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Abbreviations 

 

AAV1: Adeno-associated virus, serotype 1 

BDA: Biotinylated dextran amine 

CMV: Cytomegalovirus 

CST: Corticospinal tract 

EES: Epidural electrical stimulation 

FB: Fastblue 

GFP: Green fluorescent protein 

i.p.: Intraperitoneal 

ReST: Reticulospinal tract 

SCI: Spinal cord injury  
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Abstract 

Most spinal cord injuries (SCIs) in humans result from a blunt trauma to the spine leading to contusion 

of the spinal cord and half of these accidents lead to chronic paralysis below the level of injury. 

However, even in those paralyzed patients, histological analyses reveal a subset of spared descending 

fibers in the majority of cases (Kakulas, 1999; Norenberg et al., 2004). Severe contusion SCI in rats 

reproduces these anatomical and functional features. We assessed the effects of neuroprosthetic 

rehabilitation on recovery of voluntary locomotion using this model.  

Neuroprosthetic rehabilitation was recently introduced and tested on rats staggered hemisection SCI 

that interrupted all direct descending projections while leaving a gap of interconnected intact neural 

tissue. The therapy demonstrated unprecedented functional results with electrochemically-enabled 

restoration of voluntary movements, including walking, running and stair-climbing (van den Brand et 

al., 2012). In the case of contused SCI rats, neuroprosthetic rehabilitation led to an enhanced functional 

outcome including the ability to sustain voluntary walking in the absence of any enabling factor in half 

of the trained animals.  

In the present project, we aimed at characterizing the changes in corticospinal and reticulospinal 

pathways in trained rats that regained supraspinal control over their hindlimbs following 

neuroprosthetic rehabilitation and in non-trained rats. We show that the spared reticulospinal tract 

(ReST) underwent reorganization in response to neuroprosthetic rehabilitation below but not above 

the lesion level. Additionally, we found extensive spontaneous sprouting of the corticospinal tract 

(CST) above the lesion. These results, together with significant secondary damages and 

neuroprotection, highlight the mechanisms that are specifically related to recovery of voluntary 

locomotion in our clinically relevant contusion model. 

 

 

 

 

  

 

Key words: contusion, corticospinal tract, reticulospinal tract, neuroprosthetic rehabilitation, spinal 

cord injury, sprouting  
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Introduction 

Spinal cord injury (SCI) occurs with an incidence rate ranging between 12 and 58 per million inhabitants 

per year worldwide (van den Berg et al., 2010) and is therefore a major concern for public health. 

Mechanical traumatisms account for the majority of SCI, with a peak of incidence in the 18-32 years 

old population (Lee et al., 2014). Thus the impact in terms of years lived with disability is high, since 

half of SCI result in permanent paralysis. Quality of life is compromised as well in SCI patients, due to 

bladder, bowel and sexual dysfunctions, chronic pain, increased susceptibility to infections and to 

other medical conditions.  

However, even in a complete cord syndrome, defined as a complete loss of motor and sensory 

functions below the level of injury (“ASIA A” in the American Spinal Injury Association scaling), in most 

cases a subset of descending fibers is spared (1-10%) at the injury level (Kakulas, 1999; Norenberg et 

al., 2004). Such a remaining bridge was first evidenced in vivo by Dimitrijevic and colleagues 

(Dimitrijevic et al., 1983) who measured a residual electrophysiological conductance across the lesion 

in human subjects with a clinically complete SCI. Over the past decades, lot of effort has been put 

based on the conception that this anatomical substrate could be a promising candidate to re-establish 

top-down long-distance connections for motor control recovery. These attempts were based on 

modifying the microenvironment of the lesion to enhance spontaneous sprouting of the spared fibers. 

Strategies have included molecules that inhibit the reactive deleterious factors secreted by the tissue: 

for example treatments with chondroitinase (Bradbury et al., 2002), and anti-NogoA antibodies 

(Schnell & Schwab, 1990). In parallel, there has also been research in the field of axonal regeneration, 

including re-expression of Wnt gradients (Hollis ER et al., 2012) and growth factors enrichment. But 

the adult CNS has demonstrated very limited capacities to regrow an axon once it has been injured. So 

far, results are modest, especially when it comes to translational and clinical experiments. The 

complexity of the lesion environment constitutes a considerable challenge that would be likely difficult 

to overcome with a single molecular target.  

