytical results to individual-based simulations (section “Simula-
tions: dynamic learning rate”), and then extend the simulation analysis to the
case where φi = 1 (section “Simulations: constant learning rate”).
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Prisoner’s Dilemma

Equilibrium behavior

The learning dynamics for the Prisoner’s Dilemma is obtained by substituting
into equations 5–6 the payoffs (R,S, T ,P) defined in Table 4 for the corre-
sponding average game. Hence, action 1 can now be thought as “Cooperate”
and action 2 as “Defect”. In order to determine the fate of PTR (equation 9),
we need to evaluate the payoffs for each possible interaction between types of
learners, which will depend on the equilibrium points of the learning dynam-
ics. In the population, three types of pairwise interaction can occur: (i) PTR
vs. PTR; (ii) PHR vs. PHR; (iii) PTR vs. PHR.

When a PTR is paired with another PTR we find that the learning dynamics
can end in two possible states, depending on the initial preferences (pi,1, pj,1)
individuals have for each action. If individuals have a high enough initial proba-
bility to play Cooperate, then both PTR will learn to cooperate (p̂i = 1, p̂j = 1)
at equilibrium of learning (fig. 2A and ESM 4). For other initial conditions,
both PTR learn to defect (p̂i = 0, p̂j = 0). The fact that cooperation is a possi-
ble endpoint of the learning dynamics can be intuitively understood by realizing
that the payoff for mutual cooperation is positive B−C > 0, where B the bene-
fit received when the opponent cooperates, C the cost of cooperation (Table 4).
Hence, if both players initially cooperate on some rounds, cooperation will be
rewarded, and ultimately players will stick with Cooperation. Defection is also a
stable equilibrium because an individual who experiences the high payoff B > 0
if it defects and its opponent cooperates, will reinforce Defection. This will in
turn lead the other player to Defect because cooperating against a defector is
punished by the payoff −C < 0. The interaction between two PHR gives a
different result: irrespective of initial conditions, both PHR will learn to defect
(fig. 2B). Finally, when a PTR meets a PHR, both individuals learn to defect
regardless of initial conditions, which means that PTR does not get exploited
by PHR (fig. 2C). The behavior of PHR stems from its ability to observe that
defection is better than cooperation (B > B − C and 0 > −C), whatever the
opponent chooses. A PTR individual does not get exploited by PHR because
the payoff −C < 0 is punishing, and thus will be avoided by a trial-and-error
learner.

ESS analysis

Using the above results on equilibrium action play, we can compute the fitnesses
of both learning rules (equation 8) by using Table 4 and calling k the cost of
PHR for cognitive complexity For the Prisoner’s Dilemma, this gives{

fHR = α− k, fTR = α+ q(B − C) if i.c. is in the basin of (1, 1),

fHR = α− k, fTR = α otherwise,
(10)

where i.c. refers to the initial conditions of learning in the PTR vs. PTR in-
teraction. Under the replicator dynamics (equation 9), the frequency of the
PTR learning rule increases when fTR > fHR. In the first case of equation 10
(i.e. when we start close enough to the equilibrium (1, 1)), this means that PTR
invades PHR if

q(B − C) + k > 0. (11)
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Because the left-hand side is always positive, PTR is the evolutionarily stable
learning rule (ESLR); that is, it cannot be invaded by PHR and can invade
PHR. Note that, even when k = 0, PTR is still the ESLR.

In the second case of equation 10, i.e. when the learning dynamics start in
the basin of (Defect, Defect) of the PTR vs. PTR interaction, both PTR and
PHR learn to defect. Here, fTR > fHR always holds when k > 0, hence PTR is
also the ESLR. For k = 0, we have neutrality (fTR = fHR for all q).

Why does PTR outcompete PHR? The reason is that trial-and-error learners
reinforce positive payoffs and so a pair of PTR individuals learn to cooperate
when they have an initial tendency to do so. In that case a PTR can avoid being
exploited by a defector PHR and learns to defect, since playing cooperate then
leads to very low payoffs. Hence, if k > 0 and there is initially a small frequency
of PTR individuals (q > 0), these can always invade a population of PHR
individuals and establish cooperation if the initial conditions of the learning
dynamics favor it, otherwise they will maintain defection. By contrast, a small
frequency of PHR individuals cannot invade a population of PTR individuals
since they cannot exploit them. Note that the advantage of PTR over PHR
when individuals initially prefer cooperation still holds even when there is no
cost of cognition (k = 0).

While we consider the initial preferences as parameters of the model, and
not as evolving characteristics of the individuals, these results suggest that it
is unlikely that a mutant PTR with an initial genetic tendency for defection
invades a population of PTR who initially prefer to cooperate. Indeed, pairs of
PTR defectors will obtain a lower payoff than pairs of PTR cooperators, so they
will not be able to displace cooperators. This illustrates that in our one-shot
matching setting there is a selection pressure in favor of cooperation.

Individual-based simulations

In order to see whether the above analytical approximation reflects accurately
the underlying stochastic model of learning and evolution, we performed individual-
based simulations. We ask two questions in the simulations. (1) What are the
parameter values for which the above approximation works? (2) To what extent
can the results where an approximation works be generalized to the (more real-
istic) case where the learning rate is constant? As to question (1), we find that
an exploration parameter of λ = 10 and a number T = 500 of interactions in
the game lead to similar results in the simulations and the analysis. Given the
values we used for the payoffs, a bigger value of λ would induce almost deter-
ministic behavior after the first few steps of exploration, which would lead to an
irreversible escape of the basins of attractions of predicted equilibria. A smaller
value of λ would induce very slow convergence to the equilibria and would thus
imply that a higher T is needed to observe correspondence between analysis
and simulations. Regarding question (2), we generally find a good correspon-
dence between the results for the two studied learning rates in this one-shot
matching model (Table 5). In ESM 5, we provide a detailed description of these
simulations.
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Simulations: dynamic learning rate

Since the analytical prediction in the Prisoner’s Dilemma depends on whether
individuals have an initial preference for Cooperation or Defection (section“ESS
analysis”), we run a set of simulations for each type of initial preference (see
ESM 6 for a detailed description of results for both dynamic learning rate and
constant learning rate for all studied games).

Both players initially prefer Cooperation. For this case, simulation results are
similar to the analytical results (section“ESS analysis”). In particular, two PTR
players that are paired with one another can learn to cooperate, whilst a PTR
player that is paired with PHR always learns to defect (fig. 3A,B,C). This leads
to the fixation of PTR in the population. However, it is noteworthy that the
simulations slightly differ from the analysis: pairs of PTR can sometimes learn
to defect (fig. 3A), which is a consequence of the possibility of escaping the
basin of attraction of cooperation due to stochastic fluctuations. This does not
affect our evolutionary prediction (Table 5): PTR players will obtain a higher
fitness than PHR because some pairs of PTR learn to cooperate whilst PHR
individuals defect and only meet defectors. This is true for any probability P
that pairs of PTR learn to cooperate. Indeed, in our large population, P will
also be the proportion of PTR pairs that learn to cooperate, so the fitness of
PTR reads

fTR = α+ q[P (B − C) + (1− P )0], (12)

while the fitness of PHR is only fHR = α− k, so for any positive P and any q,
we have fTR > fHR.

Both players initially prefer Defection. For these initial preferences, the sim-
ulation results differ from the analytical prediction regarding equilibrium ac-
tion play (section “Equilibrium behavior”) and also regarding the evolutionary
outcome (section “ESS analysis”), because pairs of PTR individuals sometimes
learn to cooperate despite their initial tendency to defect. Hence, certain pairs
of PTR individuals learn to cooperate and some other pairs learn to defect,
whilst the interactions involving PHR always lead to Defection (fig. 3D,E,F).
We then are in the situation described by equation 12 so that the fitness of PTR
is higher than that of PHR, even if the value of P is here much smaller than
when individuals initially preferred cooperation (compare fig. 3A with fig. 3D).
As a consequence, we indeed observe that PTR fixes in the population in our
evolutionary simulations (Table 5).

Simulations: constant learning rate

Both players initially prefer Cooperation. In this scenario, the same qualitative
results than in the dynamic learning rate situation are obtained. Namely, pairs
of ETR can learn to cooperate (fig. S1A,B,C) so the ETR learning rule fixes in
the population (Table 5).

Both players initially prefer Defection. In this situation there is only one (but
important) difference compared to the dynamic learning rate case. Namely,
when ETR individuals are paired with EHR, we observe that ETR do not learn
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full defection and converge to a positive probability of cooperating, whilst EHR
always learns to defect. This gives an evolutionary advantage to the latter when
present in high frequency in the population (fig. S1D,E,F). This implies that in
our simulations of evolution we observe that ETR fixes when the population
initially consists only of ETR, but EHR fixes when the population initially
consists only of EHR (Table 5). In other words, mutants cannot invade in this
case.

Hawk-Dove Game

Equilibrium behavior

In order to analyze the dynamics of learning (equations 5–6) for the HD game,
we use the corresponding payoffs given in Table 4. Now, action 1 corresponds
to “Dove” and action 2 to “Hawk”.

In the PTR vs. PTR interaction, the learning dynamics has three pure sta-
ble equilibria: (Hawk, Dove), (Dove, Hawk), or (Dove, Dove). In other words,
depending on the initial conditions, individuals will either reach a Nash equilib-
rium or the “cooperative” outcome where both individuals choose Dove, a result
similar to the one obtained in the average PD game (fig. 2D, ESM 4). This can
be explained in terms of the signs of the payoffs and in terms of reward and
punishment. The (Dove, Dove) outcome is rewarded (it yields B/2 > 0) when
players try the Dove action, so it is a possible endpoint of the learning dynam-
ics. The Nash Equilibria are also endpoints because if one player plays Hawk
against a player who plays Dove, it will also reinforce Hawk. Its opponent can-
not reinforce Hawk because this would yield a punishment (B/2−C < 0), hence
(Hawk, Dove) is a stable equilibrium. When two PHR interact (fig. 2E), they
end up playing one of the two Nash Equilibria (Hawk, Dove) or (Dove, Hawk).
The reason why (Dove, Dove) is not an equilibrium for pairs of PHR is that
this outcome induces a “regret” in both players of not having played the Hawk
action (because they observe that they could have obtained B > B/2). But if
both players switch to Hawk, this is also a non-satisfactory outcome and one
of the players will eventually stick with Dove (because 0 > B/2 − C). Finally,
when a PTR meets a PHR, there are two possible endpoints: the equilibrium
where PTR plays Hawk and PHR plays Dove; or the reverse situation where
PTR learns to play Dove and PHR learns to play Hawk (fig. 2F). Hence, in this
heterogeneous interaction, depending on the initial conditions, either PTR or
PHR will get exploited by its opponent.

ESS analysis

The homogeneous interactions (PTR vs. PTR and PHR vs. PHR) always lead
to a payoff of B/2, irrespective of the initial preferences for actions, because
both individuals have equal chances of learning to become a Hawk or a Dove.
However, the payoffs in the heterogenous interaction between PTR and PHR
depend on whether the initial condition is in the basin of attraction of (0, 1) or
(1, 0). Thus, the reproductive output is{
fHR = α+ qB + (1− q)B2 − k, fTR = α+ qB2 if i.c. in basin of (0, 1)

fHR = α+ (1− q)B2 − k, fTR = α+ qB2 + (1− q)B if i.c. in basin of (1, 0),

(13)
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where i.c. is the initial condition of the PTR vs. PHR interaction.
In the first case of equation 13, PTR increases in frequency when rare (fTR >

fHR) if

k − B

2
> 0. (14)

This implies that when k > B/2, PTR is the ESLR; when k = B/2 evolution is
neutral; when k < B/2, PHR is the ESLR.

In the second case of equation 13, PTR increases in frequency if

B

2
+ k > 0, (15)

which is always true because B > 0 and k ≥ 0. In this case, PTR is the only
ESLR.

In other words, in the HD game the learning rule that is the ESLR is the
one that has the greatest initial preference for playing Hawk (in the absence of
cost, k = 0) because this allows it to learn the Hawk action against the other
learning rule that learns to play Dove. The learner playing Hawk will thus
obtain a larger payoff. Indeed, either learning rule with any initial preference
for actions in a monomorphic population obtains an average payoff of B/2 (as
explained above). Hence, in order to determine if a mutant learning rule can
invade, one should determine whether the mutant obtains a higher payoff than
B/2 when paired with the resident. The learning rule that prefers Hawk can
invade when the resident prefers Dove because it obtains the payoff B of the
(Hawk, Dove) outcome. On the other hand, the mutant preferring Dove is not
able to invade when the resident prefers Hawk because the mutant will obtain
the payoff 0 of the (Dove, Hawk) outcome. Hence the learning rule that prefers
Hawk can invade and is stable against invasion, and is consequently the ESLR
in the Hawk-Dove game in the absence of cost.

Simulations: dynamic learning rate

PTR initially prefers to play Hawk and PHR prefers Dove. In this case, the
simulation results agree qualitatively well with the analytical results (section
“ESS analysis”). The only difference is that in the simulations, we observe some
pairs of PTR that learn the outcome (Dove, Dove) (fig. 4A,B,C), while we expect
them to learn (Hawk, Dove) or (Dove, Hawk) under the above analysis. This is
due to the possibility of escaping a basin of attraction in the stochastic learning
model (as occurred above for the PD). However, this small difference does not
affect the evolutionary outcome because the average payoff for pairs of PTR
is the same at the equilibrium (Dove, Dove) as it is in the equilibria (Hawk,
Dove) or (Dove, Hawk). Consequently, the analytical prediction (section “ESS
analysis”) regarding evolution applies and we indeed observe that PTR fixes in
the population in the long run (Table 5).

