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ABSTRACT
Sidewalk Autonomous Delivery Robots (SADRs) present a promising alternative for

mitigating excessive delivery tra�c in smart cities. These bots operate at pedestrian

speed and work in conjunction with vans to o↵er e�cient delivery services. Existing

research emphasises the development of coordinated service schedules for vans and

bots to optimise customer service. In contrast, this study examines the influence of

bot return policies on their travel back to designated stations after task completion.

We assess three distinct return policies that dictate the station selection for bot

returns and explore the relocation of bots between stations using vans. Specifically,

we present a reformulation of the fleet sizing problem as a minimum cost matching

problem in a bipartite graph. This reformulation allows for the e�cient calculation

of optimal solutions for bot fleet sizing under di↵erent return policies within polyno-

mial time. Notably, this computational e�ciency enables the analysis of large-scale

cases without sacrificing the evaluation of policies with heuristic gaps. Our findings

highlight the importance of carefully selecting the appropriate return policy, as the

best policies have the potential to decrease the bot fleet size by up to 70%.

KEYWORDS
Last-mile delivery; Autonomous bots; Return policies; Fleet sizing; SDG9:

Industry, innovation and infrastructure.

1. Introduction

The continuous growth of e-commerce platforms has made home delivery services a
critical backbone for e�ciently supplying the population. It is, therefore, unsurprising
that these delivery services, particularly on the last mile, face high expectations from
various stakeholders:

• Customers: It is projected that in Germany alone, delivery companies will handle
over 4.4 billion shipments by 2023. This represents a 160% increase compared
to the 1.69 billion parcels delivered in 2000 (Boysen et al. 2021). This surge in
parcel volume is primarily driven by the rising sales in e-commerce. Concurrently,
next-day or even same-day deliveries have become standard service o↵erings by
most online retailers (Voccia et al. 2019). Consequently, an ever-growing number
of parcels must be delivered under significant time constraints, with customers
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being unwilling to accept higher delivery costs, as surveys like the one conducted
by Joerss et al. (2016) indicate.

• Employees: Parcel delivery often garners media attention due to its demanding
work environment, characterised by stress, physical exertion, and inadequate re-
muneration (e.g., Peterson 2018). Moreover, many industrialised countries are
grappling with an ageing population, which further strains the logistics job mar-
ket (Otto and Battäıa 2017).

• General public and legislation: The escalation in delivery van usage to accom-
modate the steadily increasing parcel volume contributes to congestion and its
detrimental e↵ects on health, the environment, and safety, especially in urban
areas (Lim et al. 2018). Consequently, heightened customer awareness and new
governmental regulations necessitate courier services to intensify their e↵orts
towards sustainable and environmentally friendly operations (Hu et al. 2019).

Given these challenges, last-mile logistics providers are actively seeking alternative
delivery concepts to replace the traditional person-van tandems. Among these alter-
natives, we explore promising delivery concepts making use of Sidewalk Autonomous
Delivery Robots (SADRs). The integration of SADRs into the last-mile delivery net-
work o↵ers numerous advantages. Firstly, their small size and low speed makes them
perfectly suited for safely navigating densely populated areas, while e↵ectively reduc-
ing both environmental impact and urban congestion. Secondly, deploying SADRs for
shorter deliveries allows van drivers to concentrate on longer routes, optimising the
delivery network and saving valuable time. Overall, this approach closely aligns with
the expectations of the stakeholders, including customers, employees, and regulatory
bodies.

1.1. SADRs and their alternative implementation concepts

In this paper, we refer to SADRs as “bots” for brevity. These bots have a small load
capacity, typically accommodating a single shipment at a time, and travel at pedestrian
speed along sidewalks. By default, they operate in autonomous mode, but can switch
to remote control if any disruptions occur. When a bot arrives at a delivery location,
the customer is notified through a smartphone app, which also allows them to unlock
the bot’s cargo compartment and retrieve their shipment. Figure 1 illustrates three
representative bot models, which are currently being evaluated in various field tests
and pilot studies (see Bakach et al. 2021; Li and Kunze 2023, for more detail).

On the one hand, due to their compact size, low weight, and reduced speed, bots
are expected to cause minimal disruptions for pedestrians. On the other hand, the
slower delivery speed may pose a challenge in ensuring timely deliveries. Taking these
factors into account, bots have been studied in the literature within various delivery
concepts:

• Launch from and return to depot: The most straightforward approach is to launch
the bots from a central depot, where shipments arrive after long-haul transporta-
tion and are stored and consolidated for delivery. Note that especially large ur-
ban areas can also have multiple alternative depots to choose from (Bakach et al.
2021). Leveraging existing depot infrastructure eliminates the need for additional
investments, apart from the bot fleet and associated equipment such as charg-
ing devices. Extensive research in recent years has focused on the scheduling of
bots. With the objective of creating conflict-free routes, Jun et al. (2022) propose

2



Figure 1.
Caption: SADR of Starship (left), Amazon’s Scout (middle), and RoboPony of
Zhenbotics (right).

Alt Text: From left to right, three photos depicting commercially available delivery
bots: Starship, Amazon’s Scout, and Zhenbotics’ RoboPony.

two strategies for vehicle routing and conflict resolution and demonstrate how
the introduced framework can help boosting bot scheduling e�ciency. However,
this centralised concept comes with the drawback of requiring bots to travel
long distances, potentially compromising on-time deliveries and exceeding their
restricted operating range.