Unprecedented functional results in a rat model with restoration of near-physiological gait patterns, 

were achieved when capitalizing on the power of lumbosacral circuits using a more generalized 

approach, i.e. in combination with physical activity (Courtine et al., 2009). Following the lesion, 

lumbosacral circuits are disconnected from supraspinal control and thus can be considered being in a 

dormant state. Using an electrochemical neuroprosthesis (Musienko et al., 2009; Musienko et al., 

2011), they can be transformed into a highly functional state: monoaminergic agonists raise the level 

of neuronal excitability while continuous epidural stimulation engages spinal circuits which in turn 
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facilitates locomotion. However, due to the complete and permanent interruption of supraspinal 

input, stepping on the treadmill remained automatic and involuntary. 

In cases where there was some intraspinal continuity left at the level of the lesion, there was a 

hypothesis for additionally recovering a supraspinal control over these lumbosacral circuits. A robotic 

postural interface was hence designed to encourage voluntary stepping (Dominici et al., 2012).  

“Neuroprosthetic rehabilitation” (also called “multi-system neurorehabilitation”) composed of 

electrochemical stimulation together with the use of robotic postural interface in a context of positive 

reinforcement was tested on rats with midthoracic staggered lateral hemisection SCI. In this model, all 

direct descending projections were interrupted while leaving a gap of spared interconnected tissue. 

Functional results were impressive with rats that regained the ability of full-weight bearing voluntary 

walking, swimming and stair climbing in the presence of the electrochemical stimulation. Anatomical 

examination revealed extensive and ubiquitous remodeling of cortical projections and spared neuronal 

circuitries (van den Brand et al., 2012). 

This “proof of concept” opened a way towards investing in a new therapy for patients with SCI, 

however there was still some unanswered questions. The next milestone to reach was to assess the 

effect of a similar training strategy in a clinically more relevant model. Indeed, cut injuries are rather 

rare in human SCI. Instead, SCI are often the result of a mechanical trauma that creates a primary 

lesion called “contusion”. As opposed to a cut injury, the contusion brings a series of prominent 

secondary damage including the formation of cavities, glial scar, demyelination of surrounding fibers, 

Wallerian degeneration and the secretion of an array of inhibitory molecules (Norenberg et al., 2004). 

Together, they compromise the chances of the CNS to undergo constructive plasticity. Weight-drop 

contusion SCI in rats is a model that has similar functional, electrophysiological and morphological 

outcomes compared to human SCI (Metz et al., 2000). It was therefore used as a model of severe 

contusion SCI in a paradigm of neuroprosthetic rehabilitation.  

After 9 weeks of training, all rats had regained coordinated overground locomotion when supplied 

with electrochemical stimulation. More strikingly, half of them were able to sustain voluntary walking 

in the complete absence of stimulation (Figure 1 D), a result of great importance when considering the 

translation to human therapeutics. 
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Figure 1. Functional results of neuroprosthetic rehabilitation applied to rats with severe contusion SCI. 

Recordings from a healthy rat (A), lesioned rat before training (B), non-trained rat after 9 weeks (C) and trained 

rat after 9 weeks (D). Each panel shows the endpoint (mtp joint) trajectory of the rat’s hindlimb (blue line) 

together with EMG activity in extensor (medial gastrocnemius) and flexor (tibialis anterior) muscles. BWS, body-

weight support; mtp, metatarsophalangeal. 

 

 

Aim of this project 

Which are the mechanisms underlying the functional response to neuroprosthetic rehabilitation in the 

contusion SCI model? To address this question, we have focused in this project on the neuroanatomical 

examination of the spinal cord segments above and below the lesion. We aimed at characterizing the 

reorganization of spared and severed descending fibers of both corticospinal and reticulospinal 

pathways. 