PTR initially prefers to play Dove and PHR prefers Hawk. As explained in
the ESS analysis above (section “ESS analysis”), the equilibrium behavior of
homogeneous pairs (PTR vs. PTR and PHR vs. PHR) does not depend on
initial conditions (one member of the pair learns Hawk and the other learns
Dove). However, the equilibrium behavior in the heterogenous interaction (PTR
vs. PHR) does depend on the initial preferences for actions. In the current
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scenario, according to the above ESS analysis, PHR should learn to play Hawk
and PTR should learn to play Dove. All of these predictions are observed in the
simulations of learning (fig. 4D,E,F). Thus the analytical prediction regarding
which learning rule will fix in the evolutionary long run is also verified in the
evolutionary simulations: PHR individuals fix in the population (Table 5).

Simulations: constant learning rate

ETR initially prefers to play Hawk and EHR prefers Dove. Here the results
are the same than under dynamic learning rate and ETR fixes in the population
in the long run (fig. S2A,B,C, Table 5).

ETR initially prefers to play Dove and EHR prefers Hawk. This case is sim-
ilar to to the situation with dynamic learning rate, where EHR individuals
outcompete ETR and fix to a frequency close to 1 at equilibrium of evolution
(fig. S2D,E,F, Table 5).

Coordination Game

Equilibrium behavior

If we use the payoffs of the CG game (Table 4) in equations 5–6, we obtain
the learning dynamics of a pair of opponents in the coordination game. In the
labeling of Table 4, action 1 corresponds to Left and action 2 corresponds to
Right. In this game, all three types of pairs succeed in learning to coordinate
in the long run (fig. 2G,H,I), and depending on the initial preferences for Right
or Left, the equilibrium reached will either be (Right, Right) or (Left, Left).

ESS analysis

Under the three types of interactions, the players coordinate on a single action
and get a payoff at equilibrium of B. The fitness of the PTR learning rule is
then fTR = α+B and the fitness of PHR is fHR = α+B−k. Trivially, PTR is
the ESLR for all positive k; for k = 0, evolution is neutral. This is because both
learning rules get the average payoff B in all types of interactions, so no learning
rule is able to invade a population consisting of the other learning rule. Hence,
under the recurrent inflow of symmetric mutations, we expect, in the long run,
to observe a stationary state of the population where the average frequency of
both learning rules is 1/2.

Simulations: dynamic learning rate

In this game, our analytical results predict that evolution does not favor one
learning rule over the other for all initial conditions because both learning rules
always induce coordination on a single action (section “ESS analysis”). Because
our evolutionary simulations feature recurrent mutations, this situation should
lead to neutral evolutionary dynamics where the expected frequency of both
types under the stationary distribution of the process is equal (q = 1/2). In
the simulations, we arbitrarily set initial preferences of individuals close to the
outcome (Left, Left) and we indeed observed that all types of pairs of individuals
succeed in coordinating on a given action (but the particular action learned

16



depends on the pair, fig. 5). This learning behavior corresponds to our analytical
prediction (section “Equilibrium behavior”) but simulations of evolution do not
match this, and we observe a mixed evolutionary equilibrium dominated by
PHR (Table 5). This result can be explained by game stochasticity. Indeed,
when we simulate evolution by letting the Coordination game to be the only
game played by individuals (this gives a situation with a constant game instead
of fluctuating games), we observe that both learning rules co-exist in near-equal
frequency at evolutionary equilibrium (fig. S6).

Simulations: constant learning rate

Learning in this case also leads to coordination of all pairs (fig. S3). Evolutionary
simulations give a result close to what is expected, with a frequency of ETR of
q ≈ 0.56 at equilibrium of evolution (Table 5).

RESULTS: REPEATED MATCHING

We now assume that individuals in the population are randomly paired at every
time t of lifespan, but otherwise keep all previous assumptions. An individual
will now meet different partners during its lifespan. Its learning dynamics may
then depend on the distribution of behavior of all individuals in the population
because anybody can be met for a one-shot interaction.

Unfortunately, we could not find any simple analytic approximation to the
evolutionary dynamics for this matching model, so we used exclusively individual-
based simulations to investigate the evolutionary stability of TR and HR.

The simulations for the repeated matching model follow the same two steps
applied for the one-shot matching model. First, we simulated only learning
dynamics in a large population (this step can be thought as simulating the be-
havioral dynamics of a single generation). These simulations of learning were
performed for various values of q, the frequency of TR in the population. In
order to understand how the frequency of the learning rules affected the learning
dynamics, we computed the behavioral equilibrium of TR and HR for all fre-
quencies q (fig. 6). Second, we simulated the full evolutionary process, namely,
learning and reproduction, over many generations, in order to track the fre-
quency of TR and HR over evolutionary time (Table 6). In these two types of
simulations (learning and evolutionary), we used the same initial conditions for
the learning dynamics that we used in the one-shot matching model, so that we
can compare the results of the two matching schemes (for more details on the
methodology of the simulations, see ESM 5). The results of the evolutionary
simulations can be interpreted in light of the simulations of learning dynamics.

Prisoner’s Dilemma

Dynamic learning rate

All individuals initially prefer Cooperation. For this case, when we simulate
learning in the population, we obtain that PTR individuals can learn to co-
operate when very common in the population (precisely, when q ≥ 0.8), while
PHR individuals always learn to defect for all compositions of the population
(fig. 6A). Consequently, the fitness of PHR and PTR are the same for q < 0.8
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(because everybody defects) but PTR has a smaller fitness when q ≥ 0.8, be-
cause it cooperates a positive proportion of the time, which leads PHR to exploit
PTR. This implies that, on the evolutionary timescale, the population will move
neutrally through all the states such that q < 0.8, but is repelled from the states
where q ≥ 0.8. As a consequence, we observe in our evolutionary simulations
that the equilibrium frequency of PTR is small but positive (Table 6).

All individuals prefer Defection. With these initial preferences, the simulations
of learning show that both learning rules always converge to Defection, so no one
has an advantage (fig. 6B). When we simulate evolution, the result is qualita-
tively in agreement with this: the frequency of PHR at evolutionary equilibrium
is slightly above 0.5 (Table 6). When both learning rules have the same fitness,
we expect that mutation in the population will maintain both learning rules at
a frequency of 0.5. The slight deviation from 0.5 that we observed can be ex-
plained by the variance in convergence time of PTR individuals. Some of them
might converge more slowly to full Defection and will be exploited on some
interaction rounds when they meet the defector PHR (fig. S4).

Constant learning rate

All individuals initially prefer Cooperation. Here ETR players learn to coop-
erate with a small probability for all frequencies, while EHR learn to defect
as usual (fig. 6C). As a consequence, the frequency of EHR in evolutionary
simulations is close to 1 at equilibrium (Table 6).

All individuals initially prefer Defection. The result is here the same as in the
previous section: ETR individuals learn to cooperate with a positive probabil-
ity (fig. 6D) which leads to the evolutionary success of EHR observed in our
evolutionary simulations (Table 6).

Hawk-Dove Game

Dynamic learning rate

PTR initially prefers to play Hawk and PHR prefers Dove. Here, we obtain
that individuals using the PTR rule learn to play Dove with a higher average
probability than PHR does. As the frequency of PTR increases, their proba-
bility to play Dove also increases, while PHR plays Hawk more and more often
(fig. 6E). Consequently, when we perform simulations of evolution, we observe
a stable polymorphism with a clear domination of PHR (Table 6). The reason
is that playing Hawk with a higher probability than the opponent is beneficial
in one-to-one interactions (which favors PHR in interactions against PTR) but
playing Hawk too often renders susceptible to invasion by individuals who play
the nicer Dove action (which favors PTR).

PTR initially prefers to play Dove and PHR prefers Hawk. The learning be-
havior of the learning rules is similar to the previous case but now the average
probability that PTR plays Dove is less affected by its frequency, and is always
relatively high. Individuals using PHR still have a tendency to increase their
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probability to play Hawk as q increases (fig. 6F), which gives them an advan-
tage. This is confirmed by our evolutionary simulations where PHR dominates
the population at a polymorphic evolutionary equilibrium (Table 6).

Constant learning rate

ETR initially prefers to play Hawk and EHR prefers Dove. Here the results
are similar to the case with a dynamic learning rate so ETR learns to play Dove
more often than PHR (fig. 6G), such that the simulations of evolution lead to
a polymorphic equilibrium, where PHR constitutes almost all the population
(Table 6).

ETR initially prefers to play Dove and EHR prefers Hawk. The results for the
learning behavior are not different from the case with a dynamic learning rate
(fig. 6H) so we also observe in our simulations of evolution that EHR constitutes
almost all the population at an evolutionary endpoint (Table 6).

Coordination Game

Dynamic learning rate

The results for the learning behavior show here that PTR individuals fail to all
coordinate on a given action. The PHR individuals are efficient in doing this
(fig. 6I) and thus fix in the population (Table 6).

Constant learning rate

The learning behavior of both learning rules is qualitatively similar to the dy-
namic learning rate case (fig. 6J) and this explains why EHR almost fix in the
population (Table 6).

Robustness to Changes in λ and T

In order to check whether the above results are robust to changes in parameter
values, we ran simulations for other values of λ (the sensitivity to payoffs) and
T (the length of lifespan). The results of these simulations are reported in
ESM 8 (Tables S1–S10). We find that for small λ and T values, the number
of situations where trial-and-error learning (TR) subsists in the population is
generally reduced. In the PD game, TR is no longer evolutionarily stable, but
our qualitative results continue to hold for the two other games (e.g. Table S5).
Lower values of λ and T generate an evolutionary pressure for learning speed, in
which case hypothetical reinforcement learning (HR) is favored in the PD game
because an HR individual starts defecting when paired with a TR. By contrast,
TR individuals switch to defection against HR only after having experienced a
sequence of punishments with the payoff −C (fig. S4). Hence, when λ and T
are small, TR individuals do not have the time to switch to Defection against
HR but pairs of TR still learn to cooperate (fig. S5). Although lower values of
λ generally induce slower learning for any learning rule, our additional results
suggest that HR are less affected than TR by a reduction in the learning speed
(i.e. HR individuals are faster than TR). Higher values of λ induce faster learning
and the results are essentially identical to the case with an intermediate value
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of λ (regardless of the value of T ). However, high λ seems to slightly favor more
TR than under intermediate λ (Tables S2,S4).

In summary, only small λ affect our qualitative results (i.e. TR is not an
ESLR in the PD game), and this effect is increased when T is small. Otherwise
varying these parameter values do not change the qualitative results, because
we still observe situations where the simple TR outcompete the more complex
HR, especially in the PD game (e.g. Tables S6–S7).

SUMMARY AND DISCUSSION

In order to determine whether selection favors cognitively more sophisticated in-
dividuals than simple trial-and-error learning in social interactions, we analyzed
an evolutionary model of the competition between trial-and-error and hypothet-
ical reinforcement learning. Trial-and-error learners only use information about
realized payoffs, which is a common form of learning in animals (e.g. Mery and
Kawecki, 2002; Staddon and Cerutti, 2003), while hypothetical reinforcement
learners also use information about the foregone payoffs of playing alternative
actions (where this information can come from either social copying or active
reasoning). This learning mode can be thought of as one step up in the cognitive
hierarchy and is a special case of standard belief-based learning (see equation 1.9
in ESM 1), which is a form of learning that has been suggested to occur in an-
imals (Lima, 1984; Luttbeg and Warner, 1999; van Gils et al., 2003; Valone,
2006) and humans (Feltovich, 2000; Camerer, 2003; Chmura et al., 2012).

In order to analyze the co-evolution of trial-and-error and hypothetical re-
inforcement learning, we assumed that individuals in a large population are
genetically programmed to be either trial-and-error learners or hypothetical re-
inforcement learners and interact repeatedly in a two-player, two-action stochas-
tically fluctuating game. We defined two matching schemes, that is, two ways
in which individuals meet to play the games. In the one-shot matching model,
individuals are paired at the beginning of the fluctuating game and each pair
interacts for the rest of the game. In the second model, we used repeated match-
ing: here, a random matching is realized at each period of the game so that an
individual has a negligible probability of playing twice against the same partner
(since we also consider that the population is very large). Payoffs are evaluated
at equilibrium of the learning process, and this defines the number of offspring
produced (fecundity) by an individual.

We applied stochastic approximation theory to analyze learning during life-
time, and obtained that the equilibrium behavior of the learners could be char-
acterized in terms of an average game of the fluctuating game (i.e. a game
whose payoffs are averages of the sub-games’ payoffs of the original fluctuating
game). We thus analyzed three standard cases of average game: the Prisoner’s
Dilemma, the Hawk-Dove game, and the Coordination game, and checked our
analytic approximations by running simulations of the exact process.

Evolutionary Outcomes

Overall, the presupposed domination of hypothetical reinforcement learning over
trial-and-error described in the Introduction is not complete in our results. In
other words, the ability to obtain information about payoff outcomes of unchosen
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actions does not necessarily give a selective advantage in social interactions. We
do not claim that a selective advantage of hypothetical reinforcement is unlikely,
but we have found a set of social situations and learning dynamics where this
ability does not provide a selective advantage. In general, we observed three
main types of results, which hold for the two learning rates we studied (constant
or dynamic).

(1) In simple social interactions, where the average game faced by individ-
uals only requires that two partners coordinate on the same action or “anti-
coordinate” on two different actions, trial-and-error and hypothetical reinforce-
ment learning do not produce different behaviors at the behavioral equilibrium.
In this case, natural selection does not favor one learning rule over the other.