• Launch from and return to van: To reduce the distances covered by bots, vans
can carry them along with the shipments to strategic release locations (dubbed
drop-o↵ points) closer to the intended customers. After completing their deliver-
ies, the bots return to meet with their respective vans. While onboard the van,
the bots can recharge or have their batteries swapped (Yu et al. 2022), enabling
them to handle multiple subsequent delivery tasks during the van’s tour. Finally,
all shipments loaded on board of the van are supplied, and the van and its bots
return to the depot. This approach is similar to the drones-from-van concept
(e.g., Murray and Chu 2015; Agatz et al. 2018). The specific aspects of launch-
ing bots from vans are discussed in works by Simoni et al. (2020); Chen et al.
(2021a,b); Liu et al. (2022). However, bots move at pedestrian speed only. This
potentially adds substantial waiting times for vans to wait for the bots to return,
which is especially disadvantageous in congested city centres where parking space
is scarce. A di↵erent perspective on this similar concept is presented in (Mourad
et al. 2021). Their research addresses the integration of SADRs with a sched-
uled, underused, passenger shuttle line service to transport goods to their final
destination. Bots can be transported by shuttles if the targeted delivery is not
directly reachable, and the challenge of coordinating e↵ectively the movement of
robots and shuttles is addressed.

• Launch from and return to van-supplied bot station: In this concept, vans are
utilised to supply shipments to bot stations, where bots are loaded with spe-
cific shipments and directly launched towards customers. After completing their
deliveries, the bots return to their respective bot stations. This concept was ini-
tially proposed by Kim and Moon (2018) for drone-based parcel delivery but can
also be adapted for bots (Alfandari et al. 2022). The suitability of this approach
depends on the density of the bot station network, as it either increases the
bots’ travel distances or requires significant investment in establishing a dense
network of bot stations (Boysen et al. 2021).
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• Launch from van and return to bot station: This concept, introduced by Boysen
et al. (2018b), combines elements from both previous approaches. Vans are em-
ployed to transport bots closer to customers, enabling faster delivery services.
To minimise waiting times for bot returns, additional bot stations are intro-
duced. After making a delivery, bots return to nearby bot stations, where they
can recharge (Yu et al. 2022) and wait to be reloaded by vans for subsequent
deliveries. The pre-positioning of bots by vans accelerates the time-critical trans-
port leg towards customers, while the bots’ unassisted travel back to the stations
does not directly impact service quality. Consequently, only a sparse network of
inner-city bot stations is required without compromising service (see also Boysen
et al. 2021).

Due to the advantages o↵ered by the launch-from-van-and-return-to-bot-station
(LVRS) concept, our paper focuses on exploring and analysing this particular ap-
proach.

1.2. Contributions and paper structure

This paper assesses di↵erent bot return policies for the LVRS concept. A bot return
policy determines which bot station a bot should return to after completing a delivery.
Specifically, we evaluate the following policies: the dedicated-station policy (where each
bot is assigned to a specific station), the closest-station policy (where each bot returns
to the nearest station to the last serviced customer), and the most-suitable-station

policy (where bots are directed to a station that maximises operational e�ciency
based on service schedules). Additionally, the bot return policy governs whether bots
can be relocated among stations using unused van capacity for transshipment.

Previous research on the LVRS concept (for a comprehensive survey, refer to Section
2) has mainly focused on optimising joint service schedules for vans and bots. These
studies determine truck routes along drop-o↵ points (where bots are launched) and
bot stations (where additional bots are loaded) to ensure timely delivery for a given
set of customers. Some of these papers assume an abundant supply of bots at stations
without explicitly considering their availability (Boysen et al. 2018b; Alfandari et al.
2022). Others incorporate the initial bot inventory at each station to account for the
actual number of available bots that can be loaded onto vans (Heimfarth et al. 2022;
Ostermeier et al. 2022, 2023). However, previous research has largely neglected the
bots’ behaviour after completing deliveries and focused on optimising service schedules
based on fixed (or neglected) bot availabilities. In this paper, we shift the focus and
optimise the bots’ return behaviour to bot stations given the service schedules. This
allows us to evaluate how di↵erent bot return policies impact the overall bot fleet
size required to support the given service schedules. The resulting bot fleets under
di↵erent bot return policies serve as critical performance measures for benchmarking
the policies. In this context, our paper makes the following main contributions:

• We define three di↵erent bot return policies that determine which station each
bot should return to after completing customer service, with and without the
option to transship bots among stations using vans.

• We formulate the bot fleet sizing problem, which aims to determine the minimum
number of bots required to fulfil given service schedules under all policies.

• We present a reformulation of the fleet sizing problem as a minimum cost match-
ing problem in a bipartite graph, which allows to e�ciently calculate optimal
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solutions for the bot fleet sizing problem under all policies in polynomial time.
This ensures that our benchmark study of the competing bot return policies is
not limited to small-scale instances and is not influenced by heuristic gaps.

• Our computational benchmark study reveals the importance of carefully selecting
the bot return policy. Compared to the simplest benchmark, where each delivery
job to a customer household is assigned to a dedicated bot, the most-suitable-
station policy with bot transshipment leads to reductions in the bot fleet of up
to 70%. In contrast, the more restrictive dedicated-station policy without bot
transshipment only achieves fleet reductions of up to 16%.

The remainder of the paper is organised as follows. Section 2 provides a review
of the relevant literature. In Section 3, we present a detailed problem description and
outline the optimisation tasks aimed at minimising the bot fleet while servicing a given
set of delivery jobs under the di↵erent bot return policies. Subsequently, in Section
4, we introduce the reformulation to a matching problem that allows to compute op-
timal solutions under all bot return policies in polynomial time. Using this solution
approach, Section 5 presents the results of our benchmark study, comparing the dif-
ferent policies. Finally, Section 6 concludes the paper and discusses potential future
research directions.