We hypothesized that i) severed corticospinal pathways will not show use-dependent remodeling 

above the severe contusion injury and that ii) spared reticulospinal pathways will show use-dependent 

sprouting in segments below but not above the severe contusion injury. 
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Material & Methods 

Animals and behavior training. All experimental procedures were previously used and described in 

details (van den Brand et al., 2012; Beauparlant et al., 2013). Experiments were conducted on adult 

female Lewis rats (200-220 g body weight) housed individually on a 12-hour light/dark cycle with access 

to food and water ad libitum. All experimental procedures were approved by the Veterinary Office of 

the Canton of Vaud. Prior to surgery, all the rats were first acclimatized to wearing the custom-made 

jacket for 1-2 weeks while navigating freely along the runway.  

Surgical procedures. All surgical interventions were performed in aseptic conditions, under isoflurane 

full anesthesia (1-2%). All animals received postoperative analgesia and antibiotics for 3 and 5 days, 

respectively. Prior to spinal cord injury, all chronic SCI rats were implanted with electrodes: stimulating 

epidural electrodes (spinal segments L2 and S1) and recording EMG electrodes on flexor (tibialis 

anterior) and extensor (medial gastrocnemius) muscles of hindlimbs, bilaterally. The electrodes’ wires 

were secured to the dura by stitches and arranged subcutaneously along the spinal cord to connect a 

headplug, which was plugged in during training sessions and functional evaluations. 

Contusion injury. In our contusion model, SCI was the result of the impact of a weight dropped at T9 

level and delivered by a force-controlled device (Infinite Horizon Impactor). The desired output was 

set to 250 kDyn (1 dyn = 10 µN). After a T9 laminectomy and exposure of the underneath dura, the 

weight was dropped directly on the dorsal aspect of the spinal cord and depth in tissue displacement 

was then measured by the device. 

Experimental groups. In this study, we compared 4 different groups (Figure 2): 

Healthy (n=4): Control animals which did not receive a SCI and were not trained. 

Subacute (n=5): Control animals which received a SCI and were perfused in the subacute phase, i.e. 8 

days post-SCI. 

Non-trained (n=8): Control animals which received a SCI but were not trained. 

Combo trained (n=8): Experimental group that received a neuroprosthetic rehabilitation training after 

a 1-week recovery post-SCI.  
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Figure 2. Timeline of the study protocol 

 

Neuroprosthetic rehabilitation. Trained animals followed a rehabilitation program that was first 

described by van den Brand et al. (van den Brand et al., 2012). Briefly, 10 minutes prior to training, rats 

received a systemic (i.p.) injection of a monoaminergic cocktail: serotonin receptor agonists 5-HT1A/7 

(8-OH-DPAT, 0.05-0.2 mg/kg) and 5-HT2A/C (quipazine, 0.2-0.3 mg/kg). This pharmacological stimulation 

was combined with electrical epidural stimulation (EES), delivered continuously during the training 

session (rectangular pulses of 0.2ms, 40Hz) through L2 and S1 implanted electrodes. Intensity of EES 

was adjusted (between 50-200µA) to obtain optimal facilitation of stepping visually. Active overground 

locomotion was promoted by the use of a home-made robotic postural interface (Dominici et al., 2012) 

together with positive reinforcement. While this part of the training aimed at encouraging voluntary 

locomotion, we combined it with bipedal stepping on a treadmill (9 cm/s) with vertical robotic support 

to engage the denervated spinal circuits. The content of each training session evolved with the actual 

capacities of the rats and training objectives (van den Brand et al., 2012). Rats were trained once per 

day in a single session of 25 minutes, 6 days per week. 