(2) In the class of Prisoner’s Dilemma games parametrized by a benefit and
a cost variable, the ability of two trial-and-error learners to generate cooper-
ative pairwise interactions by reinforcement of actual rewards, rather than to
play a Nash equilibrium, can give them a selective advantage over hypothetical
reinforcement learners. The main explanation of this result is that trial-and-
error learners can learn any outcome that yields positive payoffs (which is the
case when both members of a pair cooperate), while hypothetical reinforcement
learners reach the Nash equilibrium of the one-shot game (which is to defect),
but miss the important information that the game is repeated (because they are
not forward-looking). However, in the repeated Prisoner’s Dilemma, when indi-
viduals with the same learning rule cooperate with each other, they are favored
over full defectors (if they avoid being exploited by defectors). Importantly, we
obtained this result even when hypothetical reinforcement learning payed no
cost for cognitive complexity.

(3) We observed many examples where hypothetical reinforcement learn-
ing dominates the population at an evolutionary endpoint (i.e. it either gets
to fixation or the population reaches a polymorphism where hypothetical re-
inforcement learning is at a high frequency), especially when two individuals
cannot interact more than once (i.e. in the repeated matching model). Since
hypothetical reinforcement learning produces a Nash equilibrium at the level of
the one-shot average game, this makes perfect sense, because it is the type of
behavior that is selected when individuals cannot interact more than once.

Across all these results, the interaction between the learning rule and the
initial preferences (which can be interpreted as an innate predisposition for a
certain type of action) plays an important role for the outcome. We observed
that this predisposition can be overcome or reversed after many learning rounds,
but this is much constrained by the dynamic properties of the interacting learn-
ing rules (e.g. the size of the basin of attraction of the behavioral equilibria).
This should be kept in mind in the following discussion about the more specific
effect on evolutionary outcomes of the two different matching models.

One-shot Matching

The one-shot matching model allows one to capture situations where the same
pair of animals interact many times together, so that each animal has the pos-
sibility to adapt its behavior during its lifespan to the actions of its partner.
Examples of such situations, may include communal breeding species that live
in relatively small stable groups like meerkats, cooperative breeding cichlids,
or Chestnut-crowned babbler. But one-shot matching also captures interac-
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tions between males and females in monogamous species (Kleiman, 1977; Black,
1996), where unrelated partners interact for very long periods of time, possibly
under conditions of environmental change.

In the one-shot matching model, we either observed results of type (1) or
type (2) but we never observed results of type (3). Results of type (1) were
obtained when the average game was either a Hawk-Dove game or a Coordina-
tion game. In these two games, the two learners did not differ from one another
at a behavioral equilibrium, which leads to the absence of an advantage of one
learning rule over the other. In the Coordination game, we found that indi-
viduals of both learning rules generally succeeded in coordinating on a single
action, because it is only necessary to repeat the action that leads to positive
payoffs, and both the trial-and-error and hypothetical reinforcement learning
are capable of this.

The Hawk-Dove game favors one learning rule or the other depending on the
initial conditions, so no learning rule is favored under all conditions, because
both learning rules are able to reach the optimal (Nash equilibria) outcomes
(Hawk, Dove) and (Dove, Hawk). This game actually illustrates well the inter-
action effect between genetic predisposition and learning rule, because we find
that it is the learning rule that has the biggest predisposition for aggression (big
initial probability of choosing “Hawk”) that is evolutionarily stable. Besides, it
is noteworthy that the behavior of reinforcement learners is slightly more coop-
erative in the sense that pairs of this type could also learn to play the socially
peaceful outcome (Dove, Dove). This does not give an advantage nor a disadvan-
tage compared to hypothetical reinforcement learners in this particular game,
but it is interesting to note that trial-and-error learners are capable of achieving
the equilibrium with the highest mutual payoff (Dove, Dove), where nobody is
playing the aggressive “Hawk” strategy, whilst hypothetical reinforcement learn-
ers cannot. The reason of this is that the equilibrium (Dove, Dove) provides a
positive payoff (i.e. a reward) to both players in the Hawk-Dove game, which
suffices to make it a stable equilibrium for the trial-and-error learning dynamics.

In the average Prisoner’s Dilemma, we also observed that trial-and-error
learners could reach the socially beneficial outcome where both partners cooper-
ate (i.e. they “solve” the dilemma), but this time this ability made reinforcement
evolutionarily stable. Indeed, pairs of reinforcement learners are able to learn
to cooperate together because the payoff for mutual cooperation is positive. On
the other hand, hypothetical reinforcement learning always leads to defection
(because if they cooperate, they have the regret of not having defected in the
previous round). Interestingly, trial-and-error learners do not get exploited by
hypothetical reinforcement learners as they succeed in learning to defect against
them. The long run behavior of trial-and-error learning is actually reminiscent
of that of the Tit-for-tat (TFT) strategy (Rapoport and Chammah, 1965; Ax-
elrod, 1980; Axelrod and Hamilton, 1981): trial-and-error learning cooperates
with itself a high proportion of the time (but not always) and defects against
the defector hypothetical reinforcement learning. This result is striking when
we realize that the underlying principle of trial-and-error is closer to Win-Stay,
Lose-Shift (WSLS, Rapoport and Chammah, 1965; Axelrod, 1980; Axelrod and
Hamilton, 1981; Nowak and Sigmund, 1993) than to TFT: a trial-and-error
learner is essentially repeating actions followed by positive consequences and
avoiding actions followed by negative consequences (in ESM 7, we indeed show
that impulsive reinforcement learners derived from our learning process (equa-
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tion 3) with a memory of only one time step behave as WSLS).
The repeated Prisoner’s Dilemma has been the topic of many studies aim-

ing at understanding the evolution of cooperation, but most of the time no
learning rules are used in evolutionary analysis, but qualitative strategies con-
sisting of finite state automaton like TFT (or Win-stay-lose-shift, Grim, etc.).
Learning rules may actually represent a more appropriate way of conceptualiz-
ing animal behavior because it describes several realistic features of animals, like
incremental adaptation, forgetting, habituation. Moreover, learning rules pro-
vide a quantitative approach (in our case through the motivations for actions)
that can potentially be linked to neuronal decision making (Dayan and Abbott,
2005; Enquist and Ghirlanda, 2005; Niv, 2009). It is thus interesting to see that
a fairly simple learning rule based on the widely accepted principle of trial-and-
error produces qualitatively similar behavior as TFT, although trial-and-error
is much less domain specific than TFT. It is noteworthy that this behavior of
TR results from its ignorance of foregone payoffs, not from a better ability to
understand the specificities of repeated games. This suggests that, while TR
performs good in the Prisoner’s Dilemma, it is unlikely to be very performant in
general-domain learning tasks where the ability to form simple stimulus-action
association is not sufficient.

Repeated Matching

In the repeated matching setting, individuals meet different partners at each
interaction round. The learning task is here more complicated because an indi-
vidual must adapt to an entire population composed of individuals with differ-
ent learning rules who themselves adapt their behavior. This type of matching
model is widely used in evolutionary biology as a baseline model of interactions
(Maynard-Smith, 1982), and refer to cases where no particular assumption re-
garding population or social structure can be applied. This may be the case
when interference competition for resources occurs periodically during lifespan
(Begon et al., 1996), but is at random between a large number of population
members during each period, like for instance during marine birds fishing.

Here, we mainly observed results of type (3), i.e. hypothetical reinforcement
learning generally dominated the population at an evolutionary equilibrium.
The most representative example is the average Hawk-Dove game, where we
found that hypothetical reinforcement learning was able to exploit the tendency
of trial-and-error learners to play the “Dove” action too often, especially when
reinforcement learners are in a high frequency in the population. Besides, we
also observed in this repeated matching model an interaction between genetic
predisposition for actions and learning rule in the average Prisoner’s Dilemma.
When individuals initially prefer “Defection”, we obtained a neutral situation
where both learning rules learn full defection. However, when individuals had
an initial preference for “Cooperation”, trial-and-error learning could lead to
cooperation when in high frequency in the population, and get exploited by
hypothetical reinforcement learning which always leads to defect.

Evolutionary Paths to Increased Cognition

The primary goal of this paper was to provide some intuition as to when a
learning rule being located one step up above trial-and-error in the cognitive hi-
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erarchy can be favored by selection in simple situations of social interactions. In
comparative cognition (Shettleworth, 2009), trial-and-error learning is often the
null hypothesis against which one tests hypotheses regarding more advanced
cognition, and we adopted the same approach here by letting trial-and-error
compete with hypothetical reinforcement learning. Because hypothetical rein-
forcement learning is related to the class of belief-based learning rules, which
have been shown to lead to Nash equilibrium in the simple social interactions
that we study here (Hofbauer and Sandholm, 2002), one would expect hypotheti-
cal reinforcement learning to generally outcompete trial-and-error learning. Our
findings do not support this view. Rather, they illustrate that learning rules us-
ing more information do not necessarily outcompete trial-and-error learning in
social interactions, so the advantage of “complex cognition” is not automatic
and depends on the type of games played by the individuals in a population.
Since Bayesian decision-making (which is closely related to belief-based learning,
i.e. our EHR rule) has been previously proposed to be likely to occur in ani-
mals facing individual decision problems (McNamara et al., 2006; Valone, 2006;
Trimmer et al., 2011), our results suggest that behavior rules that perform well
for social interactions are not necessarily the same as those performing well
under individual decisions, as long as individuals discount strongly the future
when making decisions (see Molleman et al., 2014 for empirical evidence along
these lines in humans). Hence, despite its apparent simplicity, trial-and-error or
instrumental learning is not easy to displace, which may in part explain why it
is ubiquitous across taxa (Staddon and Cerutti, 2003).

That a simple learning mechanism can be favored in social interactions is
not a surprising result when we look at previous work in evolutionary ecology
(Hamblin and Giraldeau, 2009; Arbilly et al., 2010, 2011). However, the reasons
why the simple mechanism of trial-and-error outcompeted the sophisticated HR
are different than in previous work. In Hamblin and Giraldeau (2009), the
relative payoff sum rule (another implementation of trial-and-error learning)
outcompeted a rule with perfect memory mainly because it had less inertia,
which was most adapted to the changing environment considered by the authors.
In our setting, TR and HR have the same level of inertia (same learning rate)
and we generally compare the long-run behavior of learners, ignoring transient
behavior. In Arbilly et al. (2010, 2011), an allele coding for simple learning
can be genetically associated with an allele coding for a scrounger strategy in a
producer-scrounger game, while complex learning is associated with a producer
strategy. Such genetic associations cannot happen in our setting because we
study evolution on only one locus, but note that in the Prisoner’s Dilemma,
there was a phenotypic association between TR and cooperation, which strongly
influenced the result under both matching schemes. We also note that our
results are also consistent with the findings of Josephson (2008). His model of
matching corresponds to our repeated matching scheme, and even though we
did not use exactly the same rules, we find like him that a learning rule with no
observation of hypothetical payoffs (i.e. the TR rule) cannot be evolutionarily
stable in this case. Hence, adding a more realistic feature such as environmental
fluctuations does not help in favoring trial-and-error learning, suggesting that
random interactions constitute a strong factor in favor of belief-based learning.

Our results also echo findings in the field of repeated games. For instance in
Axelrod’s tournament, the dominating strategy (Tit-for-tat) was not the most
complex one among all the proposed strategies (Axelrod, 1980). Further, re-
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search in economics also indicate that repeated games and social interactions
do not always select for more complex strategies, and these results were ob-
tained either by taking into account explicitly the costs of cognitive complexity
(Binmore and Samuelson, 1992) or, more recently, in the absence of such costs
(Horváth et al., 2012; Mohlin, 2012; Duersch et al., 2013). All this suggests
that it is relevant to try to characterize the type of games species are playing
in nature (or the social problems they face), in order to characterize the real
demands on social cognition.

It might be difficult to assess the payoff structure of the games played by
individuals, but our results show that when individuals cannot condition their
actions on the type of games they are playing (as we assumed here), the be-
havioral outcomes only depend on the average game, which can thus be used to
produce predictions about the psychological capacities of that species. Indeed,
we only had to analyze the behavior in the average game (Table 4) in order to
predict equilibrium behavior for the learning dynamics, and learning behavior in
the average game explained well the results of evolutionary simulations. These
complications regarding the fluctuating aspects of the games can be ignored in
potential experimental tests of our model because our results showing that TR
and HR produce different behaviors in social interactions still hold if we inter-
pret the average game as only a constant, fixed game. Accordingly, in order
to test which of these learning rules is used by a particular species, we think
that experiments where individuals socially interact according to a Prisoner’s
Dilemma are the best suited because our two learning rules lead to distinct
outcomes in this game.

By contrast, a coordination problem is not a good situation to perform these
tests because it is solved by both trial-and-error and hypothetical reinforcement
learning and consequently does not allow one to distinguish between these rules.
In previous empirical studies, Prisoner’s dilemma games have been implemented
to test the cooperativeness of species (e.g. Schneeberger et al., 2012) by giving
individuals the choice between selfish and social options, e.g. when deciding
whether or not to produce an effort in order to provide food to a conspecific.
Repeating such tasks multiple times between pairs of individuals can tell us
whether only simple trial-and-error is used, in which case one would expect to
see a proportion of pairs learning to exchange food in this task, by reinforcement
of actual reward. On the other hand, observing only defection would suggest
that the species of interest is using another rule than trial-and-error learning,
and the use of hypothetical reinforcement learning could be further tested using
classical tests of bayesian learning in an individual decision task. It must be
noticed that in such empirical tests, one does not need to consider that the
animal is able to condition its behavior on the type of game it is facing. Being
able to condition behavior on the type of game requires to detect features of
the environment and combine them correctly in order to compute game payoffs
accordingly, which is cognitively more demanding and requires more inference
than we have assumed in this paper. Here, we only assumed that individuals
had access to limited information on opportunities they did not experiment.
This information can be reached through explicit reasoning (e.g. noticing that
a food patch has been exploited by others is a cue that nearby patches have
probably also been exploited) or via social observation.