2. Literature review and relation to previous research

For a comprehensive overview of both novel and established delivery concepts on the
last mile, as well as the operations research literature addressing these concepts, we
recommend referring to the work by Boysen et al. (2021). Further survey papers specifi-
cally dedicated to SADRs are provided by Srinivas et al. (2022) as well as Li and Kunze
(2023). Since we have already introduced and discussed various delivery concepts in-
volving SADRs, our literature review will focus on the LVRS concept examined in this
paper.

Boysen et al. (2018b) were the first to optimise service schedules under the LVRS
concept. They consider a scenario with a single van and multiple bots, aiming to
minimise the number of late deliveries for a given set of customers with specified
deadlines. They propose a decomposition heuristic that consists of a multi-start local
search procedure on the first stage. This procedure determines van routes and then
derives optimal bot loading and release at bot stations and drop-o↵ points, respec-
tively, in polynomial time on the second stage. Building upon this research, Alfandari
et al. (2022) focus on direct releases of bots from bot stations, explore alternative delay
measures, and introduce a Branch-and-Benders-cut scheme to improve computational
e�ciency. Ostermeier et al. (2022) extend the problem setting by considering limited
bot availability at each bot station. They also incorporate total logistics costs, en-
compassing both van-specific and bot-specific costs. Heimfarth et al. (2022) introduce
a mixed van-and-bot delivery approach, where specific customers are served directly
by vans while others are served by bots. Their numerical experiments demonstrate
potential cost reductions of up to 43% compared to traditional truck deliveries and up
to 22% compared to an LVRS system where only bots supply customers. Considering
multiple parallel vans for bot releases, Ostermeier et al. (2023) develop a heuristic
solution approach called set improvement neighbourhood search. Their computational
study shows that total logistics costs can be reduced by up to 24% when consider-
ing multiple vehicles concurrently, compared to a cluster-first-route-second approach
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where the problem is decomposed into multiple single-van problems.
These prior studies provide valuable insights into the LVRS concept and its opti-

misation. However, they focus on service scheduling. In this paper, we shift the focus
to the bot return policy and its impact on fleet sizing, contributing to the existing
literature from a di↵erent perspective.

As already elaborated in Section 1.2, existing LVRS research on deriving service
schedules either neglects the availability of bots at bot stations (Boysen et al. 2018b;
Alfandari et al. 2022) or prohibits that vans try to pick more bots up from a station
than initially located there (Ostermeier et al. 2022; Heimfarth et al. 2022; Ostermeier
et al. 2023). We have no objections, especially against the latter approach. Since bot
returns strongly depend on the customers’ availability and willingness to promptly
unload the bots at their doorsteps, bot returns to stations are hardly predictable.
Including them into the planning of service schedules thus leads to a highly stochastic
problem setup, which is hardly a stable basis to derive reliable service time windows
for customers. Therefore, decomposing bot returns and involving only those bots that
are definitely available, seems a valid approach for service scheduling. However, the
policy governing the return of bots to stations remains critical for the success of an
LVRS delivery concept.

While bot return policies have not been considered in the context of LVRS with
SADRs, the return of satellite vehicles to mother ships plays a vital role in other
transportation settings, such as the van-and-drone delivery system. In this context,
Boysen et al. (2018a) investigate the operational e�ciency of three distinct return
policies for drones: (A) returning to the initial take-o↵ location, (B) returning to the
next stop, and (C) unrestricted landing options. According to their findings, policy
B outperforms policy A in terms of operational e�ciency, with marginal di↵erences
between policies B and C. Similarly, Yang et al. (2023) focus on a model where the
truck is required to wait for the drone at the launch location. This constraint adds a
layer of operational rigidity not present in the standard Traveling Salesman Problem
with Drones (TSP-D). On the other hand, Pugliese et al. (2021) explore a more flexible
approach where the drone can take o↵ from a truck located either at a customer’s
location or at the depot but must return to the same truck after completing the
delivery. Another study by Freitas et al. (2023) considers scenarios where the drone
may visit a depot or rejoin the truck after completing a delivery task. Additionally,
Zou et al. (2023) delve into a locker-drone delivery system optimised for community
and intra-facility logistics, where drones always return to their dedicated locker after
each delivery. The articles mentioned above explore various aspects of van-and-drone
delivery systems, including facility location and delivery scheduling. However, none of
them specifically analyse and compare di↵erent return strategies.

On the methodological front, we take a unique approach by evaluating various bot
return policies from a reversed perspective, which di↵ers from the conventional meth-
ods employed in existing LVRS research. We assume predetermined service schedules
for customer deliveries and aim to minimise the fleet size of bots needed to execute
these schedules feasibly. Fleet sizing for bots is a long-term decision-making task, where
the specific customers to be served and the detailed service schedules of vans and bots
are uncertain. We acknowledge this uncertainty but o↵er the following justification for
our seemingly unusual problem perspective. By minimising the bot fleet size for repre-
sentative service schedules, we establish an objective criterion for comparing di↵erent
bot return policies. This criterion enables an assessment of the true potential of a spe-
cific policy, free from the interference of uncertainty, bounded rationality, or unrealistic
small-scale instances. Our deterministic problem setup ensures this. Additionally, to
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address concerns related to heuristic gaps and accommodate larger problem instances,
we develop an exact approach for bot fleet sizing with polynomial runtime. If a policy
exhibits limited advantages under these ideal circumstances, it is likely to be even less
e↵ective in the real world where uncertainty and bounded rationality are inevitable.
Future research should build upon our initial attempt to benchmark alternative bot
return policies and relax some of our assumptions.

In conclusion, bot return policies under the LVRS concept have not been previously
investigated, and our study fills this research gap.