Functional evaluation. One week (P7) and 9 weeks (P63) post-SCI, a set of recordings was performed 

in order to assess rats’ performance under different paradigms. Tasks included walking over a flat 

surface, climbing stairs and swimming. All rats were recorded under the influence of the 

electrochemical neuroprosthesis. Recordings and data analysis of kinematics, kinetics and EMG have 

been described in previous studies (Musienko et al., 2011; Courtine et al., 2009; van den Brand et al., 

2012). The Vicon motion analysis system (Vicon Motion Systems, UK) was used to capture reflective 

markers attached bilaterally on the rat’s iliac crest, hip, knee, ankle, metatarsophalangeal joint (MTP) 

and tip of the toe. EMG was recorded as well, through the implanted extensors and flexors electrodes. 
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Analysis was performed offline using the Nexus software (Vicon Motion Systems, UK) and custom-

written Maltlab (MathWorks, USA) scripts. 

Tracer injection. At the end of the training period (P63), rats were injected with tracers. To trace 

reticulospinal (ReST) fibers, an adeno-associated virus serotype 1 (AAV1) expressing GFP was injected 

bilaterally into the reticular formation (gigantocellular reticular nucleus). Three injections (300 nl per 

injection) were made bilaterally (Bregma -11, -11.5, -12mm) and 8 mm below the surface of the 

cerebellum. To trace motor cortex axonal projections originating from the left cortex, a 10% 

suspension of biotinylated dextran amine (BDA) was injected into the left motor cortex over 6 sites 

covering the hindlimb area (coordinates centered -1mm rostrocaudal and -1.75mm mediolateral to 

Bregma, depth 1.5mm). A third tracer, Fastblue (FB), was injected later (P74) at L2 level on the right 

side for a retrograde tract tracing of propriospinal neurons. However, its analysis was undertaken in 

another study. 

Perfusion and tissue removal. In order to fix the tissue, at P84 (P8 or 10 for the sub-acute group), 

animals were perfused with a Ringer’s solution containing 100 000 IU/L heparin and 0.25% NaNO2 

followed by 4% paraformaldehyde (PFA) in 0.1M phosphate buffer (PB), pH 7.4 containing 5% sucrose. 

Then the central nervous system composed of brain, brainstem and spinal cord was dissected, 

retrieved and post-fixed in PFA. Tissue was then transferred to 30% sucrose in PB for 5 days to attract 

water out of the cells before freezing. It was cut into blocks of defined spinal segments which were 

embedded individually in TissueTek O.C.T. (Sakura), frozen in -40°C isopentane and stored at -80°C 

until processing. For instance, segment C corresponds to T7-T8 levels, segment D contains the lesion 

and segment E contains T12-T13 levels. 

Tissue processing, immunohistochemistry. Segments were cut into 40 µm thick coronal sections with 

a Leica CM 1950 cryostat. They were stored free-floating in 96-well plates filled with 0.1M phosphate 

buffered saline solution (PBS) or PBS azide. For each segment, we stained a sample consisting of 

sections spaced by approximately 960 µm. C segments were stained for GFP and BDA, while E segments 

were stained for GFP only. 

Having injected AAV1 expressing GFP, the descending ReST fibers already expressed GFP, but with low 

signal. To enhance this signal, we stained the spinal cord slices by targeting the GFP molecule. Sections 

were washed in 0.1M PBS, incubated in a blocking solution (10% NGS, 1% Triton in PBS), incubated in 

serum containing primary antibody chicken anti-GFP (1:500 in 5% NGS, 1% Triton in PBS), washed again 

and revealed by a secondary antibody goat anti-chicken labelled with Alexa 488 (1:200 in 5% NGS, 1% 

Triton in PBS). BDA-labelled fibers were detected using streptavidin-horseradish peroxidase (1:200) in 
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0.1M PBS-Triton (1%), followed by amplification of the signal by Tyramine System Amplification (TSA) 

Cyanine 5 (PerkinElmer kit). The sections were left for drying before coverslipping with Mowiol.  

In order to enable lesion reconstruction, segments D were stained for glial fibrillary acid protein 

(GFAP), a marker of astrocyte inflammatory response, and neuronal nuclei (NeuN), which is a specific 

marker of neuronal cell bodies. For GFAP, sections were blocked in 10% NGS, 1% Triton solution before 

being incubated overnight at 4°C in a 5% NGS, 1% Triton, rabbit anti-GFP antibody (1:1000,  Dako, USA). 