In this work, we assumed that the information obtained by hypothetical re-
inforcement learners was always correct. In other words, non-realized payoffs
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are always perfectly observed by HR, but this assumption does not always hold
in nature. Social observation of non-realized payoffs is dependent on the fre-
quency of actions taken in the population, so an individual is generally unable to
evaluate socially the relative advantages of all possible behaviors, i.e. if nobody
in the population takes an optimal action, a social learner will be unable to act
optimally. Moreover, social observation is error-prone (e.g. when an individual
is trying to assess how much food a conspecific is having) and reasoning is even
more so. Future research could produce different results by modeling a situation
where the information acquisition process involves errors, e.g. when the genotype
g in equation 3 can take values lower than one (payoffs are under-estimated) or
higher than one (over-estimated payoffs), or even when g is a random variable
whose support, mean, and variance are genetically determined (representing a
situation where payoffs are sometimes under- and sometimes over-estimated).

Our paper also contributes to modeling in behavioral ecology, where re-
searchers acknowledge the need for describing animal behavior in terms of gen-
eral rules that are used to face several decision problems an individual may
face (McNamara and Houston, 2009; Dijker, 2011; Hammerstein and Stevens,
2012; Fawcett et al., 2013). By modeling an environment where individuals face
different social games and partners, but use the same behavioral rule (either
trial-and-error or hypothetical reinforcement learning), a learning rule can only
work well on average. We concentrated here on social behaviors only under
the simplest games and mainly studied long-term behavioral dynamics, but this
approach can also be applied for studying rules of behavior that can serve un-
der a variety of ecological contexts, under more complex social structures, or to
investigate the effects of learning speed. This may help to better delineate the
possible evolutionary paths from simple to more sophisticated decision-making
processes.
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ELECTRONIC SUPPLEMENTARY MATERIAL

ESM 1 TRIAL-AND-ERRORANDHYPOTHET-
ICAL REINFORCEMENT LEARNING

In this appendix, we give the stochastic recursions for the motivations for the
four learning rules studied in this paper. We have defined two forms of trial-
and-error, PTR and ETR, and two forms of hypothetical reinforcement learning,
PHR and EHR.

1.1 Trial-and-Error

Dynamic learning rate

Substituting gi = 0, φi,t = (1/t) + 1 into equation 3, we obtain PTR with
updating rule

Mi,t+1(a) = Mi,t(a) +
1

t+ 1
1(a, ai,t)πi(a,a−i,t, ωt). (1.1)

Every new experienced payoff is thus divided by the total number of interac-
tions and added to the previous motivation. In the long run, the effect of new
payoffs on motivations goes to zero. Note that when action a is not played, the
motivation is not updated. Moreover, the learner does not forget information
from the past. It is even the payoffs obtained in the first rounds of interaction
that have the biggest effect on the motivations at time t.

Constant learning rate

Substituting gi = 0 and φi,t = 1 into equation 3 gives ETR, which has updating
rule

Mi,t+1(a) =
t

t+ 1
Mi,t(a) +

1

t+ 1
1(a, ai,t)πi(a,a−i,t, ωt). (1.2)

This rule looks like a time average of the payoffs obtained when playing action
a but it is actually a biased average. Indeed, in a non-biased average, the
motivation of action a should not be updated when action a is not played.
However, here when action a is not played at time t, the motivation is still
updated but it is as if the payoff obtained for action a at time t was zero. Hence,
depending on the signs of the payoffs in the game, the non-played actions have
a tendency to lose weight (e.g. when all payoffs in the game are positive) or gain
weight (e.g. when all payoffs in the game are negative).

While equation 1.2 may seem unfamiliar to students of animal learning,
especially because of the time average principle, one can translate this equation
into the well-known form

Mi,t+1(a) =

{
(1− γt)Mi,t(a) + γtπi(a,a−i,t, ωt), if a = ai,t,

(1− γt)Mi,t(a), otherwise,
(1.3)

where γt = 1/(t+1) can be seen as a learning rate or discount factor. This type of
equation is common in the literature on animal learning and is often termed the
linear operator model (Bush and Mostelller, 1951; Rescorla and Wagner, 1972;
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McNamara and Houston, 1987; Bernstein et al., 1988; Stephens and Clements,
1998; Amano et al., 2006; Hamblin and Giraldeau, 2009). However in general
the learning rate γ is considered as a constant, and not a function of time as
is the case here. The effect of having a dynamic rather than constant learning
rate is discussed in Sutton and Barto (1998). In our model we required that
γt = 1/(t+ 1), but our results hold as long as γt is a decreasing step size (in the
sense of stochastic approximation theory, Benaim, 1999; Dridi and Lehmann,
2014).

1.2 Hypothetical Reinforcement Learning

Dynamic learning rate

Substituting gi = 1 and φi,t = (1/t)+1 into equation 3 yields the PHR updating
rule

Mi,t+1(a) = Mi,t(a) +
1

t+ 1
πi(a,a−i,t, ωt). (1.4)

This equation is the counterpart of equation 1.1 but without the factor 1(a, ai,t)
in front of the payoffs. The dynamics will essentially obey the same principles as
equation 1.1, with early payoffs (small t) having a bigger effect than late payoffs
(big t).

Constant learning rate

Substituting gi = 1 and φi,t = 1 into equation 3 gives EHR, which is the
standard belief-based learning rule (Fudenberg and Levine, 1998; Camerer and
Ho, 1999), with motivation updating given by

Mi,t+1(a) =
t

t+ 1
Mi,t(a) +

1

t+ 1
πi(a,a−i,t, ωt). (1.5)

For every action a, this equation represents the average payoff that a player
would have obtained if he were constantly playing action a, given the history of
opponent’s actions and environmental states {a−i,τ , ωτ}tτ=1.

Belief-based learning

We now show that equation 1.5 can also be interpreted in terms of updating
average payoffs given beliefs over the action play probabilities of partners like
in Camerer and Ho (1999). Note that belief-based learning requires observing
at the same time the action of the opponent and the entire payoff matrix of the
game after each interaction round, which relies on much more information than
just knowing the payoffs of unchosen actions as in equation 1.5. In this section,
we also show that extending belief-based learning to a situation of environmental
fluctuations is not trivial. In particular, the individual cannot just ignore the
effect of the environment on his payoffs. Indeed, whereas the individual cannot
observe environmental states ωt, we will see that it must realize that another
factor than just the behavior of its opponent is influencing its payoff. The
individual must average out the effect of this additional factor explicitly, as is
detailed below.

For ease of presentation, but without loss of generality, we consider that
individual i interacts only with one other individual in the population (one-shot
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matching model), which plays action a−i,t ∈ A at time t. We then write for
t ≥ 1

B−i,t+1(a) =
t

t+ 1
B−i,t(a) +

1

t+ 1
1(a, a−i,t), (1.6)

where B−i,t+1(a) ∈ [0, 1] is the frequency of times the partner of individual i
has played action a up to time t, and which is the belief of individual i that its
partner plays a at t+ 1 given the initial belief B−i,1 at t = 1. We also define

π̃i,t+1(a, k) =

∑t
τ=1 1(k, a−i,τ )πi(a, k, ωτ )

n−i,t+1(k)
, (1.7)

to be the average payoff at time t + 1 individual i would have obtained if he
played constantly action a on all the interaction rounds where its opponent
played k. This allows the individual to average out the effect of environmental
fluctuations on his payoffs. In equation 1.7, n−i,t+1(k) = (t + 1)B−i,t+1(k) is
the number of times the opponent of i played action k up to time t. In the
following, it will be useful to write equation 1.7 as the recursion

π̃i,t+1(a, k) =
tB−i,t(k)

(t+ 1)B−i,t+1(k)
π̃i,t(a, k)+

1

(t+ 1)B−i,t+1(k)
1(k, a−i,t)πi(a, k, ωt).

(1.8)
Let us now write

Mi,t+1(a) =
∑
k∈A

π̃i,t+1(a, k)B−i,t+1(k), (1.9)

which can be interpreted as the expected payoff to individual i given its beliefs
over the action distribution of its partner and given the history of environmental
states. Substituting equation 1.6 and equation 1.8 into equation 1.9 shows that
the motivation dynamics still satisfies equation 1.5 for the case of two players.
Hence, when an hypothetical reinforcement learner expresses action by using the
logit choice rule (equation 2), it behaves as if it tries to maximize its expected
current reward given its beliefs.

ESM 2 STOCHASTIC APPROXIMATION

Here, we show the main steps to derive equations 5–6 from equations 2-3. First,
an application of stochastic approximation theory (e.g. Benaim, 1999) shows
that equations 2-3 can be approximated by the set of differential equations

ṗi(a) = pi(a)

[
εi
∑
k∈A

log

(
pi(k)

pi(a)

)
pi(k) + λ

(
R̄i(a)−

∑
k∈A

R̄i(k)pi(k)

)]
, (2.1)

where
R̄i(a) = [pi(a) + gi(1− pi(a))]

∑
a−i∈AN−1

p−i(a−i)π̄i(a,a−i) (2.2)

and
π̄i(a,a−i) =

∑
ω∈Ω

µ(ω)πi(a,a−i, ω) (2.3)
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(Dridi and Lehmann, 2014, equations 11-13). Here, R̄i,t(a,Mt) is the expec-
tation of the reinforcement to the motivation of action a, i.e. the expectation
of the numerator of the second term of equation 3 over the distribution of en-
vironmental states and the distribution of choice probabilities, p−i(a−i) is the
probability of the joint action profile of other individuals than i, and π̄i(a,a−i)
represents the payoff of the average game in which individual i is involved.

In our context, the parameter εi in equation 2.1 takes the value εi = 1 +
t(1 − φi,t) (Dridi and Lehmann, 2014, equation 8 with ni,t = t and ρi = 1).
Since we assumed that φi,t = (1/t) + 1, this gives εi = 0 and the exploration
term (the first term in square brackets in equation 2.1) cancels. Moreover, we
are interested in 2 × 2 games so there are only two actions (A = {1, 2}) and
two players. Let the two players be denoted i and j, pi be the probability that
individual i takes action 1, and pj be the probability that individual j takes
action 1. With this, we can write the differential equation for the probability
that individual i takes action 1 using equation 2.1 as

ṗi = piλ
(
R̄i(1)− [R̄i(1)pi + R̄i(2)(1− pi)]

)
, (2.4)

where

R̄i(1) = [pi + gi(1− pi)]
∑

a−i∈AN−1

p−i(a−i)π̄i(1,a−i) (2.5)

R̄i(2) = [(1− pi) + gipi]
∑

a−i∈AN−1

p−i(a−i)π̄i(2,a−i). (2.6)

Further, in the 2× 2 games that we study here (one-shot matching model), the
single opponent of individual i is individual j so a−i ∈ {1, 2} and p−i(1) = pj .
Replacing these in equation 2.5, we can write equation 2.4 as

ṗi = pi(1− pi)λ[{pj π̄i(1, 1) + (1− pj)π̄i(1, 2)}{pi + gi(1− pi)}
− {pj π̄i(2, 1) + (1− pj)π̄i(2, 2)}{gipi + (1− pi)}]. (2.7)

Using the definition of the payoffs of the average game in Table 4, we have
π̄i(1, 1) = R, π̄i(1, 2) = S, π̄i(2, 1) = T , π̄i(2, 2) = P, and on substitution into
equation 2.7 yields

ṗi = pi(1− pi)λ[{pjR+ (1− pj)S}{pi + gi(1− pi)}
− {pjT + (1− pj)P}{gipi + (1− pi)}]. (2.8)

For player j, the differential equation for its probability to take action 1 is the
exact symmetric (because i is the single opponent of j), whereby

ṗj = pj(1− pj)λ[{piR+ (1− pi)S}{pj + gj(1− pj)}
− {piT + (1− pi)P}{gjpj + (1− pj)}]. (2.9)

2.1 Perturbed vs. Unperturbed Learning Dynamics

In this section we discuss how the case with dynamic learning rate approximates
the case with constant learning rate. When the learning rate is dynamic (φi,t =
(1/t) + 1), the exploration term in equation 2.1 disappears (because in this case
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εi = 0) and we call this the unperturbed dynamics. When the learning rate is
constant φi = 1, the exploration term is weighted by εi = 1, and we call this
case the perturbed dynamics. The role of the exploration term is essentially
to repel the dynamics from pure states (i.e. the corners of the state space) in
the perturbed dynamics. However, when λ is very high the second term in
brackets of equation 2.1 dominates the exploration term so that equilibria of
the perturbed dynamics approach the equilibria of the unperturbed dynamics
(see Dridi and Lehmann, 2014 for an illustration of this statement).

ESM 3 FECUNDITY AT BEHAVIORAL EQUI-
LIBRIUM

In this section, we derive an expression for fecundity (equation 7) under the
assumption that the learning process (equations 5–6) has reached an equilibrium
during lifespan. Indeed, if the individuals interact for a long enough time,
the action probabilities pi,t(a) may reach an equilibrium for all i and a, and
the fecundity of player i will be its average payoff at equilibrium. Then, the
fecundity of individual i is

Πi =
∑
ω∈Ω

∑
a∈A

∑
a−i∈AN−1

µ(ω)p̂i(a)p̂−i(a−i)πi(a,a−i, ω), (3.1)

where p̂i(a) denotes the equilibrium probability with which individual i chooses
action a, while p̂−i(a−i) is the equilibrium probability with which the opponents
of individual i choose action profile a−i. This equilibrium is obtained by setting
ṗj(a) = 0 in equation 2.1 for all j and a.