3. Problem description

This section defines our fleet sizing problem, which aims to determine the minimum
number of bots required to enable the given service schedules of multiple vans operating
in parallel in an urban area. The basic input for our fleet sizing problem is the set of
service schedules, which are derived as follows. Initially, we have a set of customers to
be serviced, drop-o↵ points (where bots can be launched), bot stations (where vans can
load bots), and a fleet of vans. Each van’s service schedule is obtained using one of the
optimisation approaches discussed in Section 2. In our computational study presented
in Section 5, we utilise the approach proposed by Boysen et al. (2018b) to optimise the
service schedules of each van, after dividing the total customer set among the vans.
Note, however, that alternative solution methods described in Section 2 could also
be employed. The result is a service schedule for each van, specifying the van’s route
along drop-o↵ points and bot stations, as well as the loading and launching of bots
and their arrival at customer homes.

From these given service schedules, we extract the bot jobs. A bot job is initiated by
the loading event of some bot at a specific bot station at a specific time and includes
the travel (first on the van and then autonomously) to the respective customer. The
job concludes when the bot is unloaded by the customer at their home. The bot
jobs, characterised by their start and end times, as well as origin and destination,
serve as the fundamental input for our fleet sizing problem. For this input, we aim to
determine the minimum bot fleet size that allows the feasible execution of all bot jobs.
This includes ensuring that each bot is provided with the sequence of bot jobs to be
performed and is informed about the bot station to approach after customer service
and before being picked up by the next van. Naturally, the choice of the bot station
is influenced by the adopted bot return policy.

Therefore, our problem setup involves two stages. Firstly, in Section 3.1, we explain
the process of deriving the fundamental input data for our bot fleet sizing problem,
which is the set of bot jobs, from the given service schedules of vans. This input is then
utilised in the second stage, where the actual bot fleet sizing problem is addressed.
The precise formulation of this problem can be found in Section 3.2.

3.1. Preprocessing bot jobs from service schedules

This section describes the preprocessing step to derive the bot job set, which is the
basic input data to the bot fleet sizing problem defined in Section 3.2. This prepro-
cessing task is best explained with the help of an example, such as the one depicted
in Figure 2.

In Example 1, we have six jobs j1, . . . , j6 (circles), four drop-o↵ points d1, . . . , d4

(diamonds), two bot stations s1 and s2 (squares), and two vans (purple and pink).
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van depicted in Figure 3. Assuming that the van departs from its origin at time 0,
we identify three bot jobs corresponding to the performed jobs. For instance, the bot
assigned to serve job j1 is loaded onto the van at bot station s1 when the van reaches
this station at time 7. After being on board the van for a duration of 2 time units, the
bot is launched at drop-o↵ point d1 and travels for an additional unit of time to reach
job j1. Therefore, the origin (destination) of this bot job is s1 (j1), and its given start
(end) time is 7 (10). Note that if customers do not unload bots immediately upon
arrival, this information is assumed to be known and only a↵ects the duration of the
bot’s delivery job. The resulting bot jobs of the pink van are displayed on the right
side of Figure 3. Together with the additional three bot jobs derived from the purple
van, these bot jobs constitute the basic input data for our bot fleet sizing problem,
which will be defined in the subsequent section.

3.2. Definition of the bot fleet sizing problem

The preprocessing step of Section 3.1 yields the actual input data to our bot fleet
sizing problem, which is a set J of bot jobs. These jobs must be feasibly serviced by
some bot, such that each job’s given start and end time at the origin and destination
can be granted. Each job j 2 J is thus defined by an origin oj , a destination dj , a
start time ↵j , and an end time fj . On the other hand, we have a fleet B of bots to be
sized.

Let a : J ! B be a function that describes an assignment of jobs to bots, i.e.,
a(j) = b means that job j is assigned to bot b. Furthermore, let ⌦a = {(j, j0) : a(j) =
a(j0) and fj < ↵j0} define the set of ordered job pairs executed in direct succession by
the same bot under assignment a, with j executed before j

0.
A solution to the bot fleet sizing problem is defined by two parts. First, we have

an assignment a that matches jobs of J to bots of B. Furthermore, for any pair of
bot jobs j and j

0 that are executed by the same bot within assignment a in direct
succession, we have to define the bot station visited by the bot in between both jobs.
If ⌦a defines the set of jobs pairs (j, j0) 2 ⌦a, executed in direct succession by the
same bot in a, with j executed before j

0, then we have to define bot station sj,j0 for
each (j, j0) 2 ⌦a.

We mathematically formulate the feasibility of a solution a as follows:

• 8j 2 J, 9!b 2 B : a(j) = b: Each job j 2 J is successfully executed, meaning that
it is assigned to exactly one bot of set B in assignment a.

• 8(j, j0) 2 ⌦a
,↵j0 � fj + �(dj , sj,j0) and sj,j0 = oj0 : If two jobs are assigned to the

same bot to be executed in direct succession, then there must be enough time
for the bot to visit its designated bot station after job j where successor job j

0

starts. Thus, ↵j0 � fj + �(dj , sj,j0) and sj,j0 = oj0 must hold for each (j, j0) 2 ⌦a,
where �(o, d) represents the travel time of a bot from origin o to destination d.

Note that we assume that either each bot’s waiting time at a bot station for the
next van is long enough to be fully recharged in the meantime or batteries are swapped
before a bot is loaded onto a van. This allows us to abstract from limited operating
ranges of bots. However, although not explicitly considered, adding range restrictions,
so that specific bot stations are beyond reach from a customer’s destination, is truly
straightforward.
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4. Reformulation as a minimum cost bipartite matching problem

Having defined the bot fleet sizing problem, we can reframe the optimisation task as
a minimum cost bipartite matching problem. This reformulation opens up the path
towards exact solution algorithms with polynomial runtime. To explain this reformu-
lation in a clear manner, we first focus on the bot fleet sizing problem under the
dedicated-station policy in Section 4.1. We then proceed to discuss the necessary ad-
justments to the reformulation when applying the closest-station and most-suitable-
station policies in Sections 4.2 and 4.3, respectively. Furthermore, in Section 4.4, we
demonstrate that the reformulation requires only a few modifications to incorporate
the option of transshipping bots among bot stations by utilising unused van capacity.