They were incubated 60 minutes at room temperature in a 10% NGS, 1% Triton, goat anti-rabbit Alexa 

488 (1:400, Invitrogen, USA) solution. For NeuN staining, sections were blocked for 2 hours at room 

temperature in 5% NGS, 0.4% Triton solution. Next, sections were incubated in a 2% NGS, 0.4% Triton, 

mouse anti-NeuN (1:500, Chemicon, USA) overnight at 4°C. The next morning, spinal  cord sections 

were incubated 4 hours at 4°C in a 2% NGS, 0.4% Triton, anti-mouse antibody (1:500, Molecular Probes, 

USA) solution. Sections were mounted on slides, covered with Mowiol and coverslipped. 

Neuromorphological evaluation. Confocal scans were acquired using a Leica TCS SPE microscope with 

a 20X objective and the LAS AF interface (Leica Microsystems, Germany). Three sections per animal 

and per segment were scanned, each consisting in 10 stacked images spread over an approximate 

depth of 20 µm and with an initial pixel size in the projection plane of 633nm x 633nm. Maximum 

intensity projection was computed to generate an output image of 8-bits with a decreased resolution 

of 400 pixels per mm of physical length. With the help of a custom-written Matlab script (van den 

Brand et al., 2012), we quantified fiber densities within selected regions of interest (ROI). Images were 

first color-filtered and the ROI drawn manually. They were binarized according to an intensity 

threshold that was kept constant across all animals. Density was computed as the ratio of positive 

pixels divided by the ROI area. Heat maps were also generated by the script. 

Statistical analysis. Comparison between groups was assessed by a one-way ANOVA and when 

appropriate Fisher LSD test was applied (Prism, GraphPad Software, USA). All data are reported as 

mean values ± standard error of the mean (s.e.m.). A p-value < 0.05 was considered significant (*). P-

value < 0.01 was marked (**) and p-value < 0.001 was marked (***). When not otherwise indicated on 

bar graphs, statistical symbols refer to unpaired t-test with the intact group. 

Lesion reconstruction. Lesions were reconstructed using the Neurolucida software (Neurolucida, MBF 

Bioscience, USA). The spanning distance of a reconstruction along the spinal cord was 10.28mm, with 

a resolution of 320 µm between consecutive sections. Within each section analyzed, we traced by hand 

borders of the lesion delimited by GFAP staining. NeuN staining was used to trace borders of spared 

grey matter and of the section outline. Neurolucida provided a visual 3D-reconstruction of the spinal 

cord and lesion together with a 3D-morphological characterization of the lesion.  
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Results 

Lesion reconstruction. We reconstructed the lesions of all animals with chronic SCI (Figure 3 A). Lesion 

reconstruction for subacute animals was not considered, due to the overwhelming inflammatory 

response which would have biased the actual lesion contour. We found that lesions were highly 

variable in their shapes (Figure 3 D), with a rim of spared white matter running along the ventral and 

lateral spinal cord.  

The epicenter of a lesion was defined by its section having the smallest spared area. Initially expressed 

in absolute values (mm2), spared areas were alternatively expressed as the ratio of spared area divided 

by the corresponding section area in a healthy animal, converted in percent. Since epicenter acts as a 

“bottleneck” for descending fibers, a relevant measure to characterize a lesion is its spared area at 

epicenter. Unexpectedly, we found that three months after injury, trained animals had a significantly 

larger fraction of spared area at epicenter (p = 0.008), although the initial lesion outcome, in terms of 

spinal cord displacement at time of impaction, was similar between the two groups (p > 0.05; Figure 3 

B). 

