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[1] Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous
geological environments is essential for accurate predictions of contaminant transport,
but is difficult because of the inherent limitations in resolution and coverage associated
with traditional hydrological measurements. To address this issue, we consider crosshole
and surface‐based electrical resistivity geophysical measurements, collected in time during
a saline tracer experiment. We use a Bayesian Markov‐chain‐Monte‐Carlo (McMC)
methodology to jointly invert the dynamic resistivity data, together with borehole tracer
concentration data, to generate multiple posterior realizations of K that are consistent with
all available information. We do this within a coupled inversion framework, whereby
the geophysical and hydrological forward models are linked through an uncertain
relationship between electrical resistivity and concentration. To minimize computational
expense, a facies‐based subsurface parameterization is developed. The Bayesian‐McMC
methodology allows us to explore the potential benefits of including the geophysical
data into the inverse problem by examining their effect on our ability to identify fast
flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using
a complex, geostatistically generated, two‐dimensional numerical example representative
of a fluvial environment, we demonstrate that flow model calibration is improved and
prediction error is decreased when the electrical resistivity data are included. The worth
of the geophysical data is found to be greatest for long spatial correlation lengths of
subsurface heterogeneity with respect to wellbore separation, where flow and transport
are largely controlled by highly connected flowpaths.

Citation: Irving, J., and K. Singha (2010), Stochastic inversion of tracer test and electrical geophysical data to estimate
hydraulic conductivities, Water Resour. Res., 46, W11514, doi:10.1029/2009WR008340.

1. Introduction

[2] It is well recognized that the local spatial configura-
tion of hydraulic conductivity (K) in heterogeneous geo-
logical environments is required for accurate predictions of
contaminant transport [e.g., Poeter and Gaylord, 1990;
Scheibe and Yabusaki, 1998; Wen and Gómez‐Hernández,
1998; Zheng and Gorelick, 2003]. Traditionally, aquifer
characterization has been based on the analysis of drill cores
and/or the results of tracer and pumping experiments;
however, these techniques are often inadequate for reliably
characterizing heterogeneous aquifers because of an inher-
ent gap that exists between them in terms of resolution and
coverage [Beckie, 1996; Hubbard and Rubin, 2005]. Envi-
ronmental geophysical methods have the potential to bridge
this gap and improve characterization of subsurface vari-
ability. A trade‐off associated with using such methods,

however, is that they are sensitive to, and therefore give us
information regarding, geophysical properties in the sub-
surface and not directly the hydrological properties of
interest. As a result, a number of studies have attempted to
link geophysical and hydrological variables through a
variety of approaches, including the development of petro-
physical relationships at the laboratory scale [e.g., Archie,
1942; Topp et al., 1980; Mavko et al., 1998], the numeri-
cal upscaling of such relationships to the field scale [e.g.,
Moysey and Knight, 2004; Moysey et al., 2005; Singha and
Gorelick, 2006; Singha et al., 2007], and the use of statis-
tical techniques such as cokriging of field‐estimated collo-
cated geophysical and hydrological properties [e.g., Doyen,
1988; Cassiani et al., 1998]. Unfortunately, while relation-
ships between a specific geophysical property and those of
interest to hydrologists may exist on a scale‐, site‐, and/or
facies‐specific basis, they are often complicated, nonunique,
and difficult to establish [Day‐Lewis et al., 2005; Singha
et al., 2007].
[3] To deal with the inherent difficulties associated with

using geophysical methods to quantify hydrological prop-
erties as mentioned above, a number of approaches have
been presented. One of these involves the use of multiple
geophysical survey data, combined with either statistical
regression analysis of collocated hydrological data and/or
integrated petrophysical models, to reduce the estimation
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uncertainty associated with the use of a single geophysical
method alone [e.g., Ezzedine et al., 1999; Chen et al., 2001;
Hubbard et al., 2001; Garambois et al., 2002; Linde et al.,
2006a]. Another approach involves the use of one or more
inverted geophysical data sets to divide or cluster the sub-
surface into a small number of zones having similar com-
binations of geophysical properties [e.g., Beres and Haeni,
1991; Hyndman and Harris, 1996; Mukerji et al., 2001;
Moysey et al., 2003; Tronicke et al., 2004]. Such zones are
then assumed to represent different lithologies and possess
distinct hydrological properties, which can be estimated
either through the inversion of hydrological test data [e.g.,
Hyndman et al., 1994, 2000; McKenna and Poeter, 1995;
Hyndman and Gorelick, 1996; Linde et al., 2006b], or
through the analysis of collocated borehole hydrological
measurements [e.g., Paasche et al., 2006].
[4] Another promising means of using geophysical

methods more effectively for hydrological characterization,
and our focus in this paper, involves acquiring time‐lapse
geophysical data as changes occur in an aquifer as a result of
some form of hydrological stress manifested as, for exam-
ple, changes in soil saturation or the transport of solutes in
the subsurface. Although geophysical data collected stati-
cally may provide little information regarding the distribu-
tion of a particular hydrological property, a set of dynamic
data that are sensitive to changes in hydrological state vari-
ables, such as water content or salinity, can be much more
uniquely tied to this distribution through the underlying
hydrological process model [Binley et al., 2002; Kemna
et al., 2002; Binley and Beven, 2003; Day‐Lewis et al.,
2003; Cassiani et al., 2004; Lambot et al., 2004; Cassiani
and Binley, 2005; Singha and Gorelick, 2005; Koestel
et al., 2008; Chen et al., 2009]. One increasingly com-
mon way of utilizing such time‐lapse geophysical measure-
ments is through coupled or integrated inversion, where the
numerical models for the geophysical and hydrological
processes are linked together such that the geophysical
data are inverted directly for the hydrological properties
of interest. This research has been ongoing for petroleum
applications [e.g., Huang et al., 1997; Kretz et al., 2004;
Wen et al., 2006] and has more recently become popular in
hydrology [e.g., Kowalsky et al., 2004, 2005; Lambot et al.,
2006; Finsterle and Kowalsky, 2008; Jadoon et al., 2008;
Looms et al., 2008; Lehikoinen et al., 2009; Hinnell et al.,
2010]. Coupled inversion has the significant advantage
over separated or uncoupled inversion strategies in that
it avoids the formation of geophysical images, which are
subject to inversion artifacts and depend on the regular-
ization of the geophysical inverse problem, both of which
can significantly affect the hydrological estimates obtained
[Day‐Lewis et al., 2005; Ferré et al., 2009; Hinnell et al.,
2010]. However, while the coupled inverse problem has
been an important step forward in quantifying hydrologic
parameters, it has to a large extent been considered only
within a deterministic or quasi‐deterministic inversion frame-
work, which does not allow for adequate exploration of
the often strongly nonlinear and nonunique nature of the
coupled system and corresponding model parameter and
prediction uncertainties.
[5] In recent years, a number of papers have appeared in the

geophysical literature that treat the complex data integration
and inversion problem for spatially distributed subsurface
properties in a fully stochastic manner using Bayes’ Theorem