Note that minimising a vehicle fleet, tasked with executing a given set of time-
tabled trips, through a bipartite matching has previously been explored by Bertossi
et al. (1987) to minimise bus fleets for fixed departure and return trips. Building
upon this idea, we extend and adapt this approach to the bot fleet sizing problem,
considering its di↵erent bot return policies.

4.1. Dedicated-station policy

Under the dedicated-station policy, each bot is assigned to a specific bot station where
it is picked up by vans and returns to after customer service. Thus, bots remain at
their designated bot stations, and only jobs originating from the respective bot station
are considered for execution by the same bot. As a result, the overall bot fleet sizing
problem can be decomposed into multiple subproblems specific to each bot station.

Example 1 (cont.): Referring to the example introduced in Figure 2, this implies
that two bot fleet sizing problems need to be solved: one for bot station s1 and another
for bot station s2. The former problem includes jobs J 0(s1) = {j1, j2}, while the latter
consists of jobs J 0(s2) = {j3, . . . , j6}.

For each station-specific subproblem, we introduce a bipartite graph G = (V,E,w)
with a bipartition (P,Q). In this context, P = Pb[Pj and Q = Qb[Qj , where Pb and
Pj are respectively the bot and job nodes in P , and Qb and Qj are respectively the bot
and job nodes in Q. Additionally, P and Q are subsets of V , serving as predecessor
and successor nodes, respectively. Both sets P and Q contain |P | = |Q| = 2 · |J 0| nodes.

The weights we are associated with each edge e 2 E and indicate the cost or ’penalty’
of choosing that edge in the matching.

• bot2bot: Each bot node of P is connected by an edge exclusively with one bot
node of Q and vice versa. This edge represents that the respective bot is not
required. This edge e is associated with an edge weight we = 0, because – if
realised in the matching – no additional bot is required.

• bot2job: Each bot node of P is related by an edge with any job node of Q. These
edges represent that the respective job is the first one executed by a bot. All
edge weights of these bot2job-edges are set to we = 1, which indicates that an
additional bot is utilised.

• job2job: A job node j of P is connected by an edge with a job node j
0 of Q, if

they do not refer to the same job and ↵j0 � fj + �(dj , s). Here, s refers to the
bot station of the current subproblem where all delivery jobs have their origin.
Such an edge represents that both jobs can be feasibly executed by the same
bot, with predecessor j before successor j0. The edge weights of these edges are
set to we = 0, because the bot already applied for the predecessor is reused by
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at the same station. Similarly, adding a final van drive to the chain of a bot
cannot improve the solution. Hence, these edges are omitted in the graph.

• relocation2relocation: A relocation node of P is connected with exactly one relo-
cation node of Q (and vice versa). Such an edge represents the situation in which
a van’s available bot-carrying space is not utilised for a given drive between two
stations.

• job2relocation and relocation2job: An edge is added from a relocation node of P
to a job node of Q (and vice versa) if the time span between the given end time
of the predecessor and the start time of the successor allows the bot enough time
to drive from the destination of the predecessor to the origin of the successor.

All edges related with relocation nodes receive weight we = 0, as no additional bot
is involved, whether available relocation capacity of vans is utilised or not.

The optimal minimum-cost bipartite matching for Example 2 is shown on the right
side of Figure 7. In this matching, two bots are required. After servicing job j1, the
selected bot returns to s1 early enough to board the blue van for the drive from s1

to s2. Upon reaching s2, the bot arrives on time to be loaded onto the black van and
subsequently service job j3.

5. Experiments and Results

Our bot fleet sizing problem, under all bot return policies, can be solved to proven op-
timality in polynomial time (see Section 4). Therefore, even instances with hundreds of
bot jobs can be solved within a few seconds. As a result, we do not evaluate the compu-
tational performance of our solution approach and instead focus on benchmarking the
bot return policies. To accomplish this, we describe the experimental framework and
instance generation process in Section 5.1 and present the results of our benchmark
study in Section 5.2.

5.1. Experimental framework

The primary input data for our bot fleet sizing problem consists of the given service
schedules for vans and bots during customer servicing. Each van is assigned a set of
customers to serve. The route includes depots and drop-o↵ points where SADRs are
deployed to deliver parcels to the final customers. To obtain these schedules, we utilise
the instances provided by Boysen et al. (2018b) and solve them using the algorithm
introduced by the same authors. This process results in single-van service schedules
where a subset of customers is served by bots that are picked up and released by the
same van. In practical settings, there is often a requirement to coordinate overlapping
delivery schedules in the same area while serving multiple customers concurrently. To
address this complexity, our study encompasses these scenarios, allowing for the reuse
of delivery bots across di↵erent van schedules. This broader perspective enhances the
model’s applicability to real-world situations.

The instances of Boysen et al. (2018b) are categorised into two types: small (urban)
and large (suburban) instances. Table 1 presents the characteristics of these instances,
including their dimensions, the number of available bot stations, drop-o↵ points, and
customers, as well as the bot capacity on board of vans. Note that these instances
presuppose an average travel speed of 30 km/h and 5 km/h of van and bot, respectively.
They are, then, solved with the decomposition heuristic introduced by Boysen et al.
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Table 1.: Characteristics of the service scheduling instances of Boysen et al. (2018b)

Small (urban) Large (suburban)
Area 2km x 2km 5km x 5km
Number of bot stations 4 16
Number of drop-o↵ points 6 30
Number of customers 6 40
Bot-carrying capacity of vans 2 8

(2018b) (for more detail, see Section 2). Examples of the resulting single-van service
schedules are shown in Figure 8, where we use solid red arrows to represent the van
route and dashed green lines to indicate the vans’ ideal trajectory from the release
point to the assigned job position.