 

Figure 3. Variability of spared white matter after severe contusion SCI in trained and non-trained rats. A) 3D 

reconstruction of a contusion injury (highlighted within square in D).  B) Comparison of the lesions’ characteristics 

between trained and non-trained groups: spinal cord displacement at time of impaction and measures based on 

histological sections of the lesion. Error bars, s.e.m. C) Epifluorescent image showing an example of injury 

epicenter and its corresponding 2D contour tracing. Scale bar, 500µm. D) 2D contour tracing of injury epicenters 

of non-trained and combo-trained SCI animals.  
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Corticospinal pathway analysis. We visualized projections from the left hindlimb motor cortex by 

injection of biotinylated dextran amine (BDA). At the spinal level, corticospinal tract (CST) components 

are specifically labelled. The main tract is well-defined. In rodents, fibers descend in the contralateral 

dorsal column and project mainly to the dorsal horn with a small proportion entering the grey matter 

to re-cross the midline (Figure 4, inset). Since the contusion injury completely disrupts the corticospinal 

main tract, we confirmed histologically that there was no innervating fiber left from this tract below 

the lesion. Thus, we focused our analysis on the segment above the lesion.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. BDA-labeled CST in a healthy rat at thoracic level. Confocal image of labeled projections from the left 

hindlimb motorcortex showing the right corticospinal main tract (arrow) and its branching into the right grey 

matter. Inset: right corticospinal main tract projecting into the right grey matter and fibers recrossing the midline 

(arrow). Dashed line: grey matter contour. Scale bar, 200 µm; inset 50 µm. 

 

We first measured fiber density in the right grey matter and found a significant increase in the chronic 

SCI non-trained group compared to both intact and subacute animals (p < 0.05). The chronic SCI trained 

group had a similar trend although not significant (p = 0.17; Figure 5 A). A dorsoventral distribution of 

fiber density revealed that the site of this remodeling was the intermediate grey matter (Figure 5 C). 

Considering the critical localization of the corticospinal descending tract, we then assessed whether it 

was affected by the lesion in the segment above. Indeed, we found that CST white matter was 

significantly depleted in chronic SCI groups compared to the intact group (p < 0.01; Figure 5 A). 

Interestingly, subacute animals also had less white matter spared compared to intact animals, but to 

(a) B
D

A
 

(a) 
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a lesser extent (p < 0.05), suggesting a time-dependent process in white matter withdrawal (Figure 5 

A, C).  

Hence, it became relevant to normalize our previous grey matter raw data to the CST white matter. In 

this context, normalized fiber density corresponds to the fraction of innervating CST fibers branching 

from the descending tract to enter the grey matter at a given section level. It provides correction for 

the tracing procedure, for inter-individual variations in CST fiber number and for any injury-related 

axonal degradation. We found that right grey matter normalized fiber density was markedly increased 

in chronic SCI groups, compared to both intact (p < 0.01) and subacute (p < 0.05) groups. With left grey 

matter, we also found a significant increased density in chronic SCI groups compared to intact animals 

(p < 0.05; Figure 5 B). 

 

 

Figure 5. Severed CST is associated with spontaneous remodeling above the lesion. CST BDA-labeled fiber 

density analysis at T7/T8 level. A) Bar graphs reporting for each group fiber density within regions of interest: 

right and left grey matter and white matter. B) Normalized data for right and left grey matter. C) Dorsoventral 

density plot of fiber density in the right grey matter for each group and representative heatmaps of BDA-labeled 

fibers. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Error bars, s.e.m. 
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Reticulospinal pathway analysis. We visualized the bilateral projections of the gigantocellular reticular 

formation by injection of an adeno-associated virus serotype 1 (AAV1) expressing green fluorescent 

protein (GFP) under the cytomegalovirus (CMV) promoter (AAV1-CMV-GFP). These projections belong 

essentially to the reticulospinal tract (ReST). In rodents, the ReST descends diffusely in the ipsilateral 

ventral, ventrolateral and lateral funiculi and innervates predominantly the grey matter ventral horns 

(Figure 6). When compared with the topography of the contusion lesion (Figure 3), one can observe 

that this tract is partially spared by the lesion. Thus, it can be considered as a potential substrate to 

mediate voluntary locomotion recovery. To assess this question, we analyzed ReST fibers above and 

below the lesion. 

 

 

  

 

 

  

 

 

 

 

 

 

 

Figure 6. AAV1-labelled ReST in a healthy rat at thoracic level. Confocal image of labeled projections from the 

bilateral gigantocellular reticular formation. Inset: branching of ReST fibers into the ventral horn (arrows). 