Equation 3.1 should be understood as a long run average payoff in the game
taken over three distributions. The first distribution gives the probability µ(ω)
to play game ω; the second distribution gives the equilibrium probability p̂i(a)
that player i takes action a; the third distribution tells the probability p̂−i(a−i)
that the opponents of individual i take action profile a−i. The distribution
µ(ω) is already provided as a parameter of the model. The two other distribu-
tions have to be computed by studying the equilibria of the choice probabilities
p̂i(a) for all i in the population. Using equation 2.3, the average payoff can be
simplified to

Πi =
∑
a∈A

∑
a−i∈AN−1

p̂i(a)p̂−i(a−i)π̄i(a,a−i). (3.2)

Since we are concerned with 2 × 2 games, and since the single opponent of
individual i is individual j (equations 5–6), we have a ∈ {1, 2} and a−i ∈ {1, 2}.
If we further call p̂i the probability that individual i plays action 1 at a behavioral
equilibrium and p̂j the corresponding probability for individual j, equation 3.2
can be developed as

Πi = p̂ip̂j π̄i(1, 1)+ p̂i(1− p̂j)π̄i(1, 2)+(1− p̂i)p̂j π̄i(2, 1)+(1− p̂i)(1− p̂j)π̄i(2, 2).
(3.3)

Factoring out and replacing the average payoffs, π̄i(·, ·), by their values in Ta-
ble 4, we finally obtain

Πi = p̂i(p̂jR+ (1− p̂j)S) + (1− p̂i)(p̂jT + (1− p̂j)P), (3.4)
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where in the main text we used Πij = Πi in order to emphasize that in the
one-shot matching model, the payoff of individual i depends only on its single
opponent (j).

ESM 4 QUALITATIVE ANALYSIS FOR THE
ONE-SHOT MATCHING MODEL

Here, we carry out the stability analysis of the equilibrium points of the learning
dynamics presented in the main text (equations 5–6). Before starting the anal-
ysis, let us make a technical remark. The dynamical systems we will analyze
can display hyperbolic equilibria that admits stable manifolds (with one positive
and one negative eigenvalue). We will completely discard the possibility that an
initial condition is on a stable manifold because doing so leads to a locally un-
stable equilibrium, which is not robust to small perturbations under the original
stochastic process (Pemantle, 1990). Equilibria and eigenvalues were calculated
using the Mathematica software. The payoffs of the average games are defined
in Table 4.

4.1 Prisoner’s Dilemma

PTR vs. PTR. The dynamical system obtained by setting gi = 0, gj = 0,
R = B − C, S = −C, T = B, and P = 0 into equations 5–6 admits seven
equilibria (Table 2). Four are at the corners of the state space, two are on
the edges and one is completely interior. The first equilibrium on the edge is
situated on the line pi = 1 and the other one is symmetric with respect to the
line pj = pi. The interior equilibrium is

(
p̂i = B+C

2B , p̂j = B+C
2B

)
.

Evaluating the Jacobian matrix at each equilibrium and computing the eigen-
values (Table 2) reveals that all equilibria are characterized by at least one pos-
itive eigenvalue, except the two equilibria (0, 0) (both players defect) and (1, 1)
(both players cooperate). These two latter equilibria are thus the only possible
endpoints of the learning dynamics (Hirsch et al., 2004), for all possible solution
orbits (fig. 2A). There, we can see that the interior equilibrium

(
B+C
2B , B+C

2B

)
is an unstable node, i.e. both its eigenvalues are positive. Moreover, the two
equilibria on the edges admit a stable and unstable manifold because they have
one positive eigenvalue and one negative eigenvalue. All this implies that the
equilibria (0, 0) and (1, 1) have a basin of attraction that is delimited by these
stable manifolds. Since solutions along the nullcline defined by ṗi = 0 verify
ṗj > 0 and solutions along the other nullcline (ṗj = 0) verify ṗi > 0, solving
the inequalities ṗi > 0, ṗj > 0 for pi and pj (the region above the nullclines)
gives a subset of the basin of attraction of (1, 1). In other words, trajectories
are increasing in this region and cannot escape it. Using Mathematica, we find
that these inequalities are satisfied in two cases:

(
B

2B−C < pj,1 ≤ B+C
2B and

Cpj,1
−B+2Bpj,1

< pi,1 < 1
)

or(
B+C
2B < pj,1 < 1 and

Bpj,1
−C+2Bpj,1

< pi,1 < 1
)
.

(4.1)

PHR vs. PHR. The dynamical system obtained by setting gi = 1, gj = 1, and
the PD game payoffs into equations 5–6 admits the four corners of the state space
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[(0, 1), (1, 1), (1, 0), (1, 1)] as equilibria. The only locally stable equilibrium is the
point (0, 0) because it has negative eigenvalues (−C,−C). Hence, two players
using belief learning will end up always defecting (fig. 2B).

PTR vs. PHR. Setting gi = 0, gj = 1, and the PD game payoff into equa-
tions 5–6, we find five equilibria. The four corner equilibria and one on the edge

pHR = 1 situated at
(
p̂TR = B

2B−C , p̂HR = 1
)

. The linearization shows that all

equilibria are characterized by at least one positive eigenvalue, except the equi-
librium (0, 0) which has eigenvalues (−C, 0), implying, by elimination, that it
is the only stable equilibrium. Both players will tend to defect in the long run
(fig. 2C).

4.2 Hawk-Dove Game

PTR vs. PTR. In this case (gi = 0, gj = 0, R = B/2−C, S = B, T = 0, and
P = B/2), equations 5–6 has eight different equilibria. In addition to the four
at the corners, we have two interior equilibria and two symmetric (w.r.t. the line
pi = pj) equilibria on the edges pi = 0 and pj = 0 (Table 3). The vector field can
be divided in three regions, each one being the basin of attraction of an asymp-
totically stable equilibrium. The first one is the region where all trajectories tend
to the equilibrium (0, 0). This equilibrium has negative eigenvalues. Its basin of
attraction is delimited by the stable manifolds of the equilibria situated on the
edges, precisely situated at

(
0, 1

3

)
and

(
1
3 , 0
)
. The nullclines give a good approx-

imation of the limits of this basin (fig. 2D) and delimit a region where all the
points verify that ṗi < 0, ṗj < 0, pj,1 <

B

2B−
√

2B(B−C)
, pj,1 <

B

2B−
√

2B(B−C)
.

These are the points below the equilibrium

(
B

2B−
√

2B(B−C)
, B

2B−
√

2B(B−C)

)
and

where the vector field points south-west. Excluding this specific region, all points
below the diagonal line pj = pi are in the basin of (0, 1) and all points above
this line pertain to the basin of (1, 0). The points on this line pi = pj (again
excluding the points that are in the basin of (0, 0)) are on the stable manifold

of the interior equilibrium

(
B

2B−
√

2B(B−C)
, B

2B−
√

2B(B−C)

)
.

PHR vs. PHR. Here, equations 5–6 admit only two equilibria (0, 1) and (1, 0),
which are asymptotically stable in the region below the diagonal line pi = pj
and above this line, respectively. This represents the stable manifold of the
equilibrium ( B2C ,

B
2C ). On pi = pj , we have the single population replicator

dynamics (fig. 2E), hence the stable point on this line is the ESS of the Hawk-
Dove game, ( B2C ,

B
2C ) (Weibull, 1997).

PTR vs. PHR. We have six equilibria and three of them have at least one pos-
itive eigenvalue. We are left with (0, 1), (1, 0) and one interior at ( B2C ,

3B−2C
2B ).

The latter equilibrium has eigenvalues (−B + 3B2

8C + C
2 ,−

B(B−2C)
4C ), where the

first one is always negative and the second one always positive. This equilib-
rium thus admits a stable manifold that splits the vector field in two regions:
above the stable manifold, this is the basin of attraction of (1, 0) and below it
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trajectories go to (0, 1) (fig. 2F). This stable manifold is a curve passing through
the equilibria (0, 1

3 ), ( B2C ,
3B−2C

2B ), and (1, 1).

4.3 Coordination Game

This game provides the simplest dynamics, where the equilibria (0, 0) and (1, 1)
are always the only two asymptotically stable states.

PTR vs. PTR. Here, we set gi = 0, gj = 0, R = B, S = 0, T = 0, and P = B
in equations 5–6, which then admits four trivial corner equilibria plus all the
points on the line pj = 1−pi. The equilibria (0, 0) and (1, 1) both have negative
eigenvalues and are thus locally stable. The two other equilibria in the corners
((0, 1) and (1, 0)) have eigenvalues (0, 0). The equilibria on the line pj = 1− pj
have eigenvalues (0, 2Bpi(1−pi)), where the second eigenvalue is 0 when pi = 0
or pi = 1 and positive otherwise. This all implies that the equilibrium (0, 0) is
asymptotically stable in the region below the line pj = 1−pi and the equilibrium
(1, 1) is asymptotically stable above this line (fig. 2G). Note that the unstable
line pj = 1− pi is not an interesting set of initial conditions.

PHR vs. PHR. The system in equations 5–6 admits five equilibria in this situ-
ation: the four corners and one interior at

(
1
2 ,

1
2

)
. The equilibria (0, 0) and (1, 1)

are both asymptotically stable because they both have eigenvalues (−B,−B)
while the equilibria (0, 1) and (1, 0) have eigenvalues (B,B). The interior equi-
lbrium

(
1
2 ,

1
2

)
is a saddle with eigenvalues

(
−B2 ,

B
2

)
and consequently admits a

stable and an unstable manifold. It is easy to see that the stable manifold is
the diagonal line pj = 1 − pi while the unstable manifold is the other diagonal
pj = pi (fig. 2H). Every trajectory starting above pj = 1− pi will tend to (1, 1)
while if it starts below this line it will tend to (0, 0).

PTR vs. PHR. Here, equations 5–6 has again five equilibria: the four corners
plus one interior at

(
1
2 ,

1
2

)
. The points (0, 0) and (1, 1) are both asymptotically

stable having eigenvalues (−B,−B). The interior equilibrium is a saddle with
eigenvalues

(
−B4 ,

B
2

)
. Hence a stable manifold passing through this saddle splits

the vector field in two regions, which correspond respectively to the basin of
attraction of (0, 0) and (1, 1). Here the stable manifold is situated no more on
the diagonal because we lost the symmetry property of the PHR vs. PHR case
(compare fig. 2I with fig. 2H).

ESM 5 SIMULATIONS

5.1 Individual-Based Simulations

Here, we present the algorithm of our individual based simulations. Each indi-
vidual i ∈ {1, 2, ..., N} takes a genotypic value gi ∈ {0, 1}. In every generation,

each individual i obtains fecundity Πi =
∑T
t=1 πi(ai,t,a−i,t, ωt) (equation 1, but

we do not use the normalization factor 1
T in the simulations), where the actions

(ai,t, a−i,t), which are random variables, are calculated by implementing equa-
tions 2–3. The environmental state in each period (ωt) is drawn from a uniform
distribution, which entails that µ(PD) = µ(HD) = µ(CG) = 1/3. The average
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game is parametrized according to the B and C parameters as in Table 4 (we
always used B = 5 and C = 3), but the payoffs of the three sub-games (PD,
HD, and CG) are randomly generated at the beginning of each generation so
that they average up to the desired average game and satisfy the inequalities
described in Table 4. This implies that there are between-generation fluctua-
tions, and we used them to represent the conditions where a learning ability
gives an advantage over innate behavior. Under one-shot matching, individuals
were paired only at the beginning of the generation (t = 1) and each pair played
together until T , while under repeated matching individuals were rematched at
each time period t = 1, 2, . . . , T .

The next generation is sampled with replacement according to the relative
fecundity of individuals (i.e. Πi/

∑N
i=1 Πi, a Wright-Fisher process). An off-

spring inherits the genotype of its parent with probability 1−η or mutates with
probability η to the other genotype. The mutation rate was set to η = 10−3.
We ran simulations with N = 1000 and we used a value of T bigger than the
average time needed for learning to converge to a stable value (where this aver-
age time was computed separately for each game and initial condition, and we
did not use values smaller than T = 500). Each case described in the main text
(i.e. each game and each type of initial preferences of the learners) was run in
three different replicates: one with an initial population (at the first generation)
composed of half PTRs and half PHRs; one with an initial population of only
PTRs; one with an initial population of only PHRs. This was to check that our
simulation results are independent of initial conditions. Moreover, we waited for
each run that the dynamic mean frequency of learning rules converge to a stable
value, at which point we stopped the simulation. Our convergence criterion was
met when the time average of the learning rules’ frequencies did not change by
more than 10−6 for 100 successive generations. We used k = 0 and varied λ
from 10−1 to 103 (see below).

We also carried out simulations only of the learning phase. To that aim, we
implemented, in the one-shot matching model, pairs of individuals playing out-
side a population setting using the same parameters as in the full evolutionary
simulations. We shall remark at this point that, contrary to the evolutionary
simulations (which implement a Markov Chain admitting a stationary distri-
bution), the learning dynamic is not ergodic so it does not admit a stationary
distribution; stochastic approximation theory rather shows that the dynamics
of learning will converge to one of the equilibrium points under the correspond-
ing deterministic differential equation (see for example Borkar, 2008, Chap. 2,
Corollary 4). In our simulations we observed convergence only to linearly sta-
ble equilibrium points (but note that, in general, stochastic approximation al-
gorithms may not necessarily converge to a linearly stable equilibrium point,
Pemantle, 1990). To understand the simulations, just note that the learning
dynamics should converge to one of the equilibria but that it need not converge
to the same equilibrium for two different replicates of a simulation, hence the
necessity to run many replicates of the same parameter set.