Figure 8.
Caption: Single-van service schedules for the small (left) and large (right) instances.

Alt text: In this figure, two instances are illustrated. On the left side, a depiction of
a small instance is presented, providing visibility into the paths of both the van and
the bots. On the right side, a larger instance is showcased, highlighting the complexity
associated with handling larger instances due to the substantial number of available
jobs.

Expanding upon these initial single-van service schedules, we broaden our analysis
by concurrently executing multiple schedules within a given planning horizon, such
as an entire delivery day within a specific area. Table 2 provides insights into various
metrics relevant to di↵erent instance classes in our bot fleet sizing problem. Specifically,
the table itemises the number of single-van delivery schedules, each tailored to serve a
unique subset of customers. It also categorises the di↵erent types of service scheduling
instances and enumerates the total bot jobs generated by these schedules.

To create a realistic scenario, we merge various service schedules from the original
instances, emphasising customer sets within the same geographic area where multiple
vans are in operation. This consolidation provides a realistic representation similar
to actual urban and suburban delivery settings, where multiple vans follow distinct
schedules to deliver packages to end customers. This approach allows us to evaluate
di↵erent policies regarding the reuse of bots by testing them across the entirety of the
newly generated consolidated instances.

On a typical delivery day, multiple concurrent delivery schedules operate within
the same area, each serving a specific subset of customers. Considering this context,
we assess these instance types across di↵erent planning horizons by varying the start
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Table 2.: Generated instances types for the bot fleet sizing problem

Type Service schedules Environment # of bot jobs
u 4 4 urban 24
u 8 8 urban 48
u 16 16 urban 96
u 32 32 urban 192
u 64 64 urban 384
s 4 4 suburban 160
s 8 8 suburban 320
s 16 16 suburban 640

time intervals for van service schedules. These intervals are set at 0, 30, 60, 90, and
120 minutes. Within each interval, vans depart at equidistant start times, ensuring a
distributed coverage similar to realistic delivery planning scenarios.

For each of the interval configurations, we generate 100 distinct instances of the
bot fleet sizing problem and evaluate them using all five bot return policies. This
approach results in a total of 20, 000 solution runs, providing a comprehensive dataset
that accounts for various real-world operational conditions.

5.2. Computational results

Our computational benchmark study compares the following bot return policies: the
dedicated-station policy (each bot is assigned to a fixed station to return to after
customer service), the closest-station policy (each bot returns to the station closest
to the last customer), and the most-suitable-station policy (bots are directed to a
station where they can be reused for further jobs based on the given service schedules).
The latter two policies are investigated with and without the option to transship
bots among stations by utilising unused van capacity. Our evaluation criterion for the
resulting five policies is their respective bot fleet sizes required to feasibly execute the
given service schedules.

Table 3 provides a summary of the results obtained from this benchmark test. In
this table, we report the percentage savings in the bot fleet size achieved by each policy
relative to the most basic policy, referred to as the one-job-one-bot policy. Here, each
job is executed by its own bot. Column ’Reloc.’ indicates whether (+) the respective
policy allows bot relocations by van or not (-). The savings are specified for the di↵erent
types of instances (i.e., ’u 4’, ’u 8’, ’u 16’,’u 32’, ’u 64’, ’s 4’, ’s 8’, and ’s 16’) and for
di↵erent intervals (column ’Int.’) used to determine the start times of the vans’ service
schedules. Based on these results, the following findings can be observed:

Finding 1: No significant di↵erence between the dedicated-station and the closest-

station policy. Among our various instance types and start time intervals, the di↵erence
of the average improvement over the baseline policy is just 0.9% on average and at
most 3.0%. Both policies are easy to implement, but from an organisational standpoint,
the dedicated-station policy provides a more stable environment. If a fixed bot fleet
is assigned to each station, the capacity and charging equipment can be appropriately
dimensioned, avoiding unexpected shortages when an unexpectedly high number of
bots chooses a particular (closest) station. Therefore, if only being left the choice
among these two policies, our results suggest that the dedicated-station policy induces
no significant performance loss.

Finding 2: The most-suitable-station policy clearly outperforms its competitors.

The most-suitable-station policy o↵ers fleet size reductions of up to 70%, while the
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Table 3.: Reduction of bot fleet size in % in relation to the one-job-one-bot policy

Int. Policy Reloc. u 4 u 8 u 16 u 32 u 64 s 4 s 8 s 16
0 dedicated - 0.3 0.6 0.9 1.4 1.7 <0.1 0.1 0.1

closest - 0.3 0.6 0.9 1.4 1.7 <0.1 0.1 0.1
most-suitable - 0.3 0.5 0.7 1.1 1.2 <0.1 0.1 0.1
closest + 0.3 0.6 0.9 1.4 1.7 <0.1 0.1 0.1
most-suitable + 0.3 0.6 0.7 1.1 1.2 <0.1 0.1 0.1

30 dedicated - 7.5 11.8 13.2 13.6 14.0 0.6 1.2 1.9
closest - 9.5 13.9 14.3 14.2 14.4 0.9 1.6 2.2
most-suitable - 11.1 15.9 19.2 22.9 26.3 1.0 1.7 2.3
closest + 10.5 15.3 15.3 14.7 14.6 1.0 1.8 2.3
most-suitable + 12.1 17.1 20.2 23.4 26.6 1.11 1.9 2.4