Dashed line: grey matter contour. Scale bar, 200 µm; inset, 50 µm. 

 

Above the lesion, we did not find a significant change in AAV1 fiber density between groups for the 

overall grey matter (Figure 7 A). Similar to the corticospinal analysis, we normalized these data to fiber 

density of ReST in white matter. Since this normalization did not induce any change in the result, we 

continued the analysis without normalization.  

A
A

V
1

 

(a) 

(a) 
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Based on the ReST dorsoventral distribution, we next refined our analysis by dividing the overall grey 

matter in three areas: dorsal horns (laminae 1 to 6), intermediate grey matter (laminea 7 and 10) and 

ventral horns (laminae 8 and 9). None of these analyses revealed any significant difference between 

groups (Figure 7 B). However, there was an overall trend towards intact animals having less fibers.  

 

Figure 7. Neuroprosthetic rehabilitation is associated with AAV1-labeled ReST remodeling below, but not 

above a severe contusion SCI. A) Diagram illustrating anatomical experiment and bar graphs reporting the overall 

grey matter fiber density for each group, without normalization and normalized by white matter density. Right. 

Contour tracing of the ReST white matter region (pink dashed line) and grey matter region (white dashed line). 

B) Dorsoventral density plot and bar graphs reporting lamina-specific fiber density for each group. C) Diagram 

illustrating anatomical experiment. Dorsoventral density plot and bar graphs reporting lamina-specific fiber 

density for intact, non-trained and combo-trained groups. D) Representative heatmaps of AAV1-labeled 

reticulospinal fibers at T12/T13. E) Representative images of AAV1-labeled fiber density in lamina 7. Scale bar, 

25µm. *, p < 0.05; **, p < 0.01. Error bars, s.e.m. Lam, lamina. 

1 

0 
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Below the lesion, trained animals showed an increased ReST fiber density in both dorsal (laminae 1 to 

6) and intermediate (lamina 7 and 10) grey matter areas compared to non-trained rats (p < 0.05; Figure 

7 C), which surpassed intact innervation levels in some animals (Figure 7 D, E). Reticulospinal axonal 

reorganization was primarily directed towards the intermediate laminae that are responsible for 

sensorimotor processing, while the motor-associated laminae 8 and 9 remained unaffected at T12/T13 

(p= 0.77; Figure 7 D, E).  

Subacute data were not valid due to the tracing procedure. Indeed, in this group interference between 

the injury and migration of the AAV1 tracer can occur since these two events have to take place in a 

critically small time window in order to evaluate acute lesion effects.  

 

Discussion 

In this project, we have explored neural pathways reorganization underlying the recovery of voluntary 

movements in paralyzed rats with a severe contusion SCI. We have shown that spared reticulospinal 

axons reorganize with neuroprosthetic rehabilitation to reinforce connectivity with the segment below 

the lesion mainly by strengthening innervation of the intermediate spinal laminae.  

We demonstrated the absence of use-dependent sprouting of the CST above the lesion but that, 

instead, CST sprouting occurs spontaneously at this level. This is consistent with the spontaneous CST 

sprouting reported in a dorsal hemisection at thoracic level with bilateral interruption of CST in rats 

(Bareyre et al. 2004). Our finding is closely related to what was found at the brainstem level using the 

same experimental groups, that is, a spontaneous increase in corticoreticular projections (Figure 8). 

Together, these results suggest that in response to lesioned spinal axonal projections, a process is 

activated rostral to the injury that generates an increased number of collaterals originating from the 

corticospinal pathway.  