For repeated matching, learning simulations consisted of running only one
generation but setting the frequencies of PTR and PHR manually. We took
the same cases (i.e. the three different average games (PD, HD, and CG) and
the different initial preferences over actions of the learners) as in the one-shot
matching model and simulated learning behavior for 11 different values of the
frequency q of PTR in the population ranging from 0 to 1 by steps of 0.1.
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5.2 Tuning Parameters

In order to find parameters that reproduce our analytical results, the process of
running simulations consisted of two steps. First, we ran simulations between
pairs of learners (PTR vs. PTR, PTR vs. PHR, and PHR vs. PHR) for each
game, in order to establish the accuracy of the approximation of the equilibrium
action play probabilities. It has been previously found that the time t needed
for the simulated learning process to converge to the predicted equilibrium crit-
ically depends on the sensitivity to motivations, λ, and on the initial difference
between motivations of action 1 and 2, ∆Mi,1 ≡ Mi,1(1) − Mi,1(2) at time
t = 1 (Dridi and Lehmann, 2014). Since our analytic prediction is asymptotic,
it tells nothing about the values of λ, ∆Mi,1, and T . Hence, we first ran several
simulations of learning with different values of λ and ∆Mi,1, and waited for
the learning process to “converge” (based on a numerical convergence criterion).
This gives us the parameter T needed for convergence to happen during lifes-
pan. We then compared the equilibrium behavior in these simulations with the
predicted equilibrium, and chose the values of ∆Mi,1 and λ that give the best
match to prediction. In order to reduce our search in parameter space, we fixed
the value of pi,1(a) to 0.85 for the initially preferred action a (see below) and
only vary λ. This automatically changes the initial value of motivations ∆Mi,1,
such that we do not require to vary them explicitly. We used five different values
of λ of the form 10α for α = −1, 0, 1, 2, 3. In the second step, we simulated the
evolutionary process of selection on PTR vs. PHR. To this end, we used the
values of λ, ∆M , and T found in step 1 which give the best match between
stochastic learning process and deterministic approximation. The idea is that,
since we chose parameters of learning where the approximation works well, the
evolutionary simulations should also match the evolutionary predictions based
on our approximation of learning. In order to further investigate the model
under the alternative condition that φi is constant, we also performed the same
set of simulations but with φi = 1. This changes the type of the learning rules,
which are now the counterpart to PTR and PHR when φi = 1; that is, Ex-
ploratory trial-and-error reinforcement (ETR) and hypothetical reinforcement
learning EHR). We used the parameter values for λ and ∆Mi,1 applied in the
case with dynamic learning rate.

We also explored parameter values that did not necessarily reproduce our
analytical results. We report the results of such exploration in ESM 8.

ESM 6 DETAILED SIMULATION RESULTS

In this appendix, we describe in greater detail the results of our individual-based
simulations.

6.1 One-shot Matching

Prisoner’s Dilemma: dynamic learning rate

Both players initially prefer Cooperation. Here, the simulations give results
close to what is expected under our approximation when λ = 10. Regarding
learning, we find the following results for the three possible interactions between
learning rules. When PTR plays against PTR, most pairs learn to cooperate,
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but some pairs learn to defect (fig. 3A): this is not surprising because under
the stochastic learning process, individuals can escape basins of attractions and
reach the locally stable equilibrium where both players defect. In the interaction
between PHRs, all pairs learn to defect (fig. 3B), as predicted by the analysis.
In the interaction between PTR and PHR, both learning rules learn to defect:
PTR does not get exploited by PHR (fig. 3C). Overall this gives an advantage
to PTR because this learning rule cooperates with itself but defects with the
defector PHR. As a consequence, in the evolutionary simulations, PTR fixes in
the population irrespective of the initial composition of the population (Table 5).

Both players initially prefer Defection. In this case, we also find that λ = 10
gives the best fit to deterministic analysis. Surprisingly at first sight, we also
observe that PTR individuals sometimes learn to cooperate when paired with
themselves (fig. 3D; while the analysis predicts that they will always defect in
this case). This is actually perfectly possible, and is explained (as above) by the
fact that initial conditions do not constrain absolutely the equilibrium behav-
ior: individuals with initial preference for defection can still learn to cooperate
because this is also a stable equilibrium for the dynamics. PHR individuals do
not deviate from perfect defection (fig. 3E). For the interaction between PTR
and PHR, we find again that both learning rules learn to defect (fig. 3F). Since
learning behavior is somehow similar to the case where individuals prefer coop-
eration, we find as expected that PTR fixes in the population when we simulate
natural selection. This is due to the tendency of PTR to sometimes cooperate
with itself (Table 5).

Prisoner’s Dilemma: constant learning rate

Both players initially prefer Cooperation. In this situation, the results are very
similar to the case with a dynamic learning rate. Namely, ETR is able to
learn to cooperate against itself, a behavior that EHR cannot express, and this
gives a fitness advantage to ETR because ETR learns to defect against EHR
(fig. S1A,B,C). As a consequence, the frequency of ETR at an evolutionary
equilibrium is very close to 1 (Table 5).

Both players initially prefer Defection. Here ETR individuals display the same
behavior as with a dynamic learning rate when paired together: namely some
pairs learn to defect and some other pairs learn to cooperate (fig. S1D). EHR
individuals on the other hand, still learn to defect whatever their opponent is
(fig. S1E). The interactions between ETR and EHR display a different outcome
than previously. Here we observe that ETR individuals converge to a state
where they have a positive probability to cooperate, and hence get exploited on
some interaction rounds (fig. S1F).

As a consequence of this learning behavior, the evolutionary simulations
show that EHR fixes in the population in the long run when they are initially in
high frequency but otherwise this is ETR that invades (Table 5). Such a result is
possible if there is an interior unstable equilibrium in the evolutionary dynamics:
when ETR are common in the population, they have a tendency to increase
in frequency; when they are in low frequency they have a tendency to further
decrease in frequency. This situation corresponds to observed learning behavior:
while ETR individuals have the advantage of cooperating with themselves, this
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does not seem to compensate the fitness loss due to sometimes cooperating
against the defector EHR when EHR constitutes most of the population.

Hawk Dove game: dynamic learning rate

PTR initially prefers to play Hawk and PHR prefers Dove. In the analysis, we
predict that with these initial preferences, PTR individuals will learn to play
half of the time Hawk and half of the time Dove when paired against themselves.
However, in the simulations, we observe that a high proportion of PTR learned
to play Dove (fig. 4A; the best value found for sensitivity is here λ = 10). As
before, this can be explained by the possibility of escaping a basin of attraction:
the outcome (Dove, Dove) is also an equilibrium for the dynamics and some
pairs of individuals converge to this equilibrium. When a PHR plays against a
PHR, we find as predicted that approximatively half PHRs learn Hawk and half
learn Dove (fig. 4B). Finally, for PTR vs. PHR, things go as predicted with a
vast majority of PTR learning Hawk and a vast majority of PHR learning Dove:
PHR gets “exploited” by PTR here (fig. 4C).

When we run simulations of natural selection in a population of PTR and
PHR we obtain that PTR fixes for all initial compositions of the population
(Table 5). Since learning behavior is in conformity with our analytic prediction,
this is not a surprise. The important interaction between PTR and PHR turns to
the advantage of PTR. The latter is more prompt to learn the Hawk strategy and
PHR is penalized by its initial preference for Dove. One unpredicted outcome
of learning, namely the fact that PTR will learn to play Dove against itself even
if it initially prefers Hawk, gives no special advantage to PTR with the payoff
structure of our Hawk-Dove game.

PTR initially prefers to play Dove and PHR prefers Hawk. This initial con-
dition is mirroring the previous case, and the analysis thus predicts that PHR
should be the one that learns to play Hawk against PTR (the sensitivity that
gives the best match to prediction is λ = 100 for this case). This is indeed
what we observe (fig. 4F). For the interactions between the same learning rules
(PTR vs. PTR and PHR vs. PHR), we have the same behavior as in paragraph
(a): most PTR learn to play Dove (fig. 4D), and PHR learn half of the time
to play Hawk and half of the time to play Dove (fig. 4E). With this learning
behavior, PHR invades and fixes in the population for all initial compositions of
the population, and this happens very fast (in the first generations; (Table 5)).

Hawk Dove game: constant learning rate

PTR initially prefers to play Hawk and PHR prefers Dove. In this situation,
we observe qualitatively the same learning behaviors as with a dynamic learn-
ing rate. In particular, ETR learns Hawk against EHR and the latter learns
Dove (fig. S2A,B,C). As a consequence, ETR fixes to a frequency of 1 at an
evolutionary equilibrium (Table 5).

PTR initially prefers to play Dove and PHR prefers Hawk. The result is again
very similar to the case with dynamic learning rate. Namely, in ETR vs. HR in-
teractions, ETR learn Dove and EHR learn Hawk (fig. S2D,E,F) and this implies
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that EHR rapidly take over and fixes in the population under the evolutionary
simulations (Table 5).

Coordination game: dynamic learning rate

In this average game, we give to all individuals a preference for the “Left” action
and find that all individuals succeed in coordinating at time T . Pairs of PTR
individuals coordinate mostly on action 2 (“Right”) while pairs of PHR coordi-
nate mostly on action 1 (“Left”) (fig. 5A,B). The heterogeneous pairs (PTR vs
PHR) coordinate mostly on the Right action (fig. 5C). This result is difficult
to explain because individuals had an initial preference for “Left” but since the
analysis demonstrates that (Right, Right) is also a stable equilibrium of the
associated deterministic system, this result does not contradict our qualitative
analysis.

Interestingly, the evolutionary simulations give an outcome different than
what we expected. While the above learning behavior suggests that both learn-
ing rules should co-exist in equal frequency in the long-run, we find that the
population converges to a mixed state with domination of PHR individuals (Ta-
ble 5). Again, it is difficult to know why this happened, but a possible reason
for this might be that some PTR individuals converge more slowly to the equi-
librium. Even if we chose T big enough, our criterion was based on the average
time needed for all individuals to converge in the population. Some individuals
might converge more slowly than in T time steps, and fail to coordinate at this
time, giving an advantage to PHR.

Coordination game: constant learning rate

The results of learning dynamics under constant learning rate are very similar
to the above, with ETR pairs coordinating on Right, EHR pairs coordinating
on Left and heterogeneous pairs coordinating on Right (fig. S3A,B,C).

Regarding evolution, the result is in conformity to our analysis since the
population converges to a mixed state where the frequency of both learning
rules is close to 0.5 but with a slight domination of ETR individuals (q ≈ 0.56;
Table 5).

6.2 Repeated Matching

Prisoner’s Dilemma: dynamic learning rate

All individuals initially prefer Cooperation. In the average PD game, we use the
value λ = 10 that gives the best correspondence between analysis and simulation
in the one-shot matching (OM) model. We find that PHR learns to defect
irrespective of the frequency of the learning rules in the population. However,
PTR individuals can learn to cooperate when in sufficiently high frequency in the
population (precisely, the average probability of cooperating at equilibrium of
learning of PTR is above 0 for q ≥ 0.8; fig. 6A). This result is not surprising given
the OM results. Indeed, when in high frequency, there is a positive probability
that an PTR individual meets only other PTRs and the dynamics of those
individuals will likely be similar to the dynamics of pairs of PTR in the OM
model.
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This learning behavior implies that evolution leads to an interior equilib-
rium with the coexistence of PTR and PHR. Indeed, when PTR are in lower
frequency than 0.8, evolution is neutral because everybody defects. However,
when the population reaches a state where the frequency of PTR is above 0.8,
PTR starts to cooperate so the latter has a disadvantage compared to PHR and
have thus a tendency to decrease in frequency. The population thus visits all
the states such that the frequency of PTR is less than 0.8 equally often, and
in our evolutionary simulations we obtain a stable average frequency of PTR
around q ≈ 0.19 (Table 6).

All individuals initially prefer Defection. In this game and with these initial
preferences, individuals of both learning rules learn to defect for all frequencies
of PTR in the population (fig. 6B).

This leads to think that evolution is neutral here and that the evolutionary
simulations should converge to a state where q = 0.5. Our simulations give a
result close to this prediction but we also find that PHR slightly dominates the
population at an evolutionary equilibrium (Table 6).

Prisoner’s Dilemma: constant learning rate

All individuals initially prefer Cooperation. At all frequencies, ETR individuals
converge to a state where their average probability of cooperation is above 0,
which gives a complete advantage to the defector EHR in this repeated matching
model (fig. 6C). As a consequence, the evolutionary dynamics display a state
where the domination of EHR is almost total as they nearly fix in the population
at an evolutionary equilibrium (Table 6).

All individuals initially prefer Defection. In the same vein as when individuals
initially prefer Cooperation, ETR players also converge to an average probability
of Cooperation that is positive for all values of q, while EHR always learn to
defect (fig. 6D). This situation makes EHR almost fix in the population in an
evolutionary long run (Table 6).

Hawk Dove game: dynamic learning rate

ETR initially prefers to play Hawk and EHR prefers Dove. Even though we
implement an initial preference for Hawk to PTR individuals, we find here that,
in their learning behavior, PTR converge to a state where their probability of
playing Dove is always higher than that of PHR. Moreover, PTR have a tendency
to increase their probability of playing Dove as they increase in frequency while
we observe the inverse tendency among PHR individuals, who decrease their
learned probability of playing Dove as the frequency of PTR increases (fig. 6E).

As a result, the evolutionary simulations of natural selection give the result
that both learning rules co-exist in the long-run with a domination of PHR
individuals. Indeed, we observe that at low frequencies q, PHR are playing
Hawk a little more often than prescribed by the ESS (which is here 1−B/2C ≈
0.17 because we use B = 5 and C = 3), and PTR are playing Dove with a
high average probability. This gives an advantage to PTR at low frequencies
since they perform better against PHR than PHR perform against themselves
(because they play Hawk too often). However, when the frequency of PTR
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increases, the latter gets exploited more often by PHR because PTR plays more
and more Dove while PHR plays more and more Hawk, which gives an advantage
to PHR. Hence at high enough frequencies of PTR, PHR has a higher fitness
than PTR. This explains the interior equilibrium with a domination of PHR in
the evolutionary simulations (Table 6).

ETR initially prefers to play Dove and EHR prefers Hawk. This initial condi-
tion was favoring PHR in the one-shot matching model, and we have the same
situation here. We observe that PTR learns to play Dove with high average
probability (not smaller than 0.6) for all q, while PHR learns to play Hawk with
a high average probability, and this probability even decreases as PTR increases
in frequency (fig. 6F).