60 dedicated - 10.7 14.8 15.1 15.5 15.4 1.3 2.1 2.5
closest - 13.5 17.3 16.4 16.2 15.9 2.2 2.8 3.0
most-suitable - 24.9 33.8 40.2 45.8 50.6 3.1 4.9 7.0
closest + 15.2 19.1 17.4 16.7 16.1 2.5 3.1 3.2
most-suitable + 26.5 35.4 41.2 46.3 50.9 3.6 5.2 7.2

90 dedicated - 11.7 15.7 15.7 16.2 16.0 1.7 2.4 2.8
closest - 14.7 18.5 17.1 16.9 16.5 2.8 3.3 3.4
most-suitable - 38.0 46.7 53.6 58.7 63.3 6.7 10.3 15.2
closest + 16.6 20.2 18.1 17.3 16.7 3.2 3.6 3.5
most-suitable + 39.7 48.4 54.6 59.3 63.6 7.1 10.5 15.4

120 dedicated - 12.1 16.4 16.1 16.5 16.4 1.8 2.6 2.9
closest - 14.9 19.0 17.6 17.3 16.8 3.2 3.6 3.6
most-suitable - 46.7 55.2 61.5 66.2 70.4 10.9 16.8 23.9
closest + 16.8 20.8 18.5 17.8 17.0 3.5 3.9 3.7
most-suitable + 48.1 56.9 62.4 66.7 70.7 11.3 17.1 24.0

dedicated-station and closest-station policies only enable reductions well below 20%,
even under optimal conditions. Therefore, directing bots to the most suitable stations
is unequivocally the best policy choice, as it ensures substantial fleet reductions in the
majority of scenarios.

Finding 3: Relocating bots between stations by van does not yield significant bene-

fits. When comparing the closest-station and the most-suitable-station policy with and
without the option to relocate bots by van, we record that the average improvement
is just 0.6% and at most 1.9%. These marginal additional savings hardly justify the
added organisational complexity introduced by a bot transshipment process.

Finding 4: The savings decrease in the suburban environment where the bot stations

and customers are located at a greater distance from each other. When comparing
the reductions in bot fleet size between urban instances (indicated by the prefix ’u’
within Table 3) and suburban instances (indicated by the prefix ’s’), we observe that
the reductions in the bot fleet size are much smaller for all policies in the suburban
environment. In the suburban setting, bot stations and customers are farther apart,
resulting in long travel times for the bots when switching to another station. This
reduced flexibility leads us to conclude that the bot return policy is more mission
critical in the urban context.

Finding 5: The savings increase when the delivery dates are more evenly distributed

throughout the day. If all vans start their service schedules at the same time (service
time interval ’Int.’ of length 0 within Table 3), this implies that most bots are utilised
simultaneously. As a result, there is limited opportunity to reuse a bot for subsequent
jobs, and the bot fleet reductions of all policies, compared to the one-job-one-bot
baseline policy, never reach 2%. However, if the vans depart within a start time interval
of 120 minutes, the first bots have already returned and can be reused for subsequent
jobs. In this scenario, all policies achieve substantial reductions of more than 10%,
except in the suburban environment where only the most-suitable-station policies reach
these figures. We conclude that a logistics service provider o↵ering SADR services
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requires a large bot fleet if all customers expect delivery (almost) at the same time.
Therefore, all organisational measures should be evaluated to level the delivery dates
of customers throughout the day. For instance, price discounts could be o↵ered if
customers accept later deliveries.

Finally, it is important to provide some perspective on our findings and acknowledge
the limitations of our study. Firstly, the significant fleet reductions achieved by the
most-suitable-station policy, up to 70% compared to the one-job-one-bot policy, may
not be attainable when service schedules are uncertain. Forecast errors regarding the
regional distribution of demand can reduce the savings in such cases. However, our
results highlight the potential benefits if forecast accuracy can be improved to provide
bots with accurate information on the right stations to return to. Since many jobs
require preparation time before shipment (such as the picking of ordered products from
a distribution centre or cooking the ordered meals), future customers to be serviced
are often known when selecting return stations, although detailed service schedules
may not be available. If this information can be e↵ectively utilised within reliable
forecasts, our results suggest that substantial gains can be achieved. Secondly, the
limited performance improvements observed with bot transshipment are specific to
our experimental setup. In di↵erent environments (e.g., within a sparse network of
bot stations where limited operating ranges restrict flexibility or only limited charging
infrastructure is available or if there is a significant shift in demand among regions
throughout the day) higher gains may be possible.

Overall, our findings represent an initial attempt to evaluate bot return policies
and reveal a significant potential for improvement when applying SADRs. Moreover,
our methodology is directly applicable to multi-period delivery plans, for which re-
turn policies require accomodating extended time frames and service interruption. A
comprehensive discussion on these aspects can be found in Appendix 6.