 

Figure 8. Spontaneous remodeling of motor cortex projections occurs in the presence of spared descending 

brainstem tracts. Diagram illustrating anatomical experiment and bar graph reporting the overall cortical axon 

density for each group. Courtesy of Beauparlant J. 
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We do not have a complete view of which are the targets of these collaterals, but in the absence of 

active training, we observe that it is not sufficient to mediate functional recovery in the case of a severe 

contusion SCI. Previous studies have emphasized on the role played by propriospinal neurons in 

reconnecting supraspinal inputs with efferent circuits, either spontaneously (Courtine et al., 2008; 

Bareyre et al., 2004) or following active training (van den Brand et al., 2012). However, from a previous 

analysis performed in this laboratory, we know that in our model, there is no Fastblue (FB) retrograde 

labelling across the injury level, indicating that no propriospinal axon is spared at the lesion level 

(unpublished). Similar observation has previously been reported in both mild and severe contusion SCI 

(Conta & Stelzner, 2004). In contrast, we suggest here that spared ReST fibers can benefit from the 

spontaneous sprouting of CST above the lesion, in particular in the brainstem (Figure 8), but potentially 

also in thoracic segments (Figure 9), as they undergo remodeling through neuroprosthetic 

rehabilitation. In our clinically relevant SCI model, spared ReST fibers would thus play an essential 

pivotal role in restoring voluntary motor control over hindlimbs by re-establishing a signaling path 

between the hindlimb motorcortex and locomotor-related lumbosacral circuits (Figure 9 C). 

 

Figure 9. Model of ReST and CST reorganization following a severe but incomplete SCI in the rat. A) Subacute 

state. Dashed line, axonal degeneration. B) Spontaneous reorganization in the chronic phase (3 months post-

SCI). Dashed line, axonal drawback. C) Reorganization in the presence of neuroprosthetic rehabilitation. Dashed 

line, axonal drawback. 

? 
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Unlike cut injury models (for example: hemisection, transection, funiculotomy), only few anatomical 

studies have been conducted using contusion SCI. The underlying reason is that this model remains 

difficult to be systematized. Indeed, in this project, major issues were encountered inherent to the 

contusion lesion, which led to exclusion of some animals from the analysis. 

First, there was a high variability in lesion size and morphology, as seen in the lesion reconstruction 

section. As a consequence, functional outcome was also varying within contused groups. Second, we 

found a surprisingly strong decrease in the amount of white matter CST fibers of the chronic SCI groups. 

Most likely, the explanation lies in axonal dieback (or “axonal drawback”). This phenomenon has been 

described following severed corticospinal axons in rats, although to a lesser degree: in a transection 

model, retraction bulbs of CST axons were visualized rostral to the lesion area at a distance that was 

not exceeding 3 mm 2 months post injury (Pallini et al., 1988). Using a model of moderate contusion 

SCI, another study found retraction bulbs as far as 5 mm rostral to the cavity 21 days post injury (Hill 

et al., 2001). In our case, we observed a massive decrease in descending CST fibers at an approximate 

distance of up to 5 to 6 mm away from the proximal lesion extremity. Together, these data suggest 

that the contusion induces a greater extension of axonal dieback than cut injuries.  

Finally, we found that combo-trained animals had a significantly smaller lesion than non-trained 

animals. To our knowledge, such observation has never been reported for cut injury. We hypothesize 

that exercise-induced neuroprotection took place. A similar analysis of lesion size was conducted with 

rats trained in the same conditions but after a 3-months recovery (Helleboid PY, Master thesis 2013). 

No significant difference in lesion size was found between chronic trained and non-trained animals. 

This conclusion is consistent with our hypothesis, since neuroprotection, as a generalized process, 

takes place in the acute/subacute phase. A recent study further supports the concept of activity-

induced neuroprotection (Jung et al., 2014): after six weeks of treadmill exercise in contused rats, 

increased expression of neurotrophic factors and suppression of apoptosis were measured in the 

spinal cord tissue. 
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Conclusion 

During this project, we gained insight in the architectural rewiring underlying neuroprosthetic 

rehabilitation in a clinically relevant model of severe spinal cord injury. In contrast to previous cut 

injury model (van den Brand et al., 2012), we found that a severe, yet incomplete, contusion SCI takes 

primarily advantage of spared reticulospinal axons to re-establish a supraspinal control over hindlimbs. 

Based on our results, we also highlighted the important role that secondary damages may play in a 

contusion injury. Complementarily targeting the microenvironment surrounding contused lesions 

might therefore optimize therapy based on a mechanistic approach.   
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