Hence, PHR obtains a higher payoff against PTR than PTR against PTR
which gives it an advantage for high q. However, for low q, PTR against PHR
cannot obtain a much better payoff than PHR against PHR since the latter plays
close to the ESS at low q. This is why we observe in the evolutionary simulations
that PHR dominates the population in an interior equilibrium (Table 6).

Hawk Dove game: constant learning rate

ETR initially prefers to play Hawk and EHR prefers Dove. The results for
this case resemble the case with dynamic learning rate above. Namely, ETR
individuals have for all q a learned probability of playing Dove above that of
PHR. Moreover, the probability to play Dove of ETR increases as q increases
but this probability decreases for EHR (fig. 6G).

For the same reason as in the case with dynamic learning rate, natural selec-
tion leads to a interior equilibrium with a large domination of PHR (Table 6).

ETR initially prefers to play Dove and EHR prefers Hawk. Again this situation
is very similar to the one with dynamic learning rate above. ETR always has an
average probability to play Dove higher than PHR, while the latter plays close
to the ESS when frequent in the population and plays almost always Hawk when
rare (fig. 6H).

This learning behavior favors EHR over ETR and simulations of evolution
confirm this by showing that the frequency of ETR at evolutionary equilibrium
is around q ≈ 0.05 (Table 6).

Coordination game: dynamic learning rate

In this game, PTR has difficulties in coordinating on the same equilibrium as
PHR for all frequencies q, while PHR always succeeds in learning to coordinate
on a single action (that can be Left or Right depending on stochastic events in
the simulations; fig. 6I).

This learning behavior implies that PTR has lower fitness for all q. Indeed
simulations of natural selection show that PHR fix in the population in the long
run (Table 6).
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Coordination game: constant learning rate

In this case, the learning behavior of EHR is similar to the situation with dy-
namic learning rate, namely, all EHR learn to coordinate on a single action. On
the other hand, ETR have still difficulties to coordinate for sufficiently high q,
but coordinate efficiently for low q (fig. 6J).

This learning behavior implies that evolution should be neutral for low q but
should favor EHR for higher q. This is indeed consistent with what we obtain
when we simulate natural selection, where we observe an interior equilibrium
with a large domination of EHR (q ≈ 0.06; Table 6).

ESM 7 WIN-STAY, LOSE-SHIFT FROMEWA

Here, we show that the automaton strategy Win-stay, Lose-Shift (WSLS) can
be obtained from EWA (Camerer and Ho, 1999), which confirms the verbal
explanation given by Nowak and Sigmund (1993) arguing that WSLS is a payoff-
based strategy in the spirit of trial-and-error reinforcement learning (but see
Stephens and Clements (1998) on the misuse of the name “Pavlov” to designate
WSLS). Essentially, WSLS repeats its last action if the payoff received is above
a certain aspiration level, but WSLS switches action if the payoff is below that
aspiration level. Let L be such an aspiration level, which must satisfy T > R >
L > P > S. We will show that EWA with parameters g = 0, φ = ρ = 0, λ =∞,
and L subtracted from motivations can indeed produce the WSLS behavior. The
updating rule for motivations with these parameters in a pairwise interaction is

Mi,t+1(a) = 1(a, ai,t) (πi(a, a−i,t, ωt)− L) . (7.1)

Consider two players engaged in the repeated play of the Prisoner’s Dilemma
with payoff matrix (

R S
T P

)
.

Let focus on player 1 which will be called player i.
Player i plays according to WSLS if

ai,t+1 =


C, if at = (C,C),

C, if at = (D,D),

D, if at = (C,D),

D, if at = (D,C),

(7.2)

where at = (ai,t, a−i,t). In terms of motivations under EWA, this means that
we must have, when λ =∞,

Mi,t+1(C) > Mi,t+1(D), if at = (C,C),

Mi,t+1(C) > Mi,t+1(D), if at = (D,D),

Mi,t+1(C) < Mi,t+1(D), if at = (C,D),

Mi,t+1(C) < Mi,t+1(D), if at = (D,C).

(7.3)
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Substituting the definition of the motivation (equation 7.1), we obtain
R− L > 0, if at = (C,C),

0 > P − L, if at = (D,D),

S − L < 0, if at = (C,D),

0 < T − L, if at = (D,C),

(7.4)

which effectively gives
T > R > L > P > S, (7.5)

as required by the definition of WSLS given above.

ESM 8 ROBUSTNESS TO CHANGES IN λAND
T

In this appendix, we display results of simulations for other values of λ and T ,
in order to test the robustness of our results (Tables S1–S10).
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Table 1: Payoff matrix for a typical stage game ω, where ω ∈ {PD,CG,HD}.

Action 1 Action 2
Action 1 Rω Sω
Action 2 Tω Pω

One player chooses a row and its opponent chooses a column. Payoffs are to row player.
In order to numerically implement the three possible sub-games (PD,CG,HD) we used the
following constraints on the payoffs. In the Prisoner’s Dilemma game (PD): TPD > RPD >
PPD > SPD and (TPD +SPD)/2 < RPD. In the Hawk-Dove game (HD): THD > RHD,SHD >
PHD,PHD > RHD. In the Coordination Game (CG): RCG > SCG,RCG = PCG,SCG = TCG.

Table 2: Local Stability analysis of the equilibria in the PTR vs. PTR case when the average
game is the Prisoner’s Dilemma.

Equilibrium Associated Eigenvalues Eigenvalues’ sign
(0, 0) (0, 0) (0, 0)
(0, 1) (−B,C) (−,+)
(1, 0) (−B,C) (−,+)
(1, 1) (C −B,C −B) (−,−)

(1, B
2B−C )

(
C + B2

C−2B , B + B2

C−2B

)
(−,+)

( B
2B−C , 1)

(
C + B2

C−2B , B + B2

C−2B

)
(−,+)(

B+C
2B , B+C

2B

) (
(B−C)2(B+C)

4B2 , (B−C)(B+C)2

4B2

)
(+,+)

Table 3: Local Stability analysis of the equilibria for the PTR vs. PTR interaction in the
Hawk-Dove game.

Equilibrium Associated Eigenvalues Eigenvalues’ sign
(0, 0)

(
−B2 ,−

B
2

)
(−,−)

(0, 1) (−B, 0) (−, 0)
(1, 0) (−B, 0) (−, 0)
(1, 1)

(
−B2 + C,−B2 + C

)
(+,+)

(0, 1
3 )

(
−B3 ,

B
3

)
(−,+)

( 1
3 , 0)

(
−B3 ,

B
3

)
(−,+)(

B

2B+
√

2B(B−C)
, B

2B+
√

2B(B−C)

)
(+,+)(

B

2B−
√

2B(B−C)
, B

2B−
√

2B(B−C)

)
(−,+)

Expressions of the eigenvalues associated to the interior equilibria are too long to fit in the
table.
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Table 4: Payoff matrices for the average games studied.

Ḡ Action 1 Action 2
Action 1 R S
Action 2 T P
PD Cooperate Defect
Cooperate B − C −C
Defect B 0

HD Dove Hawk
Dove B/2 0
Hawk B B/2− C

CG Left Right
Left B 0
Right 0 B

The rows correspond to the actions of player 1 and the columns correspond to the actions of
player 2. Payoffs are to row player. The matrix at the top shows the generic payoffs used in
the paper. In the Prisoner’s Dilemma game (PD, second sub-table), we assume B > C > 0. In
the Hawk-Dove game (HD, third sub-table), we have B > C > B/2 > 0. In the Coordination
game (CG, fourth sub-table), B > 0.

Table 5: Summary of results in the one-shot matching model.

Average Game Initial condition of learning Predicted q∗ Learning rate Simulated q∗

Prisoner’s Dilemma Basin of (Cooperate, Cooperate) of TRvsTR 1 Dynamic 0.99
Constant 0.98

Basin of (Defect, Defect) of TRvsTR 1/2 Dynamic 0.98
Constant 0.5‡

Hawk-Dove Game Basin of (Hawk, Dove) of TRvsHR 1 Dynamic 0.97
Constant 0.98

Basin of (Dove, Hawk) of TRvsHR 0 Dynamic 0.01
Constant 0.01

Coordination Game Basin of (Left, Left) 1/2 Dynamic 0.27
Constant 0.56

The column “Predicted q∗” shows the frequency of TR expected at evolutionary equilibrium
under the deterministic approximation. The column “Simulated q∗” gives the approximate
equilibrium frequency of TR obtained in the corresponding evolutionary simulation. The
simulation results represent the average over simulation runs with different initial compositions
of the population (see ESM 5 for details).
‡ In this case, the different simulation runs give disparate results with either learning rule
getting fixed depending on the initial conditions (see main text).
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Table 6: Summary of results in the repeated matching model.

Average Game Initial condition of learning Learning rate Simulated q∗

Prisoner’s Dilemma All individuals prefer Cooperation Dynamic 0.2
Constant 0.05

All individuals prefer Defection Dynamic 0.48
Constant 0.04

Hawk-Dove Game TR prefers Hawk, HR prefers Dove Dynamic 0.18
Constant 0.11

TR prefers Dove, HR prefers Hawk Dynamic 0.07
Constant 0.05

Coordination Game All individuals prefer Left Dynamic 0.01
Constant 0.06

This is the same table as for the one-shot matching model (Table 5) but without analytic
prediction.

Table S1: Summary of results in the one-shot matching model for λ = 1 (otherwise identical
to Table 5).

Average Game Initial condition of learning Predicted q∗ Learning rate Simulated q∗

Prisoner’s Dilemma Basin of (Cooperate, Cooperate) of TRvsTR 1 Dynamic 0.97
Constant 0.02

Basin of (Defect, Defect) of TRvsTR 1/2 Dynamic 0.09
Constant 0.02

Hawk-Dove Game Basin of (Hawk, Dove) of TRvsHR 1 Dynamic 0.99
Constant 0.99

Basin of (Dove, Hawk) of TRvsHR 0 Dynamic 0
Constant 0.03

Coordination Game Basin of (Left, Left) 1/2 Dynamic 0.52
Constant 0.61

Table S2: Summary of results in the one-shot matching model for λ = 100 (otherwise identical
to Table 5).

Average Game Initial condition of learning Predicted q∗ Learning rate Simulated q∗

Prisoner’s Dilemma Basin of (Cooperate, Cooperate) of TRvsTR 1 Dynamic 0.99
Constant 0.99

Basin of (Defect, Defect) of TRvsTR 1/2 Dynamic 0.98
Constant 0.98

Hawk-Dove Game Basin of (Hawk, Dove) of TRvsHR 1 Dynamic 0.97
Constant 0.22

Basin of (Dove, Hawk) of TRvsHR 0 Dynamic 0
Constant 0

Coordination Game Basin of (Left, Left) 1/2 Dynamic 0.21
Constant 0.56
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Table S3: Summary of results in the repeated matching model for λ = 1 (otherwise identical
to Table 6).

Average Game Initial condition of learning Learning rate Simulated q∗

Prisoner’s Dilemma All individuals prefer Cooperation Dynamic 0.04
Constant 0.02

All individuals prefer Defection Dynamic 0.1
Constant 0.02

Hawk-Dove Game TR prefers Hawk, HR prefers Dove Dynamic 0.82
Constant 0.65

TR prefers Dove, HR prefers Hawk Dynamic 0.07
Constant 0.25

Coordination Game All individuals prefer Left Dynamic 0.02
Constant 0.25

Table S4: Summary of results in the repeated matching model for λ = 100 (otherwise identical
to Table 6).

Average Game Initial condition of learning Learning rate Simulated q∗

Prisoner’s Dilemma All individuals prefer Cooperation Dynamic 0.36
Constant 0.26

All individuals prefer Defection Dynamic 0.47
Constant 0.24

Hawk-Dove Game TR prefers Hawk, HR prefers Dove Dynamic 0.16
Constant 0.15

TR prefers Dove, HR prefers Hawk Dynamic 0.08
Constant 0.09

Coordination Game All individuals prefer Left Dynamic 0.01
Constant 0.02

Table S5: Summary of results in the one-shot matching model for λ = 1 and T = 50 (otherwise
identical to Table 5).

Average Game Initial condition of learning Predicted q∗ Learning rate Simulated q∗

Prisoner’s Dilemma Basin of (Cooperate, Cooperate) of TRvsTR 1 Dynamic 0.02
Constant 0.02

Basin of (Defect, Defect) of TRvsTR 1/2 Dynamic 0.06
Constant 0.02

Hawk-Dove Game Basin of (Hawk, Dove) of TRvsHR 1 Dynamic 0.99
Constant 0.99

Basin of (Dove, Hawk) of TRvsHR 0 Dynamic 0.01
Constant 0.01

Coordination Game Basin of (Left, Left) 1/2 Dynamic 0.55
Constant 0.74
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Table S6: Summary of results in the one-shot matching model for λ = 10 and T = 50
(otherwise identical to Table 5).

Average Game Initial condition of learning Predicted q∗ Learning rate Simulated q∗

Prisoner’s Dilemma Basin of (Cooperate, Cooperate) of TRvsTR 1 Dynamic 0.99
Constant 0.98

Basin of (Defect, Defect) of TRvsTR 1/2 Dynamic 0.96
Constant 0.60

Hawk-Dove Game Basin of (Hawk, Dove) of TRvsHR 1 Dynamic 0.99
Constant 0.98

Basin of (Dove, Hawk) of TRvsHR 0 Dynamic 0
Constant 0

Coordination Game Basin of (Left, Left) 1/2 Dynamic 0.37
Constant 0.60

Table S7: Summary of results in the one-shot matching model for λ = 100 and T = 50
(otherwise identical to Table 5).