[e.g., Mosegaard and Tarantola, 1995; Bosch, 1999; Aines
et al., 2002; Eidsvik et al., 2002; Ramirez et al., 2005].
Once thought computationally impractical, the results in
these papers have demonstrated that with modern compu-
tational resources and state‐of‐the‐art forward simulation
and sampling algorithms, such stochastic data integration
is feasible for real‐world problems. In Bayesian inversion,
the solution to the inverse problem is described as a joint
posterior probability distribution for all model parameters,
which is obtained by updating a prior distribution for these
parameters using likelihood functions corresponding to the
available sources of data. Samples from the posterior distri-
bution (i.e., multiple feasible configurations of subsurface
properties) can then be generated numerically using Markov
Chain Monte Carlo (MCMC) sampling, as in general,
explicit analytical expressions for this distribution are
unavailable owing to the complexity of the associated for-
ward models. When taken together, these posterior samples
represent our uncertainty regarding the subsurface environ-
ment, and they can be used to make predictions within a
stochastic context. Bayesian MCMC methods are naturally
suited to dealing with the important issues of data worth and
integration. They are also flexible in that they can incorpo-
rate any information that can be posed within a probabilistic
framework. Although such methods have been applied in a
wide variety of fields for many years, they have seen limited
use in the field of hydrogeophysics.
[6] In this paper, we investigate the use of a Bayesian

MCMC approach for the coupled inversion of saline tracer
test concentration measurements and time‐lapse electrical
resistivity (ER) data for the purpose of estimating the
spatial configuration and connectivity of K in the context
of predicting solute transport. This is done between two
boreholes in a saturated heterogeneous aquifer, and tested
on two complex K fields having different facies correlation
lengths. We focus here on testing the methodology numer-
ically such that fundamental issues associated with the data
integration and inversion can be examined in the case where
the true subsurface model is known. Our research has
conceptual similarities to other recent work on the fully
stochastic inversion of dynamic hydrogeophysical data, in
that we test randomly generated sets of model parameters
with regard to how well they predict measurements, and
then accept or reject them accordingly [Binley and Beven,
2003; Cassiani et al., 2004; Cassiani and Binley, 2005;
Looms et al., 2008; Hinnell et al., 2010]. However, an
important difference is that we address here the problem
of estimating a complex spatial distribution of subsurface
properties, whereas most other work has focused on the
determination of a small number of average parameters.
In the studies cited above, for example, 1‐D flow models
were considered and continuous, uncorrelated prior param-
eter distributions could be assumed without overloading
computational resources. In contrast, because we consider
a substantially larger number of model parameters and
perform forward simulations in multiple dimensions, sim-
plification strategies are required to make the stochastic
inverse problem computationally tractable. To this end,
we explore a facies‐based parameterization in our work.
Another key difference between this and previous related
efforts is that we account for uncertainty in the relation-
ship between solute concentration and resistivity to address
the fact that field‐scale petrophysical relationships are dif-
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ficult to establish. With few exceptions [Kowalsky et al.,
2005; Finsterle and Kowalsky, 2008], most previous work
has considered such petrophysical relationships to be known
and precise.
[7] The paper proceeds as follows. First, we outline briefly

some general concepts of the Bayesian MCMCmethodology
used. Next, we describe our numerical experiment and the
details of how we implement this methodology to integrate
concentration and time‐lapse resistivity data simulated from
the two “true” K distributions. Finally, for each of the two
cases, we examine the simplified binary K realizations
generated from (1) the prior distribution, (2) the posterior
distribution obtained by incorporating only the concentration
measurements, (3) that obtained by incorporating only the
resistivity measurements, and (4) that obtained using both
the concentration and resistivity measurements. A key part
of our testing is model validation. In this regard, the sets
of realizations are evaluated against the corresponding
true facies distributions to explore their ability to identify
important transport pathways, and then in terms of their
ability to predict a different solute injection/extraction
experiment in the subsurface region.

2. Inversion Methodology

[8] Here we briefly outline the general concepts of the
Bayesian MCMC methodology used in our work. For fur-
ther details on its theory and application to geophysical
inverse problems, see, for example, Mosegaard and
Tarantola [1995], Bosch [1999], Aines et al. [2002], and
Ramirez et al. [2005]. We begin by considering n sets of
measured data {d1, …, dn} that each informs us in some
way about the subsurface environment, and the vector m
that contains the model parameters of interest, in our case
the spatial configuration of K. Regardingm as a multivariate
probability distribution, Bayes’ Theorem can be used to
update our initial state of knowledge about these parameters
into a more refined state of knowledge given the available
data. This powerful concept, which is the key behind
Bayesian data integration and inversion, is expressed in
terms of conditional probabilities as follows:

f ðm j d1; :::;dnÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�

¼ k1 f ðd1; :::; dn j mÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L

f ðmÞ|ffl{zffl}
�

; ð1Þ

where r and s are the joint prior and posterior distributions
for the set of model parameters, respectively, k1 is a nor-
malization constant that ensures that the probability density
function integrates to unity, and L is the joint likelihood
function, which quantifies the probability of encounter-
ing the observed data sets given the model parameters.
Assuming that observational uncertainties across the dif-
ferent data sets are statistically independent, an assumption
which is commonly made in Bayesian joint inversion
studies [Mosegaard and Tarantola, 1995; Bosch, 1999;
Aines et al., 2002; Linde et al., 2007], then L in equation (1)
can be expressed as a product of partial likelihoods corre-
sponding to each data type, which yields the following
formula for the posterior distribution:

f ðm j d1; :::;dnÞ ¼ k1
Yn
i¼1

f ðdi j mÞ
" #

f ðmÞ: ð2Þ

Each of the partial likelihoods, f (di∣m), in turn involves a
forward numerical simulation on the model parameters to
produce a set of calculated data. That is,

LiðmÞ � f ðdi j mÞ ¼ Mðdi; giðmÞÞ; ð3Þ

where M denotes some general function of the misfit
between the observed and calculated data (di and gi(m),
respectively) and gi represents the forward simulation pro-
cess. For the case of independent, normally distributed data
errors, which we assume in this study and discuss in more
detail later, the partial likelihoods in equation (3) are given
by:

LiðmÞ ¼ k2 exp � giðmÞ � di
� � T

giðmÞ � di
� �

�2
di

 !
; ð4Þ

where k2 is another normalization constant and sdi
2 is the

estimated variance of the measurement errors for data set di.
[9] In general, because of the complexity of the forward

calculations and high dimension of the model space in most
realistic geophysical and hydrological data integration and
inversion problems, there does not exist an explicit analyt-
ical expression for the posterior distribution described by
equation (2). Instead, we have only a numerical process
through which we can obtain the probability of occurrence
of a particular set of model parameters. Nevertheless, this
information can be exploited by numerical algorithms to
efficiently generate samples from the posterior distribution,
which can then be examined statistically to see how the
various sources of data inform us about the subsurface
environment. MCMC techniques are one particularly pow-
erful and efficient class of such algorithms. In short, these
methods involve stepping through a Markov Chain where,
at each step, a test realization for m is proposed according
the prior distribution, and is then either accepted or rejected
using a random decision rule based on the realization’s
predicted data misfit and the misfit of the previously
accepted model. After a certain “burn‐in” period required
for the procedure to stabilize and become independent of the
initial starting realization, accepted samples drawn at regular
intervals along the Markov Chain will represent independent
realizations from the posterior distribution and will occur at
a frequency corresponding to their posterior probability of
occurrence. The random decision rule that we use for our
MCMC work is based on a derivative of the Metropolis et
al. [1953] algorithm derived by Mosegaard and Tarantola
[1995], which is given by:
[10] 1. If Li