6. Conclusion

In the context of last-mile delivery, this paper investigates a delivery concept where
vans pick up small delivery bots from bot stations and transport them to drop-o↵
points closer to the customers. The bots then handle the final leg of the delivery and,
after serving the customers, return to the bot stations for the next pickup. In our
study, we examine di↵erent bot return policies that regulate how bots are assigned to
bot stations over time. Specifically, we investigate the following bot return policies:
the dedicated-station policy (each bot is assigned a specific station), the closest-station
policy (each bot returns to the bot station nearest to the last customer), and the most-
suitable-station policy (bots are directed to a station where they can be e�ciently
reused for additional jobs based on the given service schedules). We analyse the latter
two policies with and without the option to transship bots among stations by utilising
unused van capacity. To assess the impact of these five bot return policies on the bot
fleet size, we formulate an optimisation problem where the objective is to minimise the
fleet size under each policy while ensuring the feasibility of the given service schedules
for customers. We demonstrate that this bot fleet sizing problem can be reformulated
as a minimum cost bipartite matching problem, which allows for polynomial-time so-
lutions with proven optimality. In our computational study, we benchmark the bot
return policies and provide managerial advice on how to e↵ectively apply them. Our
research highlights the crucial importance of return policy selection in optimising bot
logistics. Notably, the most-suitable-station policy has the potential to significantly
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reduce fleet size, by as much as 70%, distinguishing it from seemingly comparable op-
tions like the dedicated-station and closest-station policies. Additionally, it is essential
for stakeholders to recognise that the e↵ectiveness of bot return policies faces signifi-
cant constraints in suburban environments, contrasting sharply with urban contexts.
Another key takeaway is the significance of timing; distributing delivery schedules
throughout the day can significantly enhance e�ciency across all policy types, with
the most-suitable-station policy showing the greatest benefit. These findings provide
stakeholders with valuable insights for tailoring bot return policies and operational
strategies, enabling more e↵ective resource allocation and improved logistical plan-
ning, especially when operating across diverse geographic landscapes. Future research
could build upon these findings, exploring the implications of potential technological
advancements for the bots and methodological enhancements to our approach. En-
hancing the battery capacity and/or top speed of the bots could significantly improve
the overall system, enabling them to reach stations located farther within the service
area. Particularly, the development of longer-lasting battery technologies would extend
the operational range before requiring recharging. Given the ongoing development of
multi-container, higher-capacity bots capable of carrying more than one parcel, this
would open the door for bots to deliver multiple parcels before needing to return to a
station. While our current study assumes a priori knowledge of delivery plans, future
work could address this limitation by incorporating uncertainty into service sched-
ules. This would enable a more thorough examination of di↵erent bot return policies
under non-deterministic conditions. Additionally, evaluating alternative performance
measures beyond bot fleet size could provide a more comprehensive understanding
of how return policies impact the performance, reliability, and client satisfaction of a
last-mile delivery concept that includes delivery bots. Finally, our study considers bot
fleets that can be operated by a single entity. Without being restricted to situations
arising within a single company, our framework could be extended to multiple firms
operating in the same area. Allowing for bot exchangeability between firms would
facilitate further minimisation of the global number of devices in use, as well as the
number of available bot stations in the serviced area. However, further research would
be necessary to analyse the conditions under which such a cooperative framework
could be successfully implemented.
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Appendix

Discussion on multi-period planning with service interruption

In Section 5.2, we conducted a thorough analysis of our bot fleet sizing problem,
evaluating the e�cacy of various bot return policies across a diverse range of instances
and scenarios. Our study centered on a representative delivery day, featuring multiple
overlapping delivery schedules within a geographic area, each designed to serve distinct
sets of customers. To capture realistic conditions, we introduced timing scenarios where
the starting times of di↵erent delivery vans varied from 0 to 120 minutes.

It is important to note that, beyond our primary testing framework, our method-
ology is inherently scalable and can seamlessly accommodate larger time horizons, a
greater number of jobs, bots, and vans. While our analysis primarily focused on the dy-
namics of a single delivery day, the optimisation framework we employed can naturally
extend to multi-period planning horizons without requiring significant methodological
alterations. Indeed, the considered continuous time scale can encompass not only the
next few hours but also span several days or even months. In these extended time
frames, bots possess the flexibility to dynamically adjust their return-to-station deci-
sions after each performed job, particularly during the natural service interruptions
between two delivery periods (e.g., days).

Bots can consider cumulative job requirements over extended periods and leverage
the additional time available for repositioning between two delivery time periods, such
as after completing deliveries for the day and before the start of the next one. In
a multi-day scenario, service interruptions occur between each delivery day, provid-
ing bots with more time to reposition themselves before commencing the next day’s
operations.

In Figure 9, we expand upon the operational schedule introduced in Example 1 by
including subsequent jobs to be executed on the next delivery day. The convenience
of the proposed procedure remains intact even when additional job nodes are added
with associated scheduling for the next day. This ensures that bots can be e�ciently
reused without introducing added complexity.
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Decision variables:

• xij : Binary variable that takes the value 1 if successor j is assigned to predecessor
i and 0 otherwise.

Objective function: Minimise the total cost of assignment:

Minimise Z =
X

i2P

X

j2Q
cij · xij (1)

Constraints:

X

i2P
xij = 1 8j 2 Q (2)

X

j2Q
xij = 1 8i 2 P (3)

xij 2 {0, 1} 8i 2 P, 8j 2 Q (4)

The objective function (1) minimises the total assignment cost, while constraints (2)
and (3) respectively ensure that each successor is assigned to exactly one predecessor
and vice versa. The generation of nodes sets P and Q as well as assignment costs
cij depending on the respective bot return policy are given in Section 3. Additional
implementation details for each policy are provided in the following sections.

Implementation details

In every policy implementation, the construction of the assignment matrix used as
input to our solution method is a critical step. It is essential to focus on defining the
job2job submatrix, which determines the feasibility of executing two consecutive jobs.
In the following subsection, we provide the essential pseudo-codes that define these
tasks.

Assignment matrix

As an initial first step for the proposed solution framework, it is necessary to define
an assignment matrix (see Figure 10), which comprises 2 · |J | rows and columns.
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In Example 2, no job can be performed by a bot transported by the black van using
a relocation node. On the contrary, the blue van could transport one bot from s1

to s2, using the rs1s2 relocation node, and j3 could be performed by this same bot.
Therefore, in submatrix job2rel, the entry j3-rs1s2 is given a cost we = 0. Following
the same logic, rs1s2-j3 in the rel2job submatrix is given a cost we = 0.
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