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In a recent paper Hawkins et al. (2007) question
whether the use of spatially explicit methods such as
generalised least squares (GLS) is necessarily better
than using simpler non-spatial methods such as
ordinary least squares (OLS) for fitting linear models
to spatial data. This is consistent with a wider review
of the literature which found that�80% of ecological
publications analysing spatial data ignore spatially-
explicit modelling methods (Dormann 2007). Since
the autocorrelations of the error term may be
arbitrarily close to zero, it cannot be argued that
OLS is always substantially worse than GLS, as OLS is
the special case of GLS when the correlations are set to
zero. However, this should never be used as an excuse
to ignore GLS and instead to adopt OLS as the norm
for spatial data: doing so may hinder sound inference
in geographical ecology. It is the need to model
correlation structures correctly that has motivated the
substantial bodies of research in statistical methodol-
ogies summarised for spatially correlated data by
Cressie (1993) and for temporally correlated data by
Diggle et al. (1995) and Chatfield (2003). Ignoring
spatial autocorrelation is to treat correlated observa-
tions as independent, and so is a form of pseudor-
eplication which has long been discredited in ecology
(Hurlbert 1984).

In this short response we make three main points:
firstly, Hawkins et al. have misunderstood the ‘‘red-
shift’’ as described by Lennon (2000); secondly,
the sub-sampling method they use to reach their
conclusions is inappropriate; and thirdly, improved
modelling of the covariance structure of the error

term allows better statistical inference to be made
from spatial datasets.

Point 1

Hawkins et al. focus on the issue of whether spatial
autocorrelation causes systematic shifts (bias) in re-
gression coefficients fitted with non-spatial methods.
This, however, is not the ‘‘red-shift’’ identified in
Lennon (2000). Rather, the red-shift refers to the
likely over-representation of covariates with stronger
spatial autocorrelation when using model selection
with non-spatial methods, an issue not addressed by
Hawkins et al.

Point 2

The approach taken by Hawkins et al. is to generate
parameter estimates that are supposedly unaffected by
spatial autocorrelation. They take multiple subsamples
from given data sets and compare the distributions of
regression coefficients obtained from the subsamples
with the estimates obtained from the full data set.
Whilst this is potentially a useful approach for
determining whether future data collection need be so
intensive, as a method for determining the relative
abilities of OLS and spatially explicit methods for
estimating regression coefficients from the full data set
it is flawed: the mean across repeated subsamples will
always be close to the regression coefficients estimated
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from the full dataset (as Hawkins et al. found, and as we
also demonstrate by simulation in the appendices).

Point 3

The performance of methods for estimating model
parameters is usually assessed in terms of bias (whether
the estimate is too large or too small on average) and
precision (how widely the estimates are spread). Both
the OLS and GLS methods are always unbiased (this
is demonstrated mathematically in Appendix 1) and so
Hawkins et al.’s statements about bias are indisputably
correct. Where the methods differ is in their precision

in the presence of residual spatial autocorrelation, as
demonstrated below.

To illustrate, we used 1000 simulations of spatially-
structured data sets. Methods and R code (R Develop-
ment Core Team 2007) used in the simulations and
analyses are provided as fully explained appendices: we
invite readers to experiment for themselves. The true
regression coefficients which we estimate from simu-
lated data are always zero. We applied models using
OLS, GLS and a version of Hawkins et al.’s subsam-
pling method to each data set. The distributions of
estimates of regression coefficients from OLS and
GLS are provided in Fig. 1. These show clearly that
the GLS estimates are much more precise than those
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Fig. 1. Scaled density plot of estimated regression coefficients for 1000 simulations where the true coefficient is zero for all three
covariates with increasing spatial autocorrelation from (a) to (c). GLS estimates are illustrated by the thick line and the thin line
gives the OLS results. Y-values are scaled to ensure the maximum for both methods is one. Note that both methods are centred
on zero but GLS estimates are far more precise, particularly as autocorrelation increases.
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Fig. 2. Density plot of absolute values of regression coefficients estimated by (a) GLS and (b) OLS for 1000 simulations
(see appendices for details). Note the difference of scales between (a) and (b), due to the more precise estimation by GLS. True
parameter values underlying the simulations are 0 in all cases. The dashed, thin and thick lines represent estimates of parameters
for covariates with low, intermediate and high autocorrelation, respectively. Mean absolute values of parameter estimates are
identified by vertical lines. In all cases the mode is (correctly) 0, but the mean absolute coefficient size gets progressively larger in
magnitude with increasing spatial autocorrelation.
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from OLS. Alpargu and Dutilleul (2003) and others
have used far more extensive simulations to explore
different autocorrelation structures and relationships
between variables, with the same general conclusions:
for individual data sets, the OLS and GLS estimates
may be very different, and that when residual auto-
correlations are strong the OLS estimates are much less
precise. Because of the low precision of the OLS
estimates, it is also true that OLS estimates often have
a greater absolute value than their GLS counterpart
(Fig. 2). Both these results can be seen in Table 1 of
Hawkins et al. (2007), in which each OLS estimate
differs from its corresponding spatial estimate by more
than one standard error and 21 of the 22 coefficients are
larger in magnitude in the OLS models than their
spatial counterparts. Similarly Dormann (2007) found
that every coefficient in 24 separate ecological studies
was larger in magnitude for OLS than spatially-explicit
analyses of the same datasets.

Conclusions

We have demonstrated that the consequences of using
OLS when GLS is more appropriate can be profound.
If residual spatial autocorrelation is negligible or
nonexistent, results from OLS and GLS should be
equivalent, whilst if residual spatial autocorrelation is
substantial it should be taken into account. Our
experience is that spatially distributed response variables

in ecological studies typically show spatial autocorrela-
tion over and above that explained by the covariates.
Consequently, the default analysis for spatial data
should be to use methods which allow for spatial
autocorrelation.
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