new ≥ Li
old (i.e., if the new model has equal or

higher likelihood than the previously accepted one), then
accept the proposed transition.
[11] 2. If Li

new < Li
old, then make a random decision to

accept the proposed model with probability Li
new/Li

old.
[12] A more detailed discussion of the above decision rule

and related MCMC convergence issues is provided in the
work of Mosegaard and Tarantola [1995], Aines et al.
[2002], and Ramirez et al. [2005]. A key consideration in
our work is that, in the presence of multiple sources of data,
the rule can be nested or staged such that each forward
model is considered independently in the MCMC procedure
in accordance with equation (2). That is, each proposed
model need not be tested with regard to additional data sets
if it has been tested and rejected on the basis of a data set
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higher up within the nested structure. This results in sig-
nificant computational savings. Another critical consider-
ation in the practical application of Bayesian MCMC
methods, especially when a large number of parameters is
involved, is the decision of how to propose samples from the
prior distribution as one moves along the chain [Mosegaard
and Tarantola, 1995]. Clearly, if the change between the
proposed and previously accepted models is too large from
one iteration to the next, then the large difference in their
likelihoods will virtually guarantee the proposal to be re-
jected. However, if the change is too small then the MCMC
algorithm will be slow to converge and produce independent
samples from the posterior distribution. In section 3, we
discuss how all of these issues were dealt with in our
example problem.

3. Application to Coupled Hydrogeophysical
Inversion

[13] As mentioned, we explore numerically in this paper
the application of a Bayesian MCMC approach to the
problem of jointly inverting dynamic resistivity and con-
centration measurements, collected during a saline tracer
test, to quantify transport pathways and improve hydrolog-
ical predictions. To do this, we consider a two‐facies system
with variable K within facies, and we work with two
example cases involving different facies and within‐facies
correlation lengths. Our examples are relatively simple to
allow for effective testing of our proposed methodology, but
they still contain a number of important complexities that
make our results relevant to the eventual application of such
a strategy to field data. Below, we describe our numerical
experiment and the specific details of the MCMC procedure
employed, with particular focus on the prior assumptions
and steps taken to make it computationally tractable for the
spatially distributed inverse problem. For the two example
cases, we then examine the generated K realizations in terms
of how well they estimate the true facies type at each
location in the model, and more importantly in terms of their
hydrological prediction ability.

3.1. Creation of “True” K Fields

[14] Two complex, heterogeneous K distributions at the
local (∼10 m) scale, having different facies correlation
lengths, are considered as the “true” subsurface models to be
estimated in this study. The fields are specified on a 10 m
wide by 15 m deep simulation grid which is discretized
using 0.5 m cells to yield a grid size of 20 × 30. To generate
the K distributions, we used a combination of sequential
indicator and sequential Gaussian simulation techniques.
First, assuming a two‐facies system, we used the SISIM
program from GSLIB [Deutsch and Journel, 1992] to gen-
erate a facies distribution for each of the two cases. The
facies were specified to have equal proportions and an
exponential variogram model was employed for the simu-
lations. For the first case (shown in Figure 1a), the horizontal
and vertical correlation lengths of the facies were prescribed
to be 3.5 m and 1 m, respectively. For the second case
(shown in Figure 1c), they were prescribed to be 1.25 m and
0.5 m, respectively. Two facies systems such as these are
reasonable for many fluvial or glaciofluvial sites, such as the
intensively studied Cape Cod research site at the Massa-
chusetts Military Base [Hess et al., 1992] and the macro-

dispersion experiment site in Mississippi [Adams and
Gelhar, 1992]. Note, however, that our proposed method-
ology is not at all limited to two‐facies systems, and could
easily be applied to greater numbers of facies with a corre-
sponding increase in computational cost due to the greater
number of parameters. Next, we simulated lognormal vari-
ability in K within each facies using the SGSIM program,
also from the GSLIB toolbox. To do this, an exponential
variogram model was again employed, and correlation
lengths for ln(K) were set to be the same as those used for the
sequential indicator simulation. For both models, facies 1
was prescribed a mean K value of 10 m/d, and facies 2 was
prescribed a mean K value of 100 m/d. The variance of ln(K)
within each facies was set to be 0.1. The resulting true K
distributions are shown in Figures 1b and 1d. For the longer
correlation length model in Figure 1b, facies 1 has minimum
and maximum K values of 3.9 m/s and 20 m/d, respectively,
whereas facies 2 has minimum and maximum K values of
44 m/d and 210 m/d. The total variance of ln(K) for this
model is 1.4. For the shorter correlation length model in
Figure 1d, facies 1 has minimum and maximum values of
4.2 m/d and 24 m/d, whereas facies 2 has minimum and
maximum values of 33 m/d and 320 m/d. In this case, the
total variance of ln(K) is also 1.4. Porosities in the simu-
lation region were set to constant values of 0.2 and 0.3 for
the low‐ and high‐K facies, respectively, to approximate a
sandy fluvial environment.

3.2. Tracer Test and ER Measurements

[15] The 20 × 30 models shown in Figures 1b and 1d
were padded with 6 expanding cells along the bottom,
left‐, and right‐hand sides to reduce the influence of the
boundaries when conducting groundwater flow, solute
transport, and resistivity simulations. Each cell increased in
width and/or height by a factor of 1.3 going outward from
the main grid, such that the outer boundary of the padded
grid was a distance of 8 m away. For these synthetic
examples, additional padding was not required to push
away the boundary conditions as would be needed in a
field setting. Steady state groundwater flow was simulated
using MODFLOW‐2000 [Harbaugh et al., 2000] assuming
no‐flow boundaries at the top and bottom and fixed‐head
boundaries on the left and right sides such that a lateral head
gradient of 0.02 was produced. A natural gradient tracer test
through the model region was used for model calibration.
One benefit of this type of test is that the size of the plume is
large so its spatial variance is controlled by the subsurface
heterogeneity rather than a forced flow field. For the tracer
experiment, we consider two boreholes spaced 7.5 m apart
in the subsurface region (Figure 1). A conservative saline
tracer having a concentration of 1000 mg/L is introduced
into the column of model cells representing the left bore-
hole. This is meant to simulate the introduction of a fixed
amount of tracer into the upgradient wellbore, which
we consider to be fully screened. The background solute
concentration in the rest of the model space was set to
10 mg/L. The initial volume of tracer is then left to travel
through the subsurface and monitored for a period of
25 days. Conservative transport was simulated using the
MT3DMS program [Zheng and Wang, 1999] with open
boundaries on all sides. We assumed a longitudinal dis-
persivity of 0.8 m and a transverse dispersivity of 0.08 m,
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which are reasonable for the scale of transport simulated
here. Solute concentration data were recorded every 3 h
at four measurement locations in the right‐hand borehole
(1.5, 5.5, 9.5, and 13.5 m depth) (Figure 1). Uncorrelated
Gaussian random noise having a standard deviation of 5%
of the mean value of the measurements was then added to
these data.
[16] After modeling the tracer transport, the spatial dis-

tributions of solute concentration throughout the model
region, in time increments of one day, were converted into
distributions of electrical resistivity using two empirical
relations. First, fluid resistivity in ohm‐m, rf , was obtained
from the solute concentration in mg/L, C, using Keller
and Frischknecht [1966]:

�f � 5000

C
: ð5Þ

Next, rf was related to the bulk resistivity, rb, using
Archie’s Law [Archie, 1942]:

�b ¼ �f �
�m; ð6Þ

where � is the total porosity (equal to 0.2 or 0.3 for facies 1
or 2, respectively) and m is the Archie cementation exponent
which we set equal to 1.3 to represent an unconsolidated
sand [Mavko et al., 1998; Schön, 1998; Knight and Endres,
2005]. Archie’s Law is the most commonly used relation-
ship to describe the connection between bulk and fluid
resistivity. Having the distribution of electrical resistivity
throughout the model region in time, we then simulated the
collection of time‐lapse electrical resistance measurements,
once per day, using FW2_5D, a MATLAB‐based 2.5‐D
resistivity modeling code [Pidlisecky and Knight, 2008].
Each borehole was assumed to be instrumented with 14
resistivity electrodes separated by 1 m spacing, with 8 sur-
face electrodes spaced between the boreholes (Figure 1).