Average Game Initial condition of learning Predicted q∗ Learning rate Simulated q∗

Prisoner’s Dilemma Basin of (Cooperate, Cooperate) of TRvsTR 1 Dynamic 0.99
Constant 0.99

Basin of (Defect, Defect) of TRvsTR 1/2 Dynamic 0.98
Constant 0.98

Hawk-Dove Game Basin of (Hawk, Dove) of TRvsHR 1 Dynamic 0.97
Constant 0.93

Basin of (Dove, Hawk) of TRvsHR 0 Dynamic 0.01
Constant 0.01

Coordination Game Basin of (Left, Left) 1/2 Dynamic 0.53
Constant 0.70

Table S8: Summary of results in the repeated matching model for λ = 1 and T = 50 (otherwise
identical to Table 6).

Average Game Initial condition of learning Learning rate Simulated q∗

Prisoner’s Dilemma All individuals prefer Cooperation Dynamic 0.01
Constant 0.02

All individuals prefer Defection Dynamic 0.06
Constant 0.02

Hawk-Dove Game TR prefers Hawk, HR prefers Dove Dynamic 0.91
Constant 0.67

TR prefers Dove, HR prefers Hawk Dynamic 0.05
Constant 0.07

Coordination Game All individuals prefer Left Dynamic 0.03
Constant 0.05
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Table S9: Summary of results in the repeated matching model for λ = 10 and T = 50
(otherwise identical to Table 6).

Average Game Initial condition of learning Learning rate Simulated q∗

Prisoner’s Dilemma All individuals prefer Cooperation Dynamic 0.11
Constant 0.05

All individuals prefer Defection Dynamic 0.21
Constant 0.05

Hawk-Dove Game TR prefers Hawk, HR prefers Dove Dynamic 0.17
Constant 0.10

TR prefers Dove, HR prefers Hawk Dynamic 0.04
Constant 0.04

Coordination Game All individuals prefer Left Dynamic 0.02
Constant 0.02

Table S10: Summary of results in the repeated matching model for λ = 100 and T = 50
(otherwise identical to Table 6).

Average Game Initial condition of learning Learning rate Simulated q∗

Prisoner’s Dilemma All individuals prefer Cooperation Dynamic 0.15
Constant 0.22

All individuals prefer Defection Dynamic 0.23
Constant 0.24

Hawk-Dove Game TR prefers Hawk, HR prefers Dove Dynamic 0.15
Constant 0.09

TR prefers Dove, HR prefers Hawk Dynamic 0.04
Constant 0.04

Coordination Game All individuals prefer Left Dynamic 0.01
Constant 0.01
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FIGURE LEGENDS

.
Figure 1: Example of learning dynamics for two interacting individuals (1

and 2) in a 2×2 Hawk-Dove game with π(1, 1) = B/2, π(1, 2) = 0, π(2, 1) = B,
π(2, 2) = B/2 − C, where B = 5 and C = 3. The blue line represents the
probability p1,t to play Dove for individual 1 and the red line the probability p2,t

to play Dove for individual 2 when the learning rule is characterized by φi,t = 1+
1/t and λi = 1, for both players (rule called Pure Trial-and-error Reinforcement
learning, PTR). Parameters values for player 1 are g1 = 0, M1,1(Dove) = 1,
and M1,1(Hawk) = 0 (hence p1,1 ≈ 0.73), while for player 2 they are g2 = 0,
M2,1(Dove) = 0, and M2,1(Hawk) = 1 (hence p2,1 ≈ 0.27).

Figure 2: Solution orbits of the learning dynamics in the three average games
for the one-shot matching model. Top row (A, B, and C): Prisoner’s Dilemma
(B = 5 and C = 3). Middle row (D, E, and F): Hawk-Dove (B = 5 and C = 3).
Bottom row (G, H, and I): Coordination Game (B = 5). In each row, the left
panel represents the interaction between two TRs, the center one between two
HRs, and the right one between a TR and a HR. A white-filled circle denotes
an unstable node (both associated eigenvalues are positive), a gray-filled circle
is a saddle (one positive and one negative eigenvalue), and a black circle is a
locally stable equilibrium. In panel A the gray shaded area represents the initial
conditions for which all trajectories go to the (Cooperate, Cooperate) (1, 1)
equilibrium. In panel D the gray shaded area represents the initial conditions
for which all trajectories go to the (Dove, Dove) (1, 1) equilibrium.

Figure 3: Behavioral equilibrium of learning in the average Prisoner’s Dilemma
for the one-shot matching model with dynamic learning rate for pairs of op-
ponents (simulation test of the analytical predictions of section “Equilibrium
behavior”). This represents the frequency of pairs having reached given proba-
bilities to play action 1 (p1,T , p2,T ) at the end of lifespan, T . We used a total
of 1000 individuals of each learning rule in each simulation. First line: initial
preference for Cooperation (pi,1 = 0.85). Second line: initial preference for
Defection (pi,1 = 0.15). Left column: interaction between two TRs. Middle
column: interaction between two HRs. Right Column: interaction between TR
(player 1) and HR (player 2).

Figure 4: Same figure as the one describing the results for the behavioral
equilibrium under the average Prisoner’s Dilemma (fig. 3) but now for the av-
erage Hawk-Dove game. First line: TR initially prefers Hawk (pTR,1 = 0.15)
and HR prefers Dove (pHR,1 = 0.85). Second line: TR initially prefers Dove
(pTR,1 = 0.85) and HR prefers Hawk (pHR,1 = 0.15). Left column: interac-
tion between two TRs. Middle column: interaction between two HRs. Right
Column: interaction between TR (player 1) and HR (player 2).

Figure 5: Same figure as the one describing the results for the behavioral
equilibrium under the average Prisoner’s Dilemma (fig. 3) but for the behavioral
equilibrium under the average Coordination game. Left: interaction between
two TRs. Middle: interaction between two HRs. Right: interaction between
TR (player 1) and HR (player 2).

Figure 6: Average probability of choosing action 1 at the behavioral equilib-
rium for different frequencies q of TR in the population in the repeated matching
model. Red line is for TR, and blue line is for HR. Panels A,B,C,D: Prisoner’s
Dilemma. Panels E,F,G,H: Hawk-Dove Game. Panels I,J: Coordination Game.
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In the Prisoner’s Dilemma panel: first line: dynamic learning rate. Second line:
constant learning rate. Left column: Individuals start with an initial preference
for Cooperation (pi,1 = 0.85). Right column: initial preference for Defection
(pi,1 = 0.15). In the Hawk-Dove panel: First line: dynamic learning rate.
Second line: constant learning rate. Left column: TR initially prefers Hawk
(pTR,1 = 0.15) and HR prefers Dove (pHR,1 = 0.85). Right column: TR ini-
tially prefers Dove (pTR,1 = 0.85) and HR prefers Hawk (pHR,1 = 0.15). In the
Coordination panel: left: dynamic learning rate. Right: constant learning rate.

Figure S1: Distribution of behavior at equilibrium of learning in the average
Prisoner’s Dilemma for the one-shot matching model with constant learning rate
for pairs of opponents. This represents the frequency of pairs having reached
the probability to play action 1 (p1,T , p2,T ) at the end of lifespan, T . We used
a total of 1000 individuals of each learning rule in each simulation. First line:
initial preference for Cooperation (pi,1 = 0.85). Second line: initial preference
for Defection (pi,1 = 0.15). Left column: interaction between two TRs. Middle
column: interaction between two HRs. Right Column: interaction between TR
(player 1) and HR (player 2).

Figure S2: Same as above (fig. S1) but for the average Hawk-Dove game in
the one-shot matching model with constant learning rate. First line: TR initially
prefers Hawk (pTR,1 = 0.15) and HR prefers Dove (pHR,1 = 0.85). Second line:
TR initially prefers Dove (pTR,1 = 0.85) and HR prefers Hawk (pHR,1 = 0.15).
Left column: interaction between two TRs. Middle column: interaction between
two HRs. Right Column: interaction between TR (player 1) and HR (player 2).

Figure S3: Distribution of behavior at equilibrium of learning in the average
Coordination game in the one-shot matching model with constant learning rate.
Left: interaction between two TRs. Middle: interaction between two HRs.
Right: interaction between TR (player 1) and HR (player 2).

Figure S4: Behavioral dynamics of cooperation in the average Prisoner’s
Dilemma for a typical pair of HR (blue line) vs. TR (red line) (φi,t = (1/t)+1) in
the one-shot matching model with initial preference for cooperation (pi,1 = 0.85
for both players). Parameter values: T = 500, λ = 1 for both players, B = 5,
C = 3, µ(ω) = 1/3 for all ω ∈ {PD,HD,CG}.

Figure S5: Distribution of behavior at equilibrium of learning in the average
Prisoner’s Dilemma for the one-shot matching model with dynamic learning rate
for pairs of TR individuals. Same as above (fig. 3A) but with λ = 1.

Figure S6: Evolutionary dynamics of the frequency of reinforcement learners
in the one-shot matching model when the game is constant and corresponds to
a Coordination game. We plot the time average of the frequency of reinforce-
ment learners at each generation. The three different lines represent distinct
simulations where we used different initial compositions of the population. In
red, the population is initially composed of HR only, in black of TR only, and
in blue of half TR and half HR.
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Figure 3: Solution orbits to the learning dynamical system in the three average games for

the one-shot matching model. Top row (a, b, and c): Prisoner’s Dilemma (B = 5 and

C = 3). Middle row (d, e, and f): Hawk-Dove (B = 5 and C = 4). Bottom row (g, h,

and i): Coordination Game (B = 5). In each row, the left panel represents the interaction

between two RLs, the center one between two BLs, and the right one between a RL and a

BL. A white-filled circle denotes an unstable node (both associated eigenvalues are positive),

a gray-filled circle is a saddle (one positive and one negative eigenvalue), and a black circle

is a locally stable equilibrium. In (a) the gray shaded area represents the initial conditions

for which all trajectories go to the (Cooperate, Cooperate) (1, 1) equilibrium. In (d) the

gray shaded area represents the initial conditions for which all trajectories go to the (Dove,

Dove) (0, 0) equilibrium.

Figure 2:
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Figure 3: Behavioral equilibrium of learning in the average Prisoner’s Dilemma for the one-

shot matching model with dynamic learning rate for pairs of opponents. This represents the

frequency of pairs having reached a given probability to play action 1 (p1,T , p2,T ) at the end

of lifespan, T . We used a total of 1000 individuals of each type in each simulation. First line:

initial preference for Cooperation (pi,1 = 0.85). Second line: initial preference for Defection

(pi,1 = 0.15). Left column: interaction between two PTRs. Middle column: interaction

between two PHRs. Right Column: interaction between PTR (player 1) and PHR (player

2).

Figure 3:
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Figure 4: Same as in Fig. 3 but for the behavioral equilibrium under the average Hawk-Dove

game. First line: TR initially prefer Hawk (pR,1 = 0.15) and HR prefers Dove (pI,1 = 0.85).

Second line: TR initially prefer Dove (pR,1 = 0.85) and HR prefers Hawk (pI,1 = 0.15). Left

column: interaction between two TRs. Middle column: interaction between two HRs. Right

Column: interaction between TR (player 1) and HR (player 2).
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Figure 5: Same as in Fig.1 but for the behavioral equilibrium under the average Coordination

game. Left column: interaction between two TRs. Middle column: interaction between two

HRs. Right Column: interaction between TR (player 1) and HR (player 2).
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Figure 4: Same as in Fig. 3 but for the behavioral equilibrium under the average Hawk-Dove

game. First line: TR initially prefer Hawk (pR,1 = 0.15) and HR prefers Dove (pI,1 = 0.85).

Second line: TR initially prefer Dove (pR,1 = 0.85) and HR prefers Hawk (pI,1 = 0.15). Left

column: interaction between two TRs. Middle column: interaction between two HRs. Right

Column: interaction between TR (player 1) and HR (player 2).
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Figure 5: Same as in Fig.1 but for the behavioral equilibrium under the average Coordination

game. Left column: interaction between two TRs. Middle column: interaction between two

HRs. Right Column: interaction between TR (player 1) and HR (player 2).
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Figure S1: Distribution of behavior at equilibrium of learning in the average Prisoner’s

Dilemma for the one-shot matching model with constant learning rate for pairs of oppo-

nents. This represents the frequency of pairs having reached the probability to play action

1 (p1,T , p2,T ) at the end of lifespan, T . We used a total of 1000 individuals of each type

in each simulation. First line: initial preference for Cooperation (pi,1 = 0.85). Second line:

initial preference for Defection (pi,1 = 0.15). Left column: interaction between two PTRs.

Middle column: interaction between two PHRs. Right Column: interaction between PTR

(player 1) and PHR (player 2).
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Figure S2: Distribution of behavior at equilibrium of learning in the average Hawk-Dove

game for the one-shot matching model with constant learning rate for pairs of opponents.

This represents the frequency of pairs having reached the probability to play action 1

(p1,T , p2,T ) at the end of lifespan, T . We used a total of 1000 individuals of each type

in each simulation. First line: TR initially prefer Hawk (pR,1 = 0.15) and HR prefers Dove

(pI,1 = 0.85). Second line: TR initially prefer Dove (pR,1 = 0.85) and HR prefers Hawk

(pI,1 = 0.15). Left column: interaction between two TRs. Middle column: interaction

between two HRs. Right Column: interaction between TR (player 1) and HR (player 2).
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Figure S3: Distribution of behavior at equilibrium of learning in the average Coordination

game for the one-shot matching model with constant learning rate for pairs of opponents.

This represents the frequency of pairs having reached the probabilities to play action 1

(p1,T , p2,T ) at the end of lifespan, T . We used a total of 1000 individuals of each type in

each simulation. Left column: interaction between two TRs. Middle column: interaction

between two HRs. Right Column: interaction between TR (player 1) and HR (player 2).
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