Four hundred and eighty‐five quadripoles, with 18 unique
current pairs to minimize the number of forward models
required, were simulated using crosswell and in‐well current
dipoles. From the resistance measurements, V/I, we calcu-
lated the apparent resistivity, ra, as follows:

�a ¼ G
V

I
; ð7Þ

where V is the simulated voltage, I is the current used to
drive the measurement, and G is a geometric factor used to
correct for the geometry of the electrodes [Keller and
Frischknecht, 1966]. While we could have worked directly
with resistance data for this study, using apparent resistivi-
ties made the addition of noise more straightforward. In
that regard, uncorrelated Gaussian random noise having a
standard deviation equal to 5% of the mean value of the
measurements was added to the apparent resistivity data.
Although the noise added to both our concentration and
resistivity data sets is uncorrelated, which is a standard
assumption in synthetic studies in both geophysics and
hydrology, it is important to note that our MCMC procedure
involves the much more complicated case of strongly corre-
lated errors as a result of approximations made in the inverse
problem. These approximations, described in section 3.3,
result in structural model error for our system, which acts
together with data uncertainties to provide a challenging
test case.

3.3. Prior Distribution and Assumptions

[17] The forward modeled tracer concentration and time‐
lapse resistivity data described above were inverted within a
Bayesian MCMC framework to generate multiple feasible
spatial configurations of K in the unpadded model region.
The use of MCMC methods for complex geophysical and
hydrological data integration for spatially distributed prop-
erties is a combinatorially massive problem. As mentioned,

Figure 1. “True” facies and K distributions used to test the MCMC methodology, along with geo-
physical and hydrological instrument locations. (a) Facies distribution for longer correlation length case.
(b) Corresponding log10(K) distribution. (c) Facies distribution for shorter correlation length case.
(d) Corresponding log10(K) distribution. Thirty‐six ER electrodes are shown as white triangles on the sur-
face and in the boreholes, and four concentration sampling points are shown as white circles in the right‐
hand borehole.
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previous stochastic inverse approaches have generally
involved a small number of estimated parameters and fast
1‐D models, which meant that continuous prior distributions
for these parameters could be used without overloading
computational resources. In our work, this is not the case,
and a key element of our approach is thus to limit, as much
as possible, the number of subsurface configurations that
must be tested through the data likelihood functions, whose
evaluation involves computationally expensive forward
model calculations. We do this by efficiently parameterizing
the model space into facies and by incorporating as much
knowledge as possible about the 2‐D system into a fast
sampling algorithm for the prior distribution. Lithology
forms the “base representation” for our inversion method-
ology [Aines et al., 2002]. The reasons for this are (1) geo-
physical and hydrological properties of subsurface materials
are a direct result of lithological characteristics; (2) petro-
physical relationships, which are often rather uninformative
when considered independent of lithology, can become
substantially more useful when grouped according to soil or
rock type [Prasad, 2003]; and (3) prior geological knowl-
edge is generally expressed in terms of relationships between
lithologic or facies units, rather than between geophysical
or hydrological properties. To decide on the number and
type of lithologies to use in the MCMC data integration in the
field, one could rely on prior knowledge of the geological
environment, borehole logging or core data, or possibly the
results of cluster analysis performed on a suite of already‐
inverted or processed geophysical images. Indeed, recent
work in the latter category has suggested that, although
individual geophysical images may not be clearly linked to
hydrological properties and are prone to inversion artifacts
and the effects of regularization, there is much potential
to use together the images obtained from multiple tech-
niques to cluster the subsurface into likely groups of lithol-
ogies [Moysey et al., 2003; Tronicke et al., 2004; Paasche
et al., 2006].
[18] For the prior distribution in our numerical example,

we assume to have a basic understanding of lithology in the
simulation region. Specifically, we assume to know that we
are dealing with a two‐facies system where we have infor-
mation regarding the mean K and porosity values of each
facies, but no knowledge of the variance of K. Information
regarding mean K and porosity could be discerned, for
example, from borehole flowmeter and neutron log data,
respectively. We then use sequential indicator simulation to
efficiently generate binary configurations of K that are
tested in the MCMC procedure with regard to how well they
allow us to predict the measured data. While simulation
methods based on two‐point statistics may produce inade-
quate measures of connectivity [Knudby and Carrera, 2005],
sequential indicator simulation has been used with success
to model spatial continuity for class‐specific patterns [e.g.,
Goovaerts, 1997]. Realizations are simulated using the
SISIM program from GSLIB, keeping the gridblock size
in the area of interest at 0.5 m. Uncertainty in the hori-
zontal facies correlation length, ax, is accounted for by
allowing it to vary between iterations according to a uniform
distribution. For both our longer and shorter correlation
length examples (with true ax equal to 3.5 m and 1.25 m,
respectively), the lower and upper bounds of this distribution
were set to 0.5 m and 10 m. This represents a broad range
which, considering that the distance between the boreholes

is only 7.5 m, means that we assume basically no knowledge
of the horizontal correlation structure. We assume that the
vertical correlation length of the facies, az, can be estimated
from borehole data [Hess et al., 1992], although this could
certainly be placed as another unknown in the inversion
procedure. The subsurface dispersivity is considered known,
on the basis of what would have been estimated in the “true”
field tracer experiment.
[19] Because of the inherent difficulties in relating geo-

physical and hydrological variables, especially at the field
scale, we also account for uncertainty in the relationship
between solute concentration and resistivity in our work.
This is accomplished by assuming that Archie’s Law in
equation (6) holds, but that the value of the cementation
exponent, m, is unknown and allowed to vary between
MCMC iterations. As mentioned, Archie’s Law is the
standard relationship used to link the bulk and fluid resis-
tivities in porous materials. By assigning m a uniform dis-
tribution with lower and upper bounds of 1.1 and 1.5 (true
value 1.3), we capture a realistic range of values expected
in unconsolidated materials and allow for significant uncer-
tainty. In section 3.4, we explain in more detail how the
uncertainty in m was dealt with in the MCMC procedure.
[20] It is important to note that, because we assume a

binary K field in our generation of test realizations from the
prior distribution (with K for each facies simply equal to the
mean value), our inversion considers a case that is consid-
erably simpler than in reality where K varies within each
facies (Figures 1b and 1d). This is a critical part of our
MCMC procedure, as it drastically reduces the number of
potential configurations for K, thus making the solution
of the inverse problem computationally tractable. For the
application of MCMC methods to problems with many
parameters, the number of degrees of freedom must be
limited as much as possible [Ramirez et al., 2005]. Our
assumption is consistent with the limited amount of infor-
mation that one might be able to estimate in a field setting.
However, making the assumption introduces model structural
error into our inversion, in the sense that our true K model
could never be tested given the simplified parameterization.
Nonetheless, we shall see that this parameterization still
allows posterior realizations of K to be generated that allow
for an improvement in hydrological predictions. Indeed, a
key goal of this study was to investigate whether assuming
a simple spatially distributed K system, where constant K
values within each facies are enforced to make the problem
computationally feasible, would allow us to still identify
flow pathways and reduce hydrological prediction uncer-
tainty using the geophysical data when the real K configu-
ration was considerably more complex. In section 5, we
briefly discuss the difficult issue ofmodel error resulting from
this assumption and its impact on uncertainty assessment.

3.4. MCMC Procedure

[21] Figure 2 is a flowchart illustrating the various stages
involved in our MCMC inversion of the tracer concentration
and time‐lapse resistivity measurements. The first step in
this procedure, after drawing a random value for the lateral
facies correlation length, is to generate a binary test con-
figuration for K consistent with the prior distribution. As
mentioned, we do this using the SISIM program from
GSLIB. If this is the first iteration of the MCMC procedure,
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then no conditioning to previously simulated points is
required and the configuration is accepted outright as the
first model in the Markov Chain. Otherwise, it is important
to ensure that the proposed model is not too different from
the previously accepted model such that the ratio of their
likelihoods allows a realistic chance of the proposal to be
accepted [Mosegaard and Tarantola, 1995]. In our case, we
ensure minimal model perturbations from one iteration to
the next by changing only a randomly selected 10% of the
model cells. The other 90% are set as hard data in the SISIM
program. Doing this has the desired effect of significantly
increasing the rate of acceptance of the proposed models;
however, it clearly means that the accepted models, when
taken sequentially down the posterior Markov Chain, will be
similar and thus not statistically independent. Nevertheless,
accepted realizations taken every so many iterations down

the Markov Chain can be treated as independent samples
from the posterior distribution. Our decision to keep 90% of
model cells as hard data between iterations was based on
ensuring a suitable rate of model acceptances in the MCMC
procedure. This value clearly affects the lag at which we
extract independent samples from the posterior chain,
in that an increase in the former requires an increase in the
latter. A lag value of 100 was determined to be sufficient
for independent posterior sampling through analysis of
when the average correlation coefficient between realiza-
tions in the Markov Chain decreased to a limiting back-
ground value.
[22] Once a test K configuration has been generated, we

then calculate its predicted data. First, groundwater flow is
simulated using MODFLOW to yield the steady state dis-
tribution of hydraulic head in the subsurface region. This is

Figure 2. Flowchart outlining the MCMC procedure that we use to jointly invert the dynamic tracer
concentration and apparent resistivity data for multiple binary realizations of K, effectively sampled from
the Bayesian posterior distribution.
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then used by MT3DMS to simulate the natural‐gradient
tracer experiment, which results in a set of predicted solute
concentration curves at the four measurement ports in the
right‐hand well, as well as the predicted spatial distribution
of concentration in time. In the first MCMC accept/reject
step, the likelihood of the test model is computed from the
misfit between the measured and predicted concentration
data according to equation (4). Only if the model is accepted
using our Metropolis‐based decision rule do we continue
down the flowchart and consider how well it predicts the
measured resistivity data. If the model is rejected, then we
return to propose a new configuration of K consistent with
the prior distribution and conditioned to a random 90% of
cells from the previously accepted model. Note how in this
way the decision rule is staged such that the different types
of observed data are considered separately; thus additional
forward models need not be computed if the model is re-
jected on the basis of a particular data set.
[23] To calculate the predicted time‐lapse apparent resis-

tivity data for the test K configuration using the FW2_5D
code, we must first convert the predicted distributions of
solute concentration into electrical resistivity. This is done
using equations (5) and (6) and a randomly drawn value for
the Archie m exponent to allow for uncertainty in our
knowledge of the true petrophysical relationship at the scale
of a grid cell. Once again, the misfit between the predicted
and true apparent resistivity data is used to compute the
model likelihood and decide whether or not to accept the
proposed realization. However, an important step that we
perform before evaluating the apparent resistivity data
misfit, which we have found allows us to deal effectively
with the uncertainty in m in the inversion, is to scale the
predicted data such that its least squares misfit with the
measured data is minimized. That is, before deciding to
accept or reject the proposed model, we scale the predicted
resistivity data by a constant factor that provides the best
match with the observed measurements. We base this step
on the following logic: Without scaling the data, an incor-
rect value of m will result in predicted apparent resistivity
measurements that differ in overall magnitude from the true

data, even for the correct configuration of subsurface K,
because of an incorrectly specified concentration/resistivity
relationship. This means that the test model will most likely
be rejected, even if it represents the correct K field, which in
turn means that the MCMC procedure will be slow to pro-
duce accepted samples from the posterior distribution.
However, we have found that apparent resistivity data
computed using the incorrect value of m still contain useful
information regarding the true K field, and often differ from
the data produced using the correct value of m by an
approximately constant factor. This is illustrated in Figure 3,
where we plot the predicted versus true resistivity data
corresponding to the true K field from Figure 1b, but using
incorrect m values of 1.1 and 1.5. These values represent the
lower and upper bounds of our uniform prior distribution for
this parameter. Despite an incorrect m value, the predicted
data are approximately linearly related to the true data,
which suggests that scaling them would produce a set of
measurements which could still provide useful information
regarding the configuration of K. We find that including the
data scaling step into our MCMC procedure results in an
efficient means of dealing with an uncertain concentration/
resistivity relationship. However, this scaling assumes that
fluid resistivities are well constrained. Other methods for
correcting for an uncertain m are possible.
[24] After scaling the predicted resistivity data and cal-

culating the model likelihood, we use again the Metropolis‐
based decision rule to determine whether or not to accept the
proposed K configuration. If the configuration is accepted,
then it is added to the chain of realizations which, after
a prescribed burn‐in period, represent samples from the
Bayesian posterior distribution consistent with both data
sets. These can then be analyzed in terms of their ability to
identify highly connected flowpaths and make transport
predictions, which we discuss next. Otherwise, we return to
propose another test configuration consistent with the prior
distribution and conditioned to be a small perturbation from
the previously accepted model. In our implementation of the
above MCMC algorithm, we let the procedure run until
150,000 realizations of K had been accepted, which we
found was sufficient to allow for meaningful posterior
analysis. On a 2.4 GHz computer with 8 GB RAM, each
flow simulation took ∼0.1 s, each transport simulation ∼1 s,
and each electrical flow simulation ∼2.5 s, which meant that
running a single inversion procedure required about one
week of CPU time. To determine at what point the MCMC
algorithm converged to properly represent the posterior
distribution (i.e., the burn‐in period), beyond which the
effects of the initial starting realization have been “forgot-
ten” and stationarity has been achieved, we ran 4 simulta-
neous Markov Chains using completely different random
starting models. Burn‐in was estimated on the basis of the
point where the variance between chains was similar to the
variance seen within each chain [e.g., Gelman and Rubin,
1992; Aines et al., 2002]. Examination of the mean and
variance of each model cell for the different chains after
this period also confirmed convergence. As mentioned
previously, before analyzing the posterior realizations (pre-
sented in section 3.5), every 100th realization was extracted
from the chain of accepted models to produce a set of
independent posterior samples. The first 300 of these sam-
ples were discarded as part of the burn‐in period, leaving
1200 samples for analysis.

Figure 3. Scatterplot showing predicted versus true appar-
ent resistivity data values corresponding to the subsurface K
field from Figure 1b, but using two incorrect values for the
Archie m exponent to compute the predicted data.
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3.5. Results

3.5.1. Generated Realizations
[25] We first show the results of our MCMC inversions in

terms of how well the generated posterior realizations are
able to capture the transport pathways present in the true
facies distributions shown in Figures 1a and 1c. Figures 4a
and 5a show again these distributions for the longer and
shorter correlation length examples, respectively. In Figures
4b–4e and 5b–5e, we show maps of the probability of being
in facies 2, which was calculated on a cell‐by‐cell basis
from the posterior MCMC realizations that were generated
by incorporating different amounts of information into the
inversion procedure. Regions that are blue represent a high
probability of being in facies 1, whereas regions that are red
represent a high probability of being in facies 2. Green
regions indicate places where, given the data used in the
inversion procedure, we cannot clearly distinguish which
facies is present.
[26] In Figures 4b and 5b, we show the probabilities

computed when only the prior information was used to
generate the K realizations. In other words, no data were
used to condition the realizations in this case, and every
binary random field created using SISIM was accepted. For
both the short and long correlation length examples, the
probabilities of being in facies 1 and facies 2 are approxi-
mately equal everywhere. This is expected because our prior
distribution does not contain any information regarding
what facies is present at each point in space; it only speci-
fies that the two facies will be correlated according to
an exponential variogram model having a vertical correla-
tion length of 0.5 or 1 m, depending on the field considered,
and an uncertain horizontal correlation length between 0.5
and 10 m. Here, we can verify that the prior simulation
procedure is not biased regarding the spatial location of
facies 1 and 2.
[27] Figures 4c and 5c show the probabilities obtained

from the posterior accepted realizations when only the tracer
concentration measurements were considered as data in the
MCMC inversion procedure. As a result, the realizations in

this case are conditioned by both the prior distribution and
concentration data, but not by the time‐lapse ER data. In
Figure 4c, we see that, by adding the concentration data
(collected at 1.5, 5.5, 9.5, and 13.5 m depth), we are able
to correctly identify three high‐K pathways near the top,
middle, and bottom of the true model. These pathways
are indicated by regions of higher probability of being in
facies 2, meaning a predominance of this facies at the three
locations in the output realizations. Because of the location
of the measurements, the pathways occur around 1.5, 9.5,
and 13.5 m depth, although in the true model the uppermost
high‐K pathway lies slightly deeper, around 2 m depth. For
the case of the shorter correlation length Kmodel (Figure 5c),
however, we observe quite different behavior. In this case, in
the majority of the image, with the exception of a small region
in the lower right‐hand corner where facies 1 is correctly
identified in the majority of realizations, the calculated
probabilities are uninformative and very much like those
computed from the prior realizations. Themain reason for this
is the lack of horizontally well‐connected and continuous
high‐K regions in Figure 5a, as opposed to Figure 4a.
Consequently, the tracer breakthrough times for the four
concentration measurements are quite similar, and do not
suggest the need for consistently high‐ or low‐K regions
across the model. In addition, because of the shorter corre-
lation length, it is possible to have high‐K pathways that are
present in the output realizations, but are not consistently at
the same location such that they are seen in the probability
plots in Figures 4 and 5. This is a weakness of representing
our results in terms of cell‐by‐cell calculated probabilities.
Finally, note that the lack of horizontal variability seen in
Figures 4c and 5c shows the limitations of the sparse con-
centration measurements in terms of the information that
they provide regarding the spatial structure of K.
[28] In Figures 4d and 5d, we show the probabilities

calculated from the output realizations when only the
dynamic apparent resistivity measurements were consid-
ered in the stochastic inversion procedure. Again, resistivity
was linked to solute concentration in the coupled hydro-
geophysical model using Archie’s Law with an uncertain m

Figure 4. Results of MCMC inversion procedure for the longer correlation length K field shown in
Figure 1b. (a) True facies distribution. (b) Probability of being in facies 2 computed from realizations
generated from the prior distribution. (c) Probability of being in facies 2 computed from posterior rea-
lizations generated considering only the concentration measurements, (d) only the ER measurements, and
(e) the concentration and ER measurements together.
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exponent. In contrast to the case where only the concen-
tration measurements were used, notice here the generally
excellent reproduction of the correct facies distribution
around the top and sides of the model, which correspond to
the location of the ER electrodes where the sensitivity of the
resistivity method is highest. This is especially the case for
the longer correlation length model in Figure 4d. Near the
center of the model, the ER measurements also provide us
with some important information regarding the distribution
of facies, especially the high‐K pathways, which are more
easily resolved as they provide a preferential pathway for
current when the solute travels through them and they
become electrically conductive. In Figure 4d, the high‐K
regions near the bottom of the model are quite consistently
represented in the output realizations. In Figure 5d, albeit
less evident, the high‐K region in the upper right part of the
model is reasonably well captured.
[29] Finally, Figures 4e and 5e show the probabilities

obtained when both the concentration and ER data sets were
inverted together using the staged MCMC framework
described in section 3.4. In general, these probability plots
visually resemble a combination of the information in
Figures 4c, 4d, 5c, and 5d, which is to be expected. Com-
paring Figure 4e with the true facies model in Figure 4a, we
see that by incorporating both types of data into the inver-
sion procedure, we are much better able to consistently
delineate the spatial connectivity in facies in comparison
with using either data type alone for the larger correlation
length case. Conversely, in Figure 5e, the results are much
less clear. Here we see a much greater amount of ambiguity
regarding the facies distribution, except near the electrode
locations where the resistivity data provide much infor-
mation. Nevertheless, considering the relatively complex
nature of the heterogeneity in Figure 5a, many of the low‐
and high‐K regions in the true model are captured in a large
number of realizations, which is manifested as the light‐blue
and yellow regions seen in Figure 5e, respectively. Again,
these pixel‐by‐pixel probability plots are not able to show
captured K pathways that change position between realiza-
tions; therefore, such plots are not the best representation of

how well the generated realizations capture K connectivity.
The true validity of the posterior MCMC realizations can
only be assessed through evaluating their predictive ability
in the context of a different transport experiment, the results
of which we show in section 3.5.2.
[30] In Table 1, we quantify the results in Figures 4 and 5

through the cumulative squared difference between the
probabilities shown and the indicator variable for being in
facies 2 corresponding to the true facies distribution. At
locations in Figures 4a and 5a where facies 2 is present, the
indicator variable equals one. Otherwise it takes on a value
of zero. The cumulative squared difference between the
probabilities and this variable (summed over all cells in the
model domain) is thus a measure of how well our realiza-
tions match the true binary facies configuration in each case.
Note that all of the results in Figures 4 and 5 are well sum-
marized in Table 1, which shows a gradual reduction in the
cumulative squared difference measure as more information
is incorporated into the MCMC inversion procedure. As was
observed in Figures 4 and 5, this reduction is greatest for
the longer correlation length case. In the shorter correlation
length case, the measure indicates that the resistivity plus
concentration data do not do a significantly better job of
identifying facies than the resistivity data alone.
3.5.2. Model Validation
[31] We now validate the performance of the various sets

of binary K realizations discussed above with regard to their
ability to predict the results of a different transport experi-
ment through the subsurface region. It is important that the
test employed during model validation is notably different
from the one used to calibrate the model parameters, as the
sets of realizations obtained through the MCMC procedure
are conditioned to those particular calibration data. As a
result, in contrast to the natural gradient experiment used to
estimate K, we now test the generated realizations in the
context of a doublet test, where we inject tracer having a
concentration of 1000 mg/L into a well located 0.5 m behind
the source well used for the natural gradient test at a rate
of 1 gpm, and we extract it from the right‐hand well at the
same rate. The natural hydraulic head gradient of 0.02 is

Figure 5. Results of MCMC inversion procedure for the shorter correlation length K field shown in
Figure 1d. (a) True facies distribution. (b) Probability of being in facies 2 computed from realizations
generated from the prior distribution. (c) Probability of being in facies 2 computed from posterior rea-
lizations generated considering only the concentration measurements, (d) only the ER measurements, and
(e) the concentration and ER measurements together.
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significantly perturbed by the injection/extraction during
the 25 day period. As in the natural gradient test, the solute
concentration is measured every 3 h in the right‐hand well
at 1.5, 5.5, 9.5, and 13.5 m depth.
[32] Figures 6 and 7 show the solute concentration curves

obtained at the four sampling ports for each of the sets
of realizations considered earlier, for the long and short
correlation length K models, respectively. The gray curves

show the predictions for the whole set of realizations,
whereas the thin black solid and dashed lines show the mean
prediction plus and minus two standard deviations. The
thicker black lines show the concentration curves obtained
by modeling through the true K realization (i.e., the con-
centration behavior that we would like to predict). Note that
it takes ∼10 days for the concentration to peak at the
downgradient well. The concentration does not reach a peak
value of 1000 mg/L because there are multiple pathways
along which the tracer can travel and these pathways do not
become saturated with solute before it leaves the system. In
Table 2, we summarize the results in Figures 6 and 7 and
quantify the predictive ability of our realizations with two
measures. The first is the root mean square (RMS) difference
between the mean predicted and true concentration curves,
which clearly quantifies the accuracy of the average pre-
dicted behavior. The second is the average standard devia-
tion of the predictions, taken over all time steps, which is a
summary measure of the prediction uncertainty. The lowest
values in each case are highlighted.

Table 1. Cumulative Squared Difference Between the Probabilities
Plotted in Figures 4b–4e and 5b–5e and the Indicator Variable in
Facies 2 Corresponding to Figures 4a and 5aa

Example
Prior

Distribution
Concentration

Data
Resistivity

Data

Concentration
Plus

Resistivity
Data

Long correlation 151.3 144.5 121.9 117.1
Short correlation 150.7 148.1 137.4 135.7

aBoldface values represent the smallest values.

Figure 6. Predicted tracer concentration curves for the new injection test, obtained using the different
sets of realizations from Figure 4. The thick solid lines show the curves obtained by modeling through
the “true” K‐field in Figure 1b, whereas the thin solid lines show the corresponding mean predicted
behavior. The dashed lines show plus and minus two standard deviations around the mean predicted
curve.
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[33] The sets of realizations generated from the prior
distribution for the longer correlation length K model (i.e.,
not incorporating any of the measured data into the MCMC
procedure) result in sets of predicted concentration curves
with a relatively large spread about the true curve for all four
sample ports (Figure 6). Given the results in Figure 4, this is
expected because the prior contains no information regard-
ing the spatial location of facies. The two standard deviation
limits in this case are quite broad, and the mean predictions
do not in general match the true curves in terms of solute
arrival time or maximum predicted concentration. As a
result, we can conclude that our prior information alone
does not allow for reasonable predictions of hydrological
behavior in the synthetic aquifer. In examining the predic-
tions obtained by incorporating only the tracer test con-
centration data into the inversion procedure, the spread of
the predictions becomes noticeably reduced, and the mean
predicted behavior matches more closely the true curves for
all sample ports (Table 2). Similarly, the predictions obtained
from the realizations generated by considering only the time‐

lapse ER data also generally show a reduction in the spread
of the predictions about the mean curve compared to the
prior, and a closer match in many cases of the mean behavior
to the true concentration curves. Both data sets clearly offer
important information toward the prediction of solute
transport through the model region. When both the concen-
tration and ER data are considered together in the MCMC
inversion procedure, we have the best results; for all of the
sample ports, there is a significant reduction of uncertainty in
the predicted behavior compared to the prior, and the mean
predicted concentration curves match much better the true
ones. Indeed, the minimum average prediction variance and
best match to the true breakthrough curves for all sample
ports are obtained using both the concentration and ER data
(Table 2). The incorporation of both the hydrological and
geophysical data into the stochastic inversion procedure
therefore results in a valuable improvement in our ability
to characterize and predict the hydrological behavior of the
system.

Figure 7. Predicted tracer concentration curves for the new injection test, obtained using the different
sets of realizations from Figure 5. The thick solid lines show the curves obtained by modeling through
the “true” K field in Figure 1d, whereas the thin solid lines show the corresponding mean predicted
behavior. The dashed lines show plus and minus two standard deviations around the mean predicted
curve.

IRVING AND SINGHA: STOCHASTIC INVERSION OF HYDROGEOPHYSICAL DATA W11514W11514

12 of 16



[34] For the shorter correlation length example shown in
Figure 7, we see results similar to those described above,
albeit to a lesser extent than the longer correlation length
case. This is despite the fact that the different sets of reali-
zations for this case did not contain many consistent patterns
in K connectivity that could be identified through the
probability plots in Figure 5. Again, the set of realizations
obtained using only the prior information can be seen in
Figure 7 to produce predicted concentration curves with a
relatively wide spread about the mean. In contrast to the
larger correlation length case in Figure 6, however, the
spread here is smaller and the true behavior is more accu-
rately matched by the mean prediction. The shorter corre-
lation length K model in Figure 1d contains less significant
flow pathways in the subsurface region, and thus the prior
realizations tend to provide predictions at the downstream
location that are well represented by the average flow and
transport behavior of this highly heterogeneous field. Nev-
ertheless, incorporating the concentration and resistivity data
independently into the inversion procedure generally results
in a reduction of prediction uncertainty, and jointly con-
sidering both data sets results in the greatest reduction in this
uncertainty when compared to the prior. Thus, even for the
shorter correlation length case, the joint inversion of the
geophysical and hydrological data allows us to better char-
acterize system behavior, albeit less effectively than in the
longer correlation length case.

4. Discussion

[35] Visual inspection of the different sets of realizations
obtained with our methodology shows that, by incorporating
both the concentration and resistivity data into the stochastic
inversion procedure, we can better delineate important sub-
surface flow pathways in comparison to using either data
type alone. This is especially the case for the longer corre-
lation length model considered. More importantly, predic-
tions of a notably different tracer injection/extraction
experiment through the simulation region showed a reduc-

tion in variance and an excellent mean prediction when both
data types were used together. Again, this was especially true
for the longer correlation length case, as in the shorter cor-
relation length case with smaller‐scale heterogeneity, flow
and transport are not as controlled by preferential pathways.
[36] The examples we have presented, which we feel pro-

vide an important proof of concept for the identification of K
heterogeneity using fully stochastic methods with simplified
parameterizations, were run in 2‐D and are small in scale
because of the computational expense of the BayesianMCMC
approach. As mentioned, running each of our inversions to
generate 150,000 accepted realizations took ∼1 week of CPU
time. The computational expense increases greatly when the
3‐Dnature of flow and transport in the field is considered, and
thus application to field data has not yet been attempted. One
potential solution to this dimensionality problem is to make
use of parallel computation. For theMCMC approach utilized
here, where the accepting or rejecting of proposed config-
urations depends on the previously accepted configuration,
parallelization is not as straightforward as with other sto-
chastic inversion approaches like the generalized likelihood
uncertainty estimation (GLUE) technique, where random
models are generated and accepted/rejected independently of
one another [e.g., Beven and Binley, 1992; Binley and Beven,
2003; Cassiani et al., 2004; Cassiani and Binley, 2005;
Looms et al., 2008]. Nevertheless, individual forward models
could be parallelized with the MCMC approach to signifi-
cantly reduce the computation time [Aines et al., 2002]. In
addition, multiple MCMC chains can be run simultaneously
on different processors, which can then be used to efficiently
determine the burn‐in period, and after burn‐in to rapidly
generate feasible posterior configurations. Finally, much
promise lies in the idea of letting the results of parallel
MCMC chains adaptively refine the prior distribution as the
algorithm runs for greatly increased speed. This is the idea
behind the Differential Evolution Adaptive Metropolis
(DREAM) approach of Vrugt et al. [2009], which might
be adapted for use in a problem similar to that shown here.
One issue with the DREAM approach that will need to be

Table 2. RMS Difference Between the Mean Predicted Concentration Curves Shown in Figures 6 and 7 and
the Corresponding True Curves, Along With the Standard Deviation of All the Predicted Curves, Which Has
Been Averaged Over Timea

Sample Port Depth (m)
and Measure

Prior
Distribution

Concentration
Data

Resistivity
Data

Concentration Plus
Resistivity Data

Longer Correlation Length Case (Figure 6)
1.5: RMS error 13.0 11.3 13.1 9.0
1.5: SD 39.6 32.8 28.7 25.5
5.5: RMS error 27.7 22.4 22.9 9.5
5.5: SD 42.2 34.9 41.1 33.4
9.5: RMS error 32.2 23.8 36.5 23.8
9.5: SD 42.0 29.7 36.6 30.5
13.5: RMS error 52.1 16.0 26.0 10.5
13.5: SD 45.5 26.5 33.1 25.1

Shorter Correlation Length Case (Figure 7)
1.5: RMS error 10.5 3.7 3.9 1.5
1.5: SD 29.6 25.8 21.8 21.2
5.5: RMS error 11.8 12.9 18.4 14.5
5.5: SD 34.5 27.3 26.4 25.5
9.5: RMS error 9.7 6.2 3.2 7.9
9.5: SD 35.0 27.1 27.6 23.0
13.5: RMS error 20.9 23.0 21.7 24.9
13.5: SD 37.0 34.7 33.8 32.4

aBoldface values represent the smallest values.
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addressed, however, is ensuring that hybrid proposal con-
figurations, which are derived from the results of multiple
parallel chains, still agree with the prior information in terms
of the specified correlation structure between model cells.
[37] Another potential strategy to improve the speed of

the Bayesian MCMC methodology would be to develop
more clever parameterizations or incorporate greater
amounts of prior information, such that we limit even further
the number of possible subsurface configurations. To this
end, one possibility would be to include more information
regarding the spatial configuration of facies, which might be
obtained from cluster analysis of multiple inverted geo-
physical images [Moysey et al., 2003; Tronicke et al., 2004;
Paasche et al., 2006]. Other hard data such as facies infor-
mation at the borehole locations could also be integrated into
the prior distribution if available. Using approximate forward
models is yet another means of increasing the speed of the
MCMC procedure. For example, we could consider particle
tracking rather than solving the advective‐dispersive equa-
tion with a finite difference method as was done here to
simulate transport, or perhaps use a polynomial chaos
expansion to greatly reduce the time required for forward
model computations [e.g., Balakrishnan et al., 2003]. We
could also reduce the number of resistivity current pairs,
thereby reducing the number of electrical forward runs
required.
[38] One final important issue that requires discussion is

the validity of the uncertainty estimates obtained using the
Bayesian MCMC methodology. Until now, we have made
no attempt to address the difficult issue of data and model
errors with such methods, which control the prediction
uncertainty estimates obtained from the generated sets of
realizations. In theory, if the geophysical and hydrological
models used in the inversion procedure were perfect, then
the data uncertainties input into the algorithm through the
likelihood equations could be simply prescribed, at least in
this synthetic case, to the 5% uncorrelated Gaussian errors
that were added to both the concentration and apparent
resistivity data. However, in any realistic situation, and
especially because of the simplifying assumptions we
use to make the spatially distributed inverse problem com-
putationally feasible, model structural errors are present.
These errors effectively act together with the data errors to
produce substantial, correlated differences between the true,
error‐free data sets and those produced by the best (but
approximate) model. Practically, what this means is that data
uncertainties will need to have significantly higher variances
than the data measurement errors for the MCMC algorithm
to properly function. In addition, because of the computa-
tional expense of the MCMC procedure, it may be desirable
to prescribe larger data error variances such that the algo-
rithm is able to generate posterior realizations in a reasonable
time frame. All of this leaves practitioners of MCMC
methods in a difficult position in terms of properly assessing
posterior uncertainty because, in a sense, the prescribed
data errors can seem somewhat subjective [e.g., Vrugt and
Bouten, 2002]. A possible partial solution might be to run
the procedure considering multiple error models and exam-
ine the resulting realizations. Another possibility would be to
attempt to estimate error model parameters, including cor-
relation, in the procedure itself. Despite these limitations,
our work demonstrates that the incorporation of time‐lapse
geophysical data into the subsurface characterization prob-

lem allows for the identification of fast flowpaths and
reduced uncertainty in future hydrological predictions, even
when the effective data errors are largely unknown. Further
information about the data and model error structure can only
improve the results that have been presented here.

5. Conclusions

[39] The results presented in this paper demonstrate that
MCMC methods provide a potentially powerful framework
within which to integrate, in a fully stochastic manner,
dynamic ER data for the estimation of hydrological proper-
ties. Whereas previous research involving stochastic inver-
sion methods in hydrogeophysics has primarily involved the
estimation of a small number of average subsurface param-
eters using fast 1‐D models, here we estimate spatially dis-
tributed properties to capture connected heterogeneity in
hydraulic conductivity. This comes at the cost of being
computationally expensive, which means that novel simpli-
fying prior assumptions are necessary to make the problem
computationally tractable. Key considerations made in our
work with ER and solute concentration data were that (1) we
are dealing with a binary K system where the mean K and
porosity values are known, when in fact the true K distri-
bution varies continuously; (2) we have limited information
regarding the correlation structure of the two facies; and (3)
an Archie‐type relation with unknown m exponent links
solute concentration to resistivity. The primary advantage
of a fully stochastic approach to inversion is that it allows
us to explore the nonlinearity and nonuniqueness of the
coupled problem and the associated model parameter and
prediction uncertainties